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Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most
common chromosomal disorder in humans. Those individuals with DS who live
beyond age 40 y develop a progressive dementia that is similar to Alzheimer’s disease
(AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques com-
posed of Aβ and intracellular neurofibrillary tangles composed of tau. Since AD is a
double-prion disorder, we asked if both Aβ and tau prions feature in DS. Frozen brains
from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched con-
trols were procured from brain biorepositories. We selectively precipitated Aβ and tau
prions from DS brain homogenates and measured the number of prions using cellular
bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from
19 to 65 y, we found nearly all DS brains had readily measurable levels of Aβ and tau
prions. In a cross-sectional analysis of DS donor age at death, we found that the levels
of Aβ and tau prions increased with age. In contrast to DS brains, the levels of Aβ and
tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at
death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeu-
tics remains to be determined.

Down syndrome j Aβ j tau j prions j cellular bioassays

More than a century ago, both Down syndrome (DS) (1) and Alzheimer’s disease
(AD) were first described (2). In the United States, there are ∼400,000 people with
DS and ∼5.4 million worldwide (3). DS, which is caused by triplication of chromo-
some 21(Chr21) (4), results in a shortened life expectancy ranging from 20 to 70 y.
Intellectual disability is almost universal in people with DS; the average intelligence
quotient for individuals with DS is ∼50 (5). Co-occurring illnesses include obstructive
sleep apnea, otitis media, congenital heart disease, gastrointestinal atresia, thyroid dis-
ease, and seizure disorders (6).
Over the past six decades, longevity of people with DS has markedly increased and

is thought to be due to improved access to and efficacy of surgeries for congenital heart
disease and medical treatments for respiratory infections (7). Though medical advances
have reduced institutionalization and increased integration into society, it is unknown
if such changes have reduced the prevalence of AD in DS.
For many years, AD was considered a presenile dementia with plaques and tangles

in people younger than 65 y, while people older than 65 y with plaques and tangles
were diagnosed with senile dementia. In 1982, Terry et al. (8) argued that the presenile
dementia called AD was indistinguishable from the plaques and tangles of most
demented older people and should be merged and called AD. At about the same time,
purified amyloid fibrils recovered from brains of deceased people with AD as well as
DS were found to consist of a unique amino acid sequence (later called Aβ) (9), which
was subsequently found in AD plaques (10).
Contemporaneously with the discovery of the Aβ peptide, immunostaining identi-

fied that neurofibrillary tangles (NFTs) contained the tau protein (11). Four decades
earlier, Jervis (12) reported that deceased people with DS have both senile plaques and
NFTs, based on Bielschowsky silver staining in fixed brain sections. Aβ plaques and
tau NFTs are considered a common neuropathological feature in most individuals with
DS older than 40 y (13). The anatomical distribution and biochemical properties of
Aβ plaques and NFTs are similar to those of AD (14, 15), which are thought to con-
tribute to progressive dementia and related biomarker changes in approximately two-
thirds of aged people with DS (16–20). Given these comparable molecular and clinical
traits, we hypothesized that studying aged people with DS might afford a new perspec-
tive in unraveling the molecular pathogenesis of some neurodegenerative diseases
(NDs) caused by prions.
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In the last two decades, numerous studies have shown that
both Aβ and tau proteins adopt pathogenic, self-propagating
conformations characteristic of prions (21–26). Prions induce
the misfolding of additional copies of the naïve protein (e.g.,
Aβ or tau) in a self-perpetuating process that spreads within
and between neural cells (what we call infectivity at the cellular
level). To be clear, no definitive evidence exists to suggest that
either AD or DS are communicable disorders; this is in contrast
to Creutzfeldt-Jakob disease and kuru, both of which have
shown to be caused by readily transmissible prion proteins
(PrPs) (27–29). Importantly, self-propagating forms of unre-
lated proteins in yeast and other fungi were found to have ben-
eficial, rather than pathological, roles in these organisms (30).
In mammals, proteins involved in memory formation and syn-
apse plasticity adopt a prion conformation as part of their bio-
chemical function in neurons (31–33). Thus, prions mediate
diverse processes in organisms separated by hundreds of mil-
lions of years of evolution.
The first experimental transmission of prions from people

with DS and AD to marmosets was reported by Ridley et al.
(34). They transmitted central nervous system disease from the
brain tissue of two deceased male donors with DS (ages 35 and
64 y) to six marmosets by intracerebral inoculation of brain
homogenates. Although the inoculated marmosets did not
develop signs of neurological dysfunction, they did exhibit
deposits of the Aβ peptide and were killed humanely due to
medical welfare issues. The disease in marmosets had an incu-
bation period of 4 to 8 y. Aβ deposits were identified by Congo
red birefringence, thioflavin staining, and anti-Aβ immunos-
taining. Notably, no NFTs were found by silver staining or
immunostaining for tau, and no Aβ aggregates were identified
in uninoculated marmosets that lived up to 19 y of age.
To shorten the incubation period and expand the scale of

such inoculation studies, investigators inoculated transgenic
(Tg) mice with human AD brain extracts. However, this
approach still required incubation periods of several months to
a year, as well as separate mouse models to detect the presence
of Aβ or tau prions in a particular brain extract. Based on a
rapid human cell bioassay previously developed for the mea-
surement of tau prions (35), we built parallel cell lines to mea-
sure α-synuclein, Aβ, and tau prions on the same platform.
With this approach, we measured prion infectivity found in
eight different NDs: AD, cerebral amyloid angiopathy, progres-
sive supranuclear palsy, corticobasal degeneration, Pick’s disease,
chronic traumatic encephalopathy, multiple system atrophy, and
dementia with Lewy bodies (26, 36–38). Here, we applied a
similar approach to measuring Aβ and tau prions in brains from
people with DS using the human cell bioassays.

Results

Aβ and Tau Prions in Brains of People with DS. To measure Aβ
and tau prions in brain tissues from deceased donors, we used
human embryonic kidney 293T (HEK293T) cells expressing
the yellow fluorescent protein (YFP) fused to either tau or Aβ
(Materials and Methods). Upon prion infection of HEK293T
cells, the accumulation of YFP–prion aggregates could be mea-
sured as fluorescent puncta (26, 39).
To investigate the unique etiological parallels between DS and

AD, we measured the levels of Aβ and tau prions in frontal brain
cortices of 28 deceased patients with DS who ranged from age 19
to 65 y (median age, 51 y; SI Appendix, Table S1) and 14 deceased
control cases with no cognitive impairment, who ranged in age
from 27 to 70 y (median age, 48 y; SI Appendix, Table S1).

Sodium phosphotungstic acid (PTA) was used to selectively
precipitate prions from brain homogenates (40). To establish
the conditions for performing the bioassays, we prepared a
small dilution series of a subset of brain extracts with which to
infect each cell line (SI Appendix, Fig. S1). With a few excep-
tions in the younger cases, we measured robust Aβ infectivity
(P< 0.0001) and tau prion infectivity (P< 0.0001) in nearly all
DS samples compared with a negative control (Fig. 1 A and B).
Interestingly, two of the youngest cases in our cohort showed
nominal tau prion infectivity but did exhibit robust Aβ prion
levels, similar to those in older cases with DS. Such Aβ prion
abundance in these young individuals was present despite only
minimal AD neuropathological burden in corresponding fixed
sections (SI Appendix, Fig. S2 A and B) and biochemical
measurements in extracts from frozen tissue (SI Appendix, Fig. S2
D and E). Consistent with recent work (41, 42), this finding
suggests that Aβ prions likely emerge long before the develop-
ment of mature Aβ plaques, which are typically found at age
40 y or older for people with DS (43). Overall, the mean lev-
els of Aβ prions in the DS cohort were 27 times greater (P <
0.0001) than the cognitively neurotypical age-matched controls
(Fig. 1B). Additionally, the mean levels of tau prions in the DS
cohort were 63 times greater (P < 0.0001) than the cognitively
neurotypical age-matched controls (Fig. 1B). We also found that
the abundance of tau prions had a modest linear correlation with
the abundance of Aβ prions (R2 = 0.2474; P = 0.0071) in people
with DS (Fig. 1C), which was consistent with the AD neuropa-
thology scores (SI Appendix, Fig. S2C) and biochemical measure-
ments (SI Appendix, Fig. S2F). Our findings demonstrate that DS
is also a double-prion disorder, like AD, featuring both Aβ and
tau prions.

Correlations Between Aβ and Tau Prions in Brains with Familial
AD and Sporadic AD. Next, we compared prion infectivity levels
in similarly aged people with DS and with AD. We asked if lin-
ear relationships between Aβ and tau prion infectivity might
exist in two different, etiologically distinct disorders. We evalu-
ated postmortem brain samples from a cohort of 26 early-onset
familial AD (fAD) cases ranging in age from 37 to 78 y
(median age, 58 y; SI Appendix, Table S2). We procured brain
samples from deceased donors with fAD bearing autosomal-
dominant mutations in the genes APP, PSEN1, or PSEN2. We
also included samples from 17 donors with sporadic AD (sAD)
ranging in age from 59 to 88 y (median age, 70 y; SI Appendix,
Table S2) and 10 control donors with no cognitive impairment
and ranging in age from 62 to 88 y (median age, 67 y; SI
Appendix, Table S2).

Our cell bioassays demonstrated that the brain samples with
fAD and sAD contained appreciable Aβ and tau prion infectiv-
ity levels compared with a negative control (Fig. 2A). While the
prion levels in brain samples with AD were heterogeneous
across the age range examined, the overall mean values for Aβ
prion infectivity in the sAD (P < 0.0001), fAD APP (P <
0.0001), and fAD PSEN1 (P < 0.0001) cohorts were at least
15 times greater than the cognitively neurotypical age-matched
controls (Fig. 2B). Similarly, the mean values for tau prion
infectivity in the sAD (P < 0.0001), fAD APP (P < 0.0001),
and fAD PSEN1 (P < 0.0001) cohorts were at least 12 times
greater (P< 0.0001) than the cognitively neurotypical age-
matched controls (Fig. 2B). No statistical difference in Aβ and
tau prion infectivity levels was found when comparing sAD,
fAD APP, and fAD PSEN1 with each other. Curiously, the
mean values for Aβ and tau prion infectivity in the fAD
PSEN2 cohort exhibited a marked increase compared with the
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controls, yet they did not reach statistical significance using a
two-way ANOVA. In addition, we found that the abundance
of tau prions was linearly correlated with the abundance of Aβ
prions (R2 = 0.3453; P < 0.0001) in all people with AD (Fig.
2C). Taken together, these data indicate three important find-
ings: First, bioactive Aβ and tau prions persisted in diseased
brains at the time of death, which is consistent with our earlier
findings (26). Second, these data provide unequivocal evidence
that DS, fAD, and sAD all produce Aβ and tau prions, but
each arises from distinct etiological pathways. Third, the abun-
dance of Aβ prions seems to govern the level of tau prions in
both DS as well as AD.

Increased Abundance of Aβ and Tau Prions in Older People
with DS. Because of the overall similarities in prion infectivity
between DS and AD, we questioned if the abundance of Aβ
and tau prions was lower in longer-lived individuals with DS,
similar to prior observations we reported for a large cohort of
donors with fAD and sAD (26). We plotted Aβ and tau prion
infectivity as a function of the donor’s age at death and per-
formed a linear regression analysis. Unexpectedly, we found sig-
nificant trends of increased Aβ prions (R2 = 0.2752; P =
0.0042) and tau prions (R2 = 0.4328; P < 0.0001) in people
with DS who lived longer (Fig. 3 A and B), which was consis-
tent with the neuropathological and biochemical measurements
of Aβ and tau proteins (SI Appendix, Fig. S2). This result con-
trasted starkly with the same analysis performed on the fAD

and sAD prion infectivity data (Fig. 3 C and D). Moreover, fAD
and sAD samples were plotted together because of the gross sim-
ilarities in abundance of Aβ and tau prions, and meta-analyses of
many longitudinal biomarker studies argue that fAD and sAD
share a common sequence of pathological events (44, 45). We
observed that Aβ prions exhibited a significant decrease (R2 =
0.1463; P = 0.0113) in abundance with increasing age at death
(Fig. 3C). While we did not observe any significant trend for
tau prion infectivity with age in this study (R2 = 0.0235; P =
0.3261), we reported a negative correlation of tau prion abun-
dance and age at death in a larger AD cohort that included sam-
ples from much older donors (26). We repeated the regression
analysis on only the sAD cohort and found it was driving the
negative trend (R2 = 0.4632; P = 0.0026) in Aβ prion infectiv-
ity levels plotted as a function of age at death (SI Appendix, Fig.
S3A); in the regression analysis of only the fAD cohort, Aβ prion
infectivity levels plotted as a function of age at death exhibited a
subtle but insignificant negative trend (SI Appendix, Fig. S3C).
There was no change in the statistics of the regression analysis
for tau prion infectivity when plotting data from only sAD
(R2= 0.0031; P= 0.8318; SI Appendix, Fig. S3B) or fAD
(R2= 0.0306; P= 0.3930; SI Appendix, Fig. S3D).

To study these relationships in an overlapping age range, we
repeated the regression analyses using only a subset of DS and
AD samples from donors who died between 40 and 60 y of age
(SI Appendix, Fig. S4). We observed positive, albeit insignifi-
cant, trends for Aβ prions (R2= 0.1772; P= 0.1044) and tau
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prions (R2= 0.1965; P= 0.0855) in people with DS who lived
longer (SI Appendix, Fig. S4 A and B). We observed slightly
negative but insignificant trends for Aβ prions (R2= 0.0358;
P= 0.5828) and tau prions (R2= 0.0582; P= 0.4059) in peo-
ple with AD who lived longer (SI Appendix, Fig. S4 C and D).
While we found that all trends in this age subgroup were con-
sistent with the original analyses, including DS and AD sam-
ples from the entire age range (Fig. 3), larger studies in the
future will further explore the relationships of prion infectivity,
age at death, and other relevant biological variables. For exam-
ple, like in AD, DS carriers of the APOEε4 risk allele have
increased risk for AD and mortality (46, 47) and more severe
neuropathology (48, 49), but we did not observe any trends in
our data from the cohort of 28 individuals. Similar to our prior
study of prion levels in long-lived AD donors (26), we per-
formed a battery of immunochemical assays for APP, Aβ, and
tau proteins in the soluble and insoluble brain fractions but did
not observe any obvious trends with donor age at death or cor-
relation to abundance of prion infectivity (SI Appendix, Figs.
S5 and S6). Because of interdonor variability, we speculate that
potential relationships may exist with greater sampling. Thus,
work with larger DS cohorts is underway to examine the rela-
tionships of Aβ/tau protein levels and genetic risk factors (e.g.,
APOEε4) on the kinetics and severity of Aβ and tau prion
accumulation, especially in young individuals. In summary, our
data argue that the AD and DS prions represent different
strains.

Discussion

Our findings demonstrate that the brains of people with DS
feature both Aβ and tau prions, which appear to be indistin-
guishable from the two prions that accumulate in both the
sporadic and familial forms of AD. Importantly, DS is neither
sporadic nor inherited, but it is a genetic disease caused by
complete or partial triplication of Chr21. In trisomic individu-
als who bear an extra copy of the APP gene, the overexpression
of wild-type (WT) APP results in increased levels of Aβ prions.
Conversely, partial trisomy lacking triplication of APP does not
lead to the neuropathologic changes of AD (50, 51). While we
have previously reported that Aβ prions in the absence of tau
prions result in cerebral amyloid angiopathy (26), this is not
the case for DS. We found both Aβ and tau prions in nearly all
of the brains of our DS cohort. In agreement with others, we
propose that research in people with DS may help clarify sAD
pathogenesis, given that both neuropathology and prion infec-
tivity closely resemble that found in sAD, the predominant
form of AD.
Notably, some individuals with DS exhibit many co-occurring

conditions, including heart defects, obesity, diabetes, and proge-
ria. How these conditions in people with DS modify the central
nervous system dysfunction in the aging DS brain is unclear.
There is evidence from mouse models that triplication of some
Chr21 homologs increases Aβ deposition independently of an
extra APP copy (52); conversely, APP duplication alone is suffi-
cient to cause AD (53). APP duplications in DS provide an inter-
esting comparison to Tg(APP) mice, which also overexpress
human APP and Aβ. However, we note that plaques only form
in Tg mice bearing familial mutations in APP and not WT APP;
efforts to knock-in the WT human APP allele or humanize the
Aβ peptide sequence within rodent App do not lead to plaque
formation in the lifespan of a mouse (54, 55). Moreover, while
the first generation of DS mouse models, segmental trisomy of
mouse Chr16 (e.g., Ts65Dn) (56, 57), do replicate many

neurodevelopmental phenotypes and present age-related neuro-
degeneration, they do not produce robust Aβ pathology in
aged mice (58). One caveat of the Ts65Dn model is that it
duplicates genes not present on human Chr21. To avoid this,
new models employing transchromosomic (Tc) techniques in
mice and rats have been developed in which the long arm of
human Chr21 is cloned into the rodent genome. Despite this
advancement, there is still a lack of Aβ plaque formation during
the Tc(Chr21) rodent lifespan (59, 60). Whether or not Aβ
prions could be measured in Tc(Chr21) rodents using cellular
bioassays remains to be determined. Nevertheless, these find-
ings suggest that the formation of Aβ and tau prions as well as
AD neuropathology resulting from overexpression of WT
human APP is a uniquely human condition. These findings
make it critical to use human brain samples wherever possible
to investigate the molecular pathogenesis of DS.

Effects of Aβ concentration on the formation of Aβ prion
strains may be amenable to study in both rodents and humans.
In prior work, we demonstrated that the brain concentrations
of APP, Aβ40, and Aβ42 proteins in long-lived people with
AD trended significantly lower (P< 0.005) compared with peo-
ple who died much younger (26). This matches the lower Aβ
prion infectivity observed with cell bioassays in those same peo-
ple (26). If such a trend was present from a young age, it might
indicate that low APP expression over the lifespan contributes
to an Aβ prion strain that is less pathogenic or slower to accu-
mulate and contributes to longevity. Interestingly, using amy-
loid strain-sensitive dyes and spectral imaging methods in fixed
tissues (61), we found that the conformation of Aβ plaques in
aged individuals with DS and advanced neuropathology
showed a distinct conformational strain phenotype, compared
with sAD (62). While the relationship between amyloid plaque
conformation and Aβ prion infectivity remains to be deter-
mined, there is growing evidence that supports the notion that
pathogenic Aβ and tau species in DS may differ from fAD and
sAD in ways not appreciated with traditional histological and
biochemical measurements.

Our prion bioassays allow for measurement of both Aβ and
tau prions in DS rather than inert protein deposits. The finding
that Aβ and tau prions are positively correlated in DS and AD
agrees well with genetic and experimental studies arguing that Aβ
prions arise early in AD pathogenesis and that these prions initi-
ate subsequent tau prion formation (63–65). Consistent with this
notion, we found that samples from two of the youngest individ-
uals with DS in our study (19 and 25 y old) exhibited robust lev-
els of Aβ prions but insignificant levels of tau prions; in adjacent
formalin-fixed sections, we found that these donors had low levels
of plaques and tangles (SI Appendix, Fig. S2). In contrast, we
have not found any brains with DS or AD that have readily
detectable levels of tau prions accompanied by marginal levels of
Aβ prions. Indeed, our studies of primary tauopathies such as
progressive supranuclear palsy and corticobasal degeneration have
failed to show any detectable Aβ prions (26). To our knowledge,
individuals with DS do not present with only NFTs in the
absence of amyloid plaques (15). This finding is consistent with
our view that Aβ prions initiate formation of tau NFTs in the
vast majority of people with AD as well as DS.

Indeed, the cellular bioassays provide a functional readout of
self-replicative proteins but do not provide the biophysical or
structural characteristics of a given prion. It will be important
for future mechanistic and drug discovery research to more pre-
cisely understand the molecular features of Aβ and tau prions in
DS and AD. For example, Aβ peptides assemble into aggregates,
which are called oligomers when the aggregate size is less than
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∼50 peptides (66). A multitude of studies on human brain sam-
ples have reported the existence of soluble Aβ oligomers ranging
in size, including dimers, trimers, and tetramers (67). Oligomer
size has also been found to correlate inversely with cellular toxic-
ity (68, 69). Moreover, the abundance of Aβ oligomers correlates
well with the progression of cognitive deficits (70–72) and can
differentiate patients with AD from nondemented people with
comparable amyloid plaque burden (73). Extensive studies of Aβ
oligomers in DS are lacking, but a few reports indicate an early
(preplaque accumulation) and persistent increase of Aβ oligomers
in aging DS people (74, 75). This is consistent with our data
showing abundant Aβ prions in young people with DS with little
to no amyloid plaque pathology. To our knowledge, there are no
reports describing the characterization of tau oligomers in the
brains of DS donors. Whether Aβ or tau multimer size correlates
with prion infectivity and pathological deposition remains to be
determined. By quantifying the oligomeric distribution and con-
centration, it should be possible to establish a relationship between
the number of proteins in an oligomer and its prion infectivity
(i.e., the particle to infectivity ratio [P/I]). For example, the P/I is
∼5,000 for the scrapie PrP isoform (76).

DS reveals a new vista of prion biology where trisomy of
Chr21 results in increased Aβ production from an early age and
leads to the formation of Aβ prions (77–80). It will be impor-
tant to determine if this phenomenon occurs in all people with
DS or a subset and to establish the earliest ages of prion detec-
tion. Despite the extraordinary contrast in etiologies between
two genetic forms of Aβ prion diseases, one of which is nonher-
itable (DS) and the other heritable (fAD), both DS and fAD
lead to a convergent neuropathogenic phenotype. Notably, by
including sAD with fAD and DS, these three double-prion
diseases are the most frequent neurodegenerative conditions
worldwide, in which Aβ prions stimulate tau prions to cause
neurodegeneration. Moreover, DS joins the expanding spectrum
of NDs known to be caused by pathogenic prions (Table 1).
Indeed, PrP prions cause Creutzfeldt-Jakob disease and kuru
and can manifest in sporadic, heritable, and communicable dis-
orders. While the other NDs can be sporadic or heritable, there
is little evidence that Aβ, tau, or α-synuclein prions are commu-
nicable or spread by iatrogenic transmission (102–105). How-
ever, Aβ, tau, or α-synuclein prions extracted from donor brains
of each disease can be transmitted to experimental animals or
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cultured human cells. These transmission models have enabled
investigations of prion disease mechanisms and preclinical test-
ing of novel therapeutic candidates.
Ridley et al. (34) provided the first clues of Aβ prions in the

brains of people with DS, but the incubation times in marmo-
sets are much too long for experimental investigations. In con-
trast, using our rapid cell bioassays, we discovered that the
brains of people with DS contain both Aβ and tau prions indis-
tinguishable from those found in AD. Our findings offer an
approach to comparative clinical studies of AD and DS. As we
learn more about Aβ and tau prions in DS, it may be feasible
to develop smaller, shorter, and more informative clinical trials
of potential AD treatments (106, 107). Whether advances in
human positron emission tomography imaging for both Aβ pla-
ques and NFTs will prove useful in assessing the levels of Aβ
and tau prions in the brains of adults with DS who receive
putative anti–AD prion therapeutics remains to be established.
Last, because the brains of long-lived people with DS exhibit
increased prion infectivity, we posit that more molecular studies
for people with DS are needed to better understand how age-
dependent pathogenic mechanisms in DS cause a divergent
prion phenotype from sAD. The outcome of such work may
have important implications for developing drugs that are more
aptly tailored to improve quality of life for people with DS.

Materials and Methods

Study Design. This case-control study used deidentified human biospecimens
from deceased individuals and is exempt from institutional review board
approval (i.e., this study is not considered human subject research) in accordance
with University of California, San Francisco (UCSF) IRB policy. Samples were
collected retrospectively based on availability for distribution and known case
criteria. As such, we have followed the STROBE (Strengthening the Reporting of
Observational Studies in Epidemiology) reporting guidelines in this article.

Human Brain Sample Procurement and Processing. All tissue donors or a
proxy provided written or verbal consent to donate postmortem brains for use in
biomedical research in accordance with the standards of each institution. Fresh-
frozen autopsied brain tissue was procured from several brain biorepositories in
the United States and Europe (SI Appendix, Tables S1 and S2 include available
demographic information of patient donors). Samples were chosen based on
available cases and each cohort was age- and sex-matched as a group. Frozen tis-
sues were thawed and weighed to determine the mass in grams. Tissue was
mechanically homogenized in nine volumes of cold Dulbecco’s phosphate-
buffered saline (DPBS) containing Halt Protease Inhibitor Mixture (1×; Thermo
Fisher Scientific) using a handheld probe-tip homogenizer (OMNI International).
The homogenate was clarified by centrifugation at 5,000g for 5 min at 4 °C, and
the supernatants were collected and stored at�80 °C.

PTA Precipitation of Aβ and Tau in Frozen Brain Samples. PTA precipita-
tion of human postmortem brain samples was performed as described (26, 40).
Briefly, 10% brain homogenate was incubated in 2% sarkosyl and 0.5% benzo-
nase (Sigma) at 37 °C with constant agitation (900 rpm) in an orbital shaker for
2 h. PTA was dissolved in double-distilled water, and the pH was adjusted to
7.0. PTA was added to the solution to a final concentration of 2%, which was
then incubated overnight under the same conditions. The sample was centri-
fuged at 16,000g for 75 min at room temperature, and then the supernatant
was removed. The resulting pellet was resuspended in DPBS using 10% of the
initial starting volume and stored at�80 °C.

YFP-Tagged HEK293T Cell Bioassay for Measuring Prion Infectivity.

Previously, we developed monoclonal HEK293T cell lines expressing constructs
encoding human WT Aβ42 fused with YFP at the N terminus (26). Cell lines
expressing human 4R tau (repeat domain) with the mutations P301L and V337M
fused with YFP at the C terminus were generated as described previously (37).

To perform the bioassay, 3,000 cells per well (containing 0.1 μg/mL Hoechst
33342) were plated at 70 μL/well onto 384-well plates (Greiner) and incubated
for 2 h before treatment with samples. Based on prior work (26), brain extracts
(0.03×; 20% final volume) were incubated with Lipofectamine 2000 (1.5% final
volume; Thermo Fisher Scientific) and Opti-MEM (78.5% final volume; Thermo
Fisher Scientific) for 2 h. Following incubation, samples were plated onto 384-
well plates in four replicate wells (10 μL/well). Plates were incubated, and DAPI

Table 1. Experimental transmission of prions derived from human brain extracts to animals or cultured cells

Disease etiology Sporadic Heritable Communicable

Experimental
prion transmission

Selected citations:
Experimental
transmission

in animal and human
cell bioassaysAβ Tau α-Syn PrP

Down syndrome + 2 2 + + n.d. n.d. Aβ and tau (81)
Sporadic Alzheimer’s disease + 2 2 + + 2 n.d. Aβ (22, 25, 26, 81, 82); tau

(26, 81, 83); α-syn (26)
Familial Alzheimer’s disease 2 + 2 + + 2 n.d. Aβ (25, 26, 81); tau (26,

81); α-syn (26)
Sporadic cerebral amyloid angiopathy + 2 2 + 2 2 n.d. Aβ, tau, and α-syn (26)
Familial cerebral amyloid angiopathy 2 + 2 + 2 2 n.d. Aβ, tau, and α-syn (26)
Progressive supranuclear palsy + + 2 2 + 2 n.d. Aβ (26); tau (26, 35, 37,

83, 84); α-syn (26)
Corticobasal degeneration + + 2 2 + 2 n.d. Aβ (26); tau (26, 35, 37,

83–85); α-syn (26)
Argyrophilic grain disease + + 2 n.d. + n.d. n.d. Tau (35, 37, 83–85)
Pick’s disease + + 2 n.d. + n.d. n.d. Tau (26, 35, 37, 83–85)
Chronic traumatic encephalopathy + + 2 n.d. + n.d. n.d. Tau (37, 86)
Globular glial tauopathy + + 2 n.d. + n.d. n.d. Tau (87)
Multiple system atrophy + 2 2 2 2 + n.d. Aβ (26); tau (26); α-syn

(25, 36, 38, 88–90)
Dementia with Lewy bodies + + 2 n.d. 2 + n.d. α-Syn (38)
Sporadic Parkinson’s disease + 2 2 n.d. 2 + n.d. α-Syn (38, 91)
Familial Parkinson’s disease 2 + 2 n.d. n.d. n.d. n.d. n.d.
Creutzfeldt-Jakob disease + + + n.d. n.d. n.d. + PrP (92–97)
Fatal familial insomnia + + 2 n.d. n.d. n.d. + PrP (95, 98)
Kuru 2 2 + n.d. n.d. n.d. + PrP (99)
Gerstmann-Str€aussler-Scheinker disease 2 + 2 n.d. n.d. n.d. + PrP (100, 101)

Abbreviations: α-Syn, α-synuclein; n.d., not done; PrP, prion protein.
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and FITC channels were imaged every 24 h (five images per well) for 3 d using
the GE Healthcare IN Cell Analyzer 6000. Images were analyzed using IN Cell
Developer software and custom protocols containing algorithms to detect intra-
cellular aggregates in live cells. Data are presented as integrated total fluores-
cence intensity per cell.

Custom Neuropathological Scoring of Aβ Plaque and Tau Tangle Density
in Formalin-Fixed Sections. Standardized, biorepository-provided neuropatho-
logical scores (e.g., Braak and Consortium to Establish a Registry for Alzheimer’s
Disease [CERAD]) were not available for all DS cases procured for this study.
Moreover, while such scores reflect the global overview of neuropathological
burden across the entire brain, they do not provide the exact neuropathological
burden in the specific brain sample of interest. We wanted to quantify the abun-
dance of immunofluorescent-stained histological deposits in formalin-fixed sec-
tions from regions adjacent to the frozen samples used for prion infectivity and
biochemical measurements. Thus, to obtain a standardized measure of AD neu-
ropathology, we generated our own pathological scores (0, 1, 2, 3, and 4) based
on Aβ and tau load in the frontal cortex detected using antibodies targeting
Aβ40, Aβ42, and phosphorylated tau, as described in complete detail by Max-
well et al. (62). In brief, 0=<1 plaque/mm2 and<1 mature NFT/mm2; 1=<1
dense-cored plaque but≥2 total plaques and 1 to 5 NFTs; 2=≥1 dense-cored
but<2 neuritic plaques and 5 to 12 NFTs; 3=≥5 dense-cored and 2 to 15 neu-
ritic plaques and 12 to 25 NFTs; and 4=≥15 neuritic plaques and≥25 mature
NFTs. We validated our approach by comparing our scores with the limited Braak
and CERAD data that were available and found our metrics to be consistent.

Immunochemical Protein Quantification in Bulk Tissue Extracts. To
determine the total concentration of soluble APP and tau present in each frontal
cortex sample, sandwich enzyme-linked immunosorbent assays (Invitrogen, cata-
log KHB0051 and KHB0041) were performed on brain homogenate (10% in
phosphate-buffered saline [PBS], called “10% BH”) clarified with centrifugation
(5,000g for 5 min) to remove cell debris and most insoluble proteins. Samples
were prepared and stored in low-binding 96-well plates and measured according
to manufacturer directions. Protein concentrations were normalized to total brain
protein in the clarified homogenate as determined by bicinchoninic acid assay.

Insoluble protein fractions were extracted from brain homogenate by sonicat-
ing 10% BH with 75% vol/vol formic acid for 20 min followed by ultracentrifuga-
tion at 48,000g for 1 h at 4 °C. The supernatant was neutralized with a 20-fold
dilution in neutralization buffer (1 M Tris base [NH2C(CH2OH)3] 0.5 M
Na2HPO4�7 H2O; pH 10.5) and was stored in aliquots at �80 °C until use. To
measure concentrations of Aβ40, Aβ42, and insoluble tau species in these
extracts, we instead used homogeneous time-resolved fluorescence (HTRF)
assays, which were shown to generate more reproducible measures of insoluble
(formic acid–soluble) proteins. Total tau (Perkin-Elmer Cisbio 64NTAUPEG), tau
phospho-S202/T205 (64TS2PEG), Aβ40 (62B40PEG), and Aβ42 (62B42PEG)
HTRF kits were used according to manufacturer protocols.

Statistical Analysis. Statistical analyses were performed with GraphPad
Prism, version 9. Data are shown as mean± SD. Comparisons between multiple
groups were performed using two-way ANOVA with Tukey’s multiple compari-
sons test. For two-group comparisons, we used Student’s t test. A simple linear
regression was performed for all XY scatter plots. A value of P< 0.05 was consid-
ered significant.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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