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Abstract

We present an assessment of ‘template-free modeling’ (FM) in CASP11and ROLL. Community-

wide server performance suggested the use of automated scores similar to previous CASPs would 

provide a good system of evaluating performance, even in the absence of comprehensive manual 

assessment. The CASP11 FM category included several outstanding examples, including 

successful prediction by the Baker group of a 256-residue target (T0806-D1) that lacked sequence 

similarity to any existing template. The top server model prediction by Zhang’s Quark, which was 

apparently selected and refined by several manual groups, encompassed the entire fold of target 

T0837-D1. Methods from the same two groups tended to dominate overall CASP11 FM and 

ROLL rankings. Comparison of top FM predictions with those from the previous CASP 

experiment revealed progress in the category, particularly reflected in high prediction accuracy for 

larger protein domains. FM prediction models for two cases were sufficient to provide functional 

insights that were otherwise not obtainable by traditional sequence analysis methods. Importantly, 

CASP11 abstracts revealed that alignment-based contact prediction methods brought about much 

of the CASP11 progress, producing both of the functionally relevant models as well as several of 

the other outstanding structure predictions. These methodological advances enabled de novo 
modeling of much larger domain structures than was previously possible and allowed prediction of 

functional sites.
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INTRODUCTION

CASP11 assessment of protein structure prediction intends to identify and evaluate the 

current state of the art methods in the field. The objective of the template- free modeling 

(FM) category is to assess methods that predict 3D structures from a given protein sequence 

without the explicit use of template structures available in the Protein Data Bank.1 

Historically, the most successful methodology for such de novo structure prediction from 

sequence assembles fragments into relatively small folds.2–6 However, the past two FM 

assessments have noted the emergence of top-performing groups that incorporated the use of 

remote templates or selection and refinement of server models into their prediction 

methodology.7,8 While the relative success of such methodology over the past decade 

suggests some advances in evaluating model quality and perhaps refining tertiary structure, 

it highlights the fact that the structure-folding problem remains unsolved.

In past CASP experiments, the FM category tended to have relatively few targets available 

for evaluation, with 30 FM domains in CASP9 and 20 domains in CASP10.9,10 This dearth 

of targets tended to cause difficulty in assigning statistical significance to assessments of FM 

techniques and prompted the introduction of CASP ROLL into the CASP10 evaluation.8 

CASP ROLL collects potential FM targets year-round for the same double-blind prediction 

and assessment as the traditional biennial CASP tertiary structure evaluation. Although 

CASP ROLL significantly increased the number of targets for FM assessment in CASP10 

(15 additional targets), fewer groups participated in the year-round prediction scheme (41 

ROLL predictors vs. 147 traditional predictors). As such, for CASP11, the organizers chose 

to add several of the CASP ROLL targets to the traditional biennial experiment. With the 

help of these nine additional overlapping target structures (providing 13 domains for FM 

evaluation), the CASP11 FM category exhibited the largest number of targets for evaluation 

since its inception (45 target domains). Most of these target domains were designated for all 

groups (39), while six were for server only. The CASP11 ROLL category included 25 

additional domains, which resulted in 38 evaluation units all together.

Given this large number of evaluation units, the CASP11 assessment was not predominantly 

based on a formal and comprehensive manual evaluation. Alternately, identification of 

interesting model predictions and group ranking relied on a battery of automated scores 

produced by the Prediction Center.11 Only the top-scoring models were subjected to careful 

manual examination. This report outlines our evaluation procedure and its application to 

CASP11 FM and ROLL target predictions. We ranked server performance on all 45 FM 

target domains and all groups on 36 all-group FM target domains using a combination of 

scores that encompassed those used in previous CASP FM evaluations as well as two 

additional scores aimed to highlight local model quality. Such scores helped to identify 

several prediction models that could provide useful functional insights to experimentalists, 

an initiative highlighted by the CASP organizers as being an important part of the 

evaluation. We also provided insights into FM prediction methodology and outlined the 

progress of the fold prediction community as a whole.

The successful prediction of a 256-residue target domain (T0806-D1) exemplified one of the 

outstanding models provided for CASP 11 FM target domains, representing one of the 
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largest correctly predicted FM folds in the history of CASP. Other successful predictions 

included three relative small single-domain targets T0824-D1 (110 residues), T0837-D1 

(128 residues), and T0855-D1 (115 residues); a small N-terminal domain of a multidomain 

target T0793-D1 (109 residues); two domains of the same fold T0790-D2 (130) and T0791-

D2 (139), and a C-terminal domain T0827-D2 (158 residues) fused to a TBM domain. The 

groups that provided these prediction models also tended to outperform in overall rankings 

(Baker lab manual group 64 and server group 184 for best models; Zhang lab Quark server 

group 499, Kihara lab group 333, and Lee lab LEER group 44). Notable CASP ROLL 

predictions include R0036 and R0021, and two of the same labs outperformed in this 

category (Baker Rosetta server and Zhang ab initio).

METHODS

Scores to identify top prediction models

To highlight top predictions we generated scores that (1) compare prediction models to 

random models (random ratio) and (2) compare prediction models to top templates (template 

ratio). For random model scores, we generated target specific ‘permutation shift’, ‘reverse 

chain’, and reverse chain permuted random models as previously described.12 GDT_TS 

scores13 for each random model with the initial target domain were averaged to get a 

random model score. The random ratio used for identifying notable model predictions 

corresponds to the ratio of the best server or manual group GDT_TS score to the random 

model score. For template ratios we divided the sequence independent LGA_S score13 of the 

model by the LGA_S score of the template (both compared to the target).

Evaluating overall group prediction performance and significance

To provide a single measure to reflect overall prediction quality of each group, we combined 

six scores provided by the Prediction Center (GDT_TS,13 TenS,7,14 QCS,15 ContS,12 

lDDT,16 and MolProb17). Four of the scores were used in our evaluation of CASP9 FM 

predictions (GDT_TS, TenS, QCS, and ContS7) and two are introductions for CASP11 

(lDDT and MolProb). We calculated Z-score sums (and averages) over all the targets for the 

six chosen scores. Z-scores were calculated as in previous CASPs.7,14 The Prediction Center 

not only generated these comparison scores for every prediction, but also provided a web 

server that allowed us to combine various scores with different weights to produce ranks of 

first or best models from server only or all groups. The web server allowed rapid evaluation 

of group performance (ranking) according to previously published combined Z-scores 

analysis16 and testing the robustness of various different scoring schemes for producing 

ranks.

Significance scores for CASP11 FM ranks included bootstraps and t tests similar to those 

used in previous CASPs.7,18,19 We also carried out head-to-head trials of the group results, 

calculating the fraction of common targets for which one group outperformed the other. We 

repeated the overall win/loss counts for all-against-all pairwise comparisons produced by the 

CASP10 contact assisted assessment.20 Briefly, we performed all-against-all pairwise 

comparisons for models from the same target and summed the numbers of win/loss cases for 

each group, as well as calculated the probability that a win/loss record was equal to or better 

Kinch et al. Page 3

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than that obtained by chance. All the evaluation tables are available via the link: http://

prodata.swmed.edu/casp11/FM.

Evaluating groups that choose among server models

Many of the current top-performing methods use scoring schemes to choose among provided 

server models. In an attempt to identify and evaluate the performance of such strategies in 

absence of information about methodology, we used the GDT-TS clusters provided by the 

Prediction Center. The Prediction Center provided all against all GDT_TS comparisons of 

prediction models and clustered them at three GDT_TS cutoffs: 90, 80, and 70. To identify 

likely server models used by each prediction group, we searched for server models that 

cluster with each manual group at the lowest cutoff (70 GDT_TS), choosing the reference 

server model as the one with the closest GDT-TS. We calculated the difference between the 

GDT_TS of the manual group model to the target and the GDT_TS of their reference server 

model to the target, reporting negative values when the reference server model is closer to 

the target as compared to the manual model.

Evaluating progress: potential functional prediction and comparison to CASP10

To calculate family-based conservations for each target, we used two strategies to gather 

similar sequences at differing conservation stringencies. We ran three iterations of 

PSI_BLAST, filtering results for E value < 0.001 and identity less than two values: 40 or 

60%. We generated multiple sequence alignments (MSAs) by aligning collected sequences 

to the target sequence using the BLAST alignments. MSAs were used to calculate 

conservations for each position in the target sequence using the program AL2CO21 and map 

the conservations to the B-factor column of the PDB. Conservations were visualized using 

rainbow coloring of the B-factors in Pymol, from blue (variable) to red (conserved).

GDT_TS scores from the Karplus group server (SAM-T0822), which provides a stable 

method of predicting targets since CASP8, were used to compare CASP11 models to those 

from CASP10. Similar to our analysis of CASP9 progress,7 we compared histograms of the 

SAM-T08 model GDT_TS scores from CASP11 and from CASP10 to evaluate the difficulty 

level of the targets. An estimate of progress was provided by normalizing the best model 

scores from CASP11 and CASP10 by the SAM-T08 server GDT_TS scores.

RESULTS

Community-wide server performance on FM targets

GTD_TS scores computed by the LGA program13 have provided the basis for model 

predictions since early CASPs.14 The server model GDT_TS score distributions plotted for 

each FM target domain (Fig. 1) were ordered and colored from more difficult (dark blue, 

left) to less difficult (light blue, right) according to the average server model GDT_TS 

scores. Numerous outliers were observed in the distributions, suggesting that some server 

model predictions outperformed the rest. For example, the average of all server models for 

target T0804-D2 was only 14.5 GDT_TS, yet three predictions extended toward much 

higher GDT_TS bins. Quark provided the top server model for this target domain (38.65 

GDT_TS for TS499_5), followed by two models from the Zhang-server (TS277_5 and 
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TS277_3). Each of these models roughly captured the immunoglobulin-related topology of 

the target domain fold. Similar outlier server prediction examples were produced for targets 

T0790-D2 (TS184_3, GDT_TS 44.81), T0793-D1 (TS499_2, GDT_TS 48.27), T0855-D1 

(TS041_1, GDT_TS 51.09), T0837-D1(TS499_1, GDT_TS 61.98), and T0775-D6 

(TS184_3, GDT_TS 68.57). This score distribution provided the basis for using Z scores as 

a measure of performance in the CASP11 FM evaluation and suggested that a rigorous 

manual scoring component might not be necessary to evaluate the prediction models.

Top predictions: random and template score ratios

Given the numerous outliers observed in the server model GDT_TS score distributions (Fig. 

1), we sought to reveal top performing predictions by comparing the best manual and server 

model scores to those of random models for each target. The distribution of random model 

GDT_TS scores for all FM target domains skewed to the right [Fig. 2(A)]. Targets with 

unusually high GDT_TS scores (T0775-D3 and T0775-D1, colored light gray in Fig. 2) 

corresponded to small domains of extended secondary structure that only form compact 

units in an oligomeric state (see Kinch et al. CASP11 Target Classification, this issue). 

Similar to findings from previous CASPs,7,12 the random model GDT_TS scores for CASP 

11 targets showed inverse correlation to domain length [Fig. 2(B)]. Thus, by considering 

random models ratios of top manual and server models [Fig. 3(A)], we tended to down 

weight the value of target domains with small and irregular folds.

With the exception of a single prediction (best server model for small and extended outlier 

target domain T0775-D1), the GDT_TS scores of top models outperformed the average 

GDT_TS of random models for all 45 CASP11 FM target domains. The top predictions beat 

the random models by an average of 2.2-fold for manual models and by twofold for server 

models, with one outstanding manual prediction (TS064_1) for target T0806-D1 improving 

random models by >6-fold. The best random ratio server prediction (TS499_1) for target 

T0837-D1 improved the random model score by >3-fold. The manual group TS317_1 

slightly improved over the top server model for this target. Several additional manual 

prediction models tended to outperform when compared to random: TS333_1 on target 

T0804-D2, TS065_3 on target T0793-D1, TS064_2 on target T0824, and TS260_3 on target 

T0855-D1. With the exception of the outlier prediction for target T0824, the manual models 

slightly improved over top server models for these examples (produced by TS499_5, 

TS499_2, and TS041_1, respectively). One server provided a notable prediction (TS038_4) 

for target T0814-D1 that outperformed all the manual predictions. LGA template ratios 

highlighted predictions that outperform top templates [Fig. 3(B)]. The template ratio 

comparison emphasized similar outperforming predictions, with the same two standing out 

above the rest: TS064_1 prediction of target T0806-D1 and TS499_1 server with the 

corresponding TS317_1 manual predictions of target T0837-D1.

Top predictions: outstanding structure model examples

Figure 4 illustrates several of the outstanding structure models identified using random 

model and template ratios from Fig. 3, including the top manual prediction for target T0806 

and the top server predictions for targets T0837 and T0855. While to top manual prediction 

for T0806 was unique among all provided models (GDT_TS score 60.55, with the next best 
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group score 34.38), the top server predictions on the other targets tended to closely resemble 

predictions from manual groups. Given the availability of all server predictions for use with 

manual prediction methods, the similarity suggests that some manual methods could 

successfully identify and perhaps marginally improve the top server models. For example, 

group 317 submitted a similar model as server 499 for T0837 with a slightly better GDT_TS 

(1.66 difference), and group 260 submitted a similar model as server 41 for T0855 with a 

better GDT_TS (3.26 difference).

The most outstanding FM target prediction based on both random model and template ratios 

was produced by the manual group 64 (BAKER) for target T0806. The model TS064_1 

(Fig. 4A) maintained the correct topology over the entire 256-residue domain of target 

T0806-D1 (Fig. 4B), including an insertion of three α-helices into the Rossmann-like fold. 

Although numerous templates existed with similar Rossmann-like topologies, none could be 

identified by sequence. The closest structure template (25.0 LGA_S), uncharacterized 

protein AF0587 [PDB ID:2q07], adopted a uracil-DNA glycosylase-like fold [Fig. 4(C)]. 

Although this template retained the core three layer α/β/α Rossmann-like topology of the 

target domain, it lacked the three-helix insertion as well as an additional C-terminal β-

strand/α-helix that extended the β-sheet in the target structure. Given the difficulty of the 

target structure, we sought to discover the methodology used to provide such a prediction. 

Apparently, T0806 exemplified one of the few CASP11 targets with a sufficiently large 

enough family for predicting co-evolving residues from sequence alignments. Thus, 

incorporating contact-based prediction information from co-evolving residues into ab initio 
methods provided the unprecedented structure model for this 256-residue long CASP11 FM 

target domain.

The most outstanding server prediction based on both random model and template ratios was 

produced by group 499 (Quark) for target T0837-D1. The top server model TS499_1 and 

top manual model TS317_1 were almost identical [Fig. 4(D)], having a GDT_TS score of 

92.38 (RMSD 0.98) between themselves. Both prediction models maintained the correct 

topology of the target fold over all seven α-helices [Fig. 4(E)]. The models also 

outperformed the structurally-related AhpD-like fold template (33.26 LGA_S) of gamma-

carboxymuconolactone decarboxylase [PDB ID:2af7] [Fig. 4(F)]. This α-array template 

adopted roughly the same topology for all 7 α- helices, yet had alternate rotations for 

helix1–3 with helix 4–5 and helix 4–5 with helix 6–7.

On target T0855-D1, a top manual prediction TS260_3 was somewhat similar to an 

outstanding top server prediction TS041_1 [Fig. 4(G)], with a GDT_TS score of 60.0 

(RMSD 4.1) between the two models. Both top predictions captured the entire new fold of 

target T0855-D1 [Fig. 4(H)] and significantly improved the top unrelated transmembrane 

fold of the voltage-dependent anion channel (VDAC) template [PDB ID:2k4t] [Fig. 4(I)], 

which retained only the β-meander of the target fold.

Combining automated scores for ranks

The server model distributions illustrated in Fig. 1 suggested that Z scores might provide a 

good system of evaluating prediction model performance. Indeed, notable server models that 

outperformed in our ratio tests were also outliers in the GST-TS score distributions (i.e., 
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TS499_1 for T0837, TS499_5 for T0804-D2, and TS184_3 for T0790-D2). We therefore 

chose to expand on the GDT_TS scores by combining Z scores of different measures that 

intended to capture diverse aspects of the FM predictions. The Prediction Center reproduced 

four such scores that were combined in our previous FM evaluation of CASP9 FM targets: 

GDT_TS,13 ContS,12 TenS,7,14 and QCS.15 For the CASP11 FM scoring scheme, we chose 

to combine six scores with equal weights for final ranking: adding local distance difference 

test (lDDT), a superposition free score that well suited to assess local model quality;16 and 

MolProb scores from a MolProbity server routinely used to evaluate the quality of crystal 

structures17 to the four previously used scores.

While the suitability of measures used in the CASP9 FM assessment have been described 

previously,7,12,14,15,20 the choice of incorporating lDDT and MolProb scores in the CASP11 

FM evaluation aimed to promote methods that consider local model quality and local 

geometry, respectively. The lDDT score16 was introduced as an evaluation component in 

CASP9 template-based modeling23 to complement the rigid body superposition of GDT_TS 

and was subsequently included as a routine evaluation measure provided by the Prediction 

Center in CASP10.11 Given the new CASP initiative to address the biological relevance of 

structure models in assessments, lDDT is well suited to compare functionally relevant 

regions of structure models. The other additional measure, MolProb, represents an 

aggregated penalty score produced by the MolProbity package17 that considers the number 

of all-atom steric overlaps or Clash-score, the rotamer outlier score or percentage of side-

chain conformations classified as rotamer outliers (Rot-out), and the percentage of backbone 

Ramachandran conformations in favored regions (Ram-fv). To determine the acceptable 

range of MolProb penalty scores, we compared their distribution in FM target structures 

(ranges from 0.5 to 3.25 bins, with a maximum frequency at 1 to 1.25) to their distribution in 

FM structure models (ranges from 0.5 to >5, with a relatively high maximum frequency at 

3.5). The broad distribution of MolProb scores in FM models suggests that some methods 

account for local geometry of their models, while the majority of methods do not.

The combined FM scoring scheme should establish a more comprehensive and robust 

measurement of model quality, even in the absence of any formal manual analysis. Using 

summations of this combined scoring scheme, ranks on server-only targets (45 FM domains) 

using best models (Table I) highlight the top five server groups: BAKER-

ROSETTASERVER (group 184), Zhang-Server (group 277), Quark (group 499), 

MULTICOM-NOVEL (group 41), and nns (group 38). With the exception of group277, 

these top servers produced all of the outstanding prediction models highlighted in Figure 3. 

Interestingly, the two Zhang group servers (group 499 and group 277) perform similarly. 

Their head-to-head pairwise comparison showed that group 277 beat group 499 for just over 

half of the FM targets (0.578), while group 499 tended to beat group 277 in providing 

outstanding predictions when compared to random models (i.e., T0804-D2, T0793-D1, and 

T0837-D1). Significance estimates of the combined scores using bootstraps and t tests 

suggested that the BAKER_ROSETTASERVER provided models that are significantly 

better than the rest of the servers (highlighted in gray, Table I), although the Zhang-server 

and Quark were not significantly different from the BAKER-ROSETTASERVER using only 

GDT_TS scores (http://prodata.swmed.edu/casp11/FM/). Ranks change when considering 
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first server models, with the top-performing Zhang-server, RBO-Aleph, and Quark being 

statistically indistinguishable by bootstrap and t tests.

Ranking of manual groups on “all-group” targets (39 FM domains, Table II) highlighted the 

top performance of three (BAKER group 64, Kiharalab group 333, and LEER group 44) that 

were statistically indistinguishable according to bootstraps and t tests, together with a fourth 

manual group (Boniecki_pred group 32) that only provided predictions for 32 out of the 39 

FM domains. When considering first models only, one of these groups (Kiharalab group 

333) significantly outperformed the rest. The top-performing manual groups also tended to 

produce the outstanding predictions highlighted in Figure 3, with the top-ranked manual 

group 64 providing the most outstanding prediction model for CASP11 FM targets: a 256 

residue-long target domain T0806-D1 with no sequence-related templates illustrated in 

Figure 4.

Insights into prediction methodology

Some of the top-performing methods in recent CASPs used partial templates to produce 

reasonable FM prediction models or used scoring schemes to choose and sometimes refine 

provided server models. We therefore sought to evaluate the performance of such methods 

on CASP11 FM targets. In absence of any provided information about methodology that was 

required for maintaining blind evaluations, such analysis required taking advantage of 

information provided by the prediction groups. For instance, groups provided template 

information in a “PARENT” line for each model. Such information could potentially be 

useful for evaluating the ability of servers to combine multiple partial templates into FM 

models. We limited such analysis to servers, as manual groups could have taken advantage 

of using multiple methods and might provide less rigorous template information. Manual 

groups had the added ability to choose among all server models. To evaluate the ability of 

such methods to score and potentially improve server models provided by the Prediction 

Center, we used a strategy to map manual models to their closest “reference” server models 

using clustering, evaluating the performance improvement over the reference model with 

GDT_TS differences.

To gain insight into the extent of methods that used templates, we counted the number of 

models provided by each server that declared a parent template or not for all target domains 

(FM and TBM) and for a limited set of templates categorized as FM-only (removing 

multidomain targets that span both categories). Considering all CASP11 targets, the servers 

range from always declaring parent templates (11 template-based servers) to declaring a 

variable number of parent templates (18 hybrid servers), to never declaring parent templates 

(15 N/A servers). We would like to assume that the N/A subset of servers (or manual 

predictors) utilize template free modeling predictions. However, most of them described 

their methodology as “template-based” in the CASP abstracts or primary citations: including 

SAM-T08, RaptorX, nns, FLOUDAS_SERVER, distill, Alpha-Gelly-Server, and 3D-Jigsaw. 

Others use multiple partial templates, yet do not declare any as parents. For example, the 

FALCON_TOPO server refers to its multiple partial templates as a “common framework” in 

the CASP11 abstracts. Finally, a smaller subset of N/A servers concentrated on predicting 

contacts (MULTICOM servers and myprotein-me). Most of the hybrid methods (13 out of 
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18 servers) declared a smaller proportion of parent templates for the subset of FM-only 

targets than they declared for TBM.

The outperforming Baker–Rosetta server declared parent templates for almost half (47%) of 

their models in the FM-only dataset. This relatively high number of template-based FM of 

models could suggest that the Baker Rosetta server successfully combined partial templates. 

However, inspection of their FM models revealed the high number of declared parent 

templates resulted from a strategy of using templates for model1 and model4 (and 

sometimes more) for the 18 FM-only targets. For most of these targets, the GDT_TS scores 

of the nontemplate based models far exceeded the template-based ones. For example, the 

nontemplate model prediction for T0790 (TS184_3) ranked number one (GDT_TS 24.34) 

while the template-based model (TS184_1) ranked 49 (GDT_TS 12.26). The template-based 

prediction for FM target T0761 provided one exception to this rule, with the model TS184_4 

ranking number one (GDT_TS 38.27) for T0761-D2. The model for the entire target used 

two unrelated templates, assembling two α-helices with a β-meander from one of the 

templates into the C-terminal domain. This strategy also explained the poor performance of 

the Baker-Rosetta server on first models, where they fell behind the Quark and Zhang-

servers. These additional outperforming servers declared 0 and 17% parent templates on the 

FM-only targets, respectively. Thus for CASP11, non-template based methods tended to 

outperform as servers.

Prompted by our observations of top-performing server model predictions having closely 

related manual model predictions, we attempted to map manual target submissions to their 

reference server models. All-against-all GDT_TS clusters provided by the Prediction Center 

were parsed for manual models that clustered with server models above GDT_TS 70. 

Unclustered manual models were considered unique. This somewhat conservative cutoff 

might have missed some manual models that aggressively refined server models. For 

example, the TS041 server model from Figure 4(G) did not cluster with the structurally 

similar TS260_3 manual model at this cutoff. Subsequent inspection of the abstracts after 

the CASP11 FM evaluation supported this cutoff, as group 260 described their model 

predictions as refinements of Quark models (group 499) and not MULTICOM_NOVEL 

models (group 041).

Using this clustering scheme as a guide, almost half of the manual groups participating in 

CASP11 tended to choose among server models [Fig. 5(A)], with 10 groups mapping 100% 

of their models and an additional 12 mapping >70%. One additional group with an 

intermediate percentage (41%) described their method as refinement of server models in the 

CASP11 abstracts (TS241). For the groups that tended to choose among server models, we 

calculated the tendency of their methods to improve server models through refinement [Fig. 

5(B)]. Although the GDT_TS cutoff of 70 that we defined as an indicator of picking server 

models tends to limit the observed GDT_TS differences in Figure 5(B), one of the groups 

(TS153) consistently improved server models by almost 0.5 GDT_TS. Almost half (11 

groups) improved server models (by an average of 0.1 GDT_TS), two groups picked server 

models as is, and the rest (10 groups) tended to worsen the models (by an average of 0.1 

GDT_TS). The top-performing first model group (TS333) selected 100% of their models 

among servers and refined them on average to a marginally negative GDT_TS difference 
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(−0.014 GDT_TS). Thus, the outperformance of group TS333 stemmed from their ability to 

pick but not necessarily refine the best server model for each FM target.

Target T0804-D2 exemplified one case of an outstanding selection by group 333 

(Kiharalab). The GDT_TS score distribution of target T0804-D2 [Fig. 6(A)] highlighted a 

cluster of outlier models that outperformed the rest of the predictions. The T0804-D2 target 

structure [Fig. 6(B)] adopted the same β-sandwich domain in virus attachment proteins as 

the top canine adenovirus fiber head protein template [PDB ID:2j1k_f] [Fig. 6(C)], with the 

two having an LGA_S of 79. Group 333 selected the top server template TS499_5 [Fig. 

6(D)], which roughly captured the domain in virus attachment proteins topology (GDT_TS 

38.65), with a shift in alignment of the C-terminus and a failure to adopt the correct structure 

of 4 β-strands. The top manual template TS333_1 [Fig. 6(E)] slightly improved (GDT_TS 

38.82) the top server model through refinement.

Utility of FM structure prediction models: suggested functions

We mapped family-based conservations of each residue position to the target structures and 

inspected the structures for clusters of conserved residues that could potentially serve as 

functional sites. Those structure prediction models that were of good enough quality to 

roughly position the conserved residue clusters were considered as useful for providing 

functional predictions. Contrary to our expectations, structure prediction models for two of 

the FM targets were adequate for providing useful functional information to 

experimentalists: T0836-D1 and T0824-D1. Each of these targets exemplified structures 

remotely related to their closest template fold in the evolutionary classification of protein 

domains (ECOD) database,24 retaining secondary structure elements that define the core 

fold common to all existing members of the ECOD homology groups. The presumed 

homologous relationship of these two targets to existing ECOD groups, even in the absence 

of detected sequence similarity, was suggestive of function. However, given the remote 

relationships, clusters of conserved residues that map to similar positions as known active 

sites provided an additional level of support for both the homologous relationships as well as 

the suggested functions. In each case, migration of active site residues to alternate primary 

sequence positions that remain in close structural proximity likely contributed to the 

inability to detect the sequence similarity. Furthermore, inspection of CASP11 abstracts 

suggested both functionally relevant prediction models were produced by methodologies 

that incorporated alignment-based contact predictions.

Family-based conservations mapped to the T0836-D1 heme-binding protein of unknown 

function highlighted a potential active site in the target structure that included a typical 

Heme-coordinating His residue pointing into the center of a four-TMH helical bundle [Fig. 

7(A), red spheres]. Furthermore, this core four-helical bundle of the target closely resembled 

the top template: the TMH domain of cytochrome b [PDB ID: 2fynA] [Fig. 7(B)], classified 

as a transmembrane heme-binding four-helical bundle in ECOD. The cytochrome b template 

bound two hemes in the center of the core four-helical bundle, with one of the heme-binding 

sites in a similar position as the mapped target active site. In comparison to the template 

heme-coordinating His residues, which were located on the second and fourth TMH of the 

core bundle, the presumed target heme-coordinating His residue migrated to the first TMH. 
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The top prediction TS065_4 by the Jones group retained the correct topology of the 

transmembrane heme-binding four-helical bundle and correctly placed the conserved His 

residue [Fig. 7(C), black spheres] that probably contributes to heme-binding function of the 

target.

The second example of prediction model utility for functional insights came from a potential 

active site marked by conserved residues mapped to the NucB DNase target T0824-D1 [Fig. 

7(D), red spheres]. The fold of this target represented a significant deterioration of the top 

template endonuclease structure [PDB ID: 1g8t] [Fig. 7(E)], classified in ECOD as a His–

Me finger endonuclease. The active site of the endonuclease marked by a bound Mg 

included a DxxH motif located near a conserved N (black spheres), in addition to a few 

positively charged residues that probably contribute to nucleotide binding (magenta 

spheres). The top structure prediction TS064_2 by the Baker group roughly placed the 

conserved active site DxD motif near the conserved N [Fig. 7(F), black spheres], residues 

that can coordinate Mg (or another metal) and mediate cleavage. The model also included 

several presumed nucleotide binding residues (magenta spheres) pointing toward the same 

side of the fold as the active site. Interestingly, existing members of the His-Me finger 

endonuclease superfamily have retained a conserver common core fold that includes an α-

helix, β-strand, omega loop, β-strand, and α-helix surrounding the active site. This core fold 

was stabilized by extending the two β-strands into a larger β-sheet in the template structure, 

and was alternatively stabilized by a zinc finger for which the superfamily was named.

CASP ROLL PERFORMANCE

The performance of CASP11 ROLL participants using the FM style scoring scheme is 

summarized in Table III. The same top two groups outperformed using best models: 

BAKER-ROSETTASERVER (group 330) and Zhang ab initio (group 45), with models of 

the top-performing group 330 being significantly different by t test and bootstraps than 

group 45 using FM-style scoring and the two being statistically indistinguishable using 

GDT_TS. Each of these two groups also consistently provided top first models, as judged by 

their GDT_TS sums. However, many additional groups tend to have better average GDT_TS 

first models than the top groups, including Zhang, FOLDIT and Kaesar; and the first models 

of the top two ranked groups were not statistically different in significance tests.

The most outstanding prediction for ROLL was for the up and down α-helical bundle of 

target R0034-D1 [Fig. 8(A)]. The top-performing ROLL prediction model TS045_1 [Fig. 

8(B)] from the Zhang ab initio server included all five of the α-helices of the target domain 

in the correct topology with correct alignment over most of the structure (residues 40–110) 

but the last α-helix being broken. The closest spider silk N-terminal domain template [PDB 

ID: 2lpj] (classified as a PWI domain in ECOD) also included all five α-helices in the same 

topology [Fig. 8(C)], but the prediction model outperformed the top template by 1.4-fold. 

One top prediction by the BAKER_ROSETTASERVER was for the CASP ROLL target 

R0021 [Fig. 8(D)], which adopted an eight-stranded β-meander barrel similar to lipocalin/

streptavidin folds. The top-performing prediction model TS330_4 from the BAKER-

ROSETTASERVER [Fig. 8(E)] correctly predicted the β-barrel, but placed a peripheral α-

helix on the wrong side. The closest lipocalin-like nitrophorin 4 template [PDB ID: like] 
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[Fig. 8(F)] adopted a somewhat elongated β-barrel compared to the template with a shorter 

α-helix placed on the same side as the target α-helix.

Progress and pitfalls

The exceptional performance of several FM prediction models in CASP11 suggested an 

overall improvement of prediction methodology in comparison to CASP10. To fairly 

compare the performances of the two CASPs, we first needed to ensure the overall difficulty 

level of CASP10 FM targets (domains) was similar to the overall difficulty level of CASP11 

FM targets (domains). To evaluate the difficulty level of targets over time, we took 

advantage of prediction models produced by a server whose methodology has not changed 

since CASP8 (SAM-T08). The GDT-TS distribution of SAM-T08 models for CASP10 

target domains overlaps with its distribution for CASP11 target domains [Fig. 9(A)]. The 

overall difficulty of FM target domains for each CASP, measured as the average of SAM-

T08 GDT_TS over all FM targets, was comparable (average 19.98 GDT_TS for CASP10 vs. 

average 20.52 GDT_TS for CASP11). To compare the performance of FM prediction 

models, we normalized the top model performance by the SAM-T08 performance (GDT_TS 

ratio) for each FM target from both CASPs. The distribution of these normalized 

performance ratios skewed toward higher levels for CASP11 targets with respect to that of 

CASP10 targets [Fig. 9(B)]. For CASP11 FM targets, an average 2-fold enhanced 

performance of top models over SAM-T08 models was observed, with many skewing 

toward 2.5-fold. This average ratio was the same as the top-performing ratio from CASP10 

(2-fold), which had an average performance enhancement of top models over SAM-T08 

models of 1.6-fold. Taken together, these distributions highlight the relative outperformance 

of top models in CASP11 with respect to those of CASP10, suggesting a significant 

improvement in FM prediction methodologies over the past 2 years.

Despite the progress observed in CASP11 on many FM target domains, several pitfalls 

remain. Multidomain targets still provide a significant challenge to FM prediction 

methodologies, especially when the domains repeat, such as the concanavalin A-like 

duplication of target T0808-D2 or the immunoglobulin-related triplication of target T0814, 

which also contains swapped secondary structure elements and an alternate domain 

topology. The poor performance of servers on the duplicated T0808-D2 (average GDT_TS 

9.8), despite the TBM classification of the T0808-D1, landed this target as the second most 

difficult among FM domains. Compared to the conserved concanavalin A-like core topology, 

the T0808-D2 domain contained numerous elaborations to the core fold (over half of the 

sequence) that include the unusual insertion of a β-hairpin into the center of each jelly-roll 

sandwich β-sheet as well as a C-terminal extension that extends one sheet by three β-strands 

and the other by 2. The duplicated nature of such folds might have allowed rapid evolution 

of one or more of the domains. Potentially, such rapid evolution could evade the knowledge-

based potentials of existing structures on which so many of the FM methodologies rely. 

Knowledge-based potentials also fail to predict structures with atypical characteristics. The 

CASP11 phage tail target domains, which have extended secondary structure elements that 

only form as a trimer (i.e., six domains in target T0775 and three domains in target T0779), 

all exhibited overall poor performance. CASP11 FM targets included additional difficult 

target domains classified as obligate multimers. Finally, complex topologies of large folds 
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with numerous long-range contacts such as that found in the most difficult 345-residue 

single-domain target T0777-D1 (average server GDT_TS 9.6) remain challenging.
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Figure 1. 
Overall performance on FM targets. A three-dimensional graph depicting server model 

GDT_TS score distributions (first two coordinates) for each FM target domain plotted in the 

third coordinate. Targets are labeled, ordered by the average server GDT_TS, and colored in 

bluescale from more difficult (dark blue) to less difficult (light blue).
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Figure 2. 
Random model scores. (a) A histogram of random model GDT_TS scores (red bars) skews 

to the left where outlier targets (blue bars) with noncompact folds have unusually high 

GDT_TS scores. (b) A scatter plot of random model GDT_TS scores for each FM target 

domain (y axis) and their corresponding target lengths (x axis) illustrates the dependence of 

random model scores on target length. Outlier sequences from panel A are in blue.
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Figure 3. 
Top prediction model highlights. Bar graphs illustrate top manual models (blue bars) and 

server models (red bars) for all FM templates ordered according to difficulty from top (low 

average GDT_TS for best server models) to bottom (high average GDT_TS of best server 

models). (a) A random model ratio compares the best prediction model GDT_TS to the 

random model average GDT_TS, with the Y axis marking the equivalence ratio and an 

arbitrary dashed line marking 2.5-fold improvement. Group models outperforming the 2.5-

fold ratio are labeled (group number_model number_doman). Domains are only indicated 
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where groups split them. (b) A template ratio compares the top prediction model LGA_S to 

the top template LGA_S for all FM targets (labeled below). Group models with LGA_S 

scores that beat the top template LGA_S score by at least 1.1- fold are labeled.
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Figure 4. 
Top prediction model examples. (a) Top random ratio manual model TS064_1 compared to 

(b) the target T0806-D1 structure shows the correct prediction of the entire fold. The model 

also outperforms (c) the top template of uncharacterized protein AF0587 [PDB ID:2q07], 

which retains the core three-layer Rossmann-like topology but lacks the 3-helix insertion as 

well as an additional C-terminal β-strand/α-helix. (d) Top server prediction TS499_1 

superimposed with the top manual prediction TS317_1 compared to (e) the target T0837-D1 

structure shows the correct prediction of the entire fold. The model also outperforms (f) the 

top template [PDB ID:2af7], which has roughly the same topology but with differences in 

interactions of the α-helices. (g) The top manual model TS317_1 for superimposed with the 

top server model TS041_1 capture the entire fold of h) the target T0855-D1 structure and 

improve over (i) the top unrelated template [2k4t], which retains only the β-meander of the 

target fold.
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Figure 5. 
Prediction methodology insights: selection and refinement of server models. (a) Bar graphs 

in left and center panels map fraction of prediction models for each manual group that 

cluster with any server model above GDT_TS 70. (b) Bar graph in right panel illustrates 

average GDT_TS improvement of manual models with respect to the closest mapped server 

models.
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Figure 6. 
First model performance. (a) The score distribution of target T0804-D2 highlights a cluster 

of outlier models (marked by *) that outperform the rest according to GDT_TS. (b) The 

target structure T0804-D2 adopts the same fold as (c) the top template [PDB ID:2j1k_f] with 

an LGA_S of 79. (d) The top server template TS499_5 (GDT_TS 38.65) roughly captures 

the topology, with a shift in alignment of the C-terminus and a failure to adopt the correct 

structure of 4 β-strands. (e) The top manual template TS333_1 (GDT_TS 38.82) slightly 

improves the top server model.
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Figure 7. 
Models useful for function prediction. (a) Residue conservations depicted in rainbow from 

blue (variable) to red (conserved) are mapped to the four-helical TMH bundle of the T0836-

D1 heme-binding protein of unknown function. Conserved residues highlight the potential 

active site (red spheres) of the target structure, which adopts the same core fold as (b) the 

top template [PDB ID: 2fyn] classified as a transmembrane heme-binding four helical 

bundle. The template bound heme (magenta stick) is coordinated by four His residues (black 

sphere). (c) The top prediction TS065_4 correctly places a conserved His residue (black 

spheres, numbered according to the CASP target) that probably contributes to heme binding 

of the target. (d) A potential active site (colored as above) is marked by conserved residues 

mapped to the T0824-D1 NucB DNase, which represents a deterioration of (e) the top 

template [PDB ID: 1g8t] classified as a His-Me finger endonuclease. Active site (black 

spheres, motif labeled) and nucleotide binding (magenta spheres) residues are highlighted. 

(f) The top prediction TS064_2 roughly places conserved active site (motif labeled) and 

nucleotide binding residues in the correct sites.
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Figure 8. 
CASP ROLL outperformance. (a) The CASP ROLL Target R0034-D1 adopts an up and 

down α-helical bundle containing five α-helices. (b) The top-performing prediction model 

(TS045_1) includes all five α-helices in the correct topology, with correct alignment over 

most to the structure (residues 40–110) and the last α-helix being broken. (c) The closest 

template [PDB ID: 2lpj] includes all 5 α-helices in the same topology. (d) The CASP ROLL 

Target R0021 adopts an eight-stranded β-meander barrel. (e) The top-performing model 

(TS330_4) correctly predicts the β-barrel, but places a peripheral α-helix on the wrong side 

of the barrel. (f) The closest template [PDB ID: 1ike] classified as lipocalin adopts a 

somewhat elongated β-barrel compared to the template.
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Figure 9. 
Progress. (a) Distributions of SAM-T08 GDT_TS scores on FM targets from CASP10 (gray 

bars) and CASP11 (black bars) suggest similar target difficulties. (b) Distributions of 

normalized performance ratios (best model GDT_TS/SAM-T08 GDT_TS) for CASP11 

(blackbars) skew toward higher performance than those for CASP10 (gray bars).
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