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ECONOMIES OF SCALE AND SELF-FINANCING RULES 
WITH NONCOMPETITIVE FACTOR MARKETS 

Kenneth A. Small 

ABSTRACT 

When a firm or public authority prices output at marginal cost, iits profits are related to 

the degree of local economies of scale in its cost function. As is well known, this result extends 

to the case where some congestion-prone inputs are supplied by users. I show that contrary to 

common belief, the result holds even when scale economies are affected by a rising factor supply 

curve. In that case, constant returns to scale in production produces dliseconomies of scale in 

the cost function, making marginal-cost pricing profitable. Exampiles are provided for a 

monopsonist both with and without price discrimination. In the latter case, second-best pricing 

is also considered: profits then are not governed in the usual way either by returns to scale in 

production or by scale economies in the cost function, but some useful bounds are provided. 
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Lam for assistance in checking the mathematics. Any errors, of course, my responsibility. 



ECONOMIES OF SCALE AND SELF-FINANCING RULES 
WIIB NONCOMPETITIVE FACTOR MARKETS 

Kenneth A. Small 

1. Introduction 

As is well known, profits of a competitive firm have a sign determined by the degree of 

local returns to scale in its production. Profits are negative, zero, or positive if returns to scale 

are locally increasing, constant, or decreasing, respectively. This is sometimes called a self

financing rule. 

But what of a firm that is a monopsonist in one or more of its factor markets? If the 

factor-supply functions are well-behaved, then there exists a well-defined cost function that takes 

them into account (Varian 1984, p. 105). The relationship between cost and output for this cost 

function defines the extent of economies or diseconomies of scale, which differs in general from 

the degree of returns to scale of production. 1 For example, suppose production takes place 

under constant returns to scale but one or more supply prices rise with factor usage (the other 

prices being constant); then the cost function will display diseconomies of scale because 

increasing output raises some input prices. 

Do scale economies in such a situation tell us anything about profits? Clearly they do if 

profits are defined in the usual way as revenue minus costs. Thus, for example: "Where there 

are economies of scale, prices set at marginal cost will fail to cover total costs, thus requiring 

a subsidy." (Vickrey 1987, p. 315) As I show in the next section, this statement follows 

immediately from the definition of scale economies. 

Self-financing rules have been extended to congestible facilities, most notably through the 

example of congested highways (Mohring and Harwitz, 1962, pp. 81-86; Strotz, 1965; Mohring, 

1970, p. 696).2 In this case marginal cost includes the imputed cost of inputs supplied by users 

1See Bannock et al. (1978, p. 388) for the terminological distinction between returns to scale and 
economies of scale. I thank Frank Gollop for bringing it to my attention. See also Eatwell (1987) and 
Silvestre (1987). 

2The result is generalized to a variety of dynamic settings by Braid (1995) and Arnott and Kraus 
(continued ... ) 



rather than purchased in markets. More generally, congestible public goods may be provided 

efficiently at zero profits by governments, clubs, or firms when there are locally constant returns 

to scale - a condition that is guaranteed, for example, by perfect competition among firms with 

U-shaped average cost curves (Oakland, 1972; Berglas, 1976). Marginal-cost pricing of 

congestible facilities might occur due either to competition (Berglas, 1976; DeVany and Saving, 

1980) or to prescription (Vickrey, 1987). 

In stating and applying this result the distinction between returns to scale and economies 

of scale has been largely overlooked.3 Yet empirical work on highway congestion exemplifies 

the importance of the distinction. This work typically estimates a production function or a cost 

function, using some combination of financial accounts and engineering assumptions. Those 

authors basing their case solely on the production function typically find increasing returns to 

scale, and thereby argue that marginal-cost pricing will produce a deficit.4 Others argue that 

in the cost function, those increasing returns are offset by a rising supply price of urban land, 

possibly yielding no scale economies or even diseconomies so that marginal-cost pricing would 

produce a balanced budget or a surplus.5 

2( ... continued) 
(1995). 

3In the three cases cited, Mohring and Harwitz (1962) base their result on the "capital and congestion 
cost functions" (p. 85); Mohring (1970) on the production function (p. 696); and Strotz (1965) on the 
"returns to scale" of a government production function that converts "expenditure on roads, E," into 
congestion reduction (p. 135). Strotz's E is an amount of "homogeneous productive service" (p. 131) 
which is used to produce the aggregate consumption good, so in formal terms it really refers to a factor 
input rather than a cost, thereby justifying his use of the term "returns to scale." 

4For example, Meyer et al. (1965), Mohring (1965, 1970); Kraus (1981b); Jansson (1984, pp. 220-
222). 

5For example, Fitch and Associates (1964 ), Vickrey (1965), Strotz (1965, p. 137), Keeler and Small 
(1977), Small et al. (1989), Newbery (1990). Strotz's discussion is especially intriguing. Strotz justifiably 
uses the term "returns to scale" (see earlier footnote); but when he speculates on the type of returns 
actually encountered, he argues for decreasing returns due to three factors: network effects (which Kraus 
1981b shows to be an invalid argument); interchanges (which Kraus shows to be a valid argument though 
not sufficient empirically to reverse the increasing returns from highway width); and "more expensive 

(continued ... ) 
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In this paper, I explicitly derive a self-financing rule based on cost functions when the firm 

( or public authority) is a monopsonist in one factor market, taken to be that for land. I 

consider cases both with and without price discrimination. I also consider both pure marginal

cost pricing and second-best pricing that corrects for the factor-market distortion, the latter case 

requiring a natural modification of the concept of "profit" for the result to hold. This 

formulation makes clear that profits are governed by the existence of scale economies or 

diseconomies of a cost function that incorporates whatever factor-supply elasticities actually face 

the firm. I show the result first in a general setting, then for the case of a congestible facility 

using the example of highway congestion. 

My conclusion differs from that of Berechman and Pines (1991), who claim to resolve the 

conflict in favor of a rule based solely on the production function. They demonstrate that the 

degree of returns to scale of production determines the sign of "imputed profits;" these are 

defined as revenues minus a quantity I call "imputed costs." Imputed costs include a land 

component equal to the quantity of land used multiplied by its shadow price. A similar result 

is derived by Strotz (1965), who explicitly states: "the rent that equates the demand and supply 

of land is to be used in calculating the land cost of the road." (p. 164) 

This formulation using imputed costs has the appeal that it more easily characterizes first

best pricing and investment rules. It also provides some nice results in models of clubs and 

local public goods. For example, under locally constant returns the imputed cost of providing 

a congestible public good is equal to the revenues from optimal user charges supplemented by 

a confiscatory tax on any urban land rents (Amott, 1979; Berglas and Pines, 1981 ). But only 

for the factor-price taker do imputed profits correspond to real financial flows. 6 If one wishes 

to analyze the profits of a real fiscal entity, a rule involving the actual cost function is more 

5 ( ... continued) 
construction ... and land acquisition costs" as the highway system is expanded (p. 137, emphasis added). 
This third argument appears to invoke a rising supply price. 

6Hence Oakland (1972, p. 347) qualifies his generalized Mohring-Harwitz result as applying only in 
a "competitive economy" in which average and marginal production costs of the congestible public good 
are equal. 
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useful. One may wish to know, for example, whether a public agency will incur deficits, whether 

a regulated private firm will be financially viable, or whether the developer of a club-like 

community will make a profit. Such questions can be answered using a cost function that 

accounts for varying factor prices. 

I demonstrate these results in a general context in section 2-4. I then derive (section 5) 

a Mohring-Harwitz type of model for congestible facilities as a special case of this more general 

one, in order to show that the results apply there as well. I conclude by arguing that authorities 

purchasing land for public projects do in fact face a rising supply curve, at least within the legal 

context prevailing in the United States. 

2. The Simple Mathematics of Self-Financing Rules 

At the most general level, the self-financing rule is simply a consequence of basic 

definitions.7 It applies to any enterprise that prices output at marginal cost, whether due to 

competition in output markets, to regulation, or to the policies set for a public agency. It can 

be stated concisely as: 

Proposition 1. Let C(q) be any differentiable cost function, and let local scale 
economies be measured by the ratio of average to marginal cost, 

C 
S=---

q,dC/dq 

A firm or authority incurring this cost and setting output price equal to marginal 
cost earns profits, as a proportion of cost, equal to (1-s)/s. 

(2.1) 

Proof- Revenues R are given by the denominator of (2.1), implying that profits relative 

to costs are: 

7See, for example, Baumol et al. (1988, p. 68), Kraus (1981a, p. 235), or Small (1992, p. 49). I regret 
that in my 1992 treatment I mistakenly used the term "returns to scale" to describe economies or 
diseconomies of scale. 
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R 
C 

= 
1 
s 

Equivalently, 

R-C 
c; 

1-s 
s 

(2.2a) 

(2.2b) 

Revenues exceed costs under diseconomies of scale (s< 1 ), fall short under economies of scale 

(s>l), and are exactly in balance in the intermediate case (s=l). 

This result easily generalizes to multiple outputs. Let q= {qj} and p= {pj} be vectors, 

and let s be the multiproduct scale economies associated with cost function C(q), as defined 

by Bailey and Friedlaender (1982): 

C 
s = -----

EqraC/aqj 
j 

(2.1') 

Then marginal-cost pricing implies that the denominator of this equation is equal to revenue, 

so that again (2.2) holds. For simplicity, I use the one-output case for the remainder of the 

paper. 

My purpose is to explore the consequences of equations (2.2) when factor prices are not 

constant. This can be done most easily by focusing on the case where there is just one non

competitive factor market, which we may call "land". Let xa=(x1, ... , x
0

_1) be the vector of 

input factors other than land, with w a the corresponding vector of fixed factor prices. Let x
0 

be land input, and let E
0
(x

0
) be the expenditure required to acquire x

0 
units of land. Output 

q is produced according to the production function 

(2.3) 
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The cost function is then defined as 

C(q) - Min { w ~a + En(xn) 
Xa.Xn 

(2.4) 

We know from the envelope theorem that dC/dq is equal to the incremental cost of 

increasing output by increasing any one of the inputs: 

dC (a[w ~a + En(xn)]/&i) * 
for each i (2.5a) --dq (aq!&i) * 

- W, If.* 
l l 

for each i<n (2.5b) 

- (dEn/dxn) * / fn* for i-n . (2.5c) 

where J; = aJ!&i and where the asterisk indicates that the quantity is evaluated at the solution 

x* = (x:,XJ to (2.4). In particular, the usual equality holds between dC/dq and the short-run 

marginal cost defined by holding one or more factors constant in (2.4); that equality depends 
* only on x being the solution to (2.4), not on its being optimal in any broader sense. 

3. Applications to Monopsony and Distorted Factor Prices 

This section considers three specific cases of a non-competitive land market that might 

arise in public projects. The first two cases are monopsony, without and with price 

discrimination. The third case is a constant but artificially low price of land. In each case, I 

derive the cost function and note some associated optimization conditions. Where relevant, I 

also consider a second-best price that improves welfare compared to marginal-cost pricing. 

6 



Monopsonist with No Price Discriminaion 

In this case, land is supplied with a rising supply curve wn(xn)· (All the equations are 

identical if the supply curve is falling, with appropriate reversals of inequalities.) Thus Eu(xn) 

= wu(xn)xn, and (2.5c) becomes: 

(3.1) 

where wn>O is the inverse supply elasticity of xn, defined by 

(3.2) 

It is useful to contrast this cost function with the imputed cost function analyzed by 

Berechman and Pines (1991),8 which I denote by C (q). Imputed cost is defined by first 

setting up a general equilibrium model with identical consumers, two produced goods, and 

aggregate resource constraints on factor inputs. One of the goods is produced according to 

(2.3). This model is then solved for all utility-maximizing quantities, leading to shadow factor 

prices (w a'w n), and some output q which we may consider a reference output. Finally, a 

minimization like that in (2.4) is performed except factor prices are held constant at these 

shadow prices; this minimization is performed at an arbitrary level of q, no just at q, so let 

us denote the resulting minimized cost by C (q). This produces the theoretical results that the 

optimum can be decentralized by charging output price p =dC /dq; and that at this optimum, 

the sign of imputed profits 

8Tois is the cost function referred to in their statement that "the homogeneity of the production 
function is exactly the reciprocal of the homogeneity of the corresponding cost function, with fixed factor 

prices ... " (p. 178; italics in original). Their derivation is for the special case of highways, considered in 
section 3 below; but the same concepts apply to the more general case of this section. 
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R-C - pq - C(q) (3.3) 

is determined by what we may call imputed economies of scale, 

c 
r- ----

q ·dC/dq 
(3.4) 

From standard duality theory, r is identical to the local returns to scale r(x ) of the 

production function, evaluated at the corresponding input vector x = (x a~ 
0
). That is, r(x) 

is the elasticity of the production function with respect to a uniform increase in all inputs, 

starting at x.9 We expect r normally to exceed s for the case considered here, reflecting the 

fact that the rising supply price of land creates an additional factor raising costs as output 

expands. More precisely, I prove the following result in the appendix: 

Proposition 2. For a given output, let x * be the solution to the cost minimization 
problem (2.4) when the supply relationship is that of a non-discriminating 
monopsonist facing a rising supply curve w

0
(x

0
), and let s be the economies of 

* scale at the same output. Then r(x )>s. 

It follows immediately that whenever returns to scale are constant, r>s unambiguously. Hence 

using returns to scale r instead of economies of scale s in (2.2) would normally understate 

actual profits as measured by R-C, although doing so would correctly predict imputed profits 

R -C. 

In general, it is difficult to say what the empirical counterpart of C (q) might be, since 

the general-equilibrium shadow factor prices needed for its definition cannot be reliably 

estimated either from observed factor prices or from the solution to (2.4). This makes the sign 

of imputed profits of somewhat limited practical interest. Of course, if the authority actually 

9See, for example, Baumol et al. (1988), p. 21. 
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pays for land at its competitive rental price, the problem disappears and 0- . 
becomes its actual 

cost function. I examine actual land-payment practices for the U.S. in Section 6. 

In assessing the utility of results predicting actual profits under marginal-cost pricing, it 

is useful to ask: Why would a firm price at marginal cost? One reason might be that it has no 

market power in its output market. As shown by Devany and Saving (1980), a profit

maximizing highway operator in such a situation will engage in marginal-cost pricing which takes 

precisely the form of congestion pricing as advocated, for example, by Walters (1961). For such 

a firm, choosing factor inputs according to (2.4) and setting output price equal to marginal cost 

as given by (2.5) may be viewed as two steps in a single profit-maximizing calculation (Varian 

1984, pp. 104-105). Together they imply the well-known first-order condition 

(3.5) 

where the inverse supply elasticities wi are all zero except for i=n. Equation (3.5) tells us that 

each factor is used to the point where the value of its marginal product is equated to its private 

marginal factor cost. In section 4, I use these conditions to derive the cost function explicitly 

for a simple production function in which both r and s are easy to see. 

Anothers reason for charging marginal cost might be that a public authority is persuaded 

to do so by economists. (The technical term for this is economist's fantasy.) For example, short

run marginal-cost pricing is often recommended even when the amount of one factor is not 

optimal, on the assumption that that factor is fixed. As already noted, this is the same as 

charging dC/dq in this problem. 

If land is used suboptimally but is variable, the problem is more subtle. Charging 

marginal cost is no longer second-best optimal given the distortion caused by the non

competitive land market. One could complain, therefore, that this authority just mentioned ( or 

its economic advisor) is naive: it exploits its monopsony power in the land market, but refrains 

from exploiting any monopoly power it may have in the output market. Yet in many situations, 

such "naive" behavior is arguably more plausible than either first-best optimality or second-best 

9 



output pricing. The public might well regard it as abhorrent to exploit power over highway 

users, while fiscally irresponsible not to obtain land at the lowest possible cost. 

Still, we can consider the revenue implications of second-best pricing rule, formulated as 

follows: the firm minimizes its cost of producing any given output as in (2.4); but that output 

is determined by a pricing rule chosen to maximize the sum of profit, consumer surplus, and 

producer surplus. We expect this price to be lower than the profit-maximizing price, since 

expanding output provides some benefits to landowners, in the form of greater producer surplus 

(rents), that are not captured by the firm. 

* * Let p=P(q) be the inverse demand function for output, and let xa(q) and xu(q) be the 

factor demands that solve (2.4). The problem is then: 

where 

Max 
q 

xn* (q) 

S n(q) - ! [w.• (q)-w n(x>}ix 

is the producer surplus of suppliers of land, with 

condition10 is 

(3.6) 

(3.7) 

The first-order 

1°The second-order condition is met if C is convex or at least not too concave compared to the 
slope of the output demand curve: see appendix. 
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po - dC/dq - dS n/dq 

- dC/dq - xn* (dw n* !dq) (3.8) 

- dC/dq - wnw n* (dxn* /dq) . 

Assuming the output-elasticity of the derived demand for land is positive, this second-best price 

is less than the firm's marginal private cost. 

Now suppose the central government instructs the highway authority to charge this 

second-best price. This of course will destroy the relationship between revenues and costs that 

occurs when the firm can maximize profits. But it is trivial to show that a simple per-unit 

subsidy, equal to the gap between price and marginal cost, restores the relationship: 

R - C + q[(dC/dq)-p] - qp - C + qdC/dq - qp 

- qdC/dq - C (3.9) 

- C • [(1-s)/s]. 

Note this result holds for any price, not just the second-best optimal price. It simply states that 

no matter what the output, if the firm receives a price for each unit equal to its marginal cost, 

then profits are a fraction (1-s)/s of costs. 

More interesting is the relationship between profits and returns to scale. One could 

speculate that the lower profits achieved under second-best pricing would be more accurately 

predicted by returns to scale r than by s. This turns out to be true when the production 

function is homothetic and wn is small. More precisely, I show in the appendix the following 

result: 

Proposition 3. For a non-discriminating monopsonist selling output at the second
best price p0 given in (3.8), the ratio of revenues to costs, p0 q/C, differs from 11/ 
by: 

11 



p oq 
c; 

1 

r * 
(3.10) 

where r * =r(x) is the degree of local returns to scale at the cost-minimizing input 
vector x * = (x~~- For a homothetic production function, the term in square 
brackets is positive; that is, 11,* underpredicts the the ratio of revenues to costs 
and equivalently [ (1-r *)Ir*]• C underpredicts profits. 

For the production function illustrated in Section 4, the term in square brackets is second

order in w. So if the inverse supply elasticity of land is small, then r is a better approximation 

than s to use in predicting the sign of profits from second-best output pricing. However, 

neither will predict precisely. 

Monopsonist With Perfect Price Discrimination 

As is well known, perfect price discrimination in a factor market causes the firm to face 

the true social factor costs at the margin. As a result, the first-order conditions for maximizing 

profit in a competitive output market are the same as those for maximizing welfare; hence 

there is no distinction between first- and second-best output pricing. Those conditions, pfi=wi 

for all factors i, could be written in terms of the imputed cost function C . But the 

corresponding self-financing rule would not be very useful, because the imputed cost function 

does not represent the actual outlays of the firm. 

Instead, we can use the firm's actual cost function: 

+ ! wnCx'Jdx (3.11) 

Differenting (3.11), we see that marginal cost is given by w/fi for all i. Hence marginal-cost 

pricing produces the optimality conditions pfi=wi for all factors i. 
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Cost function (3.11) describes the true financial outflows for this firm, so the self-financing 

rule (2.2) is relevant. This cost function again accounts for the rising supply price of land, 

although in a different manner than (2.4). 

Once again, the actual cost function C displays fewer scale economies, or more 

diseconomies, than does the imputed cost function C . This is because the two functions have 

the same marginal costs, as we have just seen, but C has a smaller average cost than C due 

to smaller expenditures on inframarginal units of land. Therefore the ratio of average to 

marginal cost for C is less than for C . Using the imputed cost function instead of the actual 

one would impute a greater deficit, or a smaller surplus, than the firm will actually incur. 

Authority Facing Constant but Artificially Low Land Price 

In many situations the problem may not be so much monopsony as simply the use of 

market prices for land rental that are lower than the shadow prices. This may come about, for 

example, because public authorities are exempt from property and corporate income taxes 

(Vickrey, 1962) or because the price of central urban land is distorted downward due to 

unpriced congestion (Kanemoto, 1977; Arnott and MacKinnon, 1978). 

Taking these distorted rents to be constant, the analysis of the cost function is identical 

to the conventional analysis; r=s and equations (2.2) hold using either r or s on the right

hand side. The further question comes in considering second-best pricing. The objective is 

again to maximize (3.6), but now Sn is redefined as the (negative) social surplus caused by 

valuing land below its shadow cost: 

X:(q) 

Sn(q) - ! [wn - wn(xn)}tXn 
(3.12) 

where wn is the distorted rental price of land and w n( •) is the shadow value (which could be 

constant). The first-order condition is 

13 



(3.13) 

where p 00 is the second-best price. This price is higher than marginal cost, so the ratio of 

revenues to costs exceeds 1/r = l/s, by an amount 

p ooq 

C 
1 
r 

(3.14) 

When the production function is homothetic, the output-elasticity in large parentheses is just 

l/r. 

4. Example: Homogeneous Production, Constant-Elasticity Supply 

The nature of the solutions discussed in the previous section are readily illustrated by the 

case of two inputs (n =2), with production according to the function: 

(4.1) 

and a supply curve for the second input given by: 

(4.2) 

The first input has constant price w1. Returns to scale are therefore r=cx+{j and the inverse 

supply elasticity is w. 

14 



Monopsonist with No Price Discrimination 

Solving the first-order conditions for the cost minimization of equation (2.4) yields cost

minimizing factor inputs: 

where 

1 1 
µ- -- - -----

a+-y r - {3wl(l+w) 

V .. 
µ l .. __ 

l+w r+aw 

{3 
'Y - -

l+w 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

If w n were constant, use of each input would be proportional to q11r and so would 

the cost function. But with w n rising, the authority tilts its input mix increasingly toward xi 

as q rises, so that xi grows more rapidly, and x
0 

more slowly, than q11r. Expenditure on 

x
0

, however, rises at the same rate as that on xi, as can be seen by substituting (4.3) into the 

expression for cost. Doing so yields: 

15 



(4.8) 

Scale economies are therefore 

s - 1/µ - r - w(3/(1+w) , (4.9) 

which is less than r in accordance with Proposition 2. 

Second-best pricing according to (3.8) yields 

(4.10) 

and 

p oq 1 
_ - -(1 - w-yv) 

C s 

1 [ l a.w
2
'Y l - r + s 2(1+w) 

(4.11) 

This confirms that the ratio of second-best revenues to costs is overestimated by 1/s (to first 

order in inverse supply elasticity w) while it is underestimated by 1/r (but only to second order 

in w). 

As a numerical example, suppose a.=0.7, {3=0.3, and w=0.3. Then we have constant 

returns to scale in production (r=l), but diseconomies of scale in costs since s=0.93 according 

to equation ( 4.9). With marginal-cost pricing, the ratio of revenues to total costs would be 

1/s=l.074. With second-best pricing, however, the ratio would be 1.013, which is closer to 1/r 

than to 1/s. 
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Monopsonist with Price Discrimination 

Ifwe similarly calculate the optimal factor inputs for an authority solving the minimization 

problem in (3.11), we find that their output-elasticities are again µ and 11 as in (4.3). C(q) 

is again given by ( 4.8) except that A is redefined to a smaller value.11 Hence scale 

economies are again s=l/µsa+[/3/(l+w)]. 

S. User-Supplied Inputs With Congestion 

The debate motivating these derivations arose in a congestion model that looks somewhat 

more complex than the one presented in Sections 2-4. However, it is actually a special case, as 

demonstrated in this section. This underlying equivalence should be no surprise, since it is why 

Mohring and Harwitz (1962) were able to derive the self-financing result for the case of highway 

congestion. 

I use a standard model of highway pricing and investment, along the lines of Keeler and 

Small (1977) and many others. In order to capture the insight behind self-financing results in 

a congestion model, the congestion externality is quantified as a cost, thereby affecting both the 

marginal-cost price and the total costs. However, these user-borne costs are excluded both from 

revenues and costs in computing the authority's profits. 

The equivalence between the two models is then demonstrated by reformulating the 

production relationships in the congestion model into a single production function like (2.3), 

in which one of the inputs is user-supplied and its "price" has the interpretation of an average 

user-perceived value. These production relationships are two: the congestion technology, and 

the production of highway capacity. Congestion technology relates the user-supplied input, 

which is taken to be x1, to output q. Production of highway capacity involves all the other 

11The proportionality factors in ( 4.3) and ( 4.8) are altered as follows: ( wof-y) is replaced by ( wof /3) 
in the factor A defined in ( 4.4 ), and A is multiplied by {3 instead of 'Y in the second of equations 
(4.3). 
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inputs. The two relationships are linked because capacity is a parameter in congestion 

technology. To complete the equivalence, we must relate scale economies for this general 

production function to those for the two underlying relationships, and we must relate "profits" 

under the general model to those of the highway authority. 

The user-supplied input x1 is here called "user time" and is written as the number of 

users times an average travel time, which is determined by the congestion technology: 

(5.1) 

where capacity X is a physical property of the highway. I assume t( •) is differentiable, 

monotonically increasing in q, and monotonically decreasing in X. Capacity is produced from 

the other inputs according to: 

(5.2) 

where xb = (x2, ... ,xn_1) is the vector of inputs other than time and land, with corresponding price 

vector wb. By calling x1 a user-supplied input, I mean that its cost is part of the perceived 

price p of travel: 

where 7 is the money price charged for use of the road. In the transportation context, the 

factor price w1 is conventionally called the value of time, and p is called the full price of 

travel. 

To transform this formulation into that of sections 2-4, solve (5.1) for q as a function 

of x1 and X, denoting the result as q=H(x1.K); this is possible because t( •) is monotonically 

increasing in q. Substituting (5.2), we can write q directly as a function of inputs: 
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(5.3) 

Equation (5.3) is in the fonn of the production function (2.3), with input vector xa partitioned 

as (xi, xb)· This production function gives the number of users who can use a system while 

maintaining a level of service yielding total travel time xi, given the capacity that can be 

produced by inputs xb, xn. In other words, it gives the output made possible with inputs xi, 

xb, and xn. Its degree of returns to scale, r, can be derived from the degree of returns to scale 

in producing capacity, rg, and the degree of local homogeneity of the congestion function, ht 

= stq + stx• where the elasticies have signs stq>O and stx<O. The result is shown in the 

appendix to be: 

(5.4) 

Capacity is usually defined in such a way that equal percentage increases in q and X 

have no effect on t: i.e., ht=O. (For a highway, this means congestion depends only on the 

volume-capacity ratio.) In that case, (5.4) shows that (1-r) has the same sign as (1-rg), that 

is, f( •) has the same type of returns to scale as g( • ). 

What about the cost function derived from f( •) allowing for a possible rising supply price 

of land? It can similarly be related to the cost function for producing capacity. To see this, let 

land be supplied according to any differentiable supply function such that expenditure on land 

is En(xn), as before. Define the total cost and capital cost functions: 

C(q) = Min { WiXi + wb..xb + En(xn) 
XpXb,Xn 

and 

(5.5) 
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K(X) = Min { wb •xb + Wn(xn) 
xb,.xn 

(5.6) 

Their relationship is made apparent by noting that the constraints in (5.5) and (5.6) are just 

equations (5.3) and (5.2), respectively. Recall that these equations are equivalent under the 

transformation of variables from X to x1 defined in (5.1). That is, (5.5) can be rewritten as 

a minimization over X instead of x1, by substituting (5.1) for x1 and (5.2) in place of the 

constraint: 

C(q) - Min { w1qt(qX) + Wb •xb + Wn(xn) 
X,.xb,.xn 

- Min { w1qt(qX) + K(X) } 
X 

(5.7) 

This equation gives the relationship between the capital cost function, K(X), and the total cost 

function, C(q). 

We are now in a position to relate the scale economies of the two cost functions, C( •) 

and K( • ). Denote these scale economies by s and sK, respectively. The minimization in the 

second line of (5.7) implies the first-order condition 

(5.8) 

Equation (5.7) also implies, using the envelope theorem, that 

(5.9) 

Manipulation (see appendix) yields: 
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(5.10) 

where 01 = wi(q/C and OK =KIC are the shares of user cost and capacity cost, respectively, 

in total cost. In the usual case when ht=O, (5.10) shows that (1-s) has the same sign as 

(1-sK). That is, the cost function (5.5) has the same type of scale economies as the capital cost 

function (5.6). Note that the condition ht=O can be regarded either as a normalization 

condition in defining "capacity" or as an assumption of constant returns in the congestion 

technology.12 

Finally, how do "profits," as defined using cost function C, correspond to financial profits 

of the authority that finances capacity and practices congestion pricing? The answer is they are 

identical, because user costs are subtracted from both revenues and costs in going from one 

formulation to the other. Congestion pricing involves setting money price 7 so that full price 

P=T+w1t is equal to marginal cost as given by (5.9). Financial profits are therefore 

Tq - K(X) - (p-w1t)q - (C-w1tq) 

-pq - C 
(5.11) 

which is identical to profits as defined in section 2. The ratio of the authority's financial profits 

to its cost, (7q-K)/K, is related to sK as follows: 

12The latter interpretation is made, for example, by Mohring and Haiwitz (1962) and Strotz (1965, 
p. 135). 

21 



rq-K pq-C C 
-- ---·-K C K 

_ [ 1-s] • 2_ 
s OK 

_ [ 1::K l 

from (5.11) 

from (2.2b) 

from (5.10) . 

When ht=O, this ratio is just (1-sK)/sK, exactly analagous to (2.2b); or equivalently, the ratio 

of congestion-pricing revenues to capital cost is 1/sK, as noted by Kraus (1982a, p. 236). 

All the earlier results on the sign of profits therefore apply to the case of highway 

congestion. The sign of financial profit is governed by the degree of scale economies embedded 

in C( • ), which is defined for general factor-market conditions and accounts for a possibly rising 

supply price for land. Scale economies in C( •) are related through (5.10) to scale economies 

in the capacity-cost function K( • ). Under the usual assumption that ht=O, C( •) has scale 

economies of the same type as K( • ); hence the latter determines the sign of financial profits. 

For completeness, note that (5.10) can also be written in the form 

-sa(l-s K) + ht 
1-s - ------

1 - stX + ht 
(5.12) 

exactly analogous to (5.4). (The derivation uses the first-order condition (5.8), which can be 

written as 01stx = -OKfsK.) In the case of competitive factor markets, (5.12) would follow 

immediately from (5.4) using the usual duality results that s=r and sK=rg (Varian 1984, p. 

68). 

6. The Context for Self-Financing Rules 

To more fully appreciate the need for extending self-financing rules to monopsonistic 

input markets, consider the process of land assembly for a highway. The competitive price-
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taking model of Berechman and Pines requires that we imagine the highway authority renting 

land from competitive owners, each of whom can at any time evict his highway tenant and lease 

his parcel to some other user at the prevailing market rent. This market rent is that which 

applies in equilibrium with the road fully built. But such a competitive equilibrium cannot exist 

because land must be irrevocably committed to the road prior to construction, typically through 

advance purchase. So the actual rental price paid for the land cannot be determined each 

period in a competitive market. Instead, we are in the realm of bilateral negotiations. 

When land development is done privately, land assembly is often undertaken in great 

secrecy so that at least some of the land can be purchased at prices reflecting its value prior to 

any consideration of the new facility. Other parcels may have to be purchased at higher prices. 

This result resembles the discriminating monopolist. 

Occasionally, public land assembly occurs in the same way, as in the famous case of the 

Los Angeles water district's purchase of riparian land in Owens Valley, California. More often, 

public land assembly occurs through negotiations in a context of eminent domain, the doctrine 

by which the public can force a sale at a price determined by a court. Fischel (1995) offers a 

fascinating overview of the relevant case law in the United States, which provides insights into 

the actual nature of the supply function faced by an authority building any large project 

involving land assembly. 13 

In one instance, court rulings provide an outcome resembling that of a non-discriminating 

monopsonist. In Florida, alone among the fifty states in the U.S., land taken for a highway 

through eminent domain is priced at an amount that includes the increase in value induced by 

the highway (Bingham, 1985, pp. 11-7 through 11-11 ). 

The overwhelming tendency, however, is to value land taken for a public project well 

below its market value with the project in place. According to Fischel, court cases have 

followed cycles. Early in the development of a particular technology such as railroads, when 

the benefits from facilitating projects were perceived to be very high, rules for compensation 

were relatively favorable to the agency acquiring land. Later, as the magnitude of benefits 

13See especially chapter 2. I am indebted to Fischel also for pointing me, in personal discussion, to 
the articles by Francis and Bingham cited below. 
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became less compelling and issues of horizontal equity were given more scope, the rules 

changed toward requiring higher compensation. 

For example, in the early days of both railroads and interstate highways, the courts 

frequently reduced the price paid for land by a "benefit offset." This reflected the fact that for 

many landowners, only part of the owner's parcel was taken, while the remainder of the parcel 

rose in market value because of the project. In the case of urban elevated railways, this same 

theory was at first applied to property in the form of easements for light and air, which were 

deemed to be implicitly taken by the builder of an elevated structure in the middle of a street. 

Later, such offsets were prohibited, thereby raising the cost of acquiring those easements. In 

the case of interstate highways, similarly, compensation practices allowed rather low 

compensation during the 1950s and 1960s; but starting in 1970, both federal law and state court 

decisions added many new compensation requirements such as for relocation costs, blight caused 

by prior announcement of the project, and loss of business goodwill. Cordes and Weisbrod 

(1979) provide empirical evidence that such compensation practices did affect the amount of 

highway construction undertaken. Hence, their impact on the price of land acts in the manner 

postulated in the investment models of in this paper. 

The benefit offset was haphazard, leading to differing payments for similar land purchases 

depending on how much other land was part of a given parcel. Nevertheless, it produced a very 

rough kind of rising supply price resembling that facing a perfectly discriminating monopsonist. 

Given the route and the size of the landholdings within which the road passed, the acquisition 

of a very small strip of land might be essentially free because there would be enough other land 

in the parcels for the benefit offset to be virtually complete. A larger purchase would more 

often encounter the need to purchase parcels for which the benefit offset would be only a 

fraction of the cost of the land actually purchased. For such parcels, marginal increases in the 

project's scope would reduce the benefit offset by an amount reflecting the full access value of 

land taken, which means land at the margin would effectively be supplied at the full market 

price with the road in place. 

Two California practices illustrate other mechanisms by which highway authorities may 

effectively be faced with a rising supply curve for land (Francis, 1984, p. 449). California, like 
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all states except Florida, normally allows a public authority to exclude from its land payments 

the land value induced by the highway itself. However, if land not originally planned to be used 

is subsequently taken due to a change in plans, induced value would be compensated. Similarly, 

a 1971 court decision required that land taken for a freeway be valued at an amount that 

includes any induced value caused by an intersecting freeway. Both of these practices mean that 

as the highway system is expanded, the authority must pay a land price that reflects at least in 

a crude way the increasing scarcity value of the land that results from the highway system itself. 

Of course, landowners may impose legal costs or delays on highway authorities in order 

to increase their payments. However, there seems no evidence that this is either systematic or 

widespread. Probably it means that most land is purchased for slightly more than the courts 

would require, but it does not affect the relationship between price and scarcity. 

Thus, it seems clear that highway authorities face a rising supply price for land. 

Furthermore, in many cases the nature of compensation rules leads to the landowners being left 

with little producer surplus, corresponding to the case of the perfectly discriminating 

monopsonist. This is the least problematic case for our purposes because marginal-cost pricing 

is first-best. In such a case, the condition for a fully enlightened highway authority to be self

financing is there are no positive economies of scale in its cost function, taking account of the 

rising price of land. 

The question arises whether we should include local land value increases induced by the 

highway itself, if they are in part offset by land value decreases elsewhere. Strictly speaking, the 

arithmetic of equations (2.1)-(2.4) holds regardless of the cause of the rising supply price faced 

by the highway authority. However, it is probably better for two reasons to limit the use of 

these equations to sketch planning, that is the analysis of alternative levels of highway provision 

throughout an urban area, as for example in Fitch and Associates (1964). One reason is that 

normative implications of marginal-cost pricing become more cloudy if a highway competes for 

traffic with other highways that are not optimally priced. The other reason is ambiguity about 

what the price of land is a function of. When land price is increased because of incidental 

business from traffic carried by the road, it is really output q rather than land input xn that 

is affecting land price, which would alter the choice of output price. When land price is 
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increased by improved accessibility, either volume-capacity ratios q!X must have decreased or 

there must have been some improvement in the highway's characteristics other than increased 

capacity, such as faster off-peak times or improved safety; Larsen (1993) notes that these are 

often correlated with capacity and that this alters the Mohring-Harwitz result. Both of these 

possibilities suggest useful extensions of the model, but are accounted for neither here nor in 

any of the self-financing literature discussed above. 

7. Conclusion 

There are practical reasons, then, to be interested in the finances of public authorities that 

face noncompetitive factor markets for land. This paper has shown how the self-financing rule, 

usually applied only to first-best optimal investment and pricing, can be extended to such 

situations. The extended rule relates revenues from marginal-cost pricing, whether or not that 

pricing is first- or even second-best optimal, to the actual costs incurred by the authority. The 

relationship hinges on the degree of scale economies of the actual cost function, which are 

diminished to the extent that the authority faces a rising supply price of land. 
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Appendix 

Proof of Proposition 2 

Let x=(xa,xn) be any input vector, and define returns to scale as the elasticity of the 

production function with respect to an increase in inputs along the ray defined by x: 

t df(tx) 
r(x) - q~ lt-l · (A.1) 

Writing out the derivative in this equation and applying the first order conditions (2.5) at x * 

= (x:rxJ, with A=dC/dq, yields 

(A.2) 

* which is greater than s for positive w
0

• 

The intuition is that even though the non-discriminating monopsonist must pay the same 

price for all units of land (so that C =C at reference output if), the marginal costs differ. 

This is because in calculating C, but not C , the price of land will rise with increasing q. 

Hence the ratio of average to marginal cost is larger for C than for C, i.e. C shows greater 

economies of scale. 
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Second-Order Condition for Equation (3.8) 

The maximand Si. in equation (3.8) contains the quantity C(q)-Sn(q), which can be written as 

in which the middle two terms cancel. Therefore 

d'iJ. 
- = P(q) 
dq 

dxa* * dxn* 
-W---W --

a dq n dq 

* * 
= P'(q) - C"(q) 

dwn dxn 
-----

dq dq 

(A.3) 

(A.4) 

(A.5) 

since C is defined like C except holding wn constant at w:. The last term is negative, so 

we are assured of a maximum if P' -C "<0 or if P' -C " is positive but not so large as to 

overcome the last term. Demand is downward sloping (P' <0), so if C is convex or not too 

concave compared to P', the second-order condition holds. Note that P'-C "<0 is the second

order condition for optimality of marginal-cost pricing in the normal case of competitive factor 

markets, so the requirement here is weaker than the one usually imposed. 
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Proof of Proposition 3 

Equation (A.2) implies that 

1 
s 

1 

r * r *C 

Applying definition (3.8) of p0 yields (3.10) directly. 

(A.6) 

Now suppose the production function is homothetic, and consider the expansion paths for 

* inputs as q increases. If w
0 

were zero, these expansion paths would be rays from the origin, 

and each input would grow proportionally to ql!r*. Hence the output-elasticity in the last term 

in (3.10) would be 11/, so that the term in square brackets would vanish. With w: positive, 

use of land grows more slowly than ql!r* because the price of land rises; so the elasticity in 

* (3.10) is less than 1/r , causing the term in square brackets to be positive. 

Derivation of Equation (5.4) 

Let r, ht' and rg be the degrees of local homogeneity of f( • ), t( • ), and g( • ), respectively. 

That is, they are defined by 

(A.7) 

(A.8) 

(A.9) 

Substituting the definition (5.3) of f into the definition (5.1) of x1, 
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(A.10) 

Differentiating with respect to Xi, xb, and ~ yields: 

(A.11) 

(A.12) 

(A.13) 

Multiply these equations by xi, xb, and x
0

, respectively, and add them (remembering that 

f=q). Using (A.7) and (A.9) to simplify, this yields: 

Xi - rq • (t+qtq) + qtx! t!{ (A.14) 

or, recalling that xi =qt, 

(A.15) 

Applying (A.7) and dividing by qt, 

(A.16) 

Solving for r yields (5.4). 
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Derivation of Equation (5.10) 

Returns to scale are s = C/(qdC/dq_), sK =Kl(XdK/dX), and ht as defined by (A.8). 

Applying these definitions to (5.9) and multiplying by q yields: 

Subtracting C =w1qt+K from each side, 

2 - w1q tq - K 

- w1q • (hf-txX) - K 

- w 1qtht + KxX - K 

- w1qth, + K · [ s~ -1] 

Dividing by C yields (5.10). 

(from A.8) 
(from 5.8) 

(from definition of s K) . 
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