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Modeling surface topography of state-of-the-art x-ray mirrors as a 
result of stochastic polishing process: recent developments  
Valeriy V. Yashchuk,*a Gary Centers,a Yury N. Tyurin,b,c and Anastasia Tyurina,c 

aAdvanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, 
CA, USA 94720; bMoscow State University, 1 Leninskiye Gory St., Moscow, Russia 119991; 

cSecond Star Algonumerix, 19 West St., Needham, Massachusetts, USA 02494 

ABSTRACT  

Recently, an original method for the statistical modeling of surface topography of state-of-the-art mirrors for usage in x-
ray optical systems at light source facilities and for astronomical telescopes [Opt. Eng. 51(4), 046501, 2012; ibid. 53(8), 
084102 (2014); and ibid. 55(7), 074106 (2016)] has been developed. In modeling, the mirror surface topography is 
considered to be a result of a stationary uniform stochastic polishing process and the best fit time-invariant linear filter 
(TILF) that optimally parameterizes, with limited number of parameters, the polishing process is determined. The TILF 
model allows the surface slope profile of an optic with a newly desired specification to be reliably forecast before 
fabrication. With the forecast data, representative numerical evaluations of expected performance of the prospective 
mirrors in optical systems under development become possible [Opt. Eng., 54(2), 025108 (2015)]. Here, we suggest and 
demonstrate an analytical approach for accounting the imperfections of the used metrology instruments, which are 
described by the instrumental point spread function, in the TILF modeling. The efficacy of the approach is demonstrated 
with numerical simulations for correction of measurements performed with an autocollimator based surface slope 
profiler. Besides solving this major metrological problem, the results of the present work open an avenue for developing 
analytical and computational tools for stitching data in the statistical domain, obtained using multiple metrology 
instruments measuring significantly different bandwidths of spatial wavelengths.  

Keywords: Surface metrology, time-invariant linear filter, parametrization, point spread function, modulation transfer 
function, power spectral density, metrology of x-ray optics, calibration 
 

1. INTRODUCTION  

Recently, an original method for the statistical modeling of the stochastic part of surface topography of state-of-the-art 
mirrors for usage in x-ray optical systems at light source facilities and for astronomical telescopes has been developed.1-6 
In modeling, the mirror surface topography, after subtraction of the mirror non-stochastic shape (trend), is considered to 
be the result of a stationary uniform stochastic polishing process; and a best fit time-invariant linear filter (TILF) that 
optimally parameterizes, with limited number of parameters, the polishing process results is determined. The dedicated 
software is under development in the scope of NASA STTR/SBIR program. 

The TILF model, when determined, allows the surface slope profile of an optic with a newly desired specification to be 
reliably forecast before fabrication. With the forecast data, representative numerical evaluations of expected performance 
of the prospective mirrors in optical systems under development become possible.7,8 Moreover, the modeling could 
potentially provide a feedback to the deterministic polishing processes, avoiding time-consuming whole scale metrology 
measurements over the entire optical surface at the resolution required to cover the desired spatial frequency range. The 
work in this direction is also in progress. 

Here, we initiate a new project devoted to one more possible application of the developed methods of statistical 
modeling. This is a development of a single-model (hybrid) statistical description of stochastic topography data for a 
surface under test (SUT) obtained through a number of metrology instruments designed for measurements over 
significantly different ranges of spatial wavelength. This can be thought of as data stitching in statistical domain, or 
‘statistical stitching.’  

The importance of this project can be justified by the following discussion. 
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Generally, depending on the application of a mirror in a particular optical system, the spatial wavelength range of 
interest varies from a few nanometers (reachable, for example, with electron, x-ray, and/or atomic force microscopes) up 
to the whole size of a SUT with a length of ~ 1 meter (accessible, for example, with optical interferometers and slope 
measuring profilers). There is no metrology tool capable of covering the entire spatial wavelength range in a single 
measurement.  

A limited increase of spatial wavelength range characterized from the data is possible with stitching of multiple identical 
(performed with the same metrology tool) measurements made with translation of the tool across the SUT.9,10 Such 
stitching leads to a proportional increase of the data volume, measuring time, and the required set-up stability. Moreover, 
such straightforward stitching does not solve the problem of combining dissimilar data from principally different 
instruments. 

As mentioned above, the core of the project started here is development of analytical methods for stitching dissimilar 
metrology data in the statistical domain. The project is based on the developed methods of statistical modeling of the 
metrology data treated as a result of a stochastic process.1-6 In this case, the data from each instrument is modeled 
independently. The resulted models, each applicable to the spatial wavelength range determined by the particular 
instrument, are combined to a single hybrid model that reproduces the statistical properties of the SUT over the spatial 
wavelength range covered by all the instruments in use.   

One of the major problems to be solved in the scope of the project is reliable accounting of the imperfections in the 
instruments used to obtain the surface topography data. The effects of imperfection in measuring instruments, expressed 
in terms of the point spread function (PSF) and modulation transfer function (MTF),11 to the authenticity and mutual 
consistency of power spectral density (PSD) distributions obtained from a series of measurements of the same surface 
under test using different metrology instruments have been comprehensively discussed in literature [see, for example, 
Refs.12-17 and reference therein]. 

In this paper, we suggest and demonstrate an analytical approach to reliably account for the imperfections of the used 
metrology instruments, which are described by the instrumental PSF, in the TILF modeling. The paper is organized as 
follows: In Sec. 2 we briefly review the modern methods of characterization of metrology instrumentation, concentrating 
on MTF correction of metrology data in the spatial frequency domain, and provide the corresponding relations between 
the MTF, PSF and the instrumental optical transfer function (OTF). A brief review of mathematical foundations of the 
stochastic modeling of surface metrology data is given in Sec. 3. The PSF correction in the statistics domain is discussed 
in Sec. 4 for the case of a reversible PSF. In Sec. 5, we derive analytical expressions for the OTF and PSF of an 
autocollimator based surface slope profiler. However, the corresponding PSF is irreversible so an analytical recipe for 
overcoming the irreversibility problem is considered in Sec. 6. It is based on application of approximate correction 
methods developed for restoration of blurred images. In Sec. 7, the efficacy of the correction is demonstrated with 
numerical simulations of correction for measurements performed with an autocollimator based surface slope profiler. 
The paper concludes (Sec. 8) by summarizing the main concepts discussed through the paper and outlining a plan for 
future work. 

2. INSTRUMENTAL PERTRUBATION OF METROLOGY DATA 

As an illustration of the problem related to the instrumental MTF, we refer to the publications,12-15 where one-
dimensional (1D) power spectral density (PSD) spectra obtained from an Au-coated Ni-plated and Au-coated polished 
stainless-steel (SS) x-ray mirrors  are presented as measured with an atomic force microscope (AFM) Dimension-3100, 
an optical interferometric microscope MicroMapTM˗570, a 6-in Fizeau interferometer ZYGO GPI, and a slope 
measuring long trace profiler (LTP). All the instruments are available at the Advanced Light Source (ALS) X-Ray 
Optics Laboratory (XROL).18,19  

The comparison of the PSD spectra depicts strong discrepancy of the data from different instruments, as well as the ones 
from the same instrument, the interferometric microscope, equipped with different objectives, providing different sizes 
of field-of-view and the spatial resolution. The discrepancy is due to the limited resolution of the instruments that is seen 
as the PSD’s strong roll-off at the higher spatial frequencies accessible with a particular instrument.  

The roll-off like perturbation of the PSD spectra is a signature of the instrumental MTF. If the MTFs of the metrology 
instruments in use are known (for example, via specially arranged MTF calibration tests; see, for example, Refs.20-29 and 



 
 

 

 

references therein), the PSDs measured with a SUT can be corrected providing significantly more reliable information 
about the inherent PSD of the SUT over the entire spatial wavelength range, covered by the instruments.  

Below, we briefly review the methods for the MTF calibration of different surface profilers.  

2.1 MTF calibration and correction of metrology data in spatial frequency domain 

To the extent that the response of the instrument can be characterized as a linear and shift-invariant system, the measured 
PSD is a product of the PSD inherent for the sample, samplePSD , and the MTFs of the individual components (objective, 

detector, etc.) of the instrument: 

2
measured samplePSD PSD MTF  .               (1) 

In Eq. (1), MTF  is the total MTF of the instrument. It can be experimentally determined by comparing the measured 
PSD distribution of a test surface to the corresponding ideal PSD distribution, which is numerically simulated or found 
from PSD measurements with an instrument of significantly higher resolution. 

There are a number of well-established methods for MTF calibration of different surface profilers. For example, a very 
efficient and universal experimental method for the MTF calibration of a broad range of surface profilometers, including 
large field-of-view Fizeau interferometers, optical interferometric microscopes, and scanning and transmission electron 
and x-ray microscopes has been recently developed and demonstrated.20-29 The method is based on binary pseudo-
random (BPR) one-dimensional sequences and two-dimensional (2D) arrays.30-36 The universality of the approach based 
on BPR test samples, making it suitable for MTF characterization of fundamentally different instruments, is ensured by 
the similarity of specification of the test samples as sets (1D sequences, or 2D arrays) of pseudo-randomly distributed 
elements with a binary (two-level) physical property such as two height levels or two materials with different physical 
properties (for example: x-ray and electron beam transmission, reflectivity, electrical conductivity, magnetic 
permeability, etc).  

For the MTF calibration of slope measuring profilers, a method based on specially designed chirped profiles has been 
recently developed and demonstrated.37,38 In Sec. 4, we consider the MTF of an autocollimator based surface slope 
profiler in more detail and provide its analytical description. 

2.2 Relation between the instrumental PSF, OTF, and MTF 

If a metrology instrument is linear and shift invariant, the instrumental aberrations can be characterized by its point 
spread function. The PSF describes its response to a point (delta-function-like) topographic object (see, for example, 
Refs.11,16,17). The effect of the PSF to the surface measurements can be thought of as application of the corresponding 
filter PSF  to the topography under test. Therefore, in the 1D case, a measured trace MESX  can be presented as: 

MES SUT MESX PSF X N   ,      (2) 

where SUTX  is the trace, corresponding to the inherent (unperturbed by the measurement) SUT topography. In Eq. 2, the 

symbol ‘*’ denotes the convolution operation. The additive noise MESN  is due to random errors of the measurement, 

such as, for example, the CCD detector dark current noise. MESN  is assumed to be described with zero-mean variance 

white Gaussian noise (referred to as ‘white Gaussian noise’), and, therefore, uncorrelated with SUTX . 

The optical transfer function (OTF), defined as the Fourier transform of the PSF,11 

[ ] [ ]OTF Fourier PSF F PSF  ,       (3) 

is closely related to the instrumental MTF: 

 expOTF MTF i PTF  .       (4) 

The OTF when it squared is equal to 2MTF  in Eq. (1). The difference between the OTF and MTF is in the phase 
transfer function, PTF; see Eq. (4). For a symmetrical PSF centered on the ideal image point (this is usually the case of 
surface topology measurements with state-of-the-art metrology instruments), the PTF as a function of spatial frequency 



 
 

 

 

has only a value of either zero or  . Correspondingly, the OTF is a real bipolar function (with regions of positive and 
negative values), whereas the MTF is only positively defined.11 

From the consideration above, it follows that a straightforward reconstruction of the PSF from the MTF measurements is 
generally impossible. Nevertheless, the problem can be solved if the instrumental PSF can be analytically modeled. 
Then, the measured MTF can be used to find parameters of the corresponding PSF model.29 In Sec. 5, we will show that 
for the case of the slope profiler, direct analytical derivation of the instrumental OTF is also possible.  

For the purpose of the present work, the important conclusion is that it is generally possible to reconstruct or, at least, to 
get a good guess for the MTF and PSF from experimental calibration of the instrument. If this is the case, the knowledge 
of the experimental PSF can be used to account the instrumental perturbation in the measured surface topography and, 
correspondingly, in the stochastic model describing the topography. This can result in significantly increased reliability 
of the measurements, enable stitching of different instrumental data in the statistical domain, and increase the effective 
resolution of the instrument. 

3. MATHEMATICAL FOUNDATIONS OF THE STOCHASTIC MODELING OF 
MIRROR SURFACE SLOPE TOPOGRAPHY 

3.1 1D ARMA modeling 

Let us consider the result of measurement of 1D surface slope topography of a high quality x-ray mirror that is a 
distribution (trace) of residual (after subtraction of the best fit figure and trends) slopes [ ]X n  measured over discrete 

points nx n x   [ 1,...,n N , where N is the total number of observations, and ( 1)N x   is the total length of the 

trace], uniformly, with an increment x , distributed along the trace.  

ARMA modeling describes the discrete surface slope distribution [ ]X n  as a result of a uniform stochastic process (that 

is the polishing process):1,2,16,17 

1 0

[ ] [ ] [ ]
p q

l l
l l

X n a X n l b n l
 

     ,     (5) 

where [ ]n  is zero-mean unit-variance white Gaussian noise (referred to as ‘white Gaussian noise’) that is the driving 

noise of the model. The parameters p  and q  are the orders of the autoregressive and moving average processes, 

respectively. At 0q   and 0 1b  , the ARMA process (1) reduces to an AR stochastic process. Additional to the 

linearity, the ARMA transformation is time-invariant since its coefficients depend on the relative lags, l , rather than on 
n . The goal of the modeling is to determine the ARMA orders and estimate the corresponding AR and MA coefficients 

la   and lb . In the 1D case, the ARMA model parameters can be determined with commercially available software, such 

as EViews.39 The software also allows to verify the statistical reliability of the model.  

Trustworthy ARMA modeling and forecasting based on a limited number of observations assumes statistical stability of 
the data used. The data are statistically stable if they are the result of a so called wide sense stationary (WSS) random 
process (see, for example, Ref.16). The process [ ]X n  is a WSS process if its auto-covariance function (ACF), 

[ ] ( [ ] [ ])Xr l E X n X n l  ,      (6) 

depends only on the lag l , and does not depend on the value of n . In (6) E  is the expectation operator. 

When an ARMA model is identified, the corresponding PSD distribution can be analytically derived:16  

1 1
0 1 0 12

1 1
1 1

( )( )
( )

(1 )(1 )

q q
q q

X p p
p p

b b z b z b b z b z
P f

a z a z a z a z


 

 

     


     

 
 

,    (7) 

where the frequency [ 0.5,0.5]f   , 2i fz e  , and 2  is the variance of the driving noise [ ]n .  

Therefore, a low-order ARMA fit, if successful, allows parametrization of the PSD (and the ACF) of a random rough 
surface. As a result, the analytical PSD distributions (6) appear as highly smoothed versions of the corresponding 



 
 

 

 

estimates via a direct digital Fourier transform providing a possibility for model-based extrapolation of the PSD spectra 
outside the measured bandwidth.1,2  

Examples of successful application of ARMA modeling to the experimental surface slope data for high quality x-ray 
mirrors can be found in Refs.1-8  

With the obvious success and perspective of the application of 1D ARMA modeling to 1D residual surface slope 
topography of x-ray mirrors, the ARMA modeling is inherently causal, assuming that the current value of the process 
depends only upon the past points. This can be thought as a limiting factor because it generally contradicts the nature of 
optical polishing, and additionally, it complicates extension of the method for modeling two-dimensional (2D) surface 
topography available, for example, with optical interferometers and microscopes.  

The causality limitation can be easily solved by a straightforward merging of the causal ARMA processes determined for 
the direct and reversed residual slope traces into a ‘two-sided’ ARMA model:3,4 

   * *

1 0

1
[ ] [ ] [ ] [ ] [ ]

2

p q

l l l l
l l

X n a X n l a X n l b n l b n l 
 

 
        

 
  ,   (8) 

where the terms with the weights marked with the star symbol corresponds to the causal ARMA model of the reversed 
trace. 

3.2 1D TILF modeling 

For the 1D case, the time-invariant linear filter C  with weights  , 0, 1,...ic i   is a linear operator that transforms one 

stochastic process  [ ], 0, 1,...X t t    into another (filtered) process  [ ], 0, 1,...Y t t   :3-6,40 

[ ] [ ] [ ]l
l

Y t c X t l C X t




    .     (9) 

Similar to the ARMA transformation, the TILF C  is linear and time-invariant. The requirement of stability of the 
transformation implies that the filter is absolutely summable: 

l
l

c




  .       (10) 

Similar to ARMA modeling, when an optimal TILF is identified, the corresponding power spectral density distribution 
can be analytically derived: 

2

2( ) ( )i l f
Y l X

l

P f c e P f




  .     (11) 

Almost any ARMA process [ ]X t  with the parameters p  and q  can be obtained from white Gaussian noise [ ]t  by 

application of the corresponding casual TILF:40 

0

[ ] [ ]l
l

X t c t l




         (12) 

with the weights lc  given by: 

0

( ) ( )l
l

l

c z b z a z




 ,   1z  ,     (13) 

where the AR and MA polynomials in the right hand side of Eq. (13) are, respectively [compare with Eq. (7)], 
1

1( ) 1 p
pa z a z a z     and  1

1( ) 1 q
qb z b z b z    .   (14) 

The free of the causality limitation ‘two-sided ARMA’ process (8) can also be expressed via a TILF:   



 
 

 

 

0 0

1
[ ] [ ] [ ] [ ]

2 l l l
l l l

X t c t l c t l c t l  
  




  

       
 
   .   (15) 

Therefore in the case of 1D surface topography data, if ARMA modeling is successful, there is a corresponding TILF 
operator that describes the topography as a result of filtering white Gaussian noise. The identified TILF can be used for 
forecasting a new slope distribution possessing the same statistical properties as the measured one, but with different 
parameters, such as the distribution length and the root-mean-square (rms) variation.  

Below in Sec. 4, we use a TILF that transforms the ‘two-sided AR’ process into a white Gaussian noise process:3,4   

[ ] [ ] [ ] ( ) [ ]
p

l
l p

t c X t l X t C I X t


      ,     (16) 

where I  is the identity operator, and C  a finite time-invariant linear filter of order p  with the weights  

/ 2l lc a ,  for  1,...,l p   , and 0 0c  ,  for  0l  .   (17) 

In some sense the TILF ( )C I  in Eq. (16) is the inverse operator to the one given by Eq. (15).   

Filter C  in expression (16), when applied to the process [ ]X t , gives a new stationary random process [ ]Y t  that differs 

from the process [ ]X t  by the noise process [ ]t  [compare with definition (9)]. If the difference is small (e.g., the 

variance of the noise is much smaller of that of the processes [ ]X t  and [ ]Y t ), the TILF C  can be thought as a good 

model of the stochastic process [ ]X t , representing its structure with the weight coefficients given by Eq. (17).  

Practically, in order to determine a TILF filter C  that best models the observed stochastic process [ ]X t , one has to find 

a set of the weight coefficients lc  that minimizes the deviation  

    2 2[ ] [ ] [ ]E X t Y t E t       (18) 

of the modeled process from the observed one. 

3.3 Optimal symmetrical TILF 

Generally, the values of the TILF weights with the same positive and negative lags are not necessarily equal, that is   

l lc c .       (19) 

However, as mathematically proved in Refs.,5,6 among all TILFs (including AR and ARMA models) of the same order, 
the symmetrical filter with  

l lc c         (20) 

provides the smallest variance of the residual noise  2[ ]E t . In the case of TILFs in the form of two-sided AR and 

ARMA models, it can be intuitively understood as a result of averaging of the residual noises of the fits with the 
corresponding causal filters of the direct and reversed processes. Assuming that the residual noises are not mutually 
correlated, one should expect a suppression of the variance of the averaged residual noise by a factor of two with respect 
to the corresponding causal filter. 

The key task is the identification of an optimal TILF that best models (with minimum number of parameters and with the 
smallest possible residual noise) the observed stationary stochastic process. An original algorithm for direct optimization 
of the TILF model without involving results of the ARMA modeling has been derived in Refs.5,6  

A condition for determining the weight coefficients of the optimal symmetric TILF C  of the order p  defined with 

weight coefficients 1, , pc c is:5,6 

1
Xc r Q

 
,       (21) 



 
 

 

 

where Q  is a p p matrix with the elements [ , ]q k l  built of the coefficients for the auto-covariance function of the 

process [ ]X t : 

[ , ] [ ] [ ] [ ] [ ]X X X Xq k l r k l r k l r k l r k l        ;  1 ,k l p  ,   (22) 

and the vectors c


 of the TILF weights and Xr


 of the process auto-covariance are 1, , pc c c
   and  

[1], , [ ]X X Xr r r p
  . Note that expression (21) assumes existence of the inverse of matrix Q .  

The expression for calculating the minimum value of the variance between the observed process [ ]X t  and the 

approximating one, [ ]Y t , is 

  2 1[ ] [ ] [0] 2 T
X X X

MIN
E X t Y t r r Q r  

 
.      (23) 

Equations (22) and (23) provide an algorithm for evaluation of the best TILF with given order p .  

4. THE PSF CORRECTION IN THE STATISTICS DOMAIN: THE CASE OF A 
REVERSIBLE PSF  

When directly applied to the measured surface topography, the stochastic modeling discussed in Sec. 3 is affected by the 
instrumental PSF (or, more generally, the instrumental OTF). The goal of this section is to find a recipe for determining 
a TILF that corresponds to the inherent surface topography free of the instrumental perturbation. 

Assume that an inherent surface slope trace  1( ) /SUT SUTX x n n   ( 1  is a unit lattice; index 1 denotes one-

dimensional integer lattice) is measured at discrete position points nt n t   [ 1,...,n N , N  is the total number of 

observations, t  is the measurement increment, and ( 1)L N t    is the total length of the trace] with a metrology 

instrument, which is defined to have known symmetrical PSF filter P , centered on the ideal image point, with the 
weights kp , 1k  , 0 0p  , k kp p . In these notations, Eq. (2) can be rewritten as  

MES SUT MESX P X E   ,              (24) 

or more explicitly 

( ) ( ) ( )MES k SUT
k

x n p x n k n   ,         (25) 

where  1( ) /MESE n n   is the zero-mean random error of the measurement with a standard  deviation  .  

Let us also suppose that we found MESX  that best fits MESX  with an optimal (symmetrical) ‘two-sided AR’ like TILF 

model MESA  with the weights ka  / 1k  , 0 0a  , k ka a  [compare with Eq. (16)]: 

 MES MES MES MESX X A I X W     , or  [ ] [ ] [ ]
p

l MES MES
l p

a x n l x n w n


   ,  (26) 

where  1[ ] /W w n n   is white noise of the TILF model MESA . 

Substituting (24) to (26), we get 

   MES SUT MESA I P X E W     ,     (27) 

or, assuming  MES SUTE W  ( MESE  can be made increasingly smaller with averaging of repeatable measurements), 

   MES SUT MES SUTP A I X P A P X W        .    (28) 



 
 

 

 

Therefore, the filter 

 SUT MESC P A P          (29) 

is a symmetrical TILF with the weights 

s k s k s
k

c p a p        (30) 

that best fits the inherent surface slope trace SUTX , transforming  SUTX   to white noise. The symmetry of the filter SUTC  

(that is s sc c ) is due to the symmetry of all filters in the right side of Eq. (28).  

Normalizing the weights sc  by dividing with 0 0k k
k

c p a p    , we can rewrite Eq. (28) in terms of an optimal 

(symmetrical) ‘two-sided AR’ like TILF SUTA  best fit to the inherent trace SUTX : 

  ˆ
SUT SUTA I X W   ,       (31) 

where the weights of the filter SUTA  are 0ˆ 0a   and 0ˆs sa c c   at 0s  , and  0
ˆ ˆ [ ] [ ]W w n w n c    is white noise 

of the TILF model SUTA . 

Let us now apply a consideration, similar to the one above, to the ‘inverse’ TILF model MESB  that transforms a specially 

designed (determined in the course of the fitting) white noise sequence (trace) W  to a new surface slope trace MESX , 

which best fits the measured one: 

MES MES MESX X B W   .      (32) 

Substituting (24) to (32) with the condition MES SUTE W , we get 

SUT MESP X B W   .      (33) 

If the PSF filter P  is reversible, we can apply the inverse filter 1P  ( 1 *P P I  ) to Eq. (33) and get an analytical 
expression for the TILF model SUTB  for SUTX : 

1
SUT MES SUTX P B W B W     .     (34) 

Note that the requirement for reversibility of the PSF filter also arises in the case of straightforward reversing of 
Eq. (28). 

Therefore, in the case of a reversible PSF filter, the TILF model of the slope distribution inherent to the surface under 
test can be constructed and the new PSF-unperturbed data can be forecast based on the result of optimal TILF modeling 
of the measured data by using Eq. (34). Correspondingly, the problem of the PSF correction in the statistics domain 
reduces to a problem of determining the instrumental PSF and its inverse filter.  

In Sec. 5 below, we analytically derive the instrumental PSF for the surface slope measurements with an autocollimator 
based profiler and check if it is reversible.  

5. THE OTF AND PSF OF SURFACE SLOPE PROFILERS BASED ON 
AUTOCOLLIMATOR 

In recent publications,1-6 we applied stochastic modeling to the surface slope variation data obtained with the ALS 
Developmental Long Trace profiler (DLTP)41 that is based on a movable pentaprism and an electronic autocollimator 
(AC) as an angular deflection sensor of the probe light beam. This optical schematic was firstly suggested and realized at 
the PTB (Germany) by E. Debler and K. Zander in 1978-1980.42 The current version of the profiler, which is widely 
used in many metrology laboratories at synchrotron facilities around the world, is the so called Nanometer Optical 
Measuring Machine (NOM) designed at the HZB/BESSY-II (Germany).43  



 
 

 

 

The OTF of the NOM-like profilers, including the ALS DLTP, is determined by an aperture used to limit the size of the 
AC light sensing the surface under test. In the case of a circular aperture, an analytic expression for the NOM OTF 
follows up from Fourier transformation  

 
 2 2

1

, , 2 2

2
,u v u v

J a u v
OTF F w x y

a u v






   


    (35) 

of a uniform circular weighting function 

 
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1
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w x y a

x y a

     
   

,     (36) 

where 1J  is the first order Bessel function of the first kind, u  and v  are the frequency variables, corresponding to the 

coordinates x  and y , respectively, and a  is the radius of the aperture.  

Note that  ,w x y  and ( , )OTF u v  are inherently 2D functions, corresponding to the 2D shape of the circular aperture. 

However, the result of a measurement with a profiler is one-dimensional slope trace. In order to reduce the ( , )OTF u v  to 

the one corresponding to 1D slope measurement, we can set in (36) 0v  :44 

 1 2
u

J au
OTF

au




 .      (37)     

The OFT given with Eq. (37) and shown in Fig. 1 produces low-pass filtering effect with multiple zeros and negative 
regions where the contrast at those spatial frequencies is reversed. 

The result in Eq. (37) has been experimentally verified in the resolution tests with the HZB/BESSY-II NOM. With the 
use of a specially designed chipped profiled test surface, the 1D optical transfer function uOTF  was directly 

measured.37,38 Thus, the high spatial frequency phase shift by  , predicted by (37), was observed. 

 
Figure 1. Optical function of an AC-based slope profiler given with Eq. (13) with the radius parameter  = 1.25 mm. 

At first glance, the shape of the uOTF  in Fig. 1 assumes that most of the high spatial frequency information in a slope 

trace measured with oversampling (that is with the increment significantly smaller than the instrumental resolution, 
usually defined as the first zero) has to be lost. However in reality, the information is completely lost only at the zeros of 
the OTF and a significant portion of the high spatial frequency information can still be reconstructed (see, for example, 
Ref.45 and Sec. 6, below). 



 
 

 

 

Applying inverse Fourier transformation to uOTF , one can derive the 1D PSF of an AC-based slope profiler with 

circular aperture [compare with Eq. (3)]: 

 2 2 2 2 22
4xPSF a x H a x


     ,     (38) 

where  H z  is the Heaviside step function. The function  H z  is a discontinuous function whose value is zero for 

negative argument and one for positive argument (see, for example, Ref.46). 

Figure 2 depicts xPSF  given with Eq. (14) for the case of a circular aperture with the diameter of 2 2.5a  mm. This 

size of aperture is commonly used in NOM-like instruments, including the ALS DLTP.41  

 
Figure 2. Point spread function of an AC-based slope profiler given with the Heaviside step function with the radius 
parameter  = 1.25 mm. 

Note that the PSF in Fig. 2 is different from a rectangular gate function that one would expect in the case of pure 1D 
instrument with a finite resolution due to a 1D aperture. For such pure 1D instrument, the OTF will be described with a 
sinc-function. Similarly, for a 2D rectangular   aperture the instrumental OTF is a product of two sinc-functions (see, for 
example, Refs. 16,17). 

Unfortunately due to the irreversibility of the analytically derived PSF, given with Eq. (38) and shown in Fig. 2, it 
cannot be directly used to correct the slope data obtained with an AC-based profiler. Nevertheless, a partial correction of 
the data is still possible. 

6. ACCOUNTING OF THE INSTRUMENTAL PSF IN THE CASE OF IRREVERSIBLE 
PSF FILTER 

In this section, we seek to recover (approximate) the slope distribution SUTX  inherent to the surface under test assuming 

that some information on the lost details of SUTX  is really present (but ‘hidden’) in the measured distribution MESX  and 

can be recovered (at least, partially) if we know the details of the perturbation process. For recovering, we construct a 
mathematical approximation of the instrumental perturbation of the measurement that can be thought of as an 

approximation P  of irreversible PSF filter P , but now possessing the property of reversibility.  

Because of the approximate character of the methods, the recovered distribution SUTX  is not exactly equal to SUTX . 

However, if the recovery is successful, the resulted SUTX  will contain some additional and significant information about 

the inherent surface topography SUTX  that is not directly seen in the measured trace MESX .  

Below in this section, we provide (just as an illustration, unaspiring to any comprehensive covering of this topic) a 
couple well known solutions to the recovery problem. 



 
 

 

 

6.1 Inverse filtering in Fourier domain 

In Fourier (spatial frequency) domain, the convolution relation (24) is 

[ ] [ ] [ ] [ ]MES SUT MESF X F P F X F E   .         (39) 

If the PSF filter P  is known, one can get an estimate [ ]SUTF X  for the Fourier transform of the inherent surface slope 

trace SUTX  by inverse filtering: 

[ ] [ ]
[ ] [ ]

[ ] [ ]
MES MES

SUT SUT

F X F E
F X F X

F P F P
   .         (40) 

In order to recover SUTX , one can apply inverse Fourier transform to Eq. (40). Such approach and its multiple variations 

have been developed for reduction of image blurring (see, for example, Refs.47-49). At zero error term, 0  , the 

inverse filter in Eq. (40) gives an exact solution.  

However at nonzero error, the result of recovering tends to be very sensitive to the measurement error. At the spatial 
frequencies where [ ]F P  is significantly small, the function 1/ [ ]F P  can lead to strong enhancement of the error term 

and, therefore, corruption of the reconstruction. Moreover, in general the optical transfer function [ ]F P  has, besides 

multiple zeros, negative regions (see, for example, Fig. 1) that result in severe perturbation of the measured trace due to 
the reverse of the contrast at these spatial frequencies (see discussion in Sec. 5).  

Different methods have been developed to reduce the error sensitivity in reverse filtering. The simplest solution is to 
limit the inverse filter 1/ [ ]F P  to some threshold   and ignore the regions where the error term is dominating: 

1
, if [ ]

[ ]
( )

[ ]
, otherwise.

[ ]

F P
F P

H u
F P

F P





  



            (41) 

This threshold inverse filter ( )H u  can be optimized by careful selection of the threshold. Such an optimization is 

provided with Wiener optimal filter,48,49 briefly discussed in Sec. 6.2, below. 

6.2 Wiener optimal filter 

In application to the reconstruction of surface slope topography, the Wiener optimal filter provides a reconstruction 

SUTX  that minimizes the least mean square error to the inherent surface topography SUTX . Due to the unitary property of 

the Fourier transform, there is the same information in the real and Fourier domain. Therefore, if SUT SUTX X , the 

corresponding Fourier transforms are also close,  [ ] [ ]SUT SUTF X F X , and the least squares method can be applied in 

the Fourier domain. The minimization variable is the inverse filter ( )H u  [compare with Eq. (41)]: 

[ ] [ ] ( ) [ ] [ ] ( ) [ ] ( )SUT MES SUT MESF X F X H u F X F P H u F E H u   ,       (42) 

so that 

2
[ ] [ ] 0SUT SUTF X F X

H


 


 .          (43) 

Substitution of (42) to (43) gives  

2
[ ] [ ] [ ] ( ) [ ] ( ) 0SUT SUT MESF X F X F P H u F E H u

H


  


.    (44) 



 
 

 

 

Using straightforward algebraic transformation and assuming independent and zero-mean error distribution, one can 
derive the Wiener optimal filter expressed through the corresponding PSDs in the following form (see, for example, 
Ref.48): 

 
* *

2
2

2

[ ] [ ]
( )

[ ][ ] [ ][ ] [ ][ ]

MESMES

SUT
SUT

F P F P
H u

PSD EF E PSD PF P PSD XF X

 


,   (45) 

where *[ ]F P  is the complex conjugate of [ ]F P . 

Practical application of the Wiener optimal filter (45) needs to overcome the generally unknown PSD of the ideal trace 
[ ]SUTPSD X . There are a number of possible approximations.49 The one that allows solving the reconstruction problem 

in the case of the DLTP measurements with the PSF derived in Sec. 5 is discussed in the next section. 

7. CORRECTION OF THE TILF MODEL DETERMINED FOR THE MEASURED 
SURFACE SLOPE DATA TO ACCOUNT THE PERTURBATION DUE TO THE 

INSTRUMENTAL PSF 

The idea behind the simulations, described in this section, is to apply the reconstruction procedure in Sec. 6.2 to an 
artificial MESX , obtained by convolution of SUTX , generated  with a known TILF, and a PSF in Sec. 5, corresponding to 

the measurements with the ALS DLTP,41 and addition of a white noise like ‘measurement’ error [compare with 
Eq. (24)]. This approach allows us to evaluate the efficiency of the procedure by comparing the result of the 

reconstruction SUTX  with the ‘inherent’ (generated) SUTX .  

In order to generate SUTX  trace of the total length of 180 mm and the increment of 0.2 mm,  we use an optimal 

symmetrical TILF (two sided symmetrical ARMA model) determined in Ref.5,6 by modeling surface slope distribution, 
measured with the SLAC Linac Coherent Light Source (LCLS) beam split and delay mirror50 by using the DLTP. 
Figure 3 depicts the generated ‘inherent’ surface slope trace, SUTX .  

 

Figure 3. Slope trace SUTX  generated with the TILF model41 of the LCLS beam split and delay mirror50 and used as an 

inherent surface stochastic topography in the simulations discussed in the text. 

The measured trace MESX  is obtained as a convolution of SUTX  and the PSF given by Eq. (14) with the diameter of the 

circular aperture of 2 2.5a  mm. The variation of the white noise added to the result of the convolution is 1/6 of that of 
the inherent trace SUTX .  

The simulated ‘measured’ trace, MESX  is shown in Fig. 4. The perturbative effect of the instrumental PSF to the surface 

slope measurement can be seen as strong filtering (smoothing) leading to a significant, by a factor of approximately 2.5,  
decrease of the surface slope variation from 1.49 µrad (rms) for the ‘inherent’ topography to 0.60 µrad (rms) for the 
‘measured’ one.  



 
 

 

 

 

Figure 4. Slope trace MESX  obtained as a convolution of SUTX  in Fig. 3 and the PSF given by Eq. (14) with the diameter 

of the circular aperture of 2 2.5a  mm. In the simulations, the trace is used as the measured surface stochastic topography. 

For reconstruction of SUTX  from MESX , we apply the Wiener optimal filter (45) constructed with the known PSF filter, 

the PSD of the ‘inherent’ trace [ ]SUTPSD X , and with the constant PSD of the measurement noise used to simulate 

MESX .  

The result of the reconstruction is shown in Fig. 6. The rms variation of the reconstructed trace in Fig.5 is 1.18 µrad 
(rms) that is only about 20% less than that of the ‘inherent’ trace. 

 

Figure 5. Slope trace SUTX  reconstructed from MESX by applying the Wiener optimal filter (45) constructed as described in 

the text. 

For better visual comparison of the reconstructed trace SUTX  with SUTX  and MESX , the all three slope traces are shown in 

Fig. 6 over a reduced surface area.  

 

Figure 6. The ‘inherent’ slope trace SUTX  (blue thin solid line) and the slope trace SUTX  (red dashed line) reconstructed by 

applying the Wiener optimal filter to MESX  (black bold solid line).  



 
 

 

 

The reconstructed trace, shown in Fig. 6 with red dashed line, reproduces a significant portion of higher spatial variation 
of the ‘inherent’ trace (blue thin solid line) that is filtered out in the ‘measured’ trace (black bold solid line). This is an 
indication of the corresponding increase of effective resolution of the measurement that is possible due to the 
reconstruction. 

Practically, the reconstructed trace can be directly modeled with the TILF method providing more reliable 
approximation to the TILF model of the inherent surface topography. Alternatively, the TILF determined in modeling of 
the measured trace can be corrected using the approximate inverse PSF obtained from inverse Fourier transformation of 
the Wiener optimal filter used for the reconstruction (see Sec. 5). 

8. DISCUSSION AND CONCLUSIONS 

In this work, we have first formulated and briefly outlined a new direction of research on development of methods for 
statistical modeling of surface topography of state-of-the-art x-ray mirrors.1-6 This is the creation of a single-model 
(hybrid) statistical description of SUT topography by combining statistical models determined from metrology data 
obtained with different instruments designed for measurements over significantly different spatial wavelength ranges. 
This can be thought of as a problem of stitching the data in the statistical domain. 

A determined hybrid statistical model will provide a uniform statistical description of the mirror surface topography over 
the entire spatial frequency range, important for the particular beamline application of the mirror. Moreover, the hybrid 
model will provide a tool to forecast the required uniform data based on surface topography data, obtained using various 
instruments, for optics made by the same vendor and technology. The forecast data is vital for reliable specification for 
optical fabrication, evaluated from numerical simulation to be exactly adequate for the required system performance, 
avoiding both over- and under-specification. 

We have formulated and suggested how to solve a fundamental problem of the statistical modeling that is a reliable 
accounting of the imperfections in the instruments described by the instrumental point spread function.  

For the case of a reversible PSF, we have derived an analytical transformation of the TILF model determined for the 
measured data to the one valid for the inherent surface topography. Unfortunately, such a solution is not applicable to 
surface slope measurements performed with an auto-collimator based deflectometer, where, as we have analytically 
shown, the PSF is irreversible.  

For the case of an irreversible PSF, we suggested an approximate solution that utilizes mathematical methods developed 
for recovering of blurred images. We have provided an introduction to the mathematical foundation of the recovery 
methods and outlined a derivation of the Wiener optimal filter that seems to be one of the most suitable solutions in our 
case. The high efficiency of the Wiener optimal filter approach to the slope data restoration has been verified on the 
surface slope data forecasted based on the TILF model determined from a real x-ray mirror in Refs.5,6   

In conclusion, we would like to specially emphasize that the solution of the PSF irreversibility problem, described in this 
note, provides a method for partial reconstruction, from oversampled data, of surface variations above the spatial 
frequency range determined by the resolution. 
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