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ABSTRACT

As the world moves to digital storage for archival purpoghere

is an increasing demand for systems that can provide seetse d
storage in a cost-effective manner. By identifying commbuarks

of data both within and between files and storing them onlyepnc
deduplication can yield cost savings by increasing thetytdf

a given amount of storage. Unfortunately, deduplicatiopl@ts
identical content, while encryption attempts to make atiteat ap-
pear random; the same content encrypted with two differegs k
results in very different ciphertext. Thus, combining tpase ef-
ficiency of deduplication with the secrecy aspects of erttopps
problematic.

We have developed a solution that provides both data sgcurit
and space efficiency in single-server storage and diséribstor-
age systems. Encryption keys are generated in a consistemten
from the chunk data; thus, identical chunks vaillvays encrypt to
the same ciphertext. Furthermore, the keys cannot be dedis
the encrypted chunk data. Since the information each usetsrte
access and decrypt the chunks that make up afile is encrygiteg u
a key known only to the user, even a full compromise of thessyst
cannot reveal which chunks are used by which users.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls; H.3hformation
System$: Information Storage and Retrieval

General Terms
Design, Security

Keywords

secure storage, encryption, cryptography, deduplicatapacity
optimization, single-instance storage

1. INTRODUCTION

Businesses and consumers are becoming increasingly oassci
of the value of secure, archival data storage. In the busiaema,
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data preservation is often mandated by law [16, 26], and ™&ia
ing has proven to be a boon in shaping business strategy.nfor i
dividuals, archival storage is being called upon to preseenti-
mental and historical artifacts such as photos, movies argbpal
documents. Further, while few would argue that business cts
for security, privacy is equally important for individuatiata such
as medical records and legal documents must be kept for lerg p
ods of time but must not be publicly accessible.

Paradoxically, the increasing value of archival data isidg
the need for cost-efficient storage; inexpensive storagevslthe
preservation of all data thatight eventually prove useful. To that
end, deduplication, also known as single-instance stotegebeen
utilized as a method for maximizing the utility of a given amo
of storage [4, 38, 5]. Deduplication identifies common seges
of bytes both within and between files (“chunks”), and onltyrss
a single instance of each chunk regardless of the numbemesti
it occurs. By doing so, deduplication can dramatically the
space needed to store a large data set.

Data security is another area of increasing importance ithamo
storage systems and, unfortunately, deduplication andyption
are, to a great extent, diametrically opposed to one anofremtu-
plication takes advantage of data similarity in order toesha re-
duction in storage space. In contrast, the goal of cryppigras to
make ciphertext indistinguishable from theoreticallydam data.
Thus, the goal of a secure deduplication system is to pradéda
security, against both inside and outside adversariebpwitcom-
promising the space efficiency achievable through singgéaince
storage techniques.

To this end, we present two approaches to secure dedupficati
authenticated and anonymous. While the two models areasimil
they each offer slightly different security properties. tBgan be
applied to single server storage as well as distributecageor In
the former, single server storage, clients interact witingls file
server that stores both data and metadata. In the laterdatate
stored on an independent metadata server, and data is stored
series of object-based storage devices (OSDs).

Both models of our secure deduplication strategy rely onma-nu
ber of basic security techniques. First, we utilize congatgen-
cryption [10] to enable encryption while still allowing dealica-
tion on common chunks. Convergent encryption uses a fumctio
of the hash of thglaintext of a chunk as the encryption key: any
client encrypting a given chunk will use the same key to dosso,
identical plaintext values will encrypt to identical ciptext values,
regardless of who encrypts them. While this technique deak |
knowledge that a particular ciphertext, and thus plaintakeady
exists, an adversary with no knowledge of the plaintext oade-
duce the key from the encrypted chunk. Second, all data ¢ghgnk
and encryption occurs on the client; plaintext data is nénaers-



mitted, strengthening the system against both internakatetnal
adversaries. Finally, the map that associates chunks teea §jle
is encrypted using a unique key, limiting the effect of a kesnpro-
mise to a single file. Further, the keys are stored within jfstesn
in such a way that users only need to maintain a single prkeate
regardless of the number of files to which they have access.
The remainder of this paper is organized as follows. In Sec-
tion 2, we place our system within the context of the fieldlated
work. Section 3 describes the threat model, which forms e b
sis of our design. In addition, Section 3 defines the assamgpti
storage model, notation, and players in our secure, dezhijgn
system. Section 4 provides a detailed description of howsgsr
tem achieves improved storage utilization through dedagibin,
while providing data security. Section 5 provides an ancdytex-
amination of our system, including an evaluation of its siégin a
variety of scenarios. Finally, we conclude in Sections 6 amdth
our future plans for this system and a short summary of oukwor

2. RELATED WORK

Current systems that utilize single instance storage @bywne
of three primary deduplication strategies: whole file, fistzed
chunks, and variable-sized chunks. The first, whole fileically
utilizes a file’s hash value as its identifier. Thus, if two anefiles
hash to the same value, they are assumed to have identicaht®n
and only stored once (not including redundant copies). Tdrin
of content addressable storage (CAS) is used in the EMC Centera
system [14]. Farsite [10] and the Windows Single Instanoec36]
also perform deduplication on a per-file bases, though bedthna-
ditional identifiers and handle deduplication using a satgadata
structure. The second type of deduplication, per-blockugbca-
tion, is exemplified by the Venti archival storage system|.[2n
Venti, files are broken into fixed sized blocks before dedpion,
so files that share some identical contents (but not all), stily
yield storage savings. The third, and most flexible form akse
files into variable-length “chunks” using a hash value onid-sl
ing window; by using techniques such as Rabin fingerpringj, [2
chunking can be done very efficiently. Variable-length dtauare
used in LBFS [25], Shark [4], and Deep Store [38].

Many distributed file systems, such as OceanStore [29], S[24D
Plutus [20], and e-Vault [19], address file secrecy throdghuse
of keyed encryption. The use of cryptographic techniquahése
systems range from the assumption that all incoming dat& is a
ready encrypted, to central architecture elements thahelefie
system. However, none of these systems attempt to achieve th
storage efficiency that is possible through deduplicatidtigh-
performance distributed file systems such as the PanasaliePar
File System [37], Ceph [35], and Lustre [7] typically have ahu
less security than “standard” distributed file systemslitrghigher
performance for lower security. While there is an effort tida
greater security to Ceph [21], this effort only involvestaaritica-
tion, not encryption.

At the opposite end of systems that provide secure, deduptic
storage efficiency, some systems utilize security modalsticur a
storage overhead. For example, PASIS [13] and POTSHARDS [33
achieve secure storage through secret sharing [31]. Wlelé w
suited to long-term security, this technique incurs a végplstor-
age overhead. Similarly, steganographic systems, suble &¢gano-
graphic File System [3] and Mnemosyne [15], provide plalasib
deniability over storage contents through the use of randata
blocks. In both secret sharing and steganography, theggtaneer-
head can be many times the size of the plaintext data.

In addition to data secrecy, several systems have addréssed
demand for anonymity. Especially in the area of contentridist

bution, there is a desire for systems that can hide the tyeoti
data hosts, publishers and readers. For example, Publsseuns
crypted data and secret sharing over keys to provide a caripor
resistant web publishing platform that provides a high degof
writer anonymity [34]. Data encryption also provides therage
host with a level of plausible deniability; as there is naaclewner,
a node’s operator can claim that they have no knowledge abeut
plain-text data stored on their node [9].

Of all of these file systems, only Farsite combined dedufiioa
with security. In its original design, its goal was to hasdise
unused disk space in a network of desktop-class computeds, a
present it as though it were a central file server [1]. In thgior
nal implementation, security was provided through file gption
where each user utilized a combination of symmetric and asym
metric keys. An extension of the work was an attempt to aehiev
better space efficiency through duplicate file coalescir@j. [TTo
this end, the authors developednvergent encryption, in which
the hash of the data is used as the encryption key. This allows
users to independently encrypt identical plaintexts toséume ci-
phertext. However, unlike our work, Farsite only coalesaiethe
level of entire files. Our system coalesces data at a subefitd, |
thus achieving space savings with files that are merely aials
opposed to identical. Additionally, in the Farsite desite client
generates the encrypted value and its identifier. We shotwiftha
the key/value store for deduplicated data is not verified;dntents
may be susceptible to targeted collision attacks. Finakypresent
a model that allows secure, deduplicated storage in an ammuny
user scenario.

3. THREAT MODEL

In order to properly design and evaluate a secure storagensys
the threat model must be clearly laid out. In this section eeni
tify the adversaries present in our model, our assumptiams the
attacks that must be considered in a secure deduplicat&taray

As part of establishing our security model, it is importamnes-
tablish a consistent notation. There are two primary crytphic
functions that we utilize: encryption and hashing. An eptign
function takes two parameters and is denag, P) = C, where
K is the encryption keyP is the plaintext andC is the ciphertext.

An encryption function has a corresponding decryption fiamc
that uses a key and ciphertext to recover the original @atnex-
pressed ad(K,C) = P.

Hashing is expressed in a manner similar to encryption. Sim-
ple hashing that does not utilize an encryption key is exxggas
the single parameter functiohash(P) = H. Generating a hash
of plain-textP using a hash function and the encryption kQy
known as an HMAC (keyed-Hash Message Authentication Code),
provides integrity as well as message authentication. \jdeess
this function with the following notationHMAC; (P).

3.1 Assumptions

One of the most fundamental assumptions that we make is that

encrypted data is effectively random. The implication, egards
to deduplication, is that random data yields very low sterggins.
We support this claim by examining the storage utilizatiba sys-
tem where each user encrypts data with their own distinct kel
the system deduplicates the encrypted data. For brevitgsaeme
the encrypted data is divided into fixed-sized chunks, thaigim-
ilar argument can be made for variable-length chunks. Atoaigt

in time, the system is storinglogical chunks of of lengtt. Each



chunk can take on any one df2 mvalues. We recursively derive
the physical storage utilization in chunls, as

5 =1 @
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If a single chunk exists in the system, then the number otkigi
and physical chunks is equal, thus our base casg is1. As-
suming a uniform distribution over encrypted chunks, theosd
chunk will match with probability Im. In general, thé-th chunk
matches with probability_1/m. If k > mthens is very close
to m, which results in a great deal of deduplication. Unfortehat
whenk > m, performance may suffer and the size of file indices
can become unwieldy. In practice, we find that> k and the util-
ity of deduplication is extremely small becaugex k. From this,
we must conclude that deduplication of traditionally-emted data
is largely ineffective. Since we are assuming that enco/pltata
is random, we can model deduplication of random data usiag th
equation above. The chunk signature will operate on thidagan
data and so should, if it is a good hashing function, be umfpr
distributed as well. For chunks of non-trivial size—morarta few
bytes—the likelihood of a match is extremely small and sdhwi
extremely rare exceptions, every chunk will be unique andtrbe
stored in its entirety.

Our second assumption is that encryption provides an ateequa
level of security for relatively short archival scenaridghe data’s
lifetime is on the order of a few years, an attacker with asdes
ciphertext generated by a modern cryptosystem will be enabl
determine the encryption key or derive the correspondiniext
value. We recognize that in very long-term scenarios, orotder
of decades, this assumption may not hold [32]. Extendirmtioirk
into the secure, long-term area may be pursued as future work

Next, we assume that an adversary that can sufficiently ienita
user has access to that user’s data. In other words, if aimaic
user has acquired enough information about the user—ussgna
and passwords, for example—to participate in the systeno®p
cols, then that user will obtain the standard results ofphatiocol.
This scenario holds true in almost every secure system.

Because our solution utilizes hash functions in the geiwarat
of key material, we assume that they are cryptographicaityise.
More specifically, we assume that they are both weakly andgly
collision resistant. The former states that finding two inyalues
that hash to the same output value is an intractable problére.
later, states that given a hash value, finding a value thételsa®
the same output value is intractable.

Archival storage is typically used as a write-once, reagima
store; thus, it stresses throughput rather than low-lgtgecfor-
mance. Most existing large-scale deduplication systerasused
as archival stores [27, 38]; the systems that are not oftkibixn-
frequent writes because they are well-suited for readyhesrk-
loads such as software distribution [4]. This usage pattequite
different from the top storage tier of a hierarchical steraglution
that stresses low-latency access and frequent writes |smdifers
from backup solutions whose sole goal is high throughputesri
with reads an option of last resort. We assume that this esipbha

el
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Figure 1: The three primary players in the storage model and
their interactions. In a distributed storage system, the repon-
sibilities of the metadata server and chunk server are hanaid
by separate clusters of systems. In a single-server modehet
metadata and chunk server are on the same system.

throughput allows the system to accommodate a reasonabieia
penalty.

The data lifetimes we are considering are assumed to be on the
order of years, not decades. While this is longer than thdifide
time often encountered in front-line storage [2, 22, 30fs itot as
long as the indefinite lifetimes that other secure, archsyatems
are designed to support [33].

3.2 Players

As Figure 1 shows, at the protocol level, there are threeqym
players in our storage model: the client, metadata stodechnnk
store. This arrangement maps to both single-server anibdistd
storage architectures. In a single-server architectheemetadata
store and chunk store are located on the same system, whie a d
tributed storage system might choose to disconnect thedateta
store and chunk server, handling the duties of each in stepeltes-
ters [35, 37].

Users interact with the system through ttieent, which is the
starting point for both ingestion and extraction. As Figlindus-
trates, it is the central contact point between the othempmomants
in the storage model. Unlike the other components in theageor
model, the client does not have any persistent storageresgents,
though the system assumes that users have reliable, sevassa
to their keys.

The metadata store is responsible for maintaining the informa-
tion that users require in order to rebuild files from chunksueh
as maps and encryption keys. We model this persistent staisg
ing a simple, unverified key:value architecture. In such stesy,
when the user submits a key:value pair to the metadata séneer
server does not need to verify that the key correctly comedp
to the value. For example, if the key is the hash of the value, t
server does not need to verify that the hash of the value isame
as the key that the user submitted.

The role of the third player, thehunk store, is to persistently
store data chunks, and to fulfill requests for chunks basetti&in
ID. The chunk store is also modeled as a key:value store, \mwe
unlike the metadata store, the chunk store must be able ify ver
the correctness of a the key with regards to the value. Thdsiés
to the possibility of targeted-collision attacks, as dimsat below,
that are possible within the chunk store.

In a deduplicated chunk store, a targeted-collision attaekd
be used to associate a false value with a given key. The pulibta
ference between random collisions and targeted collisotisat a
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Figure 2: Targeted-collision attack in which a malicious ugr
exploits predictable data (in this example, a form letter wih a
due date) to generate valid chunk IDs, and associate those $D
with invalid chunks. If the user is the first to submit the ID,
subsequent chunks will be deduplicated to a garbage value.

user can exploit the predictable content of some data — ir2Fig
the malicious user utilizes similarities in form letters e-generate
valid chunk identifiers. If an adversary can be the first tonsitib
those identifiers with a garbage chunk, and if the chunk stane
not verify the correctness of the identifiers, subsequénnsssions
that have the same identifier will be deduplicated to the ageb
chunk.

In addition to the three players of the storage model, ouesys
identifies two adversaries, identified by their relatiopgbithe sys-
tem: external and internal. The external attacker existsidel of
the system. This adversary does not have even simple inseder
cess, such as a user account, and can only intercept messages
attempt to compromise a user’s account.

In contrast, the internal attacker, or malicious insidegsihave
at least limited inside access. These attackers are fuddfiered by
their level of access, ranging from a simple user accourgss;to
privileged root level access (as might be held by a malicauimin-
istrator). The existence of internal attackers implie$ tiegther the
metadata store, nor the chunk store are assumed to be trtistwo
Section 5 explores this implication by examining the sdyghreat
posed by internal adversaries.

The goal in both of the security models we present is to peovid
the users with a level of data protection from both extermal a
internal attackers, regardless of the adversaries aceesis(br in
the very least reduce the amount of data lost in a compromise)
Each model provides an additional set of security features.

4. SYSTEM DESIGN

In this section we describe our two primary secure dedujpdica
models: authenticated and anonymous. While similar, ateThb
summarizes, each model offers a slightly feature set. We lsya
describing the security features, and then proceed todnt® the
basic design of our secure deduplication techniques. Iginaé
present the specifics of the two models. In particular we rifgsc
the contents of the metadata and chunk store for each, assvell
their respective ingestion and extraction procedures.

The security property most associated with encrypticadsecy,
which states that only authorized users are able to readtekti
data. Often, authorization is handled through key distidn; if a

Authenticated Anonymous
Data secrecy Yes Yes
Anonymity No Yes
Per user revocatio Yes No
Storage mod Mutable Immutable

Table 1: Security feature-set offered by our two secure dedu
plication models: anonymous, and authenticated. Note that
anonymity is incompatible with per-user revocation.

user is able to legitimately acquire the proper keys, sheacaass
and decrypt the data. Both of the models that we present a¥fiar
secrecy against both external and internal adversaries.

Anonymity allows the identity of a user to be hidden. This feature
has two facets. The first is anonymity with respect to usdvaétt
ting requestsi, e, read and write requests cannot be attributed to a
particular user. The second facet is anonymity with resfmestor-
age contents, which states that the system is unable tontater
which data is owned or accessible by a particular account.

Revocation is the ability to remove a user’s access to a given file.
In order for this to be done at a fine granularity, as in a per-us
revocation, the system must include authentication; ger-tevo-
cation obviously cannot exist in a system without knowledfea
user’s identity. Revocation schemes can be described byctin
that takes place at the time of the revocation. In activeaation,
access is immediately removed. This is often expensive naad
involve a fair amount of cryptographic computation. In lagyo-
cation, access is only removed when the data is changed, ffleus
user is unable to see any changes that occur after the revodaut
may have continuing access to what they were previous|yleuhti
to view.

4.1 Secure Deduplication Overview

In both the anonymous and authenticated models, clients beg
the ingestion process by transforming a file into a set of kbun
This is often accomplished using a content-based chunkiog p
cedure which produces chunks based on the contents of the file
The advantage of this approach is that it can match shardérton
across files even if that content does not exist at the meltipla
given, fixed offset [25]. The algorithm selects chunks based
threshold valuéA and a sliding window of widttw that is moved
over the file. At each positiokin the file, a fingerprintF . w—1.
of the window’s contents is calculated [28]. Af x w1 > A, then
k is selected as a chunk boundary. The result is a set of variabl
sized chunks, where the boundary between chunks is baséd on t
content of the data.

Both file chunking and encryption occur on the client. There
are a number of benefits to performing these tasks on the,cdisn
opposed to the server. First, it reduces the amount of psoaps
that must occur on the server. Second, by encrypting chunks o
the client, data is never sent in the clear, reducing thegffness
of many passive, external attacks. Third, a privileged,icimls
insider would not have access to the data’s plaintext becthes
server does not need to hold the encryption keys.

Clients encrypt chunks usimgpnvergent encryption, which was
introduced in the Farsite system [10]. Using this approatiants
use an encryption key deterministically derived from thaiqgext
content to be encrypted; both Farsite and our system useptoery
graphic hash of the plaintext as the key. Since identicahfgats
result in the use of identical keys, regardless of who doesth
cryption, a given plaintext always results in the same aijgxe



K = hash(chunk (6)

Compared to other approaches, this strategy offers a nuaiber
advantages. As we have shown in Section 3, if each user @adryp
using his own key, the amount of storage space saved thradih d
plication would be greatly reduced because the same chunk en
crypted using two different keys would be would result irfetiént
ciphertext (with very high probability). Second, attemgtio share
a random key across several user accounts introduces a&eygh
problem. Third, a user that does not know the data plaintaixtev
cannot generate the key, and therefore cannot obtain theeia
from the ciphertext. This point is especially importantcgnin
contrast to an approach where the server encrypts the detaae
root level administrator does not have access to a chuniiatpkt
value without the key.

The primary security disadvantage of this approach, adifdh
in its original description [10], is that it leaks some infoation. In
particular, convergent encryption reveals if two ciphertgrings
decrypt to the same plaintext value. However, this behasioec-
essary in systems that use deduplication, since it allows®i®
to remove duplicate plaintext data chunks while only obiserthe
ciphertext; information leakage is part of the compromiseded
to achieve space-efficiency through deduplication.

Each ciphertext chunk must be assigned an identifier. In our
system, each chunk in the system is identified using the ptemty
chunk’s hash value, a technique sometimes referred to dsnten
based naming.

chunk_id= hash(e(hash(chunk), chunk)) )

An alternative to using the hash of the encrypted chunk is& u
the hash of the hash of the plain-text chunke,, the hash of the
encryption key is the chunk identifier. This approach oftersim-
ber of attractive qualities. First, performance is imphvin both
approaches the user performs two hashes: a key generasbn ha
and an identifier generation hash. Assuming that key lenates
smaller than chunk lengths, performing two chunk hashekbeil
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Figure 3: Extraction in the authenticated model begins with

the client contacting the metadata store for the secure chua

map, and the chunk map’s encryption key. From there, sub-
sequent communication involves requesting chunks from the
chunk store.

Ingestion begins with the client identifying the chunks dinein
encrypting them using convergent encryption. Followinig,tthe
information needed to rebuild the files, including chunkalibans,
names and encryption keys, is stored within a chunk map. As Ta
ble 2 illustrates, this map is stored in the metadata stoeerimap
entry and accessed through a file’s inode number. Additigrial
is encrypted using a dedicated map key. To allow authorizedsu
to decrypt the map, the map key is encrypted using the aatbri
users’ public keys. These encrypted keys are identified viges
identifier, and appended to the end of the encrypted chunk map
this technique is similar to the widely used “lockbox” appch to
encrypting files [24, 20]. As more users are granted acceggeto
file, additional encrypted keys can be appended to the map. ent
The final step of ingestion is to submit the encrypted chuokbe
chunk store. As Subsection 3.2 discussed, the chunk stam@ is
pable of generating the chunk IDs, so the client is not reglio
submit an identifier along with each chunk.

Extraction, as Figure 3 illustrates, follows a communimasi
path similar to that of ingestion. The process starts withdlient

more expensive than a chunk hash and a key hash. Second, if theuthenticating to the metadata store and submittingpen () re-

identifier can be derived from the key, then the file to chunkbpma
only needs to preserve the key, as opposed to the key ancethe id
tifier. However, there is a large drawback of using the hasthef
key as the identifier: the chunk store cannot verify that the&’s
content-based identifier is correct. As Section 3.2 explhinnver-
ified chunk signatures permit the use of targeted collisttachs.

quest. As shown in Table 2, the metadata store can use the file’
inode number to locate the encrypted chunk map and list of en-
crypted map keys. Rather than return the chunk map and thre ent
list of keys, the metadata store will only return the chunlipraad

the key that corresponds to the user, resulting in lessrmdton

to transmit, and not leaking to the user the list of all usét t

The encrypted chunks themselves are stored within the chunk have access to the file. Finally, the client decrypts the nep k

store. In a distributed storage model, where there may be mul
tiple chunk stores, the chunk list can also include the imfation
needed to locate the correct storage device. Alternatigletgrmin-
istic placement algorithms can be used to locate the costeige
devices based on the chunk’s identifier [18, 36, 8].

4.2 Authenticated Model

The authenticated model is the most similar to the origiealgh
of convergent encryption as it is utilized in Farsite [10]s With
their design, our authenticated model makes a number ofrgssu
tions regarding encryption keys and the key managememitpobs
available to users. First, we assume that each user has aetymm
ric key that is private to that user. Second, we assume tluit ea
user also has an asymmetric key pair. Third, it is also asduhz
a certificate authority exists to facilitate the trustedritisition of
public keys. Finally, it is assumed that users are able tegea
cryptographically sound encryption keys.

and subsequently the chunk map, and directs chunk reqoetsis t
appropriate chunk store.

In addition to allowing multiple users access to a singlenthu
map, the list of encrypted map keys also plays a central role i
revocation. If access to a file needs to be revoked for a specifi
user, a new chunk key can be generated, the chunk map is &tryp
using the new key, and the list of encrypted keys is updatethéo
users that still have access.

4.3 Anonymous Model

The goal of the anonymous model is to hide the identities tf bo
authors and readers. This model operates under the assarttpt
encrypted data is secure against an adversary that doessseg
the correct encryption key; thus, authentication is unssaey.

One of the drawbacks of an anonymous data-store is that both
well-behaved and malicious users are anonymous. This dpens
door to attacks in which authorized users perform maliciacts,



Metadata Store Key Value
File inode file name inode number
Map entry | inode €(Kmap, chunk map[(uid, e(Kuser pub: Kmap))]
Chunk Store | Chunk ID Encrypted Chunk
hash(encrypted chunk e(hash(chunk), chunk)

Table 2: Authenticated model persistent storage details. fie map entry stores a chunk map (an ordered list of the data nefed to
request and decrypt chunks) and is encrypted using a dedicatl map key. This key is then encrypted using the public key of sers
that are authorized to access the file and appended to the engted chunk map.

Metadata Storg Key Value
File entry file name inode number
Map reference| HMACser (inode) e(Kuser , Kmap)

Map entry HMACmgp(inodeman 1)  &(Kmap, [chunk map)
Chunk Store | Chunk ID Encrypted Chunk
hash(encrypted chunk e(hash(chunk), chunk)

Table 3: Details of the anonymous model for a persistent chua
store. The model makes exclusive use of symmetric keys. Map
references are used to store the map encryption key in a man-
ner that allows users to see changes made by other authorized
members.

such as deleting or changing data, under the assumptiothiat
cannot be definitively identified. One of the ways to guardreja
such an attack is to make both the metadata and chunk stores im
mutable. This approach thus implies that file changes arectetl

in a versioned history of chunk maps, similar to the mechmanis
used in WAFL to transition to a new version of the file systef[1

Thus, as in systems such as SUNDR [23], malicious changes are Y

isolated in a branch of the original file.

As Table 3 illustrates, the system makes exclusive use of sym
metric keys; thus, the model must make several assumpt@ns r
garding encryption keys. First, it is assumed that each hagera
symmetric encryption key that is private to the user. Theafs®
symmetric key for each user does not compromise anonymity be
cause the key is used in HMAC procedures and, therefore, only
the owner can confirm that the hash was created with their key.
Second, itis assumed that users have the ability to gerasgito-
graphically sound keys. Third, it is assumed that users laleeta
communicate off-line (relative to the chunk store) for thepmses
of sharing keys.

In the anonymous model, as in the authenticated model, inges
tion begins with the client identifying and encrypting ckanThe
information needed to reconstruct the file from chunks istemito
a map entry and encrypted using a map key that is generated whe
the file is created. This map entry is then written to the netad
store.

As Figure 4 shows, the system utilizes a map reference,f&peci
to each user, that holds the map key to allow multiple usese¢o
file changes made by other authorized users. Thus, file atxess

granted outside of the system by sharing the map key. When the

user is given a map key, they create and store a map referetie i
metadata store. In this manner, the only key the client isireq
to remember is their private symmetric key.

If changes are made to a file, the new map entry is written to the
metadata store as a linked list. As Figure 4 illustratesh eser's
map reference is used to locate the root of this linked listtgh an
HMAC keyed with the map key. Each time a client commits a write

Chunk
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Store Client

t —
0 l«— "open file X"

\ .
inode —_—

HMAC - |

Phase 1: Open the file

(inode)
user Phase 2: Obtain the chunk
[ map's key
e(K,ser Kmap)

user “map) — |

—
HMAC..... (inode, IV)
map Phase 3: Obtain the
— newest chunk map
e(K , mapp)

map () —
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map(

Time
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e(K, , map4)
map Ve

HMAC,

map(inode, map,)

"No such value"

E—
hash(encrypted chunk)
Phase 3: Obtain

the chunks encrypted chunk

Figure 5: Extraction in the anonymous model begins with an
open() request which returns an inode number. Using the file's
inode number and the user's symmetric key, a user can obtain
the chunk list through his chunk list reference. Requests fo
chunks are then directed to the chunk store.

to the system, a new node is appended to the list. Travershéof
listis accomplished through an HMAC, keyed with the map kéy,
the inode, and the previous map entry. As with the authaetica
model, the client submits chunks to the chunk store in thd fina
stage of ingestion.

Sharing files could also be accomplished by using the autdbri
user’'s symmetric key to encrypt the map key, and appendiisg th
encrypted key to the chunk map. While similar to the autloaréid
model’s strategy, this approach suffers from a number afctlian-
tages. First, any information that identifies the user'sikee list
is breaking anonymity. Second, even if an HMAC of the inode wa
used to hide the user’s identity, the list would still leak thumber
of users that have access to the file. Third, the use of map refe
ences provides a level of coarse grained revocation. A clhagk
can be created and encrypted with a new chunk map key. This new
key would then need to be distributed to authorized users, iwh
turn can create new map references.

File extraction in the anonymous model, illustrated in Fey8,
proceeds in four phases. First, the client contacts thedatatore
to issue arppen() request and obtain the file’s inode. Second,
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Figure 4: The information needed to reconstruct files is stoed as a linked list of immutable chunk maps that are encryptedising a
dedicated key,Kmap. Each user creates a map reference, protected by their unigusymmetric key, to store the map key. This allows
users to see changes created by other authorized users, whdnly requiring them to remember one key (their unique user ley).

the client obtains the map’s key by utilizing the map refersras rectly deal with the issue, however solutions such as onbot-r
shown in Figure 4. In the third phase, the client traversesitixed ing have addressed this concern, and are compatible withesur
list of map entries by issuing map requests until they araivthe sign [12].

version they want, or the map request fails, indicating thatend .
of the list has ben reached. In the fourth and final phase liletc 5.2 Internal Adversaries

utilizes the map entry and map key to determine which chuoks t  As discussed in Section 3, a secure system must also provide

request from the chunk store. protection from internal attackers. To this end, we anatieeabil-
ity of an inside adversary to launch attacks based on thedtilon
5. SECURITY ANALYSIS within the system and across their potential access levels.

The evaluation of the two secure deduplication models tlat w ~ AS in most systems, a malicious insider with full access can
have presented is intended to demonstrate that the systmoise ~ change or delete any information he chooses, resulting enaati

in the face of a variety of foreseeable scenarios. First, xaenéine of service attack. From a security standpoint, our goahisfore,
the attacks that an external adversary could inflict uposyiseem. ~ to limitan insider’s ability to make targeted changes. Ereme two
Second, we examine the security leaks possible when fadbcawi  facets to limiting such changes. First, we would like to tiam in-
malicious insider who might have access to all of the raw,dateh sider’s ability to target specific files. Second, we woule: fik limit
as system administrator with root-level access. Third, xeeréne an adversary's ability to make undetectable changes; oitergva
the security implications involved when the keys in the sysbe- value with garbage is generally more detectable that ovemgrit
come compromised. with a semantically valid, but incorrect value.
5.1 External Adversaries 5.2.1 Authenticated Model

For a system to be considered secure, it must be able to pre- In the authenticated model, the metadata server does |ea so
vent information from leaking to an external attacker. Agpaes information to an internal adversary. First, an insider hasess

example of such an adversary would be an attacker that @geyc  to the file name to inode mapping. Second, the inode number to
messages sent between players in the system. An active Examp  encrypted map entry is also available to an internal adwer$a-

an adversary that changes or transmits messages. nally, a malicious insider can determine the files to whichsaru
In both the authenticated and external model, the passekar has access, and the users that have access to a specific file.

problem is largely ameliorated by having the client perfdime Using the information available, a inside attacker at théadhata

chunking and encryption. Thus, plaintext data is neverstratied server is able to launch a variety of attacks. First, an asidver-

in the clear. However, the anonymous model assumes thaegtse k  sary can delete metadata and revoke access for specific liskes
can be exchanged in a secure manner but does not explicitly st client is not knowledgeable about which files it should besabl
how this is accomplished. A potential area of future workldde access, this attack is undetectable. Second, when a clignésts
to define a secure protocol for this procedure. a file, the map entry of a different file accessible by the tlgauld
Since data transmitted between players is always encryfited be returned. Whether or not this attack is detected woujduigbn
danger from an active adversary is one of messages beingathan  the client’s understanding of the file’s contents.
For example, in the basic models we have presented, a chuitk co Targeted changes to file contents, however, require thesatye
be intercepted en route to the chunk store and modified. While to obtain the map key. In the current design, users gransadne
our design does not explicitly address such scenariose thitecks submitting map keys encrypted using the authorized useitdiq

can be largely mitigated through the use of transport lageusty key. In this way, a malicious insider is never exposed to th&p
(TLS) approaches such as Secure Sockets Layer. text key needed to access a map entry’s details. If the systnm
As the anonymous model includes the goal of hiding the user’s to encrypt map keys, a malicious insider could change th&eeots
identity, an external adversary can gain some informatioién- of map entries. One way to further strengthen the systenm, the
tifying where requests originate from. As with the man+ie-t would be to hide the map entry from an inside attacker. Thigcco

middle type attacks previously discussed, our system doedin be accomplished using a technique such as the anonymoug'snode



map references, which, as shown in Figure 4, requires thekeyap
in order to locate the map entry.

Finally, if a malicious insider at the metadata store als® di
tributes capability tickets, as is done in some systems, ittoan be
assumed that the adversary also has access to chunks; @&oslic
metadata store can simply issue itself a valid capabilitgweler,
without access to the map key, the adversary would not knostwh
chunks correspond to a give file, and would lack the key ne&aled
decrypt a chunk.

5.2.2  Anonymous Model

In both the authenticated and anonymous model, an inside ad-

versary at the chunk store would be unable to modify dataowith
being detected. Since the name of the chunk is based on the con
tent, a user would not be able to request the modified churéd or
the very least could tell that the chunk they requested feraift
from the chunk that was returned to them. An insider at thenkhu
store could, of course, delete chunks or refuse to fulfillnkhre-
quests.

5.3.2 Anonymous Model

In the anonymous model, the user’s private, symmetric key is
very important to the security of the system. If a maliciosgmn
obtains the user’s key, it can be safely assumed that thegaaass
any file that the user has stored a map reference for. Another p
tential attack they can issue in this scenario is to exteadehgth
of the linked list of map entries indefinitely. However, snihe
anonymous model uses immutable chunks, a new key could be gen
erated, and the file branched.

If an adversary obtains the map key, the adversary will oeoch
the inode number of a the file to obtain plaintext data. Assgmi
that the number of inodes is relatively small, this can beoaec
plished using a brute force attack. Additionally, as thetesysis
immutable, even generating a new map key will result in thgi-or
nal file being compromised.

As in the authenticated model, an adversary with the chunk’s
encryption key, would still need to know the chunk identifier
order to obtain plaintext data.

In the anonymous model, the metadata store does leak some in-

formation to an internal adversary. First, an insider cadude
which inode numbers map to which files. This is not a serious is
sue because the user's symmetric key is needed to map inmdes t
map references. More importantly, however, an insidercole-
duce which entries are map references, as they will all bedhse
length. This is due to the fact that their payload is always key,

as opposed to a variable list of chunk metadata. One way tid avo
leaking the fact that an entry is a map-key is to append sonoeiaim

of random data to the entry.

5.3 Key Compromises

Any system that utilizes cryptographic primitives is higle-
pendent on the controlled access of encryption keys forebergy
of the system. As Kerckhoff's principle states, the segusitthe
system comes from an adversary not knowing the encryptign ke
it is assumed that the adversary knows the protocols andosyg
tems. Thus, one way to analyze a security system is to exaimne
effects of compromised keys.

5.3.1 Authenticated Model

In the authenticated model, the user’s identity is tied w®irth
asymmetric key pair. Further, if an adversary learns a ysérate
key, it is assumed they have the users complete key pairuthlecp
key can easily be acquired from a certificate server. In tbés s
nario, a malicious user may be able to fully impersonate #yesk
rightful owner, and obtain all the abilities of that user. Asafe-
guard against this possibility, it is recommended thateutibation
require more information than the user’s key, but this appihois
outside the scope of our model.

A compromise of the other metadata key in the authenticated
model, the map key, results in a less drastic informatiok. lfaan
adversary learns the map key, the problem of authenticétirige
metadata store still exists. Finally, the revocation psscean be
used to generate a new map key, making the old key invalids,Thu
the system is relatively safe in the event of a compromisgu ke

Similarly, if the last key of the authenticated model, therdk
key, is compromised, the information leak is rather smahisTs
due to the fact that an adversary with the chunk key would stil
need to know the chunk identifier, and be able to authenttoatee
chunk server in order to obtain plaintext data.

6. FUTURE WORK

While the models we have presented demonstrate some of the
ways that security and deduplication can coexist, worksaiegto
create a fully realized, secure, space efficient storagersyOpen
areas for exploration exist in both security, as well as gédation.

Storage efficiency can be increased in a number of ways throug
intelligent chunking procedures. For example, the sizeheffile
may be used to determine the average chunk size, potentialtl
ing greater deduplication in data such as media files, wreéod t
to be large and exhibit an “all or nothing” level of similaritvith
other files. However, since some large files, such as maihashbr
tar files, may be aggregations of smaller files, another poggibil
would be to adjust chunking parameters based on file typeseSi
chunking is done at the clients rather than at the serveisath
proach only requires that clients agree on the way they difilds
into chunks. Moreover, taking this approach does not irszréhe
likelihood of collision, which remains very small for chuidenti-
fiers of 160 bits or longer.

Unfortunately, techniques such as delta compression andile
chunks [11, 38], while they have proven effective for stadadedu-
plicated storage systems, may not work well with encryptien
cause clients cannot access encrypted chunks for any filéisedu
own, limiting the source material for deduplication. Moven
approaches that try to locate similar chunks in a chunk stdlie
likely be ineffective because they require plaintext dataifidex-
ing; similar, but not identical, plaintext chunks will résim cipher-
text chunks that have no similarity.

Another way to increase storage efficiency would be to pevid
deletion and garbage collection. While these are straghtfrd
to implement in many systems, storage reclamation can fieudiif
in a system that uses deduplication because a single chupk ma
be referenced by many different files. Thus, removing a chenk
quires an understanding of how many files reference the chiink
common approach to deletion in a deduplicated file systera use
reference counts to track the number of files that use a péatic
chunk. Of course, such a system would need to ensure that a ma-
licious user could not launch a denial of service type attagiply
by deleting chunks or modifying reference counts.

Currently, our model provides an all or nothing level of aax;éf
a user has the map key, they have access to the file. Futugngesi
could utilize multiple levels of permissions. Thus, a useuld
be allowed to read a file, but the system would prevent them fro
deleting information.



Finally, even in the anonymous model, a secure capabiliy fr
the metadata store could be used to implement file locking- Cu
rently, there is no guard against multiple users writingh® same
chunk map. While the anonymous model is immutable and there-
fore all versions of a file are present, locking would stilbal for
changes to appear at the correct order in the list of mapss Thi
would, of course compromise some of the users anonymitfeas t
requests would form a distinct session.

7. CONCLUSION

We have developed two models for secure deduplicated storag
authenticated and anonymous. These two designs demertbtaat
security can be combined with deduplication in a way that pro
vides a diverse range of security characteristics. In thdaisove
present, security is provided through the use of convergectyp-
tion. This technique, first introduced in the context of tredie
system [1, 10], provides a deterministic way of generatingia-
cryption key, such that two different users can encrypt tathe
same ciphertext. In both the authenticated and anonymodsls)o
a map is created for each file that describes how to recomstruc
file from chunks. This file is itself encrypted using a uniquey.k
In the authenticated model, sharing of this key is managexlih
the use of asymmetric key pairs. In the anonymous modebhgtor
is immutable, and file sharing is conducted by sharing the kagp
offline and creating a map reference for each authorized user

In our evaluation, we have analyzed the security of each mode
with regard to a number of security compromises. We found tha
the system is mostly secure against external attackerghdfuthe
security threats that our models do not explicitly guardragtacan
be addressed through the addition of standard secure coitemun
tions techniques such as transport later security. Sgaoinpro-
mises by a malicious insider are largely mitigated from tbgigh’s
avoidance of server side encryption. Since insiders arernex-
posed to plain-text or encrypted keys, their ability to demeta-
data values in an undetectable way is greatly diminishedurgg
is even more apparent in the chunk store where the content ad-
dressed nature of secure chunks intrinsically makes trectien
of malicious changes quite noticeable. Finally, we exanhitie
information leaks resulting from key compromises and fotirat
the most severe security breaches result from the loss cfitmd’s
key. The damage in the event of such a key loss is confined, how-
ever, to the user’s files. Moreover, the breach of clientigskis a
serious threat in most secure systems.
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