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Abstract

Lipoxygenases  (LOX)  regulate  inflammation  through  the  production  of  a

variety  of  molecules  whose  specific  downstream effects  are  not  entirely

understood  due  to  the  complexity  of  the  inflammation  pathway.   The

generation  of  these  biomolecules  can  potentially  be  inhibited  and/or

allosterically  regulated  by  small  synthetic  molecules.   The  current  work

describes  the  first  mass  spectrometric,  high  throughput  method  for

identifying small molecule LOX inhibitors and LOX allosteric effectors, which

change the substrate preference of human lipoxygenase enzymes.  Using a

volatile  buffer  and  an  acid-labile  detergent,  enzymatic  products  can  be

directly  detected  using  liquid  chromatography-mass  spectrometry  (HPLC-

MS), without the need of organic extraction.  The method also reduces the

required  enzyme  concentration  compared  to  traditional  UV  absorbance

methods  by  approximately  30-fold,  allowing  accurate  binding  affinity

measurements  for  inhibitors  with  nanomolar  affinity.   The procedure  was

validated  using  known  LOX  inhibitors  and  the  allosteric  effector,  13(S)-

hydroxy-9Z,11E-octadecadienoic acid (13-HODE).  

Keywords: Human 15-lipoxygenase-1, human 15-lipoxygenase-2, high-

throughput assay, inhibitor, allostery, mass spectroscopy
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Abbreviations. LOX,  lipoxygenase;  15-LOX-1,  human  reticulocyte  15-

lipoxygenase-1;  15-LOX-2,  human  epithelial  15-lipoxygenase-2;  NDGA,

nordihydroguaiaretic  acid;  AA, arachidonic  acid;  GLA,  -Linolenic  acid;  13-

HOTrE(),  13(S)-hydroxy-6Z,9Z,11E-octadecatrienoic  acid;  13-HODE,  13(S)-

hydroxy-9Z,11E-octadecadienoic  acid;  15-HETE,  15(S)-hydroxy-5Z,8Z,11Z,

13E-eicosatetraenoic  acid;  d30-13-HODE,  fully  deuterated  13-HODE;  PPS,

sodium  3-(4-(1,1-bis(hexyloxy)ethyl)pyridinium-1-yl)propane-1-sulfonate;

TCEP, tris(2-carboxyethyl)phosphine; HPLC-MS, Liquid chromatography–mass

spectrometry;  R2,  coefficient  of  determination;  HTP,  high  throughput;  [E],

total active enzyme concentration; IC50, inhibitor constant at 50% inhibition;

Ki
app, apparent inhibition constant when [E] >> Ki

app.
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1.1 Introductory Statement

The  emergence  of  mass  spectrometry  (MS)  based enzyme assays  has

rapidly increased in recent years, due in large part to advances in both MS

instrument  hardware  and  software  capabilities.[1]  HPLC-MS  provides  an

increasingly  convenient  and  economical  means  for  direct  detection  of

enzymatic  products,  and  thus  offers  a  viable  alternative  to  more  limited

detection methods.  A number of exciting HPLC-MS based inhibition assays

have been described recently,  [2-4] however,  no HPLC-MS based inhibitor

assays compatible with lipoxygenase (LOX) enzymes and their hydrophobic

substrates/inhibitors have currently been reported.   

Lipoxygenase  enzymes  oxygenate  1,4-cis,cis-pentadiene-containing

polyunsaturated fatty acids to produce signaling molecules which regulate

inflammation.   Human  15-lipoxygenase-1  (15-LOX-1  or  12/15-LOX)  is

implicated in  atherogenesis,[5] diabetes,[6] Alzheimer’s  disease,[7] breast

cancer,[8] and stroke.[9] Human 15-lipoxygenase-2 (15-LOX-2) is implicated

in breast,[10] prostate,[11] and renal cancers,[12] as well as atherosclerosis.

[13]  Identifying inhibitors to these and other human LOXs has been an area

of  continued  research.  [14-20] The  common method  for  discovering  LOX

inhibitors is the UV absorbance based assay, however, this method requires

high  nanomolar  concentrations  of  LOX to  produce  measurable  enzymatic

rates. Thus, this method limits the lower range of inhibitor potency to greater

than 10 nM, as has already been observed.[14]  The high sensitivity of mass

spectrometry provides a means for measuring product formation in smaller

amounts than the UV method, potentially allowing inhibitor measurements
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for more potent compounds.  However, LOX product measurements by mass

spectrometry  are  impeded  by  the  requirement  of  detergents  to  inhibit

chemical aggregates and prevent promiscuous inhibition.[21]  To circumvent

this HPLC-MS compatibility problem, the acid cleavable detergent, sodium 3-

(4-(1,1-bis(hexyloxy)ethyl)pyridinium-1-yl)propane-1-sulfonate  (PPS),  is

utilized, which degrades before injection onto the HPLC-MS.  The use of PPS,

coupled with a volatile buffer, provides a reaction condition which does not

require  organic  extraction,  yields  high  sensitivity  measurements  of  LOX

reaction  products  and  is  fully  compatible  with  a  high-throughput,  direct

injection HPLC-MS process.  

In addition to high sensitivity, mass spectrometry based product detection

also provides the ability  to differentiate unique enzymatic products.   This

opens the possibility of studying substrate specificity changes in addition to

enzymatic  inhibition,  providing  a  means  to  determine  if  an  inhibitor  is

binding the allosteric site of LOX.   LOXs make particularly interesting targets

for  allosteric  regulation  as  their  various  isozymes  can  act  on  multiple

substrates  producing  an  array  of  products,  whose  ratios  have  unique

biological effects. [22,23]  Previous competitive substrate experiments have

shown that the allosteric sites of both 15-LOX-1 and 15-LOX-2 bind specific

LOX products to regulate substrate preference,[24,25] however, non-native

allosteric  molecules have not been identified. The ability to identify small

molecules  capable  of  modulating  substrate  preference  of  LOX  enzymes

would be a valuable tool  for probing the downstream biological  effects of

specific LOX product ratios on inflammatory related diseases.  Unfortunately,
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current methods for measuring LOX substrate preference require large-scale

reactions and time-consuming HPLC analysis, and are thus inadequate for

compound screening.  

In the current work, we utilize high sensitivity HPLC-MS analysis, coupled

with HPLC-MS compatible enzyme reaction conditions,  to provide fast and

reliable inhibitor data for a set of 15-LOX-1 tight binding inhibitors  whose

exact  potency  was  previously  unknown.[14] Furthermore,  the  reported

method  opens  the  possibility  of  analyzing  multiple  reaction  products

simultaneously,  potentially  leading  to  the  discovery  of  allosteric  effector

molecules of LOX. Finally, this novel method is amenable to miniaturization,

allowing for adaptation to a 96-well format, with reagent requirements and

analysis times compatible with high throughput (HTP) screening.  

1.2 Materials and Methods

1.2.1 Materials. All commercial fatty acids were purchased from Nu

Chek Prep, Inc. (MN, USA) and were further re-purified using a Higgins

HAISIL (5 μm, 250 X 10 mm) C-18 column.  An isocratic elution of 85% A

(99.9% methanol and 0.1% acetic acid): 15% B (99.9% water and 0.1%

acetic acid) was used to purify all the fatty acids.  Post purification, the

fatty  acids  were  stored  at  -80  °C  for  a  maximum of  6  months.   LOX

products  15(S)-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic  acid  (15-HETE),

13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) and d30-13-HODE

(fully  deuterated  13-HODE)  were  made  and  purified  as  previously

described.  [26,27] NDGA was purchased from Sigma/Aldrich Chemicals.

The  inhibitors  were  obtained  from  the  NIH  Molecular  Libraries  Small
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Molecule  Repository:  (https://mli.nih.gov/mli/compound-repository/).  All

other  chemicals  were  reagent  grade  or  better  and  were  used  without

further purification.

 1.2.2 Overexpression and Purification of Lipoxygenases. 15-LOX-1

and  15-LOX-2  were  expressed  as  N-terminal  His6-tagged  proteins  and

were purified via immobilized metal affinity chromatography using an Ni-

NTA resin.[18]  The protein purity was evaluated by SDS-PAGE analysis

and was found to be greater than 90%.

1.2.3  Lipoxygenase  Inhibitor  Affinity  Assay. LOX  turnover  reactions

were performed at 3 ml volume in a stirred reaction vessel.  Assay buffer

consisting of 50 mM ammonium bicarbonate adjusted to pH 7.5 with 10 μM

arachidonic acid (AA), 0.01% PPS acid cleavable detergent (Figure 1) and 0.2

mg/ml BSA.  Various concentrations of inhibitor were added in 10 μl of DMSO

or vehicle control.  The reaction was initiated by adding 0.6 nM 15-LOX-1,

and quenched at <20% turnover (500 sec) by addition of 200 μM glacial

acetic acid.  6 μM 13-HODE was added as an internal standard.  10 μl of each

sample,  without  extraction,  was  injected  on  to  a  Thermo  LTQ  HPLC-MS

equipped with an electrospray ionization (ESI) source set to and negative

ions [M–H] mode.  A Thermo Aquasil (3 μm, 30 mm x 2.1 mm) C-18 reverse

phase column, held at ambient temperature (20º C), was used to separate

buffer salts and protein from fatty acids.  A 5 min gradient was run at a flow

rate of 200 μl/min, beginning with 70% water/30% acetonitrile and ending

with  10%  water,  90%  acetonitrle,  followed  by  100%  acetonitrile  for  3

minutes.  All solvents contained 0.1% formic acid.  The first minute of each
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run was diverted to waste.  The operating conditions were determined as

follows: sheath gas flow rate, 35 arb. units; auxiliary gas flow rate, 10 arb.

units; sweep gas flow rate, 0.0 arb. units; spray voltage, 5.0 kV; capillary

temp,  275º  C;  capillary  voltage,  -34  V;  tube lens  voltage,  -118.66  V  All

masses between 290 and 340 m/z were scanned, with LOX products eluding

between 5 and 6 minutes.  Products were identified based on their MS/MS

fragmentation pattern (LipidMaps.org). 15-HETE was identified by its parent

mass of 319.5 m/z (negative ion) and key fragments 219, 175, and 121 m/z.

13-HODE was identified by its parent mass of 295.5 m/z (negative ion) and

key fragment 195 m/z.  Between each sample the column was washed with

50%  acetonitrile/50%  isopriponol  followed  by  90%  water/10%  methanol.

Percent inhibition was calculated for each run by normalizing the 15-HETE

peak  area  to  the  13-HODE  internal  standard  and  comparing  to  the

15-HETE/13-HODE ratio in control samples.  The control reaction was done in

parallel  and the percent  inhibition  was  determined by comparison of  the

product area of inhibited and non-inhibited samples. Over the time of the

entire experiment, the area of the non-inhibited controls only varied by 7%.

A standard curve was performed to verify that products were being detected

within their linear range, with all concentrations run in triplicate.  Peak areas

were linear for all concentrations tested, yielding a standard curve with a

coefficient  of  determination  (R2)  of  0.998  for  15-HETE  (Figure  S1).   In

addition, the area of the LOX products were compared with and without the

assay matrix and found to be within 90% of eachother. Inhibitor assays were

performed by measuring enzyme inhibition at 5 inhibitor concentrations in
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triplicate. The Ki
app values were determined by plotting the fractional velocity

as a function of the inhibitor concentration, followed by a quadratic fit using

the  Morrison  equation.[28]  This  was  required  because  the  Ki
app value

approached the total active enzyme concentration ([E]), indicating that these

are tight binding inhibitors and therefore hyperbolic fitting of the data was

inappropriate. This treatment is based on defining the Ki
app in terms of bound

and  free  concentrations  of  inhibitor  and  LOX,  without  any  assumptions

regarding the amount of free component depletion due to binary complex

formation, as described before.[14] To determine the average Ki
app and the

associated error,  the enzyme concentration  in  the Morrison equation was

varied from the maximal active enzyme concentration as measured by the

metal content ([E]) to 0.01 nM.  The subsequent Ki
app values were averaged

and  the  standard  deviation  determined.   NDGA  was  used  as  a  control

inhibitor to compare UV absorbance and HPLC-MS methods.  A UV based IC50

was  performed as  previously  described[14] using  ammonium bicarbonate

buffer and PPS in 3 ml reaction volume with approximately 20 nM of 15-LOX-

1.  Aliquots were taken directly from UV cuvettes, quenched and run in HPLC-

MS  assay.   IC50 values  for  NDGA  were  determined  by  fitting  data  to  a

hyperbolic equation.

1.2.4  96  Well  Allosteric  Effector  Assay.  Turnover  reactions  were

performed in  96-well  plates,  with  100 μl  total  volume using assay buffer

consisting of 50 mM ammonium bicarbonate adjusted to pH 7.5 with 0.01%

PPS acid cleavable detergent.  To verify the allosteric effect on the substrate

ratio  change,  d30-13-HODE  at  0,  10  and  20  μM  was  used.   Effector
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compound was diluted in 25 μl of assay buffer before adding to assay plate.

Approximately 700 ng (150 nM in 100 μl) 15-LOX-2 protein in 25 μl assay

buffer was added by multichannel pipette and allowed to incubate with the

effector for 30 seconds.  The reaction was initiated by adding 50 μl of assay

buffer containing 16 μM -Linolenic acid (GLA) and 4 μM AA and mixed with a

multichannel pipette.  The reaction was quenched between 5 and 10% total

turnover (60 sec) by adding 50 μl MeOH containing 6% glacial acetic acid to

cleave PPS detergent, and 500 μM tris(2-carboxyethyl)phosphine (TCEP) to

reduce LOX products.  Samples were incubated for 30 minutes to allow PPS

cleavage to occur, then samples were neutralized by adding 50 μl of 80%

MeOH, 20% 4 M NaOH, to facilitate detection  of  products  using negative

mode.   Addition  of  methanol  to  samples  increased  detected  product,

presumably  by  minimizing  product  adhesion  to  wells.  Well  plates  were

covered with silicon sealing mats and kept at 4º C during analysis to limit

evaporation.   Twenty μl of  each sample was injected on to the HPLC-MS,

using conditions identical to those described above. Products were identified

based  on  their  MS/MS  fragmentation  pattern.  15-HETE  was  identified  as

described above, while 13(S)-hydroxy-6Z,9Z,11E-octadecatrienoic acid (13-

HOTrE()) was identified by its parent mass of 293.4 m/z (negative ion), and

its key fragments at 231 and 193 m/z. The ratio of 15-HETE to 13-HOTrE()

peak  areas  was  utilized  to  determine  the  substrate  preference  for  each

individual sample.  Typical chromatograms for m/z of 319.5 (15-HETE) and

293.4 (13-HOTrE()) can be found in supplemental data (Figures S2 and S3).

A standard curve was performed to verify that products were being detected
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within their linear range (Figure S4). Standards were run in triplicate and

standard  curves  had  R2 values  of  0.999  for  15-HETE  and  0.996  for  13-

HOTrE(). An internal standard is not utilized since we are observing the 15-

HETE/13-HOTrE()  ratio  and  any  detector  variations,  such  as  ionization

suppression, are reflected in both product areas. In addition, the area of the

LOX products were compared with and without the assay matrix and found

to be within 90% of eachother.

1.3 Results and Disccussion

1.3.1  Lipoxygenase Inhibitor  Affinity Assay.   The advent of  effective

high  throughput  screening  methods  for  the  discovery  of  human  LOX

inhibitors  has lead to the publication of  several  highly  potent compounds

against  many  of  the  human  LOX  isozymes.[14,19,20,29]  Ranking  the

potency  of  these  inhibitors  is  vital  to  understanding  structure/activity

relationships  and  thus  optimizing  inhibitor  binding.   However,  several

compounds were previously discovered with IC50 values below the limit of the

UV LOX assay (IC50 <10 nM).[14]  The current HPLC-MS assay is designed to

use enzyme concentrations below those for the UV LOX assay, providing the

ability to determine greater inhibitor potencies than previously possible.[14]

HPLC-MS is a powerful tool for identifying and quantitating analytes at

low  concentrations,  but  several  key  hurdles  must  be  addressed  for  its

application to an LOX inhibition assay.  Ammonium bicarbonate was used

due to its wide buffer range (pH 6.8 to 11.3) and volatility, which limits the

introduction of salt.  A detergent is required due to the hydrophobic nature of
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the LOX substrates and inhibitors, which tend to aggregate.  However, this

presents a problem for HPLC-MS detection, as traditional detergents are not

compatible  with  mass  spectrometry.   To  remedy  this  problem,  the  acid

cleavable  detergent  PPS  was  used.   The  mechanism for  PPS  cleavage  is

shown  in  Figure  1  and  is  achieved  when  the  reaction  is  quenched  and

incubated with acetic acid.  To maximize analyte signal and reduce error, the

aqueous reducing agent, TCEP was added with the acetic acid, this reduces

the peroxide to an alcohol, which eliminates decomposition into the oxo-lipid

product and results in a single mass peak (the alcohol). It should be noted

that reduction is required because the hydroperoxide product (e.g. 15(S)-

hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-HpETE)), can degrade

to the alcohol (15-HETE) and ketone during ionization, thus hampering its

detection.  Finally,  samples  are  adjusted  back  to  neutral  pH,  to  facilitate

negative ion detection.  A standard curve was performed to ensure linearity

over the concentrations of interest (Figure S1).

To probe the accuracy of the reported inhibitor assay, the established

15-LOX-1 inhibitor NDGA was used.  The HPLC-MS assay was performed with

split samples of the UV LOX assay, quenched at appropriate total turnover

(<20%).  Saturation curves for inhibition of NDGA to 15-LOX-1 obtained using

UV and HPLC-MS methods are shown in Figure 2.  Data was fit to the simple

hyperbolic equation to yield the IC50 values reported in Figure 3 and indicate

excellent agreement between the two methods.  The IC50 values for NDGA

are  within  the  range  of  published  values.[15] To  ensure  that  detector

variability  had  a  minimal  effect  on  product  measurements,  the  standard
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deviation of the internal standard peak area was determined for each day

the assay was run. Day to day variations were observed due to instrumental

drift (less than 25%), but this drift did not significantly affect the daily slope

of the standard curve, nor the determined IC50 values. 

Previously published nanomolar active 15-LOX-1 inhibitors possessed

binding  affinities  too  great  to  be  measured  by  traditional  UV-Vis

methodology.[14] Due  to  the  approximately  30-fold  lower  enzyme

concentration required for the current HPLC-MS assay, five compounds were

chosen from the inhibitor series reported by Rai et. al. and their Ki
app values

determined  (Figure  3).  The  measured  Ki
app values  for  the  inhibitors  still

approached the concentration  of  LOX,  despite  the significant  decrease in

required enzyme concentration. This precluded the use of hyperbolic data

fitting  and  instead,  the  Ki
app values  were  determined  using  the  Morrison

equation.[28]  The Ki
app values are listed for both the HPLC-MS assay and the

UV assay (Figure 3) and it is apparent that the Ki
app values for the new assay

are more accurate than the approximate values published previously (IC50 <

10  nM).   Inhibition  plots  for  these  compounds  can  be  found  in  the

supplemental data (Figure S5). In addition, the data demonstrate that the

affinity  of  the  inhibitor  series  increases  with  greater  hydrophobicity,  in

agreement with the previous conclusion, however not to the degree that was

expected.[14] None of these inhibitors have lower than nanomolar potency.

This novel HPLC-MS method lowers the potency limit for inhibitors to the low

nanomolar scale (approximately 0.3 nM) and allows for a wider range of the

most promising LOX inhibitors for cellular studies.
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1.3.2  96-Well  Allosteric  Effector  Assay.  Allosteric  regulation  occurs

when enzyme activity is affected by binding of a regulator to a site other

than the active site.  This change in enzyme activity is the result of changes

in active site due to conformational changes facilitated by effector binding.

Allosteric regulation can either be positive (allosteric activator) or negative

(allosteric  inhibitor).   To  identify  changes  in  active  site  topography,  two

substrates with different affinity for the active site are allowed to compete

for  turnover  and  the  ratio  of  product  formation  by  each  substrate  is

determined.  If the addition of an effector changes this substrate specificity

ratio,  it  indicates  that  the  effector  is  binding  to  an  allosteric  site.  This

allosteric regulation of substrate specificity has been previously observed for

both  15-LOX-1  and  15-LOX-2  with  the  addition  of  specific  LOX  products,

indicating  auto-regulation.[24-26,30] However,  the  HTP  screening  for

additional  allosteric  effector  molecules  is  not  possible  in  the  previously

published HTP screens because of the difficulty of measuring the change in

product ratios.[29,31-34] The current HPLC-MS LOX assay overcomes these

challenges due to its rapid nature and its ability to measure product ratios.

To ensure a linear response to each of the LOX products, standard curves

were performed with each assay.  Typical standard curve data can be seen in

Figure  S4.   Each analyte  concentration  was  also  tested at  multiple  fixed

concentrations of the other analyte to ensure no interference in detection

was observed (data not shown).

To test the validity of the current assay for determining the allosteric

effect, changes in the substrate preference ratio of 15-LOX-2 with AA and
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GLA  were  measured.   d30-13-HODE  was  used  as  an  external  allosteric

effector  molecule.  The  perdeuterated  product  was  required  in  order  to

differentiate it from the AA and GLA products, as previously published.[24-

26]  The substrate preference ratio is measured below 20% conversion to

product, to ensure a reliable ratio measurement.  Due to a high preference

for AA under the current assay conditions, a 1:4 ratio of AA to GLA was used

to maintain a low overall percent turnover while still having enough of each

product  for  accurate  measurements  on  HPLC-MS.   A  total  substrate

concentration of 20 μM was chosen to ensure maximal product detection and

minimal  in-situ  product  generation,  which  could  elicit  an  auto-feedback

allosteric mechanism. 

  The  effect  of  d30-13-HODE  addition  on  substrate  preference  is

summarized in Figure 4.  Using 15-LOX-2 with its substrates AA and GLA, the

AA/GLA ratio was determined to be 2.3 ± 0.1.  Using the known allosteric

effector  d30-13-HODE,  we  were  able  to  titrate  a  change  in  substrate

preference, eliciting an AA/GLA ratio of 1.4 ± 0.1 with 10 μM d30-13-HODE

and ultimately achieving a ratio of 1.1 ± 0.1 with 20 μM d30-13-HODE added.

Based on the standard curve for AA and GLA products, the addition of d30-

13-HODE  changed  the  AA/GLA  ratio  by  reducing  AA  catalysis,  but  not

affecting GLA catalysis significantly (data not shown). These data indicate

that the current method successfully detects allosteric regulation of 15-LOX-

2 at biologically relevant concentrations in a HTP manner. It should be noted

that the specific substrate preference ratio  observed does not  match our

previous steady-state kinetic study with AA/GLA and 15-LOX-2.[25] This is
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most likely due to the variation in conditions between the two assays, and

does not affect the ability of the assay to detect allosteric effector molecules.

To  Summarize,  the  acid  cleavable  detergent,  PPS,  is  utilized  to

adequately  solvate  the  hydrophobic  LOX  substrates  and  inhibitors,  while

allowing  for  usage  under  the  LC-MS  conditions  due  to  its  cleavage

degradation.  The  hydrophilic  reducing  agent,  TCEP,  allows  for  direct

detection of LOX reaction products in a volatile buffer system via HPLC-MS,

thus allowing for a HTP screen in 96-well plates.  Using this novel system, the

amount of LOX needed was also reduced by 30-fold, which allowed for the

IC50 determination of low nanomolar inhibitors.  As this method represents

the first HTP screen capable of  identifying allosteric effector molecules of

human  LOX  enzymes,  it  opens  the  possibility  of  identifying  drug-like

molecules  capable of  changing the substrate specificity  of  LOX isozymes.

Given the varying biological effects of LOX products, novel allosteric effector

molecules could be valuable tools in helping understand the complex and

synergistic role of LOX product ratios in the cell.
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Figure Legends:

Figure 1. PPS Cleavage Mechanism.  In the presence of acid, PPS is 
cleaved to yield 3-acetyl-1-(3-sulfopropyl)pyridinium and hexanol.

Figure 2. Comparison of UV and HPLC-MS based IC50 measurements.  
Inhibition of 15-LOX-1 by NDGA was measured with both UV and HPLC-MS 
based assays. Black circles represent data recorded by UV assay, grey 
squares represent HPLC-MS assay data. The absolute value of the standard 
deviation in HPLC-MS assay data does not exceed 15% error for any inhibitor 
concentration.

Figure 3. 15-LOX-1 IC50 measurements for tight binding inhibitors. 
Binding affinities for tight binding 15-LOX-1 inhibitors as measured by HPLC-
MS and UV based methods.  a Binding affinities measured by the UV LOX 
assay were published previously.[14] 

Figure 4. 15-LOX-2 Allosteric effect of d30-13-HODE. The ratio of 15-
HETE/13-HOTrE(), with increasing concentration of the LO allosteric effector,
d30-13-HODE.  The observed peak area of 15-HETE was divided by the area 
of 13-HOTrE() to yield peak area ratio.  The error bars reflect standard 
deviation of 8 reactions and as observed, the absolute value of the standard 
deviation does not change with increasing d30-13-HODE concentration.
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