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ABSTRACT OF THE DISSERTATION

Multi-omic characterization of E. coli for the purpose of microbial-based
production

by

Wun Kiat Justin Tan

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2019

Professor Bernhard Ø. Palsson, Chair

E. coli has been highly favored as a model organism and platform production strain

because of its high rate of growth under simple culture conditions and its genetic tractability

allowing introduction of foreign genes to expand its native metabolic capabilities. However, we

lack understanding of how sequence features affect effective protein expression in E. coli , as

well as the burden on the host cell during heterologous protein expression. In this dissertation

we make use of next-generation sequencing to peer into the cell at the genomic, transcription,

and translation level. We integrate the data across multiple scales in order to better understand

xvi



protein expression in E. coli under normal growth conditions, whilst expressing heterologous

proteins, and after adaptation to oxidative stress. Firstly, we examine the translation dynamics

of native proteins in the cell under normal growth conditions to reveal the causes and functions

of programmed translational pauses along the transcript. Secondly, we investigate the transcrip-

tome of E. coli whilst expressing a large library of heterologous proteins to identify 4 major

host cell responses which vary widely across these proteins, Fear vs Greed, Metal Homeostasis

and Respiration, Protein Folding, and Amino Acid and Nucleotide Biosynthesis. Lastly, we use

Adaptive Laboratory Evolution to increase tolerance to oxidative stress, commonly found to be

generated during high levels of protein expression. We make use of genomic resequencing, tran-

scriptomics, and ribosome profiling to achieve a systems level understanding of the adaptations

which occur in response to oxidative stress. As a whole, this work improves our understand-

ing of E. coli as a platform production strain through A) identifying fundamental constraints

on translation rates in native proteins, B) classifying host cell responses during expression of a

variety of heterologous proteins to identify target areas for further research, and C) elucidating

tolerance adaptations and mechanisms to oxidative stress, a common endogenous and exogenous

stress during industrial biotechnology.
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Chapter 1

Introduction

Microorganisms have been used for millenia as a means of production, many foods such

as alcohol, cheese and bread rely on the microbial production of various compounds to achieve

their distinctive flavor and texture. By leveraging on the ability of microorganisms to produce a

wide variety of chemical compounds, various societies developed ways to perform complex chem-

ical synthesis at using readily available raw material and at readily achievable temperatures and

conditions. The development of methods for genetic manipulation of microorganisms accelerated

this field, allowing the migration of lowly expressed genes from hard to culture organisms into

well understood, easily cultured organisms such as E. coli where they could be readily stud-

ied and expressed [1]. Today, microorganisms have been developed for the production of not

just food, but biofuels [2], commodity chemicals [3, 4], drugs [5] and therapeutic proteins [6].

However, despite more than a decade worth of efforts, only relatively few successes have been

reported [7], a testament to the difficulties underlying these ventures. A major hurdle to further

development has been due to a large void in our understanding of fundamental biology and its

processes. Escherichia coli, a model organism and commonly used platform production strain
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has been studied for decades, yet to date up to 30% of its genes are unknown or uncharacter-

ized. The central dogma of biology was first stated in 1957 by Francis Crick [8], yet to date

mechanisms behind transcription, translation and replication are still being discovered [9–11].

In this disseration, we take a multi-omic approach to characterize E. coli in an effort to better

understand its constraints and limitations during expression of proteins, both native and foreign,

as well as under oxidative stress.

1.1 Dynamic translation rates are important for protein expres-

sion and folding

Translation of proteins sits at the foundation of almost all bioproduction. By using

various techniques to introduce foreign proteins into E. coli , we are now able to expand its native

metabolic capabilities to allow the production of various compounds and proteins. However, this

process is far from perfect, under 20% of foreign genes introduced are found to be expressed

immediately [12]. Expression yields are typically increased through trials and error and various

optimizations to a host of factors such as codon usage [13], mRNA secondary structure [14] and

GC content, making the field as much an art as a science. Recent developments have further

complicated matters, with the discovery that translation speed along the transcript affects the

final folding and solubility of the protein [15]. Various theories have emerged, linking improved

protein activity and solubility to the decreased translation rates at the N-terminus [16] and

between domains [17]. Whilst these optimization procedures have shown some measure of success,

it has previously been difficult to capture differences in translation rate.
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1.2 Ribosome profiling as a proxy for translation speed

The development of high-throughput ribosome profiling as a molecular biology technique

has provided a window into codon or even nucleotide-level resolution of translation along a tran-

script [18]. Ribosome profiling works by stalling actively translating ribosomes in place on mRNA

through flash freezing, GTP-analogues or drugs such as cycloheximide and chloramphenicol [18–

20]. These regions of mRNA are thus protected from cleavage by an endonuclease, and are then

sequenced. This provides a direct snapshot into not only the number of ribosomes translating

each transcript, but also the positions of the ribosomes along the transcript. Regions of fast

translation result in sparser ribosomes, while regions of slow translation become more densely

populated [21]. This allows ribosome profiling data to be correlated against various protein

features in order to determine optimal translation rates.

1.3 Stresses caused by heterologous protein expression

One of the major difficulties with developing a robust expression system is that not all

heterologous proteins are created equal. Large screens of protein expression have been performed

to correlate protein features to expression levels, implicating features such as mRNA secondary

structure, amino acid composition, and codon usage bias [13, 22, 23]. Many of the results from

these studies only serve as guidelines for protein optimization, and we have yet to establish clear

rules for protein optimization. On the other hand, each of these features affect expression levels

due to their impact on the host cell physiology, and we can make use of these cellular responses

to better understand the bottlenecks faced during expression of each of these proteins. Some

proteins are more prone to misfolding than others, and overexpression results in misfolded protein
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stress and up-regulation of heat shock proteins, chaperones and proteases [24]. Translation of the

protein itself consumes energy and varying amount of resources such as amino acids, imposing a

metabolic burden on the cell [25]. Overusage of other metabolites can also lead to metabolic and

redox imbalances within the cell [26], while the production of metabolically active proteins could

result in the production of toxic compounds and intermediates. High levels of overexpression

also result in competition for ribosomes between the heterologous transcript and the cells native

proteins, ultimately resulting in ribosomal degradation and cell death [27].

1.4 ROS is a common stressor in industrial biotechnology

A common cause for loss of cellular viability during protein expression is oxidative stress.

These could come from intrinsic sources such as the overusage of cofactors resulting in redox

imbalances [26], or genetic modifications to improve product formation in the host cell might

involve knock out of thioredoxin and gluthathione biosynthesis genes [28], reducing the ability

to deal with endogenous oxidative stress. These could also have extrinsic source such as product

toxicity or high oxygen partial pressures in fermentation vessels during industrial scale production

[29]. Oxidative stress poses a major issue to consistent protein expression as it results in damage

to almost all macromolecules within the cell. DNA damage could result in increase in mutation

rates and genetic instability during the production phase, while protein damage would result in

reduced yields and growth rates.
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1.5 Adaptive Laboratory Evolution

One method which has been developed to increase the rate of evolution of bacteria to

selective pressures is Adaptive Laboratory Evolution (ALE). This procedure, performed over a

hundred years ago by William Dallinger [30] and recently accelerated and automated by the use

of robotics and liquid handling devices [31, 32], leverages the rapid growth of microorganisms

in a laboratory setting to select for increasingly fit individuals. This technique has successfully

improved growth of organisms on various substrates [31, 32], and improved tolerance to vari-

ous stresses such as high temperatures [33], antibiotics [34] and toxic chemicals [35]. A recent

advancement in ALE technologies, Tolerization Adaptive Laboratory Evolution (TALE) allows

developments of tolerance to stressors far beyond the initial lethal concentrations through step-

wise increments of stressor concentrations over the course of growth. When paired with genome

resequencing and transcriptomics, ALE allows identification of causal mutations and elucidation

of the mechanisms underlying fitness gains.
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Chapter 2

Multi-omic data integration enables

discovery of hidden biological

regularities

The rapid growth in size and complexity of biological data sets has led to a grand challenge

referred to as Big Data to Knowledge. Here we address a critical need for the development of

advanced data integration methods to enable multi-level analysis of genomic, transcriptomic,

ribosomal profiling, proteomic, and fluxomic data across multiple experimental conditions [1].

First, we show that pairwise integration of primary omics data reveals biological regularities that

tie certain cellular processes together in Escherichia coli: the number of protein molecules made

per mRNA transcript and the number of ribosomes required per translated protein molecule.

Second, we show that genome-scale models, which are based on genomic and bibliomic data,

enable the quantitative synchronization of disparate omics data types [2]. Integrating omics
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data with models enabled the discovery of two novel regularities: condition invariant in vivo

turnover rates of enzymes and the correlation of protein structural motifs and translational

pausing. How these regularities relate to one another mechanistically is formally represented

in a computable knowledge base, which allows for the coherent interpretation and prediction of

fitness and selection underlying cellular physiology.

Figure 2.1: A multi-scale, multi-omics framework detects significant biological regularities
in E. coli. Tracing the central dogma of biology (left column), we can link specific data types
(middle column) to explain each of these biological processes. In this work, novel biological
regularities that relate these processes are discovered through: (i) primary omics data (top box,
right column) and (ii) integration with genome-scale models of metabolism (GEMs; bottom box,
right column).
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2.1 Background

Progress of the biological sciences in the era of big data will depend on how we address

the following question: “How do we connect multiple disparate data types to obtain a meaningful

understanding of the biological functions of an organism?” Owing to large-scale improvements

in omics technologies, we can now quantitatively track changes in biological processes in un-

precedented detail [3, 4]. While such measurements span a diverse range of cellular activities,

developing an understanding of how these data types quantitatively relate to one another and

to the phenotypic characteristics of the organism remains elusive. This issue is central to the

so-called Big Data to Knowledge (BD2K) grand challenge, which aims to integrate multiple

disparate data types into a biologically meaningful, multi-level structure [1, 2].

Interpretation of disparate data requires understanding how the primary measurements

of different omics data are quantitatively coupled to one another [5]. We approach this task by

identifying regularities (relationships between biological data types that remain relatively con-

stant across conditions) between pairwise omics data types. While some regularities can readily

be discovered through direct pairwise omics data comparisons, we find that other regularities

emerge only through more intricate analysis leveraged by mechanistically-based network recon-

structions6. Such reconstructions can be used as a context for poly-omic data integration and

analysis [6, 7] and, when combined with constraint-based modeling approaches [8, 9], provide

important links between omics data and phenotypic characteristics of the organism.

As we will show, this approach leads to a comprehensive synchronization of poly-omic

data with computed growth states. The approach directly addresses the BD2K grand challenge

and is made conceptually accessible by tracing the ‘information flow’ through the familiar ‘central

dogma’ to establish relationships between measurements and cell physiology (Figure 2.1).
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Figure 2.2: Regularities in translational pausing and structural motifs. (a) Cartoon depiction
of co-translational folding intermediates, such as secondary structure motifs, inside the ribosome
exit tunnel. (b) Analysis of ribosome profiling and translational pausing in conjunction with
protein structure properties in E. coli grown under MOPS Rich and MOPS Minimal media, taken
from Li et. al. 2014 [10]. Pausing is enriched at positions downstream of protein secondary
structures (top: beta sheets, bottom: alpha helices, p-value < 6.67x10-3). These correlations
are consistent across conditions (e.g. minimal and rich nutrient conditions). (c) Coverage of
specific secondary structure elements and sequence elements that account for increased ribosome
occupancy. Condition 1 refers to minimal media and condition 2 refers to rich media. (d) Protein
structure motifs that exhibit pausing have increased propensity for SD-like sequences compared
to those which do not exhibit pausing or the global background existence, 35% SD-like codons
for alpha helices, 18% SD-like codons for beta sheets, compared to 9% global average. (c) A
cartoon depiction of the relationship between structure, translation and sequence.
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2.2 Results

2.2.1 Gene specific translation efficiency is consistent across conditions

First, we examine the information flow from transcription to translation to protein pro-

duction by identifying correlations across primary omics data types, such as RNAseq [11], ri-

bosome profiling [10, 12, 13] and proteomics [14], collected for E. coli batch growth on glucose,

fumarate, pyruvate, and acetate (Figure 2.1, “primary data box”). We found relatively poor

correlations of mRNA to protein across conditions (r2 < 0.4), consistent with previous studies

[15, 16]. Stronger correlations (r2 > 0.8) emerge when analyzing the ratio of protein per mRNA

(ρPM) on a per-gene basis (the difference between peptide abundance and relative mRNA read

counts per gene for multiple growth conditions; Supplementary Figure A.1(a)). Computing the

median coefficient of variation shows that changes in ρPM across conditions are relatively invari-

ant. In addition, we find the number of ribosomes required (ribosome occupancy of mRNA) per

protein translated is also relatively invariant across all four conditions (r2 > 0.7; Supplementary

FigureA.1(b)).

Second, we examined pairwise relationships between other omics data types, such as

ribosome profiling, proteomics and fluxomics, by integrating these data types into next gener-

ation genome-scale models (Figure 2.11, “integration with GEMs box”). Genome-scale models

of metabolism (GEMs) are based on the annotated sequence and analysis of the bibliome for

functionally annotated gene products6. The most recent generations of genome-scale models

incorporate protein structural information [17] and allow for the computation of the synthesis of

the entire proteome of a cell in addition to the balanced use of its metabolic network [18]. These

models can integrate multiple layers of biological organization to balance the use of all cellular
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components to achieve a cellular state. It can thus extend our understanding of how informa-

tion flows from translation to protein folding and catalysis, and its role in producing whole cell

functions.

2.2.2 Translation pausing is correlated with protein secondary structure

We examined how information flows during protein translation, which includes protein

folding. Recent studies indicate a possible link between translation speed and proper folding

[12, 19]. Analysis of translational pausing has typically been approached from a sequence-based

viewpoint [19]. Here, we approach this analysis from a different perspective, by correlating the

occurrence of translational pausing on a transcript to the location of nearby protein secondary

(2o) structure motifs (Figure 2.2). The establishment of this correlation is based on; 1) ribo-

some profiling [10, 12, 13], which provides ample information on the queuing of ribosomes along

mRNA transcripts, and 2) a recent network reconstruction that contains comprehensive protein

structural information linked to the translated protein at the proteome-scale [17].

Several striking regularities in translational pausing and protein structure are consistently

observed across multiple growth conditions in E. coli, which suggest the co-translational folding

of intermediate secondary structure motifs inside the ribosome exit tunnel (Figure 2.2(a)). We

find that pause sites are enriched (pvalue <0.01 using a hypergeometric test) downstream of

specific secondary structure motifs, such as -helices and -sheets (Figure 2.2(b), Supplementary

Figure A.2) yet are not significantly enriched at the termini of domains (See Supplementary Infor-

mation). On average, pausing becomes most substantial six to eight amino acids downstream of

-helices and -sheets, which, in the majority of cases, fall either on disordered regions of the protein

or on helical residues. Such instances consistently account for more than 35-40% of pause sites
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across different conditions (Figure 2.2(c), Supplementary Figure A.2). These findings strongly

corroborate with a growing theory that partially folded intermediate protein structures begin to

immediately fold inside the ribosome exit tunnel, following polypeptide-chain synthesis. Several

previous studies have shown that partially folded protein structures, such as small domains, can

be detected within the exit tunnel. [20–22] More recently, Nilsson et al. demonstrated the co-

translational folding of small zinc finger-like domain deep within the ribosome exit tunnel using

arrest-peptide mediated force measurements in conjunction with cryo-electron tomography. [23]

2.2.3 Translation pausing is encoded at the sequence level

Do sequence-specific motifs drive co-translational pausing to ensure proper protein fold-

ing? We find that Shine-Dalgarno (SD) like sequences account for 20-22% of ribosome density

at pause sites ( 2.2(c), Supplementary Methods: Identification of Shine-Dalgarno-like codons),

which is consistent with recent studies [24] and four times less frequent than what is found

previous studies [19]. Of the pausing instances linked to SD-like sequences, we find that, on

average, nearly half of these pausing regions also fall in the nearby vicinity (five to ten codons)

of helices or sheets. The link between pausing, SD-like sequence and protein secondary struc-

ture becomes clear when comparing the average occurrence of SD-like sequence genome-wide

(9%) with their occurrence directly downstream of -helices (35%) and -sheets (18%, 2.2(d)).

Together, these sequence and structure motifs account for the majority of pause sites (60%) or

nearly half of the total ribosome occupancy (Supplementary Figure A.4). These findings suggest

that co-translational pausing occurs for distinct secondary structural elements and supports the

potential role of sequence-specific factors to drive pausing for ensuring proper protein folding

( 2.2(e)).
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Figure 2.3: Effective enzyme turnover rates (keff) as regularities emerging from coupling
quantitative in vivo proteomic data with genome scale modeling. (a) Iterative workflow for
generating turnover rate values from different nutrient conditions. This panel is a schematic
of the overall workflow. A detailed version is found in the Supplement. (b) Venn diagram of
calculated turnover rates shows all four conditions share 90% of the same estimates (Pearson
correlations below). (c) Pairwise comparisons across four conditions for calculated turnover rate
parameters demonstrate 94% are within one order of magnitude. The upper inset show the
parameter estimation for the 10% most variable components of the proteome between the four
conditions examined. The lower inset show a histogram of the distances of every point from the
diagonal line. The gray box contains the 94% of the values that deviate from one another within
an order of magnitude. A more detailed version is found in Supplementary Figure 5

2.2.4 Predicting model parameters by integrating proteomics data

How does information flow between an individual enzyme’s catalytic activity and the

activity of an entire network? To evaluate the effective turnover rate of enzymes, reaction flux
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per enzyme can be directly computed using experimental values for both flux (the rate of re-

actions) and enzyme abundance [25] on a small scale (mainly for central carbon metabolism).

To assess enzyme turnover on a genome scale, we computed the ratio of an enzyme’s abundance

(measured from proteomics data) and its corresponding flux derived from network-based anal-

yses using the iOL1650-ME model (Figure 2.3(a)). Because the iOL1650-ME model directly

relates enzyme synthesis and metabolic flux, we were able to develop a method which uses the

model to extrapolate the most likely flux state from a proteomic data set (Supplementary Meth-

ods: Computational Method for Predicting keffparameters). These ratios quantitatively couple

experimentally-derived flux estimates and protein abundances to make a quantitative connection

between data types.

Estimates of enzyme turnover rates (keff), which represent coupling coefficients between

the fluxome and the proteome, were analyzed across four nutrient conditions to understand the

effect that carbon uptake has on metabolic enzyme turnover rates. We find that these parameters

show considerable regularity in relating flux to protein abundance, which suggests that in vivo

turnover rate for most enzymes does not strongly depend on growth in diverse batch culture

settings. For high-flux metabolic reactions, the estimated turnover rates were consistent across

all four conditions (a total of 284 turnover rate values; Figure 2.3(b)), with high correlation

between any two conditions (Figure 2.3(c) and Supplementary Figure A.5). The computed

turnover rates were averaged across experimental conditions to give the largest set of flux-per-

enzyme parameters estimated computationally to date under in vivo conditions. It is important

to note that these estimated turnover rates do not have a direct relationship with fundamental

enzyme kinetic parameters obtained in vitro but can be viewed as an in vivo data-driven estimate

of the enzyme turnover rate.
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Figure 2.4: Predicting the results of perturbation from a parameterized homeostatic state. (a)
Using a cross-validation approach, protein abundance is predicted by mRNA levels using infor-
mation (ρPM) obtained from other conditions (r2 > 0.75). Condition-specific mRNA and protein
levels show little correlation (inset) (b) Accuracy of predicting differential expression is signif-
icantly enhanced using keffparameters. (c) Changes in gene expression and protein abundance
predicted in different media supplementation. Accuracies range between 56-100% and specific
genes are significantly enriched (p < 0.05 using a hypergeometric distribution).

While these correlations provide information about relationships between biological com-

ponents and, in some cases, take on predictive value (Figure 2.4(a)), understanding their col-

lective influence on cell physiology is harder to decipher. This issue can be addressed using a
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genome-scale model that assesses cost-benefit tradeoffs from a cell-centric perspective [9, 26].

Genome-scale models (iOL1650-ME) compute the value of cellular components relative to the

function of all other cellular components. To this end, the turnover rate values provide the mini-

mum ‘capital expenditure’ for protein synthesis required to achieve a unit of flux through a given

reaction. Thus as a group, the calculated turnover rates provide coupling between proteome

allocation and achievement of a physiological state.

The knowledge of the biological regularities identified in this work enables the parameter-

ization of coupling constraints used in a genome-scale model of metabolism and gene expression

(ME). A parameterized model allows for prediction of responses to environmental perturbations.

We tested the predictive capacity of a model containing parameter values derived from multiple

conditions described above (Supplementary Methods: Predicting Differential Gene Expression

with iOL1650-ME) to compute optimal cellular composition under new environmental conditions

where we did not have proteomics data available. We perturbed a reference growth state through

the addition of nutrients to the medium: batch growth on glucose was supplemented with ade-

nine, glycine, tryptophan or threonine. We collected omics data sets under these four perturbed

conditions to compare gene expression changes to the computated responses.

Using the parameterized model, we predicted the enzymes that would be differentially

used in the supplemented condition (Figure 2.4(b)). When validating our predictions using exper-

imentally measured differential gene expression, we find high predictive accuracies of significant

changes in gene expression (p-values ranging 0.04 to 4e-6 using a hypergeometric test). Using the

parameterized model, we are able to predict the regulation of genes that accompany changes in

supplementation to a new growth environment. Such environmental changes oftentimes causes

non-intuitive shifts in what precursors the cell uses to synthesize amino acid molecules (Fig-
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ure 2.4(c); Supplementary Discussion).

Taken together, we demonstrate an ability to systematically integrate multi-omic data to

enable discovery of multiple hidden biological regularities. These regularities take on biological

meaning when put into the context of a network reconstruction that is comprised of fundamentally

structured relationships between cellular components. We have shown that this contextualization

leads to: (i) insights into underlying biological mechanisms during protein translation and (ii)

predictive computations based on cellular-econometric cost-benefit ratios associated with the

function of the cell as a whole. Thus both multi-omic data analysis and genome-scale models

will play an important role in establishing big data analysis frameworks to explain and predict

cellular physiology.
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Chapter 3

Independent component analysis of

E. coli’s transcriptome reveals the

cellular processes that respond to

heterologous gene expression

Achieving the predictable expression of heterologous genes in a production host has proven

difficult. Each heterologous gene expressed in the same host seems to elicit a different host

response governed by unknown mechanisms. Historically, most studies have approached this

challenge by manipulating the properties of the heterologous gene through methods like codon

optimization. Here we approach this challenge from the host side. We express a set of 45 het-

erologous genes in the same Escherichia coli strain, using the same expression system and culture

conditions. We collect a comprehensive RNAseq set to characterize the host’s transcriptional
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response. Independent Component Analysis of the RNAseq data set reveals independently mod-

ulated gene sets (i-modulons) that characterize the host response to heterologous gene expression.

We relate 55% of variation of the host response to: Fear vs Greed (16.5%), Metal Homeostasis

(19.0%), Respiration (6.0%), Protein folding (4.5%), and Amino acid and nucleotide biosynthesis

(9.0%). If these responses can be controlled, then the success rate with predicting heterologous

gene expression should increase.

3.1 Understanding heterologous protein expression from the

host perspective

E. coli is extensively used as a production strain for the production of chemicals and

pharmaceuticals in a metabolically engineered strain, or for the production of proteins as a

product [1]. Most of these proteins and pathways are not naturally found in E. coli, and therefore

host strain design requires the introduction of foreign genes and proteins in order to expand

its native capabilities. Various approaches have been developed to enable researchers to clone

foreign genes into E. coli thus allowing the expression of both natural and engineered heterologous

proteins [2].

The successful expression of many proteins in E. coli requires some form of manipulation

of their properties and their optimization; less than 20% of all foreign genes introduced into

E. coli are able to be expressed immediately [3]. Considerable effort has been devoted towards

determining protein feature determinants of protein expression [4–7]. The most successful efforts

have been achieved through the use of machine learning approaches on large, extensive libraries

of proteins. Various factors such as codon usage, mRNA secondary structure, and amino acid
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composition have been found to have statistically significant effects on protein expression, solu-

bility, and fitness of the cells [8–10]. Unfortunately, we are still unable to generate clear rules on

the design of heterologous proteins for proper expression and solubility.

Fewer studies have looked at the host strain’s reaction to the expression of heterologous

proteins. Some have shown that overexpression of heterologous genes result in the upregula-

tion of heat shock proteins [11, 12], destruction of ribosomes [13] downregulation of amino acid

biosynthesis and TCA cycle genes [14], triggering of SOS response [15], and the downregulation

of the ArcA/ArcB two-component system [16]. Most of these studies have been performed with

only a small number of proteins, resulting in a limited view of the host’s response to heterologous

protein expression. In this study, we will focus on the host’s response to the induction of a larger

set of 45 heterologous proteins at the transcriptional level. We have assembled one of the largest

collections of transcriptomic datasets of heterologous gene expressing lines to date. We then

make use of Independent Component Analysis, a method recently shown to be able to identify

clear transcriptional regulatory responses in large datasets [17–19], to identify the major modes

of the host’s cell response during heterologous protein expression.

3.2 Results

3.2.1 Expression of different heterologous genes elicit variable host response

under the same induction conditions

We made use of 3’ LIC [3] to clone a library of 45 heterologous genes from various

organisms (Supp Table 1) into a plasmid which was transformed into a strain of E. coli evolved for

optimal growth on glycerol (See Methods in SI)[20]. Several factors, such as the ribosomal binding
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Figure 3.1: Workflow and physiological characterization. A: Experimental workflow for library
of 40 heterologous genes. B: Heterologous gene expression varied between <1% and 42% of the
total transcripts. C: Induction resulted in a reduction in growth rate compared to wild type for
almost all strains. Error bars for duplicates are shown in red.

site and the secondary structure of the 5’ end of the mRNA, are known to have a large impact on

the final expression level of heterologous proteins [5, 21–23]. In order to control for initiation rate,

we designed our plasmids with a bi-cistronic design (BCD) region upstream of the heterologous

protein [24, 25], and all heterologous proteins were fused with a His-TEV tag at the 5’ end to

normalize 5’ mRNA secondary structure. A medium copy plasmid backbone (pNic28) [2, 3] was

used in combination with a rhamnose inducible promoter. Rhamnose induction concentration

was set to 1mM in order to obtain a lower expression of protein compared to typical T7 induced

plasmids (70-80% of total proteome). Despite our efforts to control heterologous protein levels in

the cell, RNAseq measurements of heterologous gene expression varied between <1% and 42% of

total transcripts (Figure 3.1B). This variance in expression levels was not found to correlate well

with traditional measures of protein success such as codon adaptation index (CAI) [26] (Supp.

Fig. B.1, B.2).

The expression of heterologous protein places a variety of stresses on the host, the most
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fundamental of which is the added burden of metabolic precursors such as amino acids and the

energy required for the production of unnecessary heterologous proteins, reducing the allocation

of cellular resources to growth [27]. In our study, the addition of rhamnose during induction

provides an additional carbon source, resulting in a spike in wild type growth rate post- induction.

To account for this spike, growth rate was normalized to wild type cultures. We find that the

introduction of an empty plasmid control resulted in an increase in growth rate (24.5% ± 6.75),

whereas heterologous protein production negatively affects growth rate (Figure 3.1C).

3.2.2 ICA elucidates the modes of host cell response

To understand the various modes of the host cell response, we performed Independent

Component Analysis (ICA) on the transcriptomic dataset (See Methods). ICA decomposes a gene

expression matrix into its independent components, each of which constitutes an independently

modulated set of genes that have been shown to reflect the transcriptional regulatory network in

E. coli [17]. ICA decomposition of the transcriptomic profiles resulted in 99 components, 69 of

which were in common with i-modulons found from the PRECISE dataset in Sastry et. al. that

represents 113 experimental conditions [17]. These results are summarized in Supp. Table 2.

3.2.3 RhaR i-modulon identifies failures of induction

The use of the rhamnose inducible promoter is reflected in the ICA decomposition, show-

ing up as two new i-modulons which had not previously been detected in the PRECISE database

[17]. The first of these two i-modulons is the Plasmid i-modulon, composed of two highly weighted

genes, rhaR and rhaS, both of which are encoded on the plasmid (Figure 3.2A). This i-modulon

is thus representative of the plasmid copy number. All the samples except wild type show a
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Figure 3.2: Distinguishing plasmid and induction through ICA. A: An i-modulon showed
high weighting in rhaS and rhaR, but not the rest of the rhamnose metabolism genes. The
rhamnose inducible plasmid coded for both the rhaS and rhaR genes, hence this i-modulon
probably represented the plasmid copy number. B: All samples show a high level of this i-
modulon except wild type, which did not contain the plasmid. C: Genes which show significant
weights in the RhaR i-modulon are members of the rhaSR-rhaBAD operon: rhaA, rhaB, rhaD,
rhaT, rhaM, rhaS, rhaR, with nrdD and yjiY showing marginal significance. D: While most
samples show a high activity in the RhaR i-modulon implying a successful induction (green),
several samples show failure of induction (red).

high activity level in this i-modulon, showing that the plasmid is present in all these samples

(Figure 3.2B).

The second of these two i-modulons is the Rhamnose i-modulon. It consists of genes in

the rhamnose operon which would be induced during growth on rhamnose as a carbon source

such as rhaA, rhaB, rhaD, as well as the rhamnose regulatory genes rhaS and rhaR (Figure 3.2C).

We found that excluding WT, five samples showed much lower activity levels in this i-modulon,
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all of which displayed corresponding low transcript levels of the heterologous protein, leading us

to conclude that these proteins suffered from a failure of induction for an unidentified reason

(Figure 3.2D). Samples which showed this failure of induction were removed from subsequent

analyses as they did not represent the true host cell response to the induction of heterologous

protein expression, leaving us with 40 heterologous protein expressing lines. The detection of

these two i-modulons demonstrates the ability of ICA to distinguish between two closely related

signals.

Figure 3.3: Changes in i-modulon activities during heterologous gene expression. A: An i-
modulon showed high weighting in rhaS and rhaR, but not the rest of the rhamnose metabolism
genes. The rhamnose inducible plasmid coded for both the rhaS and rhaR genes, hence this
i-modulon probably represented the plasmid copy number. B: All samples show a high level
of this i-modulon except wild type, which did not contain the plasmid. C: Genes which show
significant weights in the RhaR i-modulon are members of the rhaSR-rhaBAD operon: rhaA,
rhaB, rhaD, rhaT, rhaM, rhaS, rhaR, with nrdD and yjiY showing marginal significance. D:
While most samples show a high activity in the RhaR i-modulon implying a successful induction
(green), several samples show failure of induction (red).
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Table 3.1: Major dimensions of host response and the i-modulons and genes that make up each
of them.

Cellular
response

i-modulon Genes

Fear vs Greed
RpoS glsA, csgD, yedP, yhdW 2, mcbR, csiD, fic, yhjY, tam, ydcK, yfiL, gmr,

aldB, yfdC, yqjE, yhbW, gabP, yebF, yohF, yccT, yphA, ytjA, ydcT, lhgO,
yehX, osmE, rclA, mlrA, yeaQ, yliI, ybiO, hchA, curA, yqjK, ymgE, ybaY,
gabT, gabD, yghA, ydcS, bfr, yhjG, ydaM, ygaU, yehW, psiF, dps, yjdN,
fbaB, ecnB, yebV, yccJ, adhP, yahK, osmC, treA, ybhN, ahr, amyA, otsA,
ybgA, yehY, yegS, osmF, ybdK, ydhS, yegP, ggt, ygaM, yfcG, sra, patA,
msyB, yeaH, yeaG, otsB, wrbA, elaB, yahO, blc, clsB, talA, ycgB, tktB,
ybhP, poxB, osmY, katE, yiaG, ycaC

Translation rpsI, rpmC, rpsF, rpsH, rplM, rpsQ, rplI, rpsE, rplR, rplP, priB, rpsC, rplC,
rpsJ, rplB, rplW, rplD, rpsS, rplV

BluR rcnA, yegR, yhjX, yjbJ, ycgZ, ymgA, ariR, ymgC

Metal
Homeostasis

Fur-1 sodB, ftnA, grcA, tonB, ybiI, fecC, exbB, exbD, fhuF, efeU 2, pqqL, ydiE,
fepE, fecA, yddA, yqjH, fhuA, efeB, fhuD, yddB, fecI, fhuC, efeO, sufA,
fhuB, sufC, sufB, sufS, sufE, fecR, fepD, nrdH, sufD, fepB, fepG, yncE,
fepC, nrdI, ybdZ, entS, nrdF, nrdE, entD, ybiX, fhuE, fes, entA, entH, entF,
entC, entB, entE, fepA, cirA, fiu

Uncharacterized-5 sodB, yoeG 1, dppB, dppF, dppD, dppC, fumA, nuoH, nuoI, grxD, iscS,
nuoG, iscA, nuoC, nuoL, nuoM, sdhB, iscU, fur, fdx, narU, nuoN, nuoF,
iscX, nuoE, pepB, fhuA, nuoJ, sodA, bfr, fecR, fecI, gpmA, ybiX, fecA, entD,
ybdZ, mntH, yjjZ

CusR yedV, yncJ, cpxP, yjjZ, yedW, cueO, copA, cusS, cusR, cusA, cusB, cusF,
cusC

Respiration
FnR/IscR iscR, iscS, hscB, iscU, nfuA, cysE, erpA, iscA, hypB, nikB, yehD, ydhY,

abrB, ynfO, napF, ychH, ylcI, yfcC, yoeA 1, ynfE, nrdD, glpA, hybO, ydfZ,
yhbV, fdnG, feoA, ynjE, dmsA, nirB, ydjY, yjjI, yhcC, ttdR, narK, yecH,
focA, bssR, ydjX, grcA, ynfK, ompW, yhbU, nikA

ArcA feoB, cydA, lomR 1, rsd, bluF, ydgC, bssR, lldR, efeU 2, yjiJ, ugpA, yjiR,
fadI, fumA, kgtP, actP, ylaC, ugpE, ndk, gltA, hcaR, msrB, sucB, prpR,
ugpB, sucD, sucC, aldA, sucA, lldP, astA, sthA, puuA, acs, astC, sdhB,
fadB, yigI, mhpR, sdhA, phoH, puuD, sdhD, ydcI, glcC, sdhC, yejG

Pyruvate aceA, pta, yohJ, aceF, yjiA, ykgE, ackA, mqo, ldhA, yhjX, yjiY
Protein
Folding

RpoH rhsA, ybeX, htpX, rlmE, ldhA, yeaD, yhjX, topA, gapA, bssS, miaA, tusB,
mfd, fliK, ybeY, zntR, yhdN, ybeZ, ybeD, hspQ, rsmJ, prlC, lon, ybbN, hslO,
hslR, mutM, grpE, hslU, hslV, ibpB, ycjF, fxsA, ycjX, ibpA, dnaJ, groL,
groS, clpB, htpG, dnaK

Nucleotide and
Amino Acid
Biosynthesis

PurR-2 pyrC, pyrD, upp, ridA, codA, carA, codB, carB, uraA, pyrI, pyrB
PurR-1 ydhC, add, cspG, ydiJ, purN, purF, cvpA, purD, ghxP, purH, purC, purL,

purT, purK, purE, purM, xanP
ArgR yagI, carB, argE, dtpD, carA, argH, argD, argG, argB, argA, artJ, argC,

argF, argI
CysB dcyD, gsiD, yecC, yecS, gsiB, tauA, ygbE, tauB, gsiA, iaaA, nlpA, cysM,

fliY, cysK, ydjN, yeeD, cbl, yeeE, cysH, sbp, cysA, cysI, cysW, cysC, cysN,
yciW, cysU, cysJ, cysD, cysP

MetJ fur, ilvC, yghB, folE, metJ, yiiX, metQ, metC, metI, metK, mmuM, metL,
metN, ybdH, metR, metE, ybdL, metB, mmuP, metA, metF

His-tRNA hisI, hisF, hisA, hisH, hisB, hisD, hisC, hisG
Tryptophan tnaA, tnaB, aroL, tyrA, aroF, aroH, trpB, trpC, trpA, mtr, trpD, trpE
BCAA-2 ilvE, ilvA, ilvD, ilvC, thrC, thrB, thrA, ilvG 1, ilvM, ilvG 2
BCAA-1 hmp, ilvC, leuD, ilvB, leuA, leuC, leuB, ilvN
TyrR mtr, tyrP, aroL, tyrA, aroF
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3.2.4 Shifts in i-modulon activities during heterologous gene expression rela-

tive to WT

We calculated the percentage variance explained for the activities of each i-modulon across

the 84 samples (Figure 3.3B). The eight i-modulons with the largest activity changes explain over

50% of the total variance. They are RpoS (13.07%), Fur-1 (12.28%), Uncharacterized-4 (5.74%),

Uncharacterized-0 (4.65%), Uncharacterized-47 (4.62%), RpoH (4.50%), Fnr/IscR (3.96%), and

CusR (3.34%). Each of these i-modulons represent major changes of gene expression between

WT and protein expressing strains and they identify the processes that differentially respond to

heterologous gene expression.

By evaluating the functions and activity levels of the i-modulons which account for a

large percent variance of transcriptome, we categorized these i-modulons into four modes of host

responses to heterologous protein expression (Figure 3.3A, Table 3.1). Below, we explore each of

these four host responses and highlight the insights gained.

3.2.5 Fear vs. greed: The trade-off between expression and stress

The fear versus greed dimension of host cell response consists of three i-modulons: the

RpoS i-modulon, the Translation i-modulon, and a previously uncharacterized i-modulon (96).

This host response represents 16.55% of the total variance in the dataset and reflects one of

the major balancing acts within the host: the expression of stress mitigation and “hedging”

functions (“Fear”), as opposed to the expression of growth related functions (“Greed”) [28, 29].

This tradeoff is made apparent by plotting the activities of the RpoS i-modulon against those of

the Translational i-modulon [17].

The RpoS i-modulon is the i-modulon that exhibits the largest percentage variance across
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Figure 3.4: The “fear vs. greed” tradeoff is represented by the inverse correlations of the
activity level of the RpoS and Translation i-modulons. The RpoS i-modulon is composed of
various functions upregulated during stressful conditions - i.e., “fear”, and is negatively correlated
with the Translation i-modulon, consisting of various ribosomal proteins that are related to
growth - i.e., “greed”. Expression levels of heterologous proteins have been overlaid over these
i-modulon activities demonstrating that increased expression has the effect of migrating upwards
along the fear/greed tradeoff line.

the dataset (13.06%), and consists of genes which are controlled by the stress response sigma

factor (RpoS). The Translation i-modulon consists of 18 ribosomal proteins, and represents the

cellular translational capacity. We were interested in exploring how the expression of heterologous

protein varied with the strain’s position on this fear/greed tradeoff line. As previously shown

[17], the activity of the RpoS i-modulon shows a clear negative correlation with the activity of

the Translation i-modulon (R = -0.81, p-value = 4.02 x 10-21). Interestingly, when we overlaid

the expression levels of heterologous proteins, we find that strains which express higher levels of

heterologous mRNA actually exhibit lower levels of stress compared to wild type (Figure 3.4).

Further, we find another previously uncharacterized i-modulon which is highly correlated

with the RpoS i-modulon (R = 0.82, p-value = 4.03 x 10-21) (Supp. Figure B.4). This i-modulon

is made up of genes ycgZ, ymgA, ariR, and ymgC, all of which are predicted to have stress and

biofilm related functions and are co-regulated by the transcriptional repressor BluR and RpoS

33



[30], hence its being labeled the BluR i-modulon. An increase in clumping and biofilm formation

in E. coli during stress caused by overexpression of foreign protein has been noted by previous

studies [31–33].

Figure 3.5: Activity levels of metal homeostasis and RpoH i-modulons are correlated with
expression levels. A and B: Activity levels of CusR (A) and Fur-1 (B) i-modulons. CusR
activity levels increase with heterologous protein expression levels, while Fur-1 decreases with
heterologous protein expression. All activity levels are normalized to WT (in green) which is set
to 0. Both display a saturation effect at high levels of heterologous protein expression. Both
CusR and Fur-1 i-modulons have similar outlier samples ggTPH, BRCA v2, BRCA v1 (circled in
red), suggesting a common underlying driver. C: Both CusR and Fur regulons have been shown
to be affected by oxygen availability and redox state in the cell due to changes in oxidation states
of the metals [34, 35]. D: RpoH i-modulon shows a positive correlation to heterologous protein
expression and exhibits a similar saturation effect at high heterologous protein expression levels.
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3.2.6 Metal homeostasis and respiration: CusR and Fur regulons are acti-

vated during heterologous protein expression

The Fur-1 and CusR i-modulons reflect a large percentage of the variance in the RNAseq

dataset, representing 11.29% and 3.41%, respectively. These i-modulons contain genes controlled

by Fur and CusR, respectively, most of which maintain metal homeostasis of iron and copper ions

in E. coli [36, 37]. Interestingly, the CusR and Fur i-modulons exhibit a positive and negative

correlation with the level of heterologous mRNA expression, respectively. Both also have similar

outlier proteins (ggTPH, BRCA v1, and BRCA v2) with the addition of MBP for Fur, suggesting

that their activity levels could share a common underlying cause (Figure 3.5AB).

The cellular response for respiration consists of the i-modulons for ArcA and Fnr/IscR

and Pyruvate which are found to account for 1.17%, 3.96%, and 1.77% of the variance in the

dataset, respectively. The activity levels of these i-modulons were generally poorly correlated

with the level of heterologous gene expression (ArcA: R = 0.07, p-val = 0.49, Fnr/IscR: R =

0.16, p-value = 0.13, Pyruvate: R = -0.17, p-value = 0.12) indicating that oxygen availability

does not have a direct effect on the expression levels. However, we find that the activity of the

CusR and FNR/IscR i-modulon are correlated (R = 0.49, p-val = 1.5x10-6) (Supp. Fig. B.5).

In addition, we also find a previously uncharacterized i-modulon (uncharacterized-5)

which is highly correlated with the Fur-1 i-modulon (R = 0.95, p-value = 1.29e-43, Supp.

Fig. B.6). This i-modulon contains several genes regulated by Fur such as fecA, fecR, and fecI,

as well as fur itself, but also contains several genes regulated by ArcA and Fnr such as sodA,

sodB, and those encoding for the chains of NADH:ubiquinone oxidoreductase. The main activity

for this i-modulon is driven by genes co-regulated by Fur and Fnr or ArcA (Supp. Fig. B.7).

Involvement of multiple transcription factors reflects coordination between metal homeostasis
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and respiration.

3.2.7 Protein folding: Heterologous genes show a varied protein folding re-

sponse

The overexpression of heterologous protein results in the heat shock response, charac-

terized by the upregulation of genes such as ibpA, ibpB, groL, and lon [12, 14, 38–41], See

Table 3.1. These genes are in the RpoH i-modulon, which represented approximately 4.77% of

the variance in the dataset. The RpoH i-modulon represents the third highest variance among

well-characterized i-modulons, after RpoS and Fur-1.

For most of the samples in our dataset, the activity level of the RpoH i-modulon increases

with heterologous gene expression up to a saturation level. One of the samples, maltose-binding

protein (MBP), has previously been found to fold extremely well when overexpressed, and has

even been used as a solubility factor to help increase solubility when fused to problematic for-

eign proteins [42]. Predictably, MBP activated the RpoH i-modulon much less than would be

expected based on its expression levels, suggesting that the host cells experience much lower pro-

tein misfolding stress than the rest of the other heterologous proteins. Interestingly, two other

proteins, RFC and cvPhhB, show a similar low activation of RpoH activity, indicating that the

protein misfolding response is target specific (Figure 3.5D).

3.2.8 Amino acid and nucleotide biosynthesis

One of the major effects of heterologous protein expression on the host is elevated

metabolic burden and distortion in the use of biosynthetic pathways, specifically through the

elevated need for nucleotides and certain amino acids [27]. Maintenance of a plasmid requires
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the synthesis of additional nucleotides above the WT strain’s needs for replication and DNA

repair. This problem is exacerbated when using high copy number plasmids. Expression of both

the protein of interest as well as additional plasmid associated proteins such as selection markers

and the promoter proteins require additional usage of amino acids. Collectively, the eight amino

acid and two nucleotide biosynthesis i-modulons which were uncovered during ICA decomposition

accounted for 9.02% of the total variance in the dataset.

Figure 3.6: Adaptivity, usage, and costs of amino acids are linked during heterologous gene
expression. A: Correlation of amino acid biosynthesis i-modulons with their global usage in the
transcriptome across the dataset. Histidine, tryptophan, cysteine, isoleucine, and arginine were
positively correlated while tyrosine, methionine, and leucine were not, showing varied sensitivity
of amino acids to their usage. B: The three most correlated amino acids match with the three
least commonly used amino acids in wild type under induction conditions. C: Computation-
ally predicted synthesis cost of the top eight highest cost amino acids. Amino acids which are
correlated well with their usage have a higher predicted synthesis cost. D: Cells have to bal-
ance the biosynthetic costs of each amino acid against their usage, and therefore exert a tighter
transcriptional control over the biosynthetic pathways of costly amino acids (adaptivity).
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3.2.9 Histidine, tryptophan, cysteine, isoleucine, and arginine i-modulons

show sensitivity to global amino acid usage

To further explore the changes in metabolic burden, we examined the amino acid biosyn-

thesis related i-modulons. Eight i-modulons were found that were related to amino acid biosyn-

thesis pathways (Met, Arg, Trp, His, Cys, Tyr, Leu, Ile/Thr). Of these eight i-modulons, the

activity levels of the i-modulons for His-tRNA, Tryptophan, CysB, Isoleucine, and ArgR were

correlated with the usage of their respective amino acid residues in the transcriptome, while the

activities for the i-modulons related to Tyr, Met, and Leu were not (Figure 3.6A). This leads to

the conclusion that E. coli is more adaptive to changes in the usage of some amino acids than

others. The highest correlations were for histidine, tryptophan, and cysteine, which correspond

to the least commonly used amino acids in the proteome in WT cells (Figure 3.6B).

In order to better understand the cost of biosynthesis of each amino acid in the context

of heterologous protein production, we made use of a genome-scale model of metabolism and

expression in E. coli (ME model) [43] to simulate expression of each heterologous protein. The

marginal cost of a metabolite (known as the ‘shadow price’), of each amino acid was calculated

for each simulation [43] and, with the exception of methionine, the amino acids with the high-

est shadow price were found to match the amino acid biosynthesis i-modulons that were most

highly correlated with their usage (Figure 3.6C). Together, these results contribute to a better

understanding of amino acid usage in the cell during heterologous protein expression. Amino

acids such as histidine, tryptophan, and cysteine tend to be the most rarely used during normal

growth, and are also the most costly to biosynthesize. As such, cells exert the tightest controls

over the transcription of their biosynthetic pathways, leading to the enhanced adaptivity we see

in our dataset of the most expensive and rare amino acids (Figure 3.6D).
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3.3 Discussion

Heterologous protein expression in E. coli continues to be a major issue in biotechnology

and the rational design of protein sequences for successful expression remains a challenge. Here,

we address the complementary issue, and categorize the major host responses when confronted

with expression of a range of 40 heterologous proteins. Analysis of RNAseq data reveals four key

host responses that vary in intensity for a particular heterologous protein.

The first, and most prominent, result is the fear versus greed tradeoff and its implications

when it is overlaid with heterologous gene expression levels. Single mutations on the rpoB or rpoC

gene have previously been seen to dramatically increase cell fitness and growth rate by migrating

these mutants along the greed/fear tradeoff line [17], increasing production of ribosomal proteins

at the expense of stress functions [28, 44]. Intuitively, increasing overexpression of a single

heterologous protein should increases the stress response experienced by the cell. However, across

various heterologous proteins, higher levels of heterologous gene expression is instead correlated

with lower RpoS response compared to wild type. The inverse correlation with growth, as well as

expression, suggests that this set of genes are a possible avenue for host cell genetic manipulation

in order to increase expression.

Second, we found that two transcription factors associated with metal homeostasis, Fur

and CusR, were well correlated with the expression of heterologous genes. The large variability of

their i-modulons is surprising in this experiment because all the samples were exposed to identical

external concentrations of these ions. One explanation is that this reflects a destabilization of

the redox balance within the host. One of the major roles of Fur in the cell is to sense oxidative

stress and protect essential iron-containing Fe-S enzymes from damage. Changes to the redox

potential in the host has been shown to affect both iron and copper homeostasis by increasing
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the availability of Fe2+ binding to Fur, changing its regulatory footprint [34] as well as increasing

the toxicity of copper via reduction of Cu2+ to the more dangerous Cu+ [35](Figure 3.5C). It

has been shown that recombinant protein synthesis resulted in excess NADPH being produced

in the cell [45], as well as increased demand on ATP production resulting in increased NADH

and O2 consumption [46], while recombinant protein expression has been shown to disrupt redox

balance in S. cerevisiae through consumption of glutathione and GABA [47]. The correlation of

the Fur i-modulon activity with the uncharacterized-5 (Supp. Fig. B.6) i-modulon, as well as the

correlation between the CusR i-modulon activity and the Fnr/IscR i-modulon (Supp. Fig. B.5),

further serves to reinforce this link between the redox state of the cell and the metal homeostasis

regulons.

Third, the RpoH host response serves to illustrate a previously known phenomenon from

the perspective of the host. High levels of heterologous gene expression have been known to

induce the heat shock response to the large amounts of foreign protein which require folding.

However, proteins have differential folding requirements as is demonstrated in this study in the

RpoH i-modulon response. MBP is a particularly interesting case because it is often used in

recombinant protein expression as a solubility tag, able to help solubilize insoluble protein when

appended [42]. Of interest are the saturation dynamics we see with some of the important

i-modulons such as CusR, Fur, and RpoH. During overexpression, cells have to contend with

limits to their transcriptional, translational, and proteomic capacity [29, 48], and maintain a

balance between core cellular processes of replication, growth, and energy generation, and stress

functions of protein misfolding and metal homeostasis. As the proportion of the transcriptome

taken up by the heterologous gene grows, lower capacity is available for these secondary functions.

Fourth, we examined the metabolic burden of plasmid maintenance and heterologous
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protein expression that has been described in terms of bottlenecks in amino acid and nucleotide

biosynthesis [27]. We find that certain amino acid biosynthesis pathways show more sensitivity

to their usage, namely histidine, tryptophan and cysteine, while other amino acids act as free

variables. One explanation could be that the biosynthesis of more energetically expensive amino

acids could be more tightly coupled to their usage to reduce wastage. An example of this

is histidine, which is one of the most expensive amino acids to synthesize, requiring between

31-41 ATP per molecule [49, 50]. The His-tRNA i-modulon consists of genes in the histidine

biosynthetic pathway in the histidine operon (hisA, hisB, hisC, hisD, hisF, hisG, and hisI).

Transcription of the histidine regulon is regulated by an attenuation mechanism whereby low

levels of charged his-tRNA result in translational stalling along the histidine leader peptide,

preventing formation of a rho-independent terminator and allowing the transcription of the rest

of the operon [51, 52]. This mechanism effectively couples synthesis of the histidine biosynthesis

genes directly to available levels of histidine in the host, reducing overproduction and waste of

cellular resources.

Taken together, expressing a set of heterologous protein under the same conditions in

the same host, coupled with ICA analysis of the corresponding RNAseq data set, reveals the

host processes that are differentially activated during heterologous protein expression. With

these host responses identified and the concomitant fundamental understanding of the underlying

mechanisms, further efforts should be focused on the identification of approaches that mitigate

these responses. If successful, predictive host engineering or controlling conditions for improved

heterologous protein expression will have been achieved.
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Chapter 4

Adaptation to oxidative stress

4.1 Abstract

Bacterial response to oxidative stress is of fundamental importance. Oxidative stresses

are endogenous, such as reactive oxidative species (ROS) production during respiration, or ex-

ogenous in industrial biotechnology, due to culture conditions, or product toxicity. The immune

system inflicts strong ROS stress on invading pathogens. In this study we make use of Adaptive

Laboratory Evolution (ALE) to generate two independent lineages of Escherichia coli with in-

creased tolerance to superoxide stress by up to 500% compared to wild type. We found: 1) that

the use of ALE reveals the genetic basis for and systems biology of ROS tolerance, 2) that there

are only 6 and 7 mutations, respectively, in each lineage, five of which reproducibly occurred

in the same genes (iron-sulfur cluster regulator iscR, putative iron-sulfur repair protein ygfZ,

pyruvate dehydrogenase subunit E aceE, succinate dehydrogenase sucA, and glutamine tRNA

glnX ), and 3) that the transcriptome of the strain lineages exhibits two different routes of tol-

erance: the direct mitigation and repair of ROS damage and the up-regulation of cell motility
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and swarming genes mediated through phosphate starvation, which has been linked to biofilm

formation and aggregation. These two transcriptomic responses can be interpreted as ‘flight’ and

‘fight’ phenotypes.

4.2 Introduction

During aerobic respiration, leakage of high energy electrons from respiratory quinones and

electron transport chain components creates reactive oxidative species (ROS), such as superoxide

and peroxide radicals. Studies have placed the production rate of hydrogen peroxide during

normal aerobic growth in E. coli to be as high as 10-15µM/s [1, 2]. In addition to the endogenous

production of ROS, bacteria also experience oxidative stress from external sources such as the

host immune response during pathogenic infections [3]. Production strains of E. coli also tend

to experience redox stress due to high oxygen concentrations used in fermentation vessels [4], or

after genetic modifications to the host cell such as the knockout of thioredoxin and glutathione

biosynthesis genes [5].

Due to their reactivity, ROS cause damage to macromolecules in the cell. DNA damage

is caused by direct oxidation of individual bases and cross-linking between strands [6]. Lipids

are peroxidized, changing membrane permeability. ROS damage to proteins occurs via direct

oxidation of vulnerable amino acids such as cysteine and methionine, and loss of metal cofactors

[7]. A major target of ROS damage are iron-sulfur clusters, found in important catalytic proteins

and vital for central carbon metabolism and amino acid biosynthesis [8, 9]. Iron-sulfur clusters

readily change redox states [10], making them particularly vulnerable to damage by ROS: an

initial loss of an electron causes destabilization and a subsequent loss of an iron ion [11], with

further oxidation causing a complete degradation and loss of the iron-sulfur cluster. E. coli relies
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on two systems, the Isc and Suf cluster assembly systems, to synthesize and repair damage to

iron-sulfur clusters [11].

Free cytoplasmic iron is a double-edged sword during oxidative stress. On the one hand, it

is used as the metal cofactor in superoxide dismutase sodB, which scavenges superoxide species;

on the other, it participates in the Fenton reaction, which converts superoxide and peroxide

molecules into the even more reactive hydroxyl radical [12]. Damage to iron-sulfur clusters caused

by oxidative stress not only inactivates the iron-sulfur containing protein, but also releases iron

into the cytoplasm. Fine control of iron concentrations in the cytoplasm is thus vital to adequately

deal with oxidative stress. E. coli does this via the transcriptional regulator Fur which represses

iron uptake systems when bound to free Fe2+. Oxidative stress has been shown to upregulate

Fur, resulting in the repression of iron-uptake systems and a reduction of iron levels in wild type

cells [13].

Various methods have been explored in order to increase tolerance of E. coli to exoge-

nous oxidative stress. Those that were successful made use of mutations to CRP [14], or the

overexpression of damage mitigation genes such as sodC and katG [15, 16]. E. coli also exhibits

a phenomenon known as cross-tolerance where various stressors such as cold shock and osmotic

shock have also been found to induce the oxidative stress response [17, 18]. When previously

exposed to sublethal levels of one type of stress, E. coli has shown improved tolerance to a

subsequent exposure to lethal levels of another type of stress [19].

Due to its role in pathogenesis and importance in industrial biotechnology, understanding

tolerance to ROS remains a significant area of research. In this paper we make use of tolerization

adaptive laboratory evolution (TALE) [20] to increase the tolerance of E. coli to the redox-cycling

compound paraquat. We then make use of genome resequencing, transcriptomics, and ribosome

50



profiling to gain insight into these adaptations and the mechanisms through which they increase

tolerance.

Figure 4.1: Description of the ALE experiment run and physiological characterization of the
evolved strains. A: TALE was used to increase tolerance to paraquat. Paraquat concentration
was raised in small increments over the course of the evolution, resulting in two end point strains.
B: Graph showing paraquat concentration used in TALE against the number of cumulative cell
divisions. C: Growth characterization of end point strains. WT shows loss of viability above
0.16mM, whilst end point strains show loss of viability at 0.8mM.
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Table 4.1: Mutations found in evolved strains following TALE to increase tolerance to paraquat
Category Gene Strain Mutation

Carbon flux

aceE
PQ1 Q791*
PQ2 Q409*

sucA
PQ1 R182L
PQ2 G594S

gltA PQ2 L8P

Iron-sulfur cluster
ygfZ

PQ1 V107E
PQ2 T108P

iscR
PQ1 V55L
PQ2 C104S

tRNA glnX
PQ1 (C→ T 35/75nt)
PQ2 (C→ T 35/75nt)

Phosphate uptake pitA PQ1 INS (+T 5/1500nt)
Polymyxin resistance arnA PQ2 A21A

4.3 Results

4.3.1 TALE increased tolerance to oxidative stress

Paraquat was chosen as the ROS stressor in these experiments since it is a known genera-

tor of internal superoxide stress through redox cycling. In order to differentiate mutations arising

from adaptation to the culture media from those arising from oxidative stress, we make use of an

E. coli K-12 MG1655 strain previously evolved on glucose minimal media as the starting strain

[21]. Exponentially growing cultures were passed into incrementally higher paraquat concentra-

tions to increase the tolerance to superoxide stress (Figure 4.1A).Two replicate end points (PQ1

and PQ2) were generated from the TALE which took place over 30 days, representing over 8 x

1011 cumulative cell divisions (CCD) [22] (Figure 4.1B).

To quantify the increase to paraquat tolerance, we performed growth experiments of

the evolved strains across a range of paraquat concentrations between 0mM and 2.0mM. Wild

type showed loss of viability at 0.16mM, while PQ1 and PQ2 only lost viability at paraquat

concentrations above 0.8mM, a tolerance increase of 500% (Figure 4.1C).
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4.3.2 Whole genome resequencing and mutation analysis reveal the genetic

basis for increased ROS tolerance

Clonal isolates of the end point populations (PQ1, PQ2) were subject to whole genome

resequencing in order to identify the genetic basis of tolerance to paraquat stress. Genetic

mutations were called using the breseq computational pipeline (Materials and Methods). Key

mutations related to tolerance to oxidative stress were determined by identifying genes or genetic

regions that were mutated across multiple isolates from independent samples (Table 4.1). The

full list of mutations is deposited in ALEdb [23]. Only six and seven mutations for PQ1 and

PQ2, respectively, were required to confer tolerance to five times the maximum concentration of

paraquat compared to WT.

Five genes were mutated in common: aceE, ygfZ, iscR, sucA, and glnX (Table 1). Two

of these five genes (aceE and sucA) are related to carbon metabolism and the TCA cycle. aceE

was one of the first genes to be mutated across both replicates, with both independent mutations

resulting in truncation of the gene, at residues 791 and 409 for PQ1 and PQ2, respectively. aceE

encodes the E1 subunit of the pyruvate dehydrogenase complex which catalyzes the reaction

that converts pyruvate to acetyl-CoA, a key step for the entry of carbon flux into the TCA cycle

during aerobic growth on glucose as the sole carbon source. sucA, on the other hand, encodes

the E1 subunit of the 2-oxoglutarate dehydrogenase complex that catalyzes the conversion of

2-oxoglutarate into succinyl-CoA and CO2 along with the production of NADH. The TCA cycle

is the main source of high energy electrons during aerobic respiration, and both these muta-

tions would result in a reduction in carbon flux through the TCA cycle, reducing redox load.

Interestingly, both sucA and aceE are the thiamine-binding E1 components of their respective

dehydrogenase complexes, suggesting a significant vulnerability in thiamine production under

53



oxidative stress. Indeed, 2-iminoacetate synthase, coded for by the gene thiH, is a key enzyme in

the thiamine-biosynthetic pathway and was found to contain a redox sensitive iron-sulfur cluster

[24].

Another two commonly mutated genes are related to iron-sulfur cluster synthesis and

repair (iscR and ygfZ ). iscR is the transcriptional regulator for iron-sulfur cluster and biosynthesis

and is involved in the regulation of the isc and suf operons [25]. The DNA binding affinity of iscR

is dependent on the presence of iron-sulfur clusters bound to the protein. The icsR mutation site

C104S in PQ2 is known to be one of the three conserved cysteine residues involved in iron-sulfur

cluster binding [26], and mutations at this location have been shown to have an effect on the

regulation of the iscRSUA and sufABCDSE operons [27]. ygfZ, was also found to be mutated in

both PQ1 and PQ2 at amino acid residue positions 107 and 108 respectively. Though the function

of ygfZ in E. coli is still unclear, it has been shown to be a folate-binding enzyme potentially

involved in either the synthesis or repair of iron-sulfur cluster proteins [28, 29]. ygfZ has been

hypothesized to also have a direct role in the degradation of plumbagin (a redox stress causing

compound)[30], whilst inactivation of ygfZ has been found to result in increased sensitivity to

oxidative stress in E. coli [29]. Positions 107 and 108 have previously determined to be conserved

across E. coli, M. tuberculosis and K. pneumoniae [30] suggesting that this region might be

critical to improving or modifying one or both of ygfZ ’s hypothesized functions of Fe-S repair or

plumbagin degradation.

The last common mutation was a mutation in glnX. glnX is one of the 4 glutamine tRNAs

in E. coli which decodes the CAG codon in wild type. This mutation occurred at nucleotide 35

in the gene, changing the sequence of the anticodon from CTG to CTA, allowing the suppression

of the amber stop codon TAG.
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The end points also contained one and two strain specific mutations respectively. PQ1

contains a frameshift mutation in the pitA gene, encoding the low affinity phosphate transporter

[31]. pitA is the major route for phosphate uptake in the cell under phosphate replete conditions,

and disruption of its would severely limit phosphate availability in PQ1. PQ2 contains an addi-

tional mutation in gltA, the gene encoding citrate synthase, another member of the TCA cycle,

and a silent mutation in arnA, a protein involved in polymyxin resistance. These mutations occur

close to the 5’ end of the gene at residue 8 and 21 respectively, which has been shown to affect

gene expression levels through changes to mRNA secondary structure [32].

4.3.3 Knockout of aceE improves fitness at low levels of ROS stress

One of the first mutations to show up in both replicates during the first phase of toleriza-

tion was a truncation mutation at residue 409 and 791 for PQ1 and PQ2 respectively, suggesting

that the disruption of aceE activity was important for the resistance to ROS stress. To better

understand the role of the aceE truncation in improving strain fitness, we knocked out aceE in

the wild type strain. The loss of aceE had a negative impact on strain viability in M9 minimal

media with glucose as the sole carbon source, necessitating the addition of 10% LB to the media

which greatly improved tolerance to paraquat, so paraquattolerance is not directly comparable

to the evolved strains. However, we see that compared to WT grown in the same media, ∆aceE

shows improved fitness when concentration of paraquat is low, but loses this fitness advantage

at higher levels of paraquat (Supplementary Figure C.1).
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Figure 4.2: The glnX suppressor mutation allows limited readthrough of the non-sense muta-
tion. We calculate the ratio of ribosomal density downstream and upstream of the non-sense
mutation. WT shows readthrough ratios close to 1.0, indicating that there is no truncation along
the aceE gene. Conversely, a midpoint clonal isolate with the aceE non-sense mutation but with-
out the glnX suppressor mutation shows a very low ratio, suggesting that translation terminates
at the non-sense mutation. PQ2 end point strains with both the aceE non-sense mutation and
the glnX suppressor mutation show increased readthrough of the non-sense mutation, suggesting
the combination of these mutations result in a tuning of aceE levels in the cell.
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4.3.4 glnX mutation affects aceE expression

The truncation mutation which occurred in both replicates make use of TAG stop codon,

and both strains then independently developed a mutation in glnX which allow suppression of

the TAG stop codon. Stop codon suppression is known to be incomplete owing to competition

between the native ribosome release factor and the suppression tRNA [33]. In order to see

the effect of the glnX suppressor mutation on the expression level of aceE, we make use of

ribosome profiling to determine the ribosomal density on the aceE gene. Due to the great

selective disadvantage of the loss of aceE, we were unable to revive the PQ1 midpoint, and hence

are looking only at the PQ2 midpoint. We calculated the ratio of the ribosomal density before

the truncation and after the truncation to determine the percentage of stop codon readthrough.

In WT ribosome density downstream of the truncation location (Q409*) is almost equal to the

ribosome density upstream (0.97±0.11). With the non-sense mutation but without the glnX

suppressor mutation, this ratio drops to 0.05±0.01 due to premature truncation of translation

at the non-sense mutation. In PQ2 with the glnX suppressor mutation, we see that the ratio

increases to 0.23±0.08, indicating that the glnX mutation serves to tune the translation level of

aceE (Figure 4.2B).

4.3.5 Dysregulation of iron-uptake genes under stress

We calculated differential gene expression of the evolved strains PQ1 and PQ2 when

subject to 0.25mM of paraquat for 20 minutes relative to no paraquat exposure. The response

of WT E. coli to superoxide stress has previously been well-characterized, involving the up-

regulation of the SoxRS and OxyR regulons [12, 34, 35], thus we subtracted the ROS stress

response in WT from the set of differentially expressed genes in the evolved strains in order to
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Figure 4.3: Differential expression of the evolved strains with and without the addition of
paraquat. A,B: Differential expression of genes in evolved strains relative to WT in the absence
of paraquat. PQ1 and PQ2 up-regulate 15 genes and down-regulate 11 genes in common vs WT.
C,D: Differentially expressed genes in PQ1 are highly enriched for the COG category cell motility
(p-value =4.71x10-94), whilst in PQ2 they are enriched for both cell motility (p-value=1.43x10-17)
and energy production (p-value = 1.02x10-5). E,F: We also calculated the differential expression
between each evolved strain with and without the addition of paraquat to determine how each
strains reaction to stress. We subtracted WT reaction to stress in order to isolate evolved strain
specific responses. PQ1 and PQ2 up-regulate 45 genes and down-regulate 2 genes in common.
G, H: These up-regulated genes are highly enriched for the COG categories of Inorganic ion
transport (PQ1 p-value = 2.04x10-16, PQ2 p-value = 1.71x10-18) and Secondary metabolites
(PQ1 p-value = 3.17x10-12, PQ2 p-value = 8.64x10-10).
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Table 4.2: Important differentially regulated genes with and without paraquat stress. In the
unstressed condition, differential expression of evolved strains was calculated relative to WT
strain. In stressed conditions, differential expression of evolved strains under paraquat stress was
calculated relative to the same strain without paraquat stress. Genes differentially regulated in
WT under paraquat stress were subtracted to isolate evolved strain specific adaptations.

Condition Strain Function Genes Regulation

Unstressed

Common

Not well characterized/ non-
functional

ygfZ, ybcKLM, bcsAB Up-regulated

Osmotic Stress proVWX Up-regulated
Fatty acid degradation fadAB Up-regulated
Sulfur uptake tauABC Down-regulated

PQ1
Phosphate homeostasis pstABC, phoUBR Up-regulated

Cell motility

fliHIJKMOPR,
flhABE, motAB,
flgABEFGHIKLMN,
fliACDEFGNSTZ, trg,
cheAZYBRW, dgcZ,
tar, tsr, tap

Up-regulated

PQ2

Iron-sulfur cluster
iscASRU,
sufABCDES, fdx,
hscAB

Up-regulated

DNA synthesis nrdHIEF Up-regulated

Cell motility
fimE Down-regulated
cheAWR, motAB, tap,
tar, fimABCDFGI

Up-regulated

Fermentative respiration ldhA, pta, ackA Up-regulated
TCA cycle sdhBCD Down-regulated

Stressed

Common
Iron uptake and storage

entSABCDEFH,
fepABCDGRI, yncD,
fes, fiu, fhuE

Up-regulated

DNA synthesis nrdEFH Up-regulated
DNA repair ligA Up-regulated

PQ1 Iron-sulfur cluster iscR Up-regulated

PQ2

Formate dehydrogenase fdnH, fdoG Up-regulated
Motility ybjN Up-regulated
marR operon marA, mdaB Up-regulated
ROS scavenging sodB Down-regulated

isolate adaptation specific transcriptional responses. This process left us with a total of 49 DEGs

in PQ1 (47 up-regulated, and 2 down-regulated) and 75 DEGs in PQ2 (68 up-regulated, and

7 down-regulated), that were not part of the canonical superoxide stress response in WT. We

find that both PQ1 and PQ2 have a convergent transcriptional response to ROS stress. Also

in both, 45 genes were up-regulated and 2 genes were down-regulated. The most differentially

regulated COG categories during stress were secondary metabolites (PQ1 p-value = 3.17x10-12,

PQ2 p-value = 8.64x10-10) and Inorganic ion transport (PQ1 p-value = 2.04x10-16, PQ2 p-value

= 1.71x10-18) (Figure 4.3EFGH, Table 4.2).
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Figure 4.4: Evolved strains show dysregulation of iron-uptake genes regulated by Fur-Fe2+
while under paraquat stress. Differential gene expression was calculated for each strain under
paraquat stress relative to the same strain under normal growth conditions, significantly dif-
ferentially expressed genes are circled in bold. We see that both WT and the evolved strains
up-regulate Fur, which in WT proceeds to repress the iron-uptake genes below. In contrast, the
evolved strains instead see an up-regulation of these iron-uptake genes.

These 45 genes are highly enriched for regulation by Fur (p-value = 8.91 x 10-27), and

almost all of them are directly related to the uptake and storage of iron. In contrast, we see that

WT actually down-regulates these genes, despite all three strains directly upregulating Fur (Fig-

ure 4.4). During superoxide stress, free iron in the cell aggravates damage to cellular components

through formation of hydroxyl radicals via the Fenton reaction [36]. As the regulatory activity

of Fur is mediated by availability of Fe2+, this could indicate differences in the availability of free

iron in the cell. Other commonly upregulated genes during stress are related to DNA synthesis

and repair such as ribonucleotide reductase nrdEFH and DNA ligase ligA which would allow
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cells to repair DNA damaged by ROS at an increased rate compared to WT.

Figure 4.5: PQ1 and PQ2 show two different phenotypes growing under normal conditions. Dif-
ferential regulation is calculated for the evolved strains growing without paraquat stress relative
to wild type. Up-regulated genes are highlighted in red, down-regulated genes are highlighted in
blue, mutated genes are denoted by an asterisk *. The “Flight” phenotype used by PQ1 makes
use of a pitA disruption to induce phosphate starvation, providing a regulatory impetus for in-
crease cell motility and aggregation, increasing tolerance to oxidative stress. On the other hand,
PQ2 exhibits the “Fight” phenotype where it up-regulates genes involved in the repair moieties
damaged by ROS such as iron-sulfur clusters and DNA, as well as redirects carbon flux from the
TCA cycle towards fermentative pathways.

4.3.6 Transcriptomic characterization of end point strains under normal

growth conditions reveals two ROS tolerant phenotypes

When grown without paraquat stress, we find that PQ1 and PQ2 differentially express

126 and 182 genes, respectively, relative to wild type (PQ1: 104 up-regulated, 22 down-regulated,
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PQ2: 89 up-regulated, 92 down-regulated). Of these, only 15 genes are commonly up-regulated

and 11 genes are commonly down-regulated (Table 4.2, Figure 4.3AB). PQ1 significantly up-

regulates while PQ2 significantly down-regulates genes with the COG annotation of Cell motility

(PQ1 p-value = 4.71x10-94, PQ2 p-value = 1.43x10-17), whilst PQ2 also differentially regulates

genes in the COG category of Energy production (p-values = 1.02x10-5) (Figure 4.3CD).

Several of the commonly upregulated genes, ygfZ, ybcKLM, and bcsAB, are not well

characterized or thought to be non-functional in K-12 strains. ygfZ, discussed above, is annotated

as a putative iron-sulfur cluster repair protein and is both mutated and up-regulated in PQ1 and

PQ2 [29]. The combination of the mutation and up-regulation of ygfZ indicates that it plays

an important role in tolerance to paraquat stress and warrants further investigation. ybcL,

which is in an operon with ybcM directly downstream of ybcK, has previously been found to

inhibit neutrophil migration during bladder infections by the pathogenic strain of E. coli UTI89,

although several mutations in the K-12 variant have caused a loss of its original pathogenic

function [37]. Regulation of the ybcLM operon is not well understood, and up-regulation of these

genes in the evolved strains suggests a vestigial virulent response. bcsA and bcsB synthesize

cellulose in non-K12 E. coli strains, but in K-12 strains a nonsense SNP in upstream gene bcsQ

results in decreased expression of bcsA [38].

The evolved strains also commonly up-regulate the genes proVWX which are related to

tolerance to osmotic stress. Previous studies have shown that previous exposure to one type

of stress, such as pH, osmotic, oxidative, or thermal stress, has a positive effect on culture

tolerance to other stresses, possibly due to the induction of general stress response pathways

through RpoS [19]. Evolution of these strains in the presence of oxidative stress might cause a

constitutive upregulation of stress response pathways, resulting in upregulation of proVWX even
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in the absence of paraquat.

Two genes utilized in fatty acid degradation, fadAB, are commonly upregulated. The

truncation of i would result in a decrease of conversion from pyruvate to acetyl-CoA, lowering

the available pool of acetyl-CoA which is important for synthesis of various amino acids through

the glyoxylate shunt and TCA cycle intermediates. Upregulation of the fatty acid degradation

pathway would increase levels of acetyl-CoA in the cell through oxidation of fatty acids.

PQ1 - Exhibits a “Flight” Phenotype

As mentioned above, the frame shift mutation in pitA disrupts its function, severely lim-

iting phosphate uptake in PQ1 [39]. Expectedly, PQ1 up-regulates the high affinity phosphate

transport complex genes pstABCS and phosphate regulators phoBR and phoU even when not

under paraquat stress, suggesting that the cell is constitutively experiencing phosphate starva-

tion. Phosphate limitation is observed to activate a swarming phenotype in P. aeruginosa [40].

We observe the similar up-regulation of cell motility related genes in PQ1. 42 of the 126 differ-

entially regulated genes in PQ1 are related to cell motility. These genes include flagellar biosyn-

thesis genes fliOIHKJPRM and flhABE, flagellar components motAB, flgABEFGHIKLMN, and

fliACDEFGNSTZ, chemotaxis related proteins trg and cheAZYBRW, as well as motility regu-

lators dgcZ, tar, tsr, and tap. The up-regulation of these genes has also been associated with

auto-aggregation and biofilm formation, which has been shown to increase the tolerance of E.

coli to various stresses including oxidative stress [41].

Surprisingly, this regulatory adaptation in PQ1 does not intuitively counter ROS stress.

Instead, it increased cellular motility (Supplementary Figure C.2), which might lead to a sec-

ondary effect of oxidative stress tolerance. We therefore term this the “Flight” phenotype (Fig-
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ure 4.5).

PQ2 - Exhibits a “Fight” Phenotype

In contrast to PQ1, PQ2 downregulates cell motility related genes cheAWR, motAB,

tap, and tar, and fimbriae genes fimABCDFGI, while up-regulating fimE. These changes to the

FimB/FimE ratio are consistent with the overall downregulation of type 1 fimbriae expression

[42, 43].

We find that the mutation in the iron-sulfur cluster binding region of the protein IscR

causes a dysregulation of its regulon. Genes regulated by iscR, such as iscASRU, hscSB, fdx,

sufABCDES, and nrdHIEF are all up-regulated in PQ2 even in the absence of paraquat stress.

These genes synthesize and repair iron-sulfur clusters and DNA, which might increase the rate

of cellular repair of ROS damage. Interestingly, nrdEF has been found to only be induced under

iron starvation [44, 45], providing further support that iron levels in the evolved strains might

differ from wild type, leading to the differences found in regulation of iron uptake genes.

In addition to mutations found in aceE, gltA, and sucA genes, PQ2 also upregulates ldhA,

pta, and ackA, indicating a switch from aerobic respiration to fermentation for the production of

lactate or acetate. Succinate dehydrogenase subunits sdhBCD are also downregulated, further

decreasing flux through the oxidative arm of the TCA cycle.

Overall, PQ2 seems to adopt a different tolerance strategy from PQ1: it up-regulates genes

that allow it to repair the damage caused by ROS to iron-sulfur clusters and DNA, and changes

the flow of carbon flux towards fermentative pathways to mitigate endogenous and paraquat

cycling ROS production. We have accordingly termed it the “Fight” phenotype (Figure 4.5).
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4.4 Discussion

Bacteria encounter and respond to oxidative stress in many environments, both while

fighting an immune response and responding to culture conditions in industrial biotechnology

[4, 5]. Our results reveal a relatively simple genetic basis for adaptation of E. coli to extremely

high levels of superoxide stress. They also uncover several novel genetic adaptations and reg-

ulatory strategies used by E. coli for adaptation to oxidative stress, including the use of a

non-sense/suppressor mutation pair to control translation of pyruvate dehydrogenase in order to

reduce carbon flux into the TCA cycle; dysregulation of the Fur regulon; phosphate starvation

as a regulatory impetus for oxidative stress tolerance; and direct mitigation of ROS damage

through. These findings pave the way to a better understanding of host-pathogen interactions

as well as suggesting avenues for designing host strains to better withstand oxidative stress.

Over the course of this study, we have generated several significant findings. First, the

use of experimental evolution was successful in developing strains that were tolerant to increased

levels of paraquat. E. coli can develop up to a 500% increase in tolerance to paraquat relative

to wild type in the span of 30 days, with an average of only 6.5 mutations, demonstrating the

ease with which E. coli adapts to elevated oxidative stress.

Second, the low number of mutations required for adaptation makes the genetic basis

of adaptation to oxidative stress simple and interpretable. These mutations fall into two main

categories: modulation of metabolic flux through the TCA cycle through the aceE, sucA, and

glnX mutations, and the increased synthesis and repair of iron-sulfur clusters through mutations

in ygfZ and iscR. Modulating flux through the TCA cycle is a preventative measure, limiting

the availability of high energy electrons which reduces endogenous ROS production and redox

cycling by paraquat. On the other hand, mutations that increase synthesis and repair rates of
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iron-sulfur clusters work to mitigate damage to iron-sulfur clusters caused by ROS. One of the

more surprising findings from this study was the occurrence of an amber suppressor mutation

in glnX, which allowed control of pyruvate dehydrogenase levels in the cell through inefficient

readthrough of a non-sense mutation, an evolutionary strategy that has not been previously seen

in other experiments. While their role is not well understood, suppressor mutations are commonly

found in bacteria that interact directly with hosts, such as those in the gut microbiome [46], as

well as in laboratory strains of E. coli that have been subject to long periods of mutagenesis [47].

These occurrences, as well as the emergence of the suppressor mutation while under oxidative

stress, point to the role of suppressor mutations as stress-tolerance mechanisms.

Third, transcriptomics provides useful insight into the tolerization mechanisms of the

evolved strains. One interesting finding in this study is the dysregulation of iron-uptake genes.

It has long been known that iron plays an important role in oxidative stress in bacteria [48]. In

the presence of oxidative stress, damage to iron-sulfur clusters as a result of the production of

ROS results in the release of free iron into the cytoplasm [11]. In WT, Fur binds to free Fe2+

repressing the expression of iron-uptake genes in order to control levels of cytoplasmic iron. In

the evolved strains, up-regulation of iron-uptake genes instead, in spite of the up-regulation of

Fur, might indicate a decreased Fe2+ level. This suggests that the evolved strains reduce Fe2+

concentration under oxidative stress through a yet to be uncovered mechanism.

Finally, analysis of the evolved strains from a systems biology perspective leads to the

identification of two phenotypic states. The first of these makes use of cross-tolerization to phos-

phate starvation as a means to gain resistance to oxidative stress. The mutation in the pitA gene

in PQ1 results in a frameshift mutation, disrupting activity of the major phosphate transporter

in E. coli. The ensuing phosphate starvation phenotype could augment tolerance to oxidative
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stress in three ways. The first is via the reduction of the availability of high energy electrons for

redox cycling and endogenous ROS production [49, 50]. The second is as a regulatory impetus

for up-regulation of general stress response through the RpoS regulon [51]. The appearance of

the amber suppressor mutation that has previously been observed to relax the stringent response

[52] might further optimize the response towards oxidative stress. Third, there is evidence that

phosphate starvation causes a virulence phenotype which might impart tolerance to oxidative

stress as a secondary effect. The pstABC complex, upregulated during phosphate starvation,

has been found to play an important role in virulence and tolerance to oxidative stress in Avian

Pathogenic E. coli [53], while phosphate starvation has been linked to the induction of cellular

motility, auto-aggregation, and the formation of biofilms [54], a physical method of increasing

resistance to oxidative stress [55]. The exposure to low levels of one type of stress resulting in

a gain in tolerance to various other seemingly unrelated stressors has previously been observed

in several experiments [56], but this study reveals a potential application of this phenomenon.

This result could find a use in metabolic engineering applications where oxidative stress to the

cell factory is a concern through simple modifications of phosphate availability in the media.

The second of these phenotypic states increases tolerance to oxidative stress by directly

combating the damaging effects of ROS. The mutation in iscR in PQ2 causes a constitutive

up-regulation of genes in its regulon, such as iscSUA, sufABC, and nrdEFH. The high level of

IscSUA and SufABC could confer tolerance to oxidative stress by both increasing the iron-sulfur

synthesis rates as well as increasing the rate of repair for damaged iron-sulfur clusters, while

NrdEFH might increase DNA synthesis rates in order to mitigate damage done to DNA. In

conjunction, a shift from aerobic respiration towards a fermentative mode through coordinated

mutations and regulation to reduce metabolic flux through the TCA cycle and up-regulation of
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genes such as ldhA, ackA, and pta reduces the availability of high energy electrons, reducing the

overall production of both endogenous and redox-cycling ROS.

In this study we found that laboratory evolution of E. coli leads to adapted strains

that can withstand up to five times increased paraquat concentrations compared to wild type.

Analysis of these strains revealed insights into the genomic basis for and systems biology of ROS

tolerance. Laboratory evolution resulted in adapted strains whose properties were consistent

with known targets of ROS damage, yet achieved tolerance through non-intuitive mechanisms.

Taken together, the properties of the adapted strains encourage continued work to build a more

complete understanding of adaptation to ROS stress.
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Chapter 5

Conclusions

The development of microbial cell factories through metabolic engineering provides many

advantages over traditional chemical synthesis such as less severe reaction conditions, increased

steroselectivity, simpler raw materials, and the ability to produce complex biological molecules

such as proteins. Creation of these microbial cell factories involves genetic manipulation of

the host cell and the expression of heterologous genes to expand its native genetic capabilities.

Concurrently the advent of high throughput next-generation sequencing has ushered in a new era

in biology, allowing quantitative understanding of processes within the cell on an unprecedented

scale. Methods such as genome resequencing, ChiP-Exo, RNASeq, and Ribosome profiling allow

direct interrogation of biological processes at multiple levels from genotype to translation at a

whole-cell scale. This new fullness of information has brought about a paradigm shift where

we can begin to put together a mechanistic genotype-phenotype relationship from a systems

perspective. In this dissertation, we apply several of these omics data types to improve our

understanding of the model organism and common biotechnological workhorse E. coli for the

purposes of microbial protein production.
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In the first chapter of this dissertation “Multi-omic data integration reveals hidden bio-

logical regularities”, we examined E. coli during expression of its native proteins in order to gain

insight into successful translation. Unlike heterologous proteins, almost all native proteins would

have evolved for optimal translation, reducing wasteful ribosomal stalling and drop off except

where necessary. We describe how translation rates along a protein are encoded through various

means including Shine-Dalgarno-like codons to allow time for proper folding of protein secondary

structure as they exit the ribosome. Additionally, we see that whilst translation efficiency is vari-

able across genes, it is consistent across conditions, and is thus largely an intrinsic property of

each gene, suggesting that it is influenced by sequence properties which we can manipulate.

The second chapter of this dissertation “Independent component analysis of E. coli ’s

transcriptome reveals the cellular processes that respond to heterologous gene expression” de-

scribes a large scale transcriptomic study of heterologous protein expression in E. coli to uncover

the dimensions of host cell response. Independent component analysis decomposes the tran-

scriptomic response across 40 proteins into 4 major host cell responses: Fear vs Greed, Metal

Homeostasis and Respiration, Protein Folding and Amino Acid and Nucleotide Biosynthesis.

These represent the major perturbations to the cell during expression of a variety of heterol-

ogous proteins, and give us insight into the interplay between growth rates, expression levels,

stress and the metabolic burden. It also identifies clear avenues in which we should focus our

future research efforts in order to improve heterologous protein expression.

In the last chapter of this dissertation “Experimental evolution reveals the genetic ba-

sis and systems biology of superoxide stress tolerance” we examine adaptations which increase

E. coli ’s tolerance to reactive oxygen species, a stressor which is common in industrial biotech-

nology due to high level heterologous protein expression, culture conditions or product toxicity.
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We generate two strains which display enhanced tolerance to superoxide stress, as well as elu-

cidate several novel adaptive mechanisms. These mechanisms, attenuating flux through central

carbon metabolism, phosphate starvation and increased damage repair rates provide pathways

to increasing host cell fitness in an industrial setting.

The use of microbes as cell factories promises to be the next industrial revolution if

we can improve yields and efficiency of production. In this dissertation we cover three key

aspects of improving protein expression in E. coli : identifying translation dynamics along the

length of a transcript for proper folding of protein secondary structure, major host cell responses

during expression of a variety of heterologous proteins, and lastly genetic adaptations to increase

oxidative stress tolerance. These findings improve our understanding of E. coli and propel its

development as a platform production strain for industrial biotechnology.
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Appendix A

Multi-omic data integration enables

discovery of hidden biological

regularities - Supplementary

Information

A.1 Supplementary Notes

A.1.1 Supplementary Note 1: Ribosome profiling pause site analysis

It has been established that translation rate is not constant along a gene. This has

been demonstrated in-vitro using proteins such as firefly luciferase [1, 2] and epoxide hydro-

lases12. Various phenomena such as codon usage [1, 3], mRNA secondary structure[4], anti-

Shine-Dalgarno-like sequences [5], poly-proline stretches16 as well as protein domains [6–8] have
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been implicated in determining the locations of these pause sites. Slower translation rate have

been shown anecdotally to improve solubility of heterologously expressed proteins [1, 5] as well as

improve yield and function [2, 9], and has been implied to be necessary for proper co-translational

folding [10–13], yet at the same time impose a fitness cost on the cell [14]. Here we show a link

between secondary structure motifs, anti-Shine-Dalgarno-like sequences, and pausing locations

along the length of a transcript.

Hypergeometric enrichment testing of the pause sites downstream from the end of each

structure points towards the enrichment of pausing at certain codon locations (Supplementary

Figure A.2A, C, E). At the same time, sequence analysis near the ends of the secondary structures

which have pause sites at these locations show increased occurrences of anti-Shine-Dalgarno-like

sequence, approximately 6 codons upstream from the enriched pause site for each secondary

structure motif (Supplementary Figure A.2B, D, F). This indicates that secondary structures

tend to have pause sites downstream from their ends, and anti-SD-like sequences might be used

to induce the pausing. It is noted here that in contrast to other studies which determine the

pausing propensity with relation to the assumed A site, assigning ribosome density to the 3’ end

of the read results in a pause site which is around 2-3 codons further downstream. For example,

Li et. al.[5] found that anti-SD-like sequences were linked to pausing 8-11 nucleotides ( 3rd-4th

codon) downstream, which in our analysis occurs on the 6th codon downstream instead because

of the different positional assignment of the read. Datasets from Mohammad et. al. 2016 which

make use of an altered protocol in order to reduce biases also showed pause site enrichments

at similar location, and show the corresponding increase in SD-like sequences near the ends of

secondary structures (Supplementary Figure A.9).

Overall, across both MOPS minimal and MOPS rich growth conditions, around 50%
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of ribosomal density and 60% of pause sites can be attributed to either anti-SD-like sequences

or secondary structure motifs (Supplementary Figure A.4). While this indicates that these two

factors play a major role in ribosome pausing locations, the overlap between them is only between

around 15% of all pause sites. This suggests that there are other factors unaccounted for in this

study, which either require, or induce pausing, and should be the subject of further investigation.

A.1.2 Supplementary Note 2: Structure of ME models

Here we briefly introduce key formulations of the ME model, and refer the interested

reader to a more complete supplementary information in O’Brien et. al. 2013[15]. The ME

model is a steady state growth model which accounts for metabolism (M) and gene expression

(E). Based on an input of available nutrients to the cell such as carbon and nitrogen sources,

it predicts: a) the cell’s maximum growth rate in a specific condition, and at the maximum

growth rate, b) metabolite uptake and excretion rates, c) metabolic reaction fluxes, and d) gene

expression fluxes such as translation and transcription rates. This is achieved through formulating

transcription, translation, transport and metabolic fluxes into a quasi-linear problem and solving

for maximum growth rate, taking into account compartmentalization of proteins and metabolites

into the cytoplasm, periplasm, and extracellular region. This is done as follows:

1. The metabolic network is described by a stoichiometric matrix, similar to those used

in M-models4 where rows represent metabolites and columns represent reactions. Coefficients

represent the metabolites consumed (negative value) or produced (positive value) in each reaction.

At steady state, there is no change in metabolite concentrations, hence we get: Sv=0 where S is

the stoichiometric matrix, and v is the flux vector, allowing us to solve for v.

2. In the ME model, translation is accounted for by enforcing that proteins have to be
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produced for all enzyme-catalyzed reactions, proportional to the flux for that particular reaction.

Protein synthesis is balanced by protein dilution (due to cell division), which is proportional to

the amount of protein required to hold the predicted flux. Note that in this case we disregard

direct protein degradation as it has been shown to negligible in a growing E. coli cell for most

metabolic genes [16, 17]. While active degradation is important for many signaling proteins such

as transcription factors, these proteins are a very small proportion of the whole proteome in

rapidly growing cell. The depletion of most of the modeled proteins is therefore mostly through

dilution caused by growth, and the depletion rate is simply the growth rate. Mathematically,

this is represented below:

vtranslation,i = vdiluation,i = µ[Ei]

vreaction,i = keff,i[Ei]

vtranslation,i =
µ

keff,i
vreaction,i

The above relationships link the required translation rate vreaction,i to the flux through the reaction

vtranslation,i as well as the predicted growth rate µ and the proteins effective catalytic rate keff,i.

Unlike traditional M models where biomass has to be explicitly modeled, this inherently takes

protein and macromolecule dilution into account during growth, and allows prediction of optimal

protein production, and hence gene expression.

It is important to note that, in previous ME models [15], the effective catalytic rate was

set to be proportional to the respective enzyme’s solvent accessible surface area (SASA). Here,

we make use of condition-specific proteomics data, which vastly improves this parameter and the

predictive scope of the model itself. More details of this parameterization procedure is found in

the following section.
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Finally, translation of proteins are catalyzed by ribosomes, requiring tRNA and its syn-

thethases and the cost of production of these molecules are also explicitly accounted for in the

ME model. Analogous to metabolic enzymes, ribosome efficiency kribo is a necessary parameter

for coupling the ribosome production rate to the overall proteome translation rates, and is shown

below:

vsynthesis, ribosome = vdilution, ribosome =
∑
i

length (peptidei) ·
µ

kribo
· vtranslation,i

Because ribosomes are themselves partially made up of peptides which need to be synthesized,

this coupling creates an asymptotic relationship between ribosome production and growth rate.

Placing a limitation on cell size replicates the natural phenomenon where growth rate is con-

strained by the balance between enzyme and ribosome production even in the overabundance of

nutrients.

3. In the ME model presented in this contribution, transcription is now achieved through

the production of mRNA from nucleotides, catalyzed by RNA polymerase. This is also handled

in a similar way to ribosomes and metabolic enzymes through dilution of RNA polymerase,

proportional to the total flux through all transcription reactions.

A.1.3 Supplementary Note 3: ME model coupling parameters

In addition to metabolic reactions, the ME model describes various biological processes as

biochemical reactions. For example, translation of a protein is described by a reaction assembling

the component amino acids into peptides. An enzyme complex is then formed by a reactions

which assemble together the various peptides and cofactors, and more reactions which apply

the necessary post-translational modifications. Dependent reactions are linked through what are

termed “coupling constraints” because they force a certain amount of flux through one of the
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reactions based on the level of flux through the other, effectively coupling the processes. For

example, flux through a metabolic flux is coupled to production of the catalytic enzyme. A

translation reaction is coupled to both reactions which produce ribosomes and reactions which

transcribe the mRNA. In iOL1650-ME, these coupling constraints are expressed as inequalities

as functions of growth rate to reflect how the nature of many of these constraints are nonlinear in

growth. However, the constants in these functions are set for each individual coupling constraint.

A detailed description of all the processes and coupling parameters in the iOL1650-ME model is

available in the supplementary information of that manuscript [15].

One of the most critical coupling constraints to the function of the ME model is the keff ,

which describes the amount of enzyme required on average to sustain a unit of flux under in vivo

conditions. An example coupling constraint for a metabolic reaction has the form:

vmetabolic ≤
keff

µ
venzyme

This coupling constraint expresses both how as growth rate increases, more enzyme must be

made to pass on to each daughter cell, and how the amount of enzyme production relates to its

efficiency through the keffparameter. While the keffparameter has units of 1/time like a kcat, it

is strictly less than the kcat, as it is describing the amount of enzyme which must be made to

catalyze a unit of flux instead of the maximal flux a particular enzyme can sustain. The reason

this parameter is critical to the function of the ME model is because it describes the relative

cost of each enzyme. An appropriate analogy is an econometric model. Where the reactions

themselves express operational costs, and the cost of the enzyme is the capital cost. A good

example of this the difference between the “expensive” but efficient pyruvate dehydrogenase

complex compared to pyruvate formate lyase. Pyruvate dehydrogenase (PDH) and pyruvate

formate lyase (PFL) both convert pyruvate to acetyl coA to allow carbon to flow through the
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TCA cycle. Flux through PFL will result in secretion of formate, whereas flux through PDH

will result in production of CO2, which is the in vivo behavior. In E. coli, PDH is one of the

most expensive metabolic enzymes because it consists of 60 subunits. However, an optimally

efficient E. coli cell might still produce this enzyme over PFL because its catalytic rate is more

than commensurately higher, as it exploits phenomena such as substrate tunneling and multiple

catalytic sites, and will therefore have a lower protein cost per unit of flux catalyzed. Therefore,

in order for an ME model to correctly predict flux through PDH, it must have keff parameters

for PDH and PFL which represents this tradeoff accurately. In a genome-scale ME model, these

parameters affect the cost between all the various alternate pathways and isozymes. Therefore,

the accuracy of the model predictions of protein expression and the physiological state of the cell

will depend on reasonable relative values of these parameters.

A.1.4 Supplementary Note 4: Simulation of Batch Growth with ME

One of the advantages of the ME model over traditional M models is its ability to account

for proteome limitation. This gives the model the ability to correctly simulate batch growth,

where a cell has a surplus of nutrients around it, but is limited by its ability to produce the

proteins which are required to process these nutrients. Unlike M models, which can predict

growth rates given a specific substrate uptake rate, a ME model can predict the maximal growth

rate given an unbounded substrate uptake (allowing the model to take up as much substrate

as it wants). O’Brien et. al. investigated how proteome limitation begins to take effect as the

substrate uptake rate approaches the optimal value, eventually causing a maximal growth rate3.

Beyond this optimal growth rate, the model is infeasible with any substrate uptake rate because of

the proteome limitation constraints. This optimal growth rate can be computationally identified
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by doing a binary search. Because the experimental data used in this study were all generated

under batch growth conditions, the simulations of growth used this batch growth procedure,

which computes a proteome-limited state. Supplementary Note 5: Simulating ME with estimated

parameters In the absence of in vivo experimental measurements, the original iOL1650-ME model

estimated keffvalues based on the solvent-accessible surface area (SASA), which is a function of

protein size [15, 18]. We sought to evaluate the effect of our new set of estimated parameters

values on predictions of differential gene expression. We simulated a switch of the primary

carbon substrate from fumarate to acetate, which could be validated by the previously generated

mRNA sequencing data sets (GSE59759). Using the original keffvalues obtained from protein size

based estimation we observed a significant number of false positive predictions due to incorrect

pathway usage, with 17 false positives found out of 37 total predictions. Using the consensus

keffparameters derived from sets A + B yielded only 6 false positives with the same number of

correct predictions. Interestingly, almost all of the improvement in prediction came from using

parameter set A alone (Supplementary Figure A.6), which constrained parameters in central

carbon metabolism. This result suggests that the accuracy of a ME model is most sensitive to

these key 28 keffparameters which lie in its high flux backbone [19].

After showing that the set of estimated keffvalues gives better predictions for previously

examined nutrient shift, we generated new experimental data for growth on dual substrates.

We computed predicted differential gene expression after media supplementation with four key

nutrients: Adenine, Glycine, L-Threonine, or L-Tryptophan, using 1) keff found in set A, and 2)

keff found in both sets A and B (TableA.1). Genes that were computed to change in expression by

more than a factor of 16 after supplementation were considered to be predictions of differential

expression (Supplementary A.8). Prediction validation was performed using mRNA sequenc-
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ing data [19], some of which was taken from a previous study [19], to experimentally determine

differentially expressed genes. Predictions were made with a slightly modified iOL1650-ME (Sup-

plementary Figure A.5). For all four supplementations, the accuracy of ME predictions (Table 1)

was higher than those resulting from sampling M model flux states (Supplementary FigureA.8).

Moreover, the accuracy increased when comparing parameter set A + B to parameter set A

alone. Using parameter set A + B, the accuracy of predictions of ranged from 55 to 100%, and

all predicted sets were significantly enriched for differentially expressed genes (p < 0.05 using a

hypergeometric distribution).

These results suggest that a parameterized genome-scale ME model, due to its incor-

poration of enzyme biosynthetic costs, gives a significant improvement in prediction of gene

expression over existing methods using M models alone. For example, the ME model correctly

predicts the often non-intuitive shift of amino acid precursors. Specifically, when supplementing

with L-Threonine, the ME model will produce L-Serine from L-Threonine directly, as observed

experimentally. On the other hand, the ME model predicts no significant up regulation of glyA

to produce L-Serine from Glycine supplementation, as seen in the expression profiling data. The

iJO1366 M-model will incorrectly predict this change (Supplementary Figure A.6c), demonstrat-

ing how the ability to account for protein expression costs improves the accuracy of the predicted

flux state. Moreover, as a result of its quantitative numerical predictions of gene expression, ME

models can also predict partial up and down regulation of genes, in addition to binary responses

when a gene goes from active to inactive. For example, after supplementation with Adenine, the

model correctly predicts downregulation of purHD and purMN (Supplementary Figure A.6c).
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A.2 Supplementary Methods

A.2.1 mRNA seq

Cells were harvested at mid-log (OD600 ≈ 0.3) in biological duplicates for each condition.

From each sample, 3mL of culture were mixed with 6mL RNAprotect Bacteria Reagent (Qiagen),

incubated for 5 minutes, and then centrifuged at 5000g for 10 minutes at room temperature.

Total RNA samples were then isolated from the pellet using the RNeasy Plus Mini kit (Qiagen).

Samples were quantified using a NanoDrop 1000 (Thermo Scientific) and an Agilent RNA 6000

Nano Kit with an Agilent 2100 Bioanalyzer. Strand-specific mRNA libraries were created using

the dUTP method, with ribosomal rRNA subtraction with the Ribo-Zero rRNA Removal Kit

(Epicentre). Libraries were run on a Miseq (Illumina, CA) multiplexed with 2 duplicates per run

as per the manufacturer’s instructions. Expression values were computed using the bowtie [20]

and cufflinks [21] packages. The processed data were uploaded to GEO under accession numbers

GSE59759 and GSE59760.

A.2.2 Structural Data Retrieval and Manipulation

Incorporating protein-related information into a GEM involves four stages of semi-

automated curation: (i) map the genes of the organism to available experimental protein struc-

tures, found in publicly available databases, such as the Protein Data Bank (PDB); (ii) determine

genes with and without available protein structures and perform homology modeling using the

I-TASSER suite of programs [22] to fill in gaps where crystallographic or NMR structures are not

available; (iii) perform ranking and filtering of PDB structures for each gene based on a set selec-

tion criteria (e.g., resolution, number of mutations, completeness); (iv) map GEM genes to other

databases (e.g., BRENDA [23, 24], SwissProt [25], Pfam [26], SCOP [27]) for complementary

86



protein-structure derived data. The quality of the reconstruction expansion process to include

high confidence protein structures is considered by carrying out a series of QC/QA verification

steps during the ranking and filtering stage. The GEM annotation of the organism of interest is

stored in SBML and Matlab formats and many organisms can be found in the BiGG database

[28]. Amino acid sequence of the proteins of interest are stored in FASTA format. To map protein

structural data to a GEM, we make use of Python modules, ProDy [29, 30] and Biopython [31]

to parse information in the PDB files. The molecular visualization software VMD37 was used

for viewing the 3D structure of the modeled protein and the predicted functional sites and the

creation of images. Installation of PfamScan and HMMER3 algorithms are required for generat-

ing protein fold families for certain proteins [32, 33]. Open source software for protein structural

predictions are available and are used in conjunction with the IPython framework.

A.2.3 Predictions of mRNA expression in parametrized conditions

We sought to evaluate the effect of the estimated parameter values on predictions of

differential gene expression under identical experimental conditions as the proteomics used to

parameterize the model. We simulated a switch of the primary carbon substrate from fumarate

to acetate, and obtained mRNA sequencing data (GSE59759) for E. coli K-12 BW25113 (obtained

from the Coli Genetic Stock Center) cultivated under identical experimental conditions to those

of the proteomic data. Bach growth simulations were then performed using 3 different sets of

keff parameters: the initial solvent-accessible-surface area parameters, keff parameters derived

from fluxomics (set A), and keff parameters derived from fluxomics and our proteomics-based

algorithm (set A + B). Predicted differential expression was compared to the set of genes identified

as differentially expressed by cufflinks [21] at a false discovery rate of 0.05. In order to account
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for accuracy on a level field with respect to sensitivity, we varied the computational cutoff so that

we would have a similar number of correct predictions (as close to 20 as possible), allowing us to

directly compare the number of incorrect predictions. Using the the original iOL1650-ME model

keff values obtained from protein size based estimation, we observed a significant number of false

positive predictions due to incorrect pathway usage, with 17 false positives found out of 37 total

predictions. Using a consensus keff parameter set derived from both experimentally measured

flux values [34] (set A) and model-predicted values (set B) yielded only 6 false positives with the

same number of correct predictions. Additionally, we were able to improve predictions greatly

using the 28 keff parameter values from set A alone (Supplementary Figure A.8), which only

constrained parameters in central carbon metabolism. This result suggests that the accuracy

of a ME model is most sensitive to keff parameters for reactions which lie along its high flux

backbone.

A.2.4 Sampling of M-model flux states in iJO1366

The optGpSampler[35] software was used to sample flux states in the iJO1366 M model

using its python API. First, the model was reduced by removing blocked reactions as identified

by flux variability analysis in cobrapy42. For each simulation, the lower bound on the biomass

reaction was set to 90% of its optimal value. Additionally, the reactions HXAND, XAND, and

URIC were blocked (Supplementary Figure A.7). The sampling algorithm was then run for 100

steps and generated 10000 points for each simulation. Afterwards, the fluxes were linearly scaled

such that the mean flux of the biomass reaction was 1. Sampling was run on the model with only

D-Glucose uptake, and also with 10 mmol/gDw/hr uptake allowed of each of the supplements.

Reactions which were unbounded (as determined by an FVA maximum greater than 500 or an
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FVA minimum of less than -500) were excluded from the subsequent analysis. For each of the

supplements, predicted changed reaction fluxes between the supplemented and unsupplemented

samples were determined by finding reaction fluxes where (1) the mean changed by more than a

factor of 2 and (2) the mean changed by more than the sum of the standard deviations for the

supplemented and unsupplemented fluxes. These reactions were converted to gene predictions by

assuming all genes in the gene reaction rule for the changing reaction were up or down regulated.

These gene predictions were validated against mRNA sequencing data in the same manner as the

ME gene differential expression predictions. This method was used instead of the more traditional

method comparing pairs of samples as done in some other studies [9] because it resulted in higher

accuracy than those methods with this data.

A.3 Supplementary Figures
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Figure A.1: Protein per mRNA ratios (A) and ribosome per protein (B) ratios across envi-
ronments are highly conserved.
Ratios span several orders of magnitude across genes, but are highly conserved across different
experimental conditions
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Figure A.2: Pause site enrichment and percent SD-like sequence near ends of secondary
structures.
Hypergeometric enrichment testing was used to determine locations downstream of secondary
structures which were enriched for pausing (A, C, E). Red bars represent p-value of enrichment.
Blue line indicates the per gene normalized ribosome density at each codon position averaged
across all occurrences of the secondary structure, showing a matching increase in average ribosome
density. Based on the codon locations indicated by the enrichment test, all occurrences of each
secondary structure were divided into those with corresponding pause sites (Pause) and those
without (Non-Pause). The percentage occurrence of Shine-Dalgarno-like sequences appearing
near the ends of these secondary structures is shown (B, D, E). The global average occurrence of
an SD-like sequence is 9.13%, but this increases greatly at certain codon locations near the ends
of secondary structures with corresponding pause sites (Blue line).
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Figure A.3: Hypergeometric enrichment test of codons downstream from annotated SCOP
domains.
No enrichment was found when codons downstream from the ends of domains were tested for
pause site enrichment. Previous studies have found evidence that show slow translating regions
between domains might be important for proper folding. However the location and even presence
of pause sites might only occur on a case by case basis specific to particular domains, and fail to
show enrichment when tested on the genome scale.
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Figure A.4: Percentage of ribosome density and pause sites linked to SD-like sequences and/or
Secondary Structure
Pie charts showing the distribution of pause sites linked to secondary structures and/or Shine-
Dalgarno-like codons. In both MOPS minimal and MOPS Rich media, codons indicated to be
pause-enriched for SD-like sequences accounted for around 20% of ribosomal density (A, B) and
30% of pause sites (C, D), while secondary structures accounted for 40% and 35% respectively.
Of these, around 20–25% of these codons are indicated by both SD-like sequences and secondary
structures. Around 50% of ribosomal density and 40% of all pause sites were still unaccounted
for, indicating that there are other factors linked to pausing which were not included.
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Figure A.5: Distribution of pairwise comparisons between computed keff.
Each of the 284 keff was compared between conditions (6 comparisons between each of the 4
conditions). Plotted is the cumulative distribution of all these pairwise comparisons in terms of
the change in order of magnitude. We observe that 94% of these comparisons remain within an
order of magnitude. For the comparisons which were not within an order of magnitude, proteins
associated with those complexes were more likely to catalyze multiple reactions (42.5% catalyzing
more than one reaction v.s. 27.8% catalyzing more than one reaction).

Figure A.6: Predicted Differential Expression between Fumarate and Acetate
The ME model was used to predict differential expression between growth on fumarate and
growth on acetate as the main carbon substrates. These predictions were run with three different
sets of keff and then validated using mRNA sequencing. This is described in more detail in the
“Predictions of mRNA expression under identical conditions to proteomic data” section.
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Figure A.7: Updates to the Adenine Degradation Pathway in the E. coli Metabolic Recon-
struction.
As reconstructed in iJO1366 and iOL1650-ME, this pathway breaks down intracellular adenine
to glyoxylate. However, our expression-profiling data with adenine supplementation suggests
that the highlighted reactions do not occur to break down adenine, even though the upstream
reaction adenine deaminase does occur. While these reactions were included in the model based
on their homology to adenine degradation pathways in other organisms, it is likely that the
pathway is latent or inactive in E. coli K-12. Therefore, the reactions HXAND and XAND were
disabled during simulations on Adenine. Additionally, use of the unexpressed gene focB was also
penalized.
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Figure A.8: Sampling iJO1366 Flux States Following Nutrient Supplementation.
To compare ME predictions of gene differential expression to that of the M model, sampling
was run on iJO1366 to identify reactions which changed significantly in flux (colored red) after
supplementation. For each of these four conditions, the mean flux from sampling on glucose is
plotted on the x axis, and the mean flux from sampling on glucose with the nutrient supple-
mentation is plotted on the y axis. The model gene reaction rules were used to convert these
to gene expression predictions, which were compared to mRNA sequencing to give the reported
accuracies.
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Figure A.9: Pause site enrichment downstream of secondary structures across datasets.
The location of pause site enrichments downstream of alpha helix (A) and beta sheet (C) sec-
ondary structure motifs between several datasets from Mohammad et. al. 2016 [36] and Li et.
al. 2014 [37], which make use of different protocols. The location of pause site enrichment is
consistent across both protocols. Similar to the analysis done in Supplementary figure 2B, D, F,
the datasets from Mohammad et. al. 2015 also show increased prevalence of SD-like codons at
the ends of secondary structures with pause sites downstream as compared to those without (B,
D).
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Appendix B

Independent component analysis of

E. coli’s transcriptome reveals the

cellular processes that respond to

heterologous gene expression -

Supplementary Information

B.1 Methods

B.1.1 Bacterial strains and growth conditions

Media used was M9 minimal media with 0.2% w/v glycerol. Bacterial strains used were

Gly2 glycerol evolved strains from [1] which grows optimally with glycerol as a carbon source.
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B.1.2 Generation of library of gratuitous proteins

We generated a library of 46 strains each expressing a protein on a plasmid controlled by

a rhamnose promoter (Supplementary Table 1). Gene blocks for each protein were generated by

PCR from existing plasmids. These were inserted into a vector backbone based on a modified

pNIC28-Bsa4 plasmid containing the rhamnose transcription regulators rhaS and rhaR through

3’ LIC cloning[2] under the control of a rhamnose rhaBAD promoter. All proteins were preceded

by a His-TEV tag at the N terminus as well as a bi-cistronic design (BCD) sequence to control

translation initiation [3]. Sequences were verified by Sanger sequencing. Verified plasmids were

transformed into Gly2 cells [1]. A negative control plasmid was included in the dataset (CC1)

which included all plasmid elements except the heterologous protein sequence.

B.1.3 Culture conditions

Each heterologous protein expressing strain was grown up overnight in M9 minimal media

with 0.2% w/v glycerol as a carbon source. 2mL of overnight culture was inoculated into 60mL

of fresh M9/glycerol. Cultures were incubated shaking at 37C until they reached an A600 OD of

0.3. Rhamnose was added to a final concentration of 1mM to induce protein expression. Cultures

were further incubated for an additional 2hrs after induction and harvested.

B.1.4 Transcriptomics

Cells were pelleted and lysed with a modified version of the RNAProtect Bacteria Reagent

protocol, ribosomal RNA was depleted using Ribo-Zero rRNA Removal Kit for Gram-Negative

bacteria (Illumina), libraries were created using KAPA RNA Library Preparation kit. Deviations

from the kit protocols are mentioned below. 3mL of induced culture was added to 6mL of
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RNAProtect Bacteria Reagent (Qiagen) and vortexed, then left at room temperature to incubate

for 5 minutes. Cells were pelleted and then resuspended in 400uL elution buffer and then split into

two tubes, with one kept as a spare. One pellet was then lysed enzymatically with the addition

of lysozyme, proteinase-K and 20% SDS. SUPERase-In was added to maintain the integrity of

the RNA. RNA isolation was then performed according to the rest of the kit protocol. rRNA was

the depleted using the Ribo-Zero rRNA Removal Kit for Gram-Negative Bacteria according to

the protocol, and libraries were constructed for paired-end sequencing using the KAPA RNA-Seq

Library Preparation kit protocol. Libraries were sequenced on an Illumina NextSeq platform.

Transcriptomic reads were mapped using Bowtie2 [4], and reads were counted using HTSeq

[5]. Libraries were normalized using TPM including the heterologous gene to determine the

percentage of heterologous transcripts to native genes transcripts. TPM was then calculated

separately for only the native genes excluding the heterologous gene for calculating translation

efficiencies and as input in the ICA algorithm. RNA-seq data is available in the Gene Expression

Omnibus (GEO) database with accession number.

B.1.5 Independent Component Analysis

We combined the expression profiles generated in this study with a collection of 278 ex-

pression profiles previously generated in our research group. ICA was performed as described in

[6]. Briefly, the expression compendium was centered, using the WT MG1655 Gly2 expression

profile reported in this manuscript as the baseline condition. We executed FastICA 100 times

with random seeds and a convergence tolerance of 10-7. We constrained the number of compo-

nents in each iteration to the number of components that reconstruct 99% of the variance as

calculated by principal component analysis. The resulting components were clustered using DB-
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SCAN to identify robust independent components. I-modulons were extracted from independent

components by iteratively removing genes with the largest absolute value and computing the

kurtosis test statistic of the resulting distribution. Once the test statistic fell below a cutoff of 4

(identified through a sensitivity analysis), we designated the removed genes an i-modulon.

B.1.6 Model simulations and calculating simulated amino acid costs

We used a model for metabolism and gene expression to simulate the expression of each

heterologous gene in E. coli [7]. Briefly, transcription and translation and dilution reactions were

added for each heterologous gene to allow its synthesis. The model was then solved setting µ

equal to the measured growth rate of each protein, optimizing for the flux through the dilution

reaction which would symbolize the maximum dilution rate of the heterologous protein during

replication of the cell. The solution to the optimization results in two vectors, the flux vector and

the shadow price vector. Shadow prices represent the energetic cost of making each metabolite.

Figure B.1: Codon adaptation index plot against the expression level shows that expression
level is not dependent on codon usage
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Figure B.2: Codon usage in the entire dataset is flexible across samples. Heatmap shows the
correlation matrix of the normalized codon usage across datasets, showing that the transcriptome
is not modulated to maintain codon preference.
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Figure B.3: ICA distinguishes between two closely related signals. A: An i-modulon showed
high weighting in rhaS and rhaR, but not the rest of the rhamnose metabolism genes. The
rhamnose inducible plasmid coded for both the rhaS and rhaR genes, hence this i-modulon
probably represented the plasmid copy number. B: All samples show a high level of this i-
modulon except wild type, which did not contain the plasmid. C: Genes which show significant
weights in the RhaR i-modulon are members of the rhaSR-rhaBAD operon: rhaA, rhaB, rhaD,
rhaT, rhaM, rhaS, rhaR, with nrdD and yjiY showing marginal significance. D: While most
samples show a high activity in the RhaR i-modulon implying a successful induction (green),
several samples show failure of induction (red).
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Figure B.4: RpoS and i-modulon 96 are highly correlated. Many genes in i-modulon 96 are
regulated by both BluR and RpoS, suggesting a co-regulation under the conditions

Figure B.5: CusR and Fnr/IscR I-modulon activities are correlated with each other, indicating
a link between metal homeostasis and the aerobicity of the cell.
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Figure B.6: Fur-1 i-modulon activity is strongly correlated with the activity of uncharacterized-
5.

Figure B.7: Uncharacterized-5 is comprised of genes many of which are regulated by a combina-
tion of fnr, fur and arcA. We plot the correlation of each gene’s expression with the activity of the
uncharacterized-5 i-modulon to determine the main drivers of its activity within the dataset. The
most highly correlated genes are those co-regulated by fur and either fnr or arcA, demonstrating
a link between metal homeostasis and aerobicity within the dataset.
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Appendix C

Experimental evolution reveals the

genetic basis and systems biology of

superoxide stress tolerance -

Supplementary Information

C.1 Methods

C.1.1 Strains

The initial strain used for the first phase of evolution was an MG1655 K-12 E. coli strain

which had been evolved for optimal growth on glucose as a carbon source in M9 minimal media

[1].
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C.1.2 TALE

TALE was performed using a similar protocol to that in Mohamad et. al. 2017 [2].

Parallel cultures were started in M9 minimal medium by inoculation from isolated colonies.

Evolution was performed in an automated platform with 15 mL working volume aerobic cultures

maintained at 37°C and magnetically stirred at 1100 rpm. Growth was monitored by periodic

measurement of the 600 nanometer optical density (OD600) on a Tecan Sunrise microplate reader,

and cultures were passaged to fresh medium during exponential cell growth at an OD600 of

approximately 0.3. Growth rates were determined for each batch of medium by linear regression

of ln(OD600) versus time. At the time of passage, PQ concentration in the fresh medium batch

was automatically increased if a specified growth rate had been met for several flasks. Samples

were saved throughout the experiment by mixing equal parts culture and 50% v/v glycerol and

storing at -80°C in glycerol. Mutation calling The breseq pipeline version 0.33.1 [3] was used to

map the DNA-seq reads to an E. coli K12 MG1655 reference genome (NCBI accession NC 000913

version 3). DNA-seq quality control was accomplished using the software AfterQC version 0.9.7

[4].

C.1.3 Generation of aceE knockout

We used P1 phage transduction to transfer the aceE knockout from the ∆aceE strain

in the Keio collection to WT [5]. Briefly, ∆aceE strain from the Keio collection was grown up

and lysed using P1 phages. The lysate was filtered to remove cell debris leaving behind only P1

phages with packaged ∆aceE strain DNA. This was used to infect WT to transfect the DNA.

Because the ∆aceE strain in the Keio collection contains a selective kanamycin marker at the

gene lesion we were able to select for successful transfections.
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C.1.4 Growth curves

End point strains were inoculated from overnight cultures into M9 minimal media with

glucose as a carbon source (0.4% w/v) and allowed to grow to A600 OD 0.5. They were then

diluted down to OD 0.01 with glucose minimal media containing different concentrations of

paraquat. These were loaded onto a Bioscreen C set to measure OD every 30 minutes for 24

hours at 37C at high shaking. Comparison between WT and aceE knockout was performed in a

similar fashion except with 10% LB added to the media to allow growth of the aceE knockout

strain.

C.1.5 Culture conditions

WT, PQ1 and PQ2 were grown overnight in M9 minimal media with 0.4% w/v glucose

as a carbon source. Fresh media was inoculated with the overnight culture to an initial OD of

0.025. Cultures were aerated with a stir bar in a water bath maintained at 37°C until OD reached

0.3. 50mM paraquat was added to a final concentration of 250uM in stressed condition flasks.

After 20 minutes both stressed and unstressed conditions were harvested for ribosome profiling

and transcriptomics.

C.1.6 Ribosome profiling

Ribosome profiling libraries were created using a modified version of the protocol outlined

in Latif et. al. [6]. Differences from the published protocol are outlined below. In order to negate

the possible confounding effects of addition of chloramphenicol to the media at harvest, cells were

lysed by grinding in liquid nitrogen. 50mL of cells were harvested by centrifugation for 4 minutes

at 37C in a 50mL conical tube containing 0.400g of sand, supernatant was aspirated quickly
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and the cell pellet was flash frozen in liquid nitrogen. Pellets were then transferred into a liquid

nitrogen cooled mortar and pestle, 500uL of lysis buffer was added and the pellet was pulverised

to lyse the cells. Lysate was transferred to a falcon tube to thaw on ice and centrifuged and the

supernatant whole cell lysate was isolated to continue with the published protocol [6]. Reads

were sequenced on an Illumina HighSeq machine using a single end 50bp kit. Ribosome profiling

reads had adapters removed using CutAdapt v1.8 (M. Martin 2011), then mapped to E. coli

genome MG1655 using Bowtie v1.0.0 (Langmead 2010) and scored at the 3’ end to generate

ribosome density profiles for each gene.

C.1.7 Transcriptomics

Cells were pelleted and lysed with a modified version of the RNAProtect Bacteria Reagent

protocol, ribosomal RNA was depleted using Ribo-Zero rRNA Removal Kit for Gram-Negative

bacteria (Illumina), libraries were created using KAPA RNA Library Preparation kit. Deviations

from the kit protocols are mentioned below. 3mL of induced culture was added to 6mL of

RNAProtect Bacteria Reagent (Qiagen) and vortexed, then left at room temperature to incubate

for 5 minutes. Cells were pelleted and then resuspended in 400uL elution buffer and then split into

two tubes, with one kept as a spare. One pellet was then lysed enzymatically with the addition

of lysozyme, proteinase-K and 20% SDS. SUPERase-In was added to maintain the integrity of

the RNA. RNA isolation was then performed according to the rest of the kit protocol. rRNA was

the depleted using the Ribo-Zero rRNA Removal Kit for Gram-Negative Bacteria according to

the protocol, and libraries were constructed for paired-end sequencing using the KAPA RNA-Seq

Library Preparation kit protocol. Reads were sequenced on the Illumina NextSeq platform.

Transcriptomic reads were mapped using Bowtie2 [7], and reads were counted using HT-
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Seq [8]. Differential expression of genes was called using the DESeq2 [9] package in Bioconductor.

Genes with a log2fold change greater than 1 and an FDR-adjusted p-value smaller than 0.1 were

considered to be significantly differentially expressed between conditions. Raw read counts were

normalized to transcripts per million (TPM) for further analysis. Sequencing data is available in

the Gene Expression Omnibus (GEO) database with accession number.

C.1.8 Enrichment analysis for COG categories

Differentially expressed genes between pairs of conditions were annotated with their Clus-

ters of Orthologous Genes (COG) categories. We then performed a hypergeometric test to test

for enrichment of each COG category amongst the set of differentially regulated genes. The

Bonferroni correction was used to adjust for the FDR, and an adjusted p-value below 0.01 was

considered significantly enriched.

C.1.9 Cell motility assay

Overnight cultures of each strain were inoculated into M9 minimal media plates containing

0.4% w/v glucose and 0.25% w/v agar by inserting a pipette tip containing 1uL of culture about

3mm into the center of the plate and ejected as the tip was lifted up. Plates were incubated at

37C for 72 hours.

C.2 Supplementary Figures
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Figure C.1: The aceE knockout strain showed increased fitness over WT at low concentrations
of paraquat but decreased fitness at higher concentrations. This growth curve was done with
the addition of 10% w/v LB because the aceE knockout mutant is unable to grow in glucose
minimal media. LB has been shown to greatly increase tolerance to oxidative stress due to the
availability of amino acids in the media.

Figure C.2: Cell motility assay of WT and evolved strains shows increased cell motility in PQ1
and decreased cell motility in PQ2. PQ1 showed an up-regulation of cell motility related genes
compared with wild type, whilst PQ2 showed a down-regulation of the same genes compared with
wild type. We performed a cell motility assay on these strains and found that over 72 hours,
PQ1 cells are indeed more motile than PQ2 and WT strains.
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Appendix D

Datasets generated for the purpose

of this dissertation

Table D.1: Datasets generated for the purpose of this dissertation

2 Glucose Ribosome profiling

2 Pyruvate Ribosome profiling

2 Fumarate Ribosome profiling

2 Acetate Ribosome profiling

3 atASMT 325G 1 RNASeq GEO accession GSE133607

3 atASMT 325G 2 RNASeq GEO accession GSE133607

3 bpTDC 1 RNASeq GEO accession GSE133607

3 bpTDC 2 RNASeq GEO accession GSE133607

3 BRCA 1 RNASeq GEO accession GSE133607

3 BRCA 2 RNASeq GEO accession GSE133607

3 BRCActrl 1 RNASeq GEO accession GSE133607

3 BRCActrl 2 RNASeq GEO accession GSE133607

3 BRCActrl 3 RNASeq GEO accession GSE133607

3 BRCActrl 4 RNASeq GEO accession GSE133607
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 BRCAswap 1 RNASeq GEO accession GSE133607

3 BRCAswap 2 RNASeq GEO accession GSE133607

3 btAANAT 1 RNASeq GEO accession GSE133607

3 btAANAT 2 RNASeq GEO accession GSE133607

3 btASMT 1 RNASeq GEO accession GSE133607

3 btASMT 2 RNASeq GEO accession GSE133607

3 CC1 3 RNASeq GEO accession GSE133607

3 CC1 4 RNASeq GEO accession GSE133607

3 CC1 5 RNASeq GEO accession GSE133607

3 CC1 6 RNASeq GEO accession GSE133607

3 CC1 1 RNASeq GEO accession GSE133607

3 CC1 2 RNASeq GEO accession GSE133607

3 ccCOMT 1 RNASeq GEO accession GSE133607

3 ccCOMT 2 RNASeq GEO accession GSE133607

3 ckDDC 1 RNASeq GEO accession GSE133607

3 ckDDC 2 RNASeq GEO accession GSE133607

3 CNTF belt 1 RNASeq GEO accession GSE133607

3 CNTF belt 2 RNASeq GEO accession GSE133607

3 cobPNMT 1 RNASeq GEO accession GSE133607

3 cobPNMT 2 RNASeq GEO accession GSE133607

3 cvPhhB 1 RNASeq GEO accession GSE133607

3 cvPhhB 2 RNASeq GEO accession GSE133607

3 ggAANAT 1 RNASeq GEO accession GSE133607

3 ggAANAT 2 RNASeq GEO accession GSE133607

3 ggTPH 1 RNASeq GEO accession GSE133607

3 ggTPH 2 RNASeq GEO accession GSE133607

3 hsAANAT 1 RNASeq GEO accession GSE133607

3 hsAANAT 2 RNASeq GEO accession GSE133607

3 hsASMT 1 RNASeq GEO accession GSE133607
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 hsASMT 2 RNASeq GEO accession GSE133607

3 hsPNMT mb 1 RNASeq GEO accession GSE133607

3 hsPNMT mb 2 RNASeq GEO accession GSE133607

3 hsTPH 1 RNASeq GEO accession GSE133607

3 hsTPH 2 RNASeq GEO accession GSE133607

3 hsTPH E2K 1 RNASeq GEO accession GSE133607

3 hsTPH E2K 2 RNASeq GEO accession GSE133607

3 hsTPH E2K N91I P99C 1 RNASeq GEO accession GSE133607

3 hsTPH E2K N91I P99C 2 RNASeq GEO accession GSE133607

3 hsTPH N158trunc 1 RNASeq GEO accession GSE133607

3 hsTPH N158trunc 2 RNASeq GEO accession GSE133607

3 hsTPH N174trunc 1 RNASeq GEO accession GSE133607

3 hsTPH N174trunc 2 RNASeq GEO accession GSE133607

3 hsTPH Ntermtrunc 1 RNASeq GEO accession GSE133607

3 hsTPH Ntermtrunc 2 RNASeq GEO accession GSE133607

3 hsTPH1 1 RNASeq GEO accession GSE133607

3 hsTPH1 2 RNASeq GEO accession GSE133607

3 MBP 1 RNASeq GEO accession GSE133607

3 MBP 2 RNASeq GEO accession GSE133607

3 msCOMT 1 RNASeq GEO accession GSE133607

3 msCOMT 2 RNASeq GEO accession GSE133607

3 ocAANAT 1 RNASeq GEO accession GSE133607

3 ocAANAT 2 RNASeq GEO accession GSE133607

3 osTDC K374H 1 RNASeq GEO accession GSE133607

3 osTDC K374H 2 RNASeq GEO accession GSE133607

3 osTDC K374L 1 RNASeq GEO accession GSE133607

3 osTDC K374L 2 RNASeq GEO accession GSE133607

3 osTDC K374Q 1 RNASeq GEO accession GSE133607

3 osTDC K374Q 2 RNASeq GEO accession GSE133607

120



Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 osTDC L360V 1 RNASeq GEO accession GSE133607

3 osTDC L360V 2 RNASeq GEO accession GSE133607

3 pmTPH 1 RNASeq GEO accession GSE133607

3 pmTPH 2 RNASeq GEO accession GSE133607

3 RFC 1 RNASeq GEO accession GSE133607

3 RFC 2 RNASeq GEO accession GSE133607

3 RFCctrl 3 RNASeq GEO accession GSE133607

3 RFCctrl 4 RNASeq GEO accession GSE133607

3 RFCctrl 1 RNASeq GEO accession GSE133607

3 RFCctrl 2 RNASeq GEO accession GSE133607

3 RFCnopause 1 RNASeq GEO accession GSE133607

3 RFCnopause 2 RNASeq GEO accession GSE133607

3 RFCpluspause 1 RNASeq GEO accession GSE133607

3 RFCpluspause 2 RNASeq GEO accession GSE133607

3 rnCOMT sol 1 RNASeq GEO accession GSE133607

3 rnCOMT sol 2 RNASeq GEO accession GSE133607

3 rnPNMT 1 RNASeq GEO accession GSE133607

3 rnPNMT 2 RNASeq GEO accession GSE133607

3 rnTDC 2 RNASeq GEO accession GSE133607

3 rnTDC 1 RNASeq GEO accession GSE133607

3 rnTDC trunc 1 RNASeq GEO accession GSE133607

3 rnTDC trunc 2 RNASeq GEO accession GSE133607

3 saCOMT T2A 1 RNASeq GEO accession GSE133607

3 saCOMT T2A 2 RNASeq GEO accession GSE133607

3 sfCOMT 1 RNASeq GEO accession GSE133607

3 sfCOMT 2 RNASeq GEO accession GSE133607

3 sgAANAT D63G 1 RNASeq GEO accession GSE133607

3 sgAANAT D63G 2 RNASeq GEO accession GSE133607

3 ssDDC 1 RNASeq GEO accession GSE133607
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 ssDDC 2 RNASeq GEO accession GSE133607

3 TP53B 1 RNASeq GEO accession GSE133607

3 TP53B 2 RNASeq GEO accession GSE133607

3 WT 1 RNASeq GEO accession GSE133607

3 WT 2 RNASeq GEO accession GSE133607

3 atASMT 325G 1 Ribosome profiling GEO accession GSE134324

3 atASMT 325G 2 Ribosome profiling GEO accession GSE134324

3 bpTDC 1 Ribosome profiling GEO accession GSE134324

3 bpTDC 2 Ribosome profiling GEO accession GSE134324

3 BRCA 1 Ribosome profiling GEO accession GSE134324

3 BRCA 2 Ribosome profiling GEO accession GSE134324

3 BRCActrl 1 Ribosome profiling GEO accession GSE134324

3 BRCActrl 2 Ribosome profiling GEO accession GSE134324

3 BRCActrl 3 Ribosome profiling GEO accession GSE134324

3 BRCActrl 4 Ribosome profiling GEO accession GSE134324

3 BRCAswap 1 Ribosome profiling GEO accession GSE134324

3 BRCAswap 2 Ribosome profiling GEO accession GSE134324

3 btAANAT 1 Ribosome profiling GEO accession GSE134324

3 btAANAT 2 Ribosome profiling GEO accession GSE134324

3 btASMT 1 Ribosome profiling GEO accession GSE134324

3 btASMT 2 Ribosome profiling GEO accession GSE134324

3 CC1 3 Ribosome profiling GEO accession GSE134324

3 CC1 4 Ribosome profiling GEO accession GSE134324

3 CC1 5 Ribosome profiling GEO accession GSE134324

3 CC1 6 Ribosome profiling GEO accession GSE134324

3 CC1 1 Ribosome profiling GEO accession GSE134324

3 CC1 2 Ribosome profiling GEO accession GSE134324

3 ccCOMT 1 Ribosome profiling GEO accession GSE134324

3 ccCOMT 2 Ribosome profiling GEO accession GSE134324
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 ckDDC 1 Ribosome profiling GEO accession GSE134324

3 ckDDC 2 Ribosome profiling GEO accession GSE134324

3 CNTF belt 1 Ribosome profiling GEO accession GSE134324

3 CNTF belt 2 Ribosome profiling GEO accession GSE134324

3 cobPNMT 1 Ribosome profiling GEO accession GSE134324

3 cobPNMT 2 Ribosome profiling GEO accession GSE134324

3 cvPhhB 1 Ribosome profiling GEO accession GSE134324

3 cvPhhB 2 Ribosome profiling GEO accession GSE134324

3 ggAANAT 1 Ribosome profiling GEO accession GSE134324

3 ggAANAT 2 Ribosome profiling GEO accession GSE134324

3 ggTPH 1 Ribosome profiling GEO accession GSE134324

3 ggTPH 2 Ribosome profiling GEO accession GSE134324

3 hsAANAT 1 Ribosome profiling GEO accession GSE134324

3 hsAANAT 2 Ribosome profiling GEO accession GSE134324

3 hsASMT 1 Ribosome profiling GEO accession GSE134324

3 hsASMT 2 Ribosome profiling GEO accession GSE134324

3 hsPNMT mb 1 Ribosome profiling GEO accession GSE134324

3 hsPNMT mb 2 Ribosome profiling GEO accession GSE134324

3 hsTPH 1 Ribosome profiling GEO accession GSE134324

3 hsTPH 2 Ribosome profiling GEO accession GSE134324

3 hsTPH E2K 1 Ribosome profiling GEO accession GSE134324

3 hsTPH E2K 2 Ribosome profiling GEO accession GSE134324

3 hsTPH E2K N91I P99C 1 Ribosome profiling GEO accession GSE134324

3 hsTPH E2K N91I P99C 2 Ribosome profiling GEO accession GSE134324

3 hsTPH N158trunc 1 Ribosome profiling GEO accession GSE134324

3 hsTPH N158trunc 2 Ribosome profiling GEO accession GSE134324

3 hsTPH N174trunc 1 Ribosome profiling GEO accession GSE134324

3 hsTPH N174trunc 2 Ribosome profiling GEO accession GSE134324

3 hsTPH Ntermtrunc 1 Ribosome profiling GEO accession GSE134324
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 hsTPH Ntermtrunc 2 Ribosome profiling GEO accession GSE134324

3 hsTPH1 1 Ribosome profiling GEO accession GSE134324

3 hsTPH1 2 Ribosome profiling GEO accession GSE134324

3 MBP 1 Ribosome profiling GEO accession GSE134324

3 MBP 2 Ribosome profiling GEO accession GSE134324

3 msCOMT 1 Ribosome profiling GEO accession GSE134324

3 msCOMT 2 Ribosome profiling GEO accession GSE134324

3 ocAANAT 1 Ribosome profiling GEO accession GSE134324

3 ocAANAT 2 Ribosome profiling GEO accession GSE134324

3 osTDC K374H 1 Ribosome profiling GEO accession GSE134324

3 osTDC K374H 2 Ribosome profiling GEO accession GSE134324

3 osTDC K374L 1 Ribosome profiling GEO accession GSE134324

3 osTDC K374L 2 Ribosome profiling GEO accession GSE134324

3 osTDC K374Q 1 Ribosome profiling GEO accession GSE134324

3 osTDC K374Q 2 Ribosome profiling GEO accession GSE134324

3 osTDC L360V 1 Ribosome profiling GEO accession GSE134324

3 osTDC L360V 2 Ribosome profiling GEO accession GSE134324

3 pmTPH 1 Ribosome profiling GEO accession GSE134324

3 pmTPH 2 Ribosome profiling GEO accession GSE134324

3 RFC 1 Ribosome profiling GEO accession GSE134324

3 RFC 2 Ribosome profiling GEO accession GSE134324

3 RFCctrl 3 Ribosome profiling GEO accession GSE134324

3 RFCctrl 4 Ribosome profiling GEO accession GSE134324

3 RFCctrl 1 Ribosome profiling GEO accession GSE134324

3 RFCctrl 2 Ribosome profiling GEO accession GSE134324

3 RFCnopause 1 Ribosome profiling GEO accession GSE134324

3 RFCnopause 2 Ribosome profiling GEO accession GSE134324

3 RFCpluspause 1 Ribosome profiling GEO accession GSE134324

3 RFCpluspause 2 Ribosome profiling GEO accession GSE134324
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

3 rnCOMT sol 1 Ribosome profiling GEO accession GSE134324

3 rnCOMT sol 2 Ribosome profiling GEO accession GSE134324

3 rnPNMT 1 Ribosome profiling GEO accession GSE134324

3 rnPNMT 2 Ribosome profiling GEO accession GSE134324

3 rnTDC 2 Ribosome profiling GEO accession GSE134324

3 rnTDC 1 Ribosome profiling GEO accession GSE134324

3 rnTDC trunc 1 Ribosome profiling GEO accession GSE134324

3 rnTDC trunc 2 Ribosome profiling GEO accession GSE134324

3 saCOMT T2A 1 Ribosome profiling GEO accession GSE134324

3 saCOMT T2A 2 Ribosome profiling GEO accession GSE134324

3 sfCOMT 1 Ribosome profiling GEO accession GSE134324

3 sfCOMT 2 Ribosome profiling GEO accession GSE134324

3 sgAANAT D63G 1 Ribosome profiling GEO accession GSE134324

3 sgAANAT D63G 2 Ribosome profiling GEO accession GSE134324

3 ssDDC 1 Ribosome profiling GEO accession GSE134324

3 ssDDC 2 Ribosome profiling GEO accession GSE134324

3 TP53B 1 Ribosome profiling GEO accession GSE134324

3 TP53B 2 Ribosome profiling GEO accession GSE134324

3 WT 1 Ribosome profiling GEO accession GSE134324

3 WT 2 Ribosome profiling GEO accession GSE134324

4 ALE4A 0PQ RNASeq GEO accession GSE134256

4 ALE4B 0PQ RNASeq GEO accession GSE134256

4 ALE4A PQ RNASeq GEO accession GSE134256

4 ALE4B PQ RNASeq GEO accession GSE134256

4 18.24A PQ RNASeq GEO accession GSE134256

4 18.24B PQ RNASeq GEO accession GSE134256

4 16.28A PQ RNASeq GEO accession GSE134256

4 16.28B PQ RNASeq GEO accession GSE134256

4 18.36A 0PQ RNASeq GEO accession GSE134256
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Table D.1: Datasets generated for the purpose of this dissertation, Continued

Chapter Sample Data Type Data availability

4 18.36B 0PQ RNASeq GEO accession GSE134256

4 18.36A PQ RNASeq GEO accession GSE134256

4 18.36B PQ RNASeq GEO accession GSE134256

4 16.32A 0PQ RNASeq GEO accession GSE134256

4 16.32B 0PQ RNASeq GEO accession GSE134256

4 16.32A PQ RNASeq GEO accession GSE134256

4 16.32B PQ RNASeq GEO accession GSE134256

4 ALE4A 0PQ Ribosome profiling GEO accession GSE134256

4 ALE4B 0PQ Ribosome profiling GEO accession GSE134256

4 ALE4A PQ Ribosome profiling GEO accession GSE134256

4 ALE4B PQ Ribosome profiling GEO accession GSE134256

4 18.24A PQ Ribosome profiling GEO accession GSE134256

4 18.24B PQ Ribosome profiling GEO accession GSE134256

4 16.28A PQ Ribosome profiling GEO accession GSE134256

4 16.28B PQ Ribosome profiling GEO accession GSE134256

4 18.36A 0PQ Ribosome profiling GEO accession GSE134256

4 18.36B 0PQ Ribosome profiling GEO accession GSE134256

4 18.36A PQ Ribosome profiling GEO accession GSE134256

4 18.36B PQ Ribosome profiling GEO accession GSE134256

4 16.32A 0PQ Ribosome profiling GEO accession GSE134256

4 16.32B 0PQ Ribosome profiling GEO accession GSE134256

4 16.32A PQ Ribosome profiling GEO accession GSE134256

4 16.32B PQ Ribosome profiling GEO accession GSE134256
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