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Low-Frequency Fluid Waves in Fractures and Pipes 

Valeri Korneev 

Lawrence Berkeley National Laboratory, Berkeley, CA  94720 

 

ABSTRACT 

Low-frequency analytical solutions have been obtained for phase velocities of 

symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. 

Three different fluid wave regimes can coexist in such objects, depending on the various 

combinations of object parameters. These regimes include Biot, Stoneley, and “narrow 

channel.” Equations for velocities of all these regimes have explicit forms and are verified by 

comparisons with exact solutions. Computations suggest that for pipes, the most common is 

the Biot regime, while for fractures it is the Stoneley regime.  For real rock in fractures, the 

Biot regime exists only when fluid is in a gaseous state. The dominant role of fractures in rock 

permeability at field scales and the strong amplitude and frequency effects of Stoneley guided 

waves suggest the importance of incorporating these effects within poroelastic theories. 

 

INTRODUCTION 

We consider and compare propagation of a fundamental symmetrical mode (wave) for two 

model geometries: a fracture and a pipe, both infinite along the symmetry axis, filled with 

viscous fluid, and surrounded by an unbounded elastic medium. The importance of this fluid 

wave is a well established fact for boreholes (tube wave) and supported by recent numerical 

modeling results for fractures (Korneev et al, 2009; Feihner and Schmalholz, 2009; Derov et 



al., 2009; Bakulin et al, 2008), indicating the dominant role of this wave in wave propagation.  

In Korneev (2008), it was found that in fractures filled with viscous fluid, a fluid wave can 

propagate in both the Stoneley guided wave (Paillet and White, 1982) and the Biot slow wave 

(Biot, 1956ab) regimes. For both of these regimes, the fluid wave is dispersive, but its 

dependence on model parameters is significantly different. While in the Biot regime the 

dispersion exists only in viscous fluids and does not depend on wall elastic parameters, the 

Stoneley guided wave is dispersive, even for zero fluid viscosity, and depends on the wall’s 

shear modulus. Relationships between these two regimes remained unclear: What are the 

conditions of their existence? What is the difference between fractures and pipes in fluid wave 

propagation? Hereafter, we refer to a channel when addressing fluid-containing parts for both 

geometries, which is a useful notation for discussion of similarities and differences between 

them. In this paper, we obtain such conditions for the abovementioned regimes and show that 

at a limit of small channel thickness, there also exists a diffusive narrow channel propagation 

regime, which differs from the Biot regime in its dependence on model parameters.  

 

THEORY FOR A FRACTURE 

Previous Work 

The Stoneley guided wave, which propagates in a fluid layer bounded by elastic walls, 

was first obtained as a mathematical result by Krauklis (1962).  Paillet and White (1982) re-

derived this solution when comparing waves in a borehole and its 2D analog. Their solution 

has an implicit form as a fundamental symmetric mode that propagates along the fracture with 

a velocity that approaches zero at zero frequency.  Ferazzini and Aki (1987) applied this 

solution to explain low-frequency tremors observed before volcanic eruptions.   
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Fluid-filled fracture waves also have been investigated both numerically and in laboratory 

studies to explain volcanic tremors and monitoring of hydraulic fracturing (Chouet, 1986, 

1988; Ferrazzini et al., 1988; Tang and Cheng, 1988; Goloshubin, et al., 1994; Groenenboom 

and Falk, 2000; Groenenboom and van Dam, 2000; Groenenboom and Fokkema, 1998), Slow 

fluid waves are essential for generating tube-wave reflections from intersecting fractures 

(Hornby et al., 1989; Kostek et al., 1998 a, b; Derov et al., 2009; Ziatdinov et al., 2006). The 

high amplitudes of such waves make the solution of relevant problems rather simple, because 

we can ignore most other types of waves without compromising the result. The energy-

trapping ability of such waves illustrates the distinctive feature of fluid-filled fractures, 

specifically their waveguide-like capability of transporting energy.  Propagation of the 

Stoneley guided waves in a fracture filled with viscous fluid was described in Korneev (2008). 

In the latest developments regarding the subject, Frehner and Schmalholz, (2009) modeled 

these waves for intersecting fractures using a finite-element method, and Korneev et al. (2009) 

compared analytical results with those obtained using OASES software. 

 

Fluid Waves in a Fracture 

Here, we consider all low-frequency symmetrical fluid waves using the results from 

Korneev (2008), but change some notations to make them uniform with a similar problem for 

a cylindrical pipe—also a subject of this paper. A symmetric model consists of the 

layer 2h z h   2 , filled with viscous fluid between two homogeneous elastic half-spaces 

comprised of the same material. (We provide only the necessary expressions here; more 

details can be found in Korneev [2008].) The index 1j   indicates the parameters and fields 
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related to the viscous fluid layer, while index 2j   indicates the values related to elastic half-

spaces.   

In both media, the relations between the body wave velocities and media parameters are 

the same: a longitudinal (P-) wave propagates with velocity  

2j j
Pj

j

V
 




                (1) 

and a shear (S-) wave with velocity 

j
Sj

j

V



 ,                     (2) 

expressed through Lame constants j , j  and density j  ( 1, 2j ) . We assume that 

2 2 1P SV V V  P , which is the most common case for rocks at depth. 

The linearized equation of motion for compressible viscous fluid takes the form (Korneev, 

2008): 

2
2

2

1
0

3 P
f f

c
t t t

 
 

       2      
u u u

u ,   (3) 

with time t, fluid density 1f  , viscosity coefficients  ,  , and speed of sound  for the 

zero-viscosity limit. 

pc

Using the time dependence of the fields in the form exp( )i t , with angular frequency , 

equation 3 describes the propagation of dissipating P- and S- waves with complex velocities: 

2
P1

4

3P
f

V c i
 


   
 
 ,     (4) 

   1S
f

i
V




   ,       (5) 
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and complex Lame constants: 

2
1

2

3P fc i
     

 

 ,      (6) 

1 i   .        (7) 

We seek a solution in the form of a surface wave with wavenumber 
vx

f

k


 , propagating 

along the OX axis with phase velocity v f .   

Velocities in both media have corresponding  wavenumbers: 

    /Pj P j /Sj Sjk Vk V ,  .  (j=1,2).   (8) 

Continuity conditions for two components of both stress and displacement at the 

boundaries  lead to four linear equations for coefficients of those components.  The 

dispersion equation for symmetric modes is obtained by finding values of 

/ 2z h 

v f  for which the 

determinant  

2 2 2
1 1 2 2 2 1 1 2 1 1(1 ) ( ) ( )( ) ( )s p s x x x x pc k b c ic k a k b k 2s                   

2 2 2 2
2 2( ) ( )x x p s xk k ac k ca b   0        (9) 

of the system is zero, where 

1 1 1=i tanh
2P P

h
i  
 


 ,      (10) 

1 1 1=i coth
2S S

h
i  
 


 ,      (11) 

2 2
Pj Pjk h   z ,   2 2

sj sjk h z   ,     ( j=1,2)        (12) 

 

and coefficients a, b, and c have expressions 
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2

2
1

v
(1 )

2
f

x
S

a k
V

  ,   
2

2
2

v
(1 )

2
f

x
S

b k
V

  ,  1

2

c



 .    (13) 

In equation 9, the factor in square brackets is exactly that of equation 23 from Korneev 

(2008). The factor 1S  in equation 9 gives an extra root for the fluid wave propagating with 

the (rather small) velocity of the shear wave in viscous fluid given by equation 5. Low-

frequency approximation means that both frequency   and thickness h are small enough to 

provide the conditions   

1 1
2P

h      , 2 1
2P

h     and    2 1
2S

h   ,  (14) 

which reduce the equation for the roots of the square brackets factor in equation 9 to  

2 2

1 2 2 2
1 2 2

v v
k (1 ) 2

(1 )
f f f

x
P S

h
V V




 
 

 
  

 .    (15) 

Approximating in Equation 15 the function 11 by the truncated Taylor series of the coth 

function 

22 2
x

1 2
x 1

vk2
1

k 12
f

S

h

h V


 
 

 
 ,      (16) 

we get the cubical polynomial equation  

3 3 2
3 20 0 0

2 2 2
0

v vS S B
f f

P P B

V V V

V V V
0 


 ,     (17) 

for determining v f . 

Equation 17 contains three parameters, all of which are velocities with the forms (Korneev, 

2008): 

1.            (18) 

1

3
22

0 (1 ) ,S
f

h
V

  


 
 
 


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(A low-frequency Stoneley wave velocity in a fracture filled with non-viscous fluid, where 

2 2/S PV V  ); 

2.                                0 1
fr f

B P

i
V V

 



  ,      (19) 

(A low-frequency fluid wave velocity in a fracture with rigid walls (Biot regime), 

where  is fracture permeability; and  2 /12fr h 

3.   1P PV V ,       (20) 

 (a P-wave velocity in the fluid from equation 4. Equation 17 has three roots, which can be 

explicitly found using the Cardano formula (Abramowitz and Stegun, 1972). Among these 

three roots, only one has a positive real part and therefore describes a physical wave.  

However, the structure of equation 17 allows for finding its asymptotic solutions in a 

straightforward way.  

If the second term in equation 17 is much smaller than the first term, then  

2
03

0 2 2
0

v B
f S S

P B

V
V V

V V
 


.      (21) 

and 

3
0
2

S
S

P

V
V

V
        (22) 

which after simple algebra is equivalent to  

SV V B ,       (23) 

If in Equation 21, 

2 2
P BV V , or    

2

1 fr f h

S

 


    
 

,   (24) 
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where viscous skin 

12

f

S



        (25) 

is much smaller than fracture thickness, the elastic forces dominate viscous ones and fluid 

wave 

0v 1
3

fr f
f S

i
V

 


 
 

 
 ,     (26) 

propagates in the Stoneley regime. This regime exists for “thick” fractures and/or low fluid 

viscosity.  

If in Equation 21, 

2
0

2
P BV V ,     or     

2

1
h

S
   
 

,     (27) 

 then viscous forces are taking over, and  

2 2
2233

2
v

12
B

f S
P

V
V h i

V

 
(1 )


    ,     (28) 

which was called a “thin” fracture regime in Korneev (2008), or a “narrow channel” regime 

of the fluid wave. 

If in equation 17, the second term dominates over the first term, then  

0

2 2
0

v P B
f B

P B

V V
V

V V
 


. ,     (29) 

and such term relationships mean that 

3
0
2

S
B

P

V
V

V
 ,       (30) 

which is equivalent to  
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SV V B ,       (31) 

exactly the opposite result of inequality 23.  

At low frequencies (inequalities 27) equation 29 gives 

0 1v fr f
f B P

i
V V

 



  ,     (32) 

which is a propagation in a Biot regime, when interaction of the fluid wave with the fracture 

walls occurs exclusively through viscous friction forces. 

At high frequencies, (inequalities 23), equation 29 gives 

v f PV ,       (33) 

which is a propagation of body P-waves in the fluid. 

Inequalities 23 and 31 mean that for any parameter set, a wave propagation regime 

corresponds to a regime with the slowest velocity. The regime change occurs when 

        SV V B        (34) 

Thus, when 

SV V P ,       (35) 

the wave propagates with the velocity of P- waves in the fluid (equation 33). If both and 

 are less than 

SV

0BV PV  then, after substitution of expressions 21 and 29 into equation 34, we 

obtain  

22 3

2
2

1 6 6

(1 )
f P

T
f f

V

h h h

 
   

                 


      (36) 

for a transitional frequency T that separates different propagation regimes. 
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For thick fractures and small viscosities, when 

2
2 3

2
2

1
6 (1 )

f Ph V

 

 
  
  

       (37) 

a transition between Stoneley and Biot regimes takes place, and equation 36 becomes 

3

2
2 (1 )

f P

T

V

h




 



       (38) 

If the inequality sign in 37 is reversed, then 

3
1

2 2
212 (1 )T




 


 2
,       (39) 

and the transition occurs between the Biot and narrow channel regimes.  

 

NUMERICAL RESULTS FOR A FRACTURE 

Numerical study of fluid waves in a fracture involved comparison of obtained exact and 

asymptotic solutions for a set of media models with different parameters.  The exact solution 

was obtained by a direct root search when left hand side of the equation 9 was computed on a 

dense grid for complex velocity v f .  Both the real and imaginary parts varied in the range 

from zero to a value exceeding velocity in the fluid.  The computed function was analyzed 

numerically always revealing the presence of two roots. One of the roots corresponded to 

velocity of shear waves in the fluid. The other root numerically coincided with the only 

physical solution of equation 17 which was computed using Cardano formulas. Among three 

roots of equation 17 just one has a positive real part giving only physically interpretable 

estimate for the exact solution of equation 9.  The asymptotic solutions 21, 28 and 29 were 
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compared with the exact solution.  For all examples presented here, the parameters of the 

elastic medium are  m/s,  m/s. and g/cm3.  Figure 1 shows real 

phase velocities as the functions of density.  The parameters of the model are m/s, 

the viscosities 

P2 5000V  S2 3000V  2 2.7 

1500Pc 

  

Pc

  1 cP, frequency 20 Hz,  m/s and the fracture thickness is 10-3 

m.  At low densities the exact solution follows the solution for the Biot regime, while at 

higher densities it follows the Stoneley regime.  Note, that the transition between these two 

regimes corresponds to the conditions for inequalities 23 and 31.  Figure 2 shows phase 

velocities as function of frequency for when fluid has same parameters as the “air” at 

atmospheric pressure, when m/s, 

1500P 

0.0013

c

f330   g/cm3,   0.01 cP.  Here the exact 

solution accurately follows the Biot regime solution.  However, for 10 times thinner fracture 

(h=10-4 m.) the narrow channel regime takes place at low frequencies (Figure 3).  Case when 

air is compressed at 100 atm of hydrostatic pressure (approximately at 1 km depth) is shown 

on Figure 4, where 0.13f  g/cm3 and h=10-3 m.  For this set of parameters the dispersion 

curve belongs to a transition between the Stoneley regime (equation 21) and the high 

frequency solution (equation 33).  Water-filled fracture case with  m/s, 1,500Pc

1.0f  g/cm3,   1 cP and h=10-3 m. is shown on Figure 5. Results for oil-filled fracture 

where all the parameters have the same values as for Figure 6, except viscosity  10 cP 

are shown on Figure 6.  For seismic range of frequencies the solutions for both water and oil 

are well represented by Stoneley regime. 

We will discuss these results together with similar results for a pipe which is the 

subject of the next section. 
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THEORY FOR A PIPE 

Previous Work 

Fluid-filled boreholes are one of the most important signal-carrying channels in 

prospecting geophysics, and the literature on the properties of borehole fluid waves is quite 

extensive (White, 1983; Burridge et al, 1993, Schoenberg et al 1981, Cheng and Toksoz, 

1981; Chang et al, 1988; Haddon, 1989, Norris, 1989, etc). Tube waves are used for 

permeability logging, fracture detection, reservoir monitoring, and borehole integrity testing.  

The similarity of Stoneley (tube) and Biot slow waves has been noted (Chang et al, 1988); 

Norris (1987) even described the tube wave as “a limiting case of the Biot slow wave.” In 

poroelastic theory (Biot, 1956b), it is assumed that on a pore scale the channel walls are rigid, 

and that a fluid wave in a cylindrical pipe is a core model for fluid-solid interaction. In reality, 

however, values of liquid rigidity are comparable with those of elastic rocks, and therefore 

wall-rigidity assumptions needs to be evaluated, as was done for the case of fractures in the 

previous section. Here we revisit the problem of low-frequency wave propagation in a 

cylindrical pipe filled with viscous fluid and demonstrate the existence of a “narrow channel” 

regime at nanoscale levels, in addition to the Biot and Stoneley low-frequency regimes. 

 

Fluid Waves in a Pipe 

We are interested in the low-frequency properties of purely symmetric fluid waves 

propagating along a thin cylindrical well (or a pipe) filled with viscous fluid.  Outside of the 

cylinder with radius R, the medium is elastic. In the following, index 1j  refers to fluid, 

while index 2j   denotes the elastic medium. Here, we also use notations introduced in 

equations 1–8. 
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It is assumed that longitudinal (P-) and shear (S-) waves in both media of the pipe satisfy 

welded boundary conditions at the pipe wall, providing continuity for stresses and 

displacements. (Mathematical formalism and the main expressions for wave propagation 

problems with cylindrical symmetry are presented in Appendix A.) The pure symmetry of the 

problem leaves only m=0 in the field expansions.  As a result, the propagation velocities v f of 

the fluid waves can be found as the roots of the determinant 

 

 

 

 

1 1 2 2

1 2
2 2 2 2

1 1 1 1 1 2 2 2 2 21

2 2 2 21 1 2
1 1 1 1 1 1 2 1 2 2

1 1 2 2

2 (2 ) 2 (2 0

2 (1 ) 2 (1 ) 2 (1 ) 2 (1 )

z z

z s z s

z s z z s zs

p p z p p z
p s p s

k k

k k

k k k

k k k k
R R R

   
 

         
        

   

 


  

2

)k

R

 

       

            (40) 

Velocity v f  is directly related to propagation wave number through the expression zk

v f
zk


 , parameters ,Pj Sj   are defined through the formulas 

2
pj pj zk k   2 ,     2 2

sj sjk k   z            j=1,2,     (41) 

and the functions 1 , 1 , 2 , and 2  have the expressions 

1 1
1

0 1

( )

( )
p

p

J R

J R





 ,   1 1

1
0 1

( )

( )
s

s

J R

J R




 ,   
(2)

1 2
2 (2)

0 2

( )

( )
p

p

H R

H R





 ,   

(2)
1 2

2 (2)
0 2

(

( )
s

s

H

H R





)R

,  (42) 

where is the Bessel function, and is the Hankel function of the second kind. ( )kJ Z (2) ( )kH Z

For small arguments, 1Z  , the following asymptotic expressions   

2
1

0

( )
(1 )

( ) 2 8

J Z Z Z

J Z
  ,   

(2)
1
(2)
0

( ) 1

( ) ln( 2)

H Z

H Z Z Z
      (43) 

can be used. 
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Low-frequency assumption means that  

1 1p R  ,   2 1p R  ,  2 1s R  ,     (44) 

and the asymptotic expressions 43 can be applied to equation 40.  This reduces Equation 40 to  

 
2 2 2 2
1 12 21

1 2 2 1 1 1 1 2
1

2
(1 ) (1 ) 0

8 8
p p

s z p
s

R R
k k

R

       


   
          

    





 . (45) 

Note that according to the equations 42, the ratio 1

1

2

s R




 from equation 45 has a limit equal to 

one if the argument of 1  goes to zero.  

Factor 1s  gives equation 45 an immediate solution: 

1 1v vf s
f

i



   ,     (46) 

which is the same as in the fracture case. 

At higher frequencies, when  

1 1s R  ,      (47) 

the argument for 1  is large, and 1 i  , equation 45 becomes  

2
2 2
1 1 1 2 1 22 2

1

( ) ( )
2

z
p z

s z

k R
i k k

k k
    


    

0  ,     (48) 

which can be put in a form of a cubic polynomial with respect to , and solved explicitly 

using Cardano formulas. For the small viscosity 

2
zk

 , the expression in square brackets must 

approach zero, and we obtain 

1 2
1

1 1 2

v vf p

 
  




 
,         (49) 

which for zero viscosity gives 
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 2
1

1 2

v vf p


 




 ,      (50) 

the velocity of the Stoneley (tube) wave (White, 1965) propagating along a well filled with 

fluid. 

When 1 1s R  , then approximation 43 can be used for 1 , and leads to the following 

quadratic equation with respect to  2
zk

2
1 1 1 22

2 2 2
2 1 1 1

8 ( )

( 2 )
p

z
s p

k
k

R k k

  
 

 


 
      (51) 

Introducing a dimensionless real parameter  

2
2

28
fR

p
 


         (52) 

that determines the main component in the denominator of equation 51, we find that when 

, then the module of the square of the coefficient for  is much larger than the module 

of the last term.  Thus, for  from equation 51, we obtain  

1p  2
zk

1p 

2
2 1

1 2

v v c f
f p

i 
  





 ,    (53) 

where 
2

8c

R  is pipe permeability. This wave has a velocity close to that of the Biot wave 

(Appendix B) for a cylinder with the “Stoneley” correction factor 2

1 2


 

.  If the rigidity of 

the fluid goes to zero, then 2v f (equation 53) approaches the Biot regime solution (Appendix 

B) for the slow wave in a pipe. 

When 
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1c f 


        (54) 

the fluid wave velocity becomes undispersive and propagates as a tube wave described by 

equation 50. 

When 1p   (small pipe radius), then the second term in equation 51 can be neglected, and 

we have 

     2 1
1 2

v vf p

i

i


  




 
,      (55) 

which describes the “narrow channel” propagation regime in the pipe. 

Equations 46, 53 and 55 describe propagation of the diffusion waves. 

 

NUMERICAL RESULTS FOR A PIPE 

The main idea behind the numerical study of a pipe is the same as for the case of a 

fracture, which requires evaluating the validity of different propagation regimes for realistic 

rock parameters. The exact solution was obtained by the direct root search of equation 40, 

which, similarly to the fracture case, revealed the existence of two roots. One of the roots 

(equation 46) corresponds to the velocity of shear waves in the fluid. The other root represents 

the symmetric fluid wave, which propagates in different regimes depending on parameters 

values. For all data presented here m/s,  m/s,,  m/s, 

g/cm3 and fluid viscosity

1500Pc  P2 1800V  S2 800V 

2 2.7    10 cP (oil).  Figure 7 shows the phase velocities for 

a pipe as a function of the pipe radius R for 20 Hz frequency. Also shown are: , the 

solution for the Stoneley regime (equation 49) , the solution for the general Biot regime 

(Equation 53), and the solution for “narrow channel” regime (equation 55).  Figure 8 shows 

P1V
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phase velocities as a function of frequency for a “thick” pipe with 10-4 m radius, while Figure 

9 presents computations for a “thin” pipe with 10-8 m radius.  

 

DISCUSSION 

Theoretical and numerical results presented in this study reveal several similarities in 

wave propagation between fracture and pipe.  The fluid symmetrical wave is always present in 

the solution, and it can propagate in different regimes including Stoneley, Biot and “narrow 

channel” regimes.  The last regime occurs at very small scales, when channel width is much 

smaller than skin depth.  This regime takes the form of equation 28 for a fracture and equation 

55 for a pipe.  Velocities of these waves directly depend on the shear modulus of walls, fluid 

viscosity, and frequency, and therefore wall elasticity is an important parameter here. These 

waves propagate by squeezing in fluid through the narrow channels of fractures and pipes. An 

extra fluid wave propagating with the velocity of a shear wave in the fluid always exists at 

low frequencies.  It has a diffusion type of propagation and quickly dissipates. This is a 

generally a rather slow wave, but it can be faster than the other fluid wave, depending on the 

parameters.  

The relationship of solutions representing both the Biot propagation regime and the Biot 

slow wave in poroelastic theory follows from the similarity in asymptotic expressions for 

these waves at low frequencies, as well as from assumptions used for deriving dynamic 

poroelastic equations. Section 2 of Biot (1956b) considers the oscillatory flow of fluid 

between two rigid parallel walls, which is the same problem for the Biot solution in an 

infinitely-stiff fracture considered in Korneev (2008) using a somewhat different technique.  

Section 3 of Biot (1956b) solves the analogous problem for a cylindrical tube (see Appendix 

  17



C).  Then, Biot calculates a friction force acting between fluid and elastic skeleton using “the 

assumption that the variation of friction with frequency follows the same laws as found in the 

foregoing for the tube of uniform cross section” (page 182).  Therefore, at pore scale, the 

elasticity of pore walls in Biot’s theory is neglected, and it operates on a macro level only, 

where the effects of numerous pores are evaluated.  At low frequencies, the solutions for the 

Biot slow wave (equation C1), and Biot regimes for the fracture (equation 32) and a pipe 

(Equation 53) have the same dependence on frequency, permeability, and fluid viscosity, in 

the form   

f

i
V V





         (56) 

where V is some velocity not dependent on any parameters under the radical,  is 

permeability of the porous media, 
2

12

h   for a fracture, and 
2

8

R   for a pipe.  However, in 

the two latter cases, the Biot regime transfers into narrow channel regimes at the low 

frequency limit. 

A Stoneley wave propagation regime is very different for the considered geometries. In a 

pipe with a large radius (or in absence of viscosity) at low frequencies, the Stoneley wave has 

virtually no dispersion propagating as a tube wave. By contrast, in a fracture, the Stoneley 

guided wave has a strong dispersion. In a pipe, the Stoneley wave regime converts to a Biot- 

wave regime quite rapidly, as soon as the condition 

1c f 


        (57) 

 is valid.  (Strictly speaking, the wave described by equation 53 is not quite a Biot wave 

because of the Stoneley correction factor.).  In a fracture, the Biot wave regime can be 
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achieved for severely contracting cases only when fluid is in a gaseous state. A quite common 

derivation of the Biot solution occurs when the rigidity of the walls is placed at infinity (e.g., 

Chang et al., 1988).  Such an assumption cannot be justified from the physical point of view. 

Indeed, common densities and shear-wave velocities for known rocks differ from density and 

sound wave velocity in water by a factor of 2–3, which is far from the high-contrast 

assumption between the channel walls and the fluid.  Such a contrast can be achieved by 

applying the theory to a gas only, but this restriction is too severe for poromechanic 

applications. 

Besides having some aforementioned similarity, the narrow channel regimes described by 

equations 28 and 55 differ in their dependence on fluid viscosity is different.  In a fracture, 

this regime starts relatively quickly as the fracture thickness decreases, while for realistic 

parameters in pipes, it takes place surprisingly at nanoscale level at seismic frequencies. 

Moreover, for liquids, wall rigidity is always a factor affecting wave propagation. 

The considered problems had just one fluid-channeling element, which is taken as infinite 

in one or two directions. Real rocks contain a wide variety of pores and fractures that can 

intersect, and are distributed in sizes and shapes that provide conditions for different fluid 

wave regimes. The fractal character of fracture and pore distribution in real rock suggests a 

rapid increase of their numbers for decreasing scales  Diffusion waves are slow and propagate 

short distances, but both the numerousness of small-scale channels and reflection-refraction 

on heterogeneities, where diffusion waves can directly impact boundary conditions, can 

possibly make significant contributions to overall wave propagation. (Accurate consideration 

of all wave propagation effects in such media is a very complex problem, which is beyond of 

a scope of this study.) 
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The hydrogeology results provide strong evidence that fractures play a key role in rock 

permeability. Permeability was measured for a wide range of scales in a number of 

comprehensive studies for a variety of geologic environments (Clauser, 1992; Neuman, 1994; 

Shultze-Makuch et al., 1999; Shultze-Makuch and Cherkauer, 1998; and Gelhar, 1993).  

Typically, five-orders-of-scale increase corresponds to 5–7 orders of permeability increase,  

suggesting the dominant role of fractures in fluid flow at field scales.   

This study does not directly address the attenuation of fluid waves in channels. This is for 

several reasons. Such attenuation in fractures was computed and discussed in Korneev (2008) 

and Korneev et al. (2009). In Biot and narrow channel regimes, wave propagation describes 

diffusion processes that have well-known attenuation processes. General low frequency 

asymptotics representing solutions of cubical polynomials 17 and 39 have explicit forms and 

allow a simple computation of complex velocities (and, therefore, attenuation) for any chosen 

parameter set.  

CONCLUSIONS 

Analytical solutions have been obtained for the phase velocities of fluid waves within both 

an infinite fracture and a pipe filled with a viscous fluid at low frequencies. Two fluid waves 

can co-exist in such objects: diffusive wave propagating with shear-wave velocity in the fluid, 

and a general fluid wave that can propagate in different regimes depending on object 

parameters. These include Biot, Stoneley, and “narrow channel” wave regimes. Computations 

for realistic rock parameters suggest that for pipes, the most common regime is the Biot slow 

wave, while for fractures. it is the Stoneley (guided) wave.  
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FIGURES 

 

 

 

 

 

Figure 1.  Phase velocity of fluid wave in a 10-3 m thick fracture as a function of fluid density. 

The fluid has sound velocity of 1.500 m/s and viscosity of 1 cP, the frequency is 20 Hz.   

Shown are: the exact solution (solid line) obtained from equation 9, general Biot wave regime 

(short dashed line) obtained from equation 29, general Stoneley wave solution (long dashed 

line) obtained from equation 21, and the narrow channel regime (dashed-dotted line) obtained 

from equation 28.  Biot wave regime takes place only at very low densities. 
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Figure 2.  Phase velocity of fluid wave in a 10-3 m thick fracture as a function of frequency 

for the “air” at atmospheric pressure. The curves marked as on Figure 1.  Biot wave solution 

gives accurate approximation to the exact solution. 
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Figure 3.  Phase velocity of fluid wave in a 10-4 m thick fracture as a function of frequency 

for the air at 100 atm (1 km depth) pressure. The curves marked as on Figure 1. At low 

frequencies the narrow channel regime approximates the exact solution. 
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Figure 4.  Phase velocity of fluid wave in a 10-3 m thick fracture as a function of frequency 

for the air at 100 atm (1 km depth) pressure. The curves marked as on Figure 1.  For most 

frequencies the exact solution is in transitional regimes. 
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Figure 5.  Phase velocity of fluid wave in a 10-3 m thick fracture as a function of frequency 

for water (fluid viscosity is 1 cP). The curves marked as on Figure 1.  Stoneley wave regime 

approximates the exact solution at seismic frequencies. 

  30



 

 

Figure 6.  Phase velocity of fluid wave in a 10-3 m thick fracture as a function of frequency 

for the oil (fluid viscosity is 10 cP). The curves marked as on Figure 1.  Stoneley wave regime 

approximates the exact solution at seismic frequencies. 
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Figure 7.  Phase velocity of fluid waves in a pipe filled with oil (fluid viscosity is 10 cP) as a 

function of pipe radius. Frequency is 20 Hz. Shown are: the exact solution (thin solid line) 

obtained from equation 40, general Biot regime (short dashed line) obtained from equation 53, 

Stoneley regime (long dashed line) obtained from equation 50, P- velocity in the fluid  (thick 

solid line, equation 4), and “narrow channel” regime (dashed-dotted line, equation 55).   
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Figure 8.  Phase velocity of fluid waves in a pipe filled with oil (fluid viscosity is 10 cP) as a 

function of frequency. Pipe radius is 10-4 m. The curves marked as on Figure 7. 
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Figure 9.  Phase velocity of fluid waves in a pipe filled with oil (fluid viscosity is 10 cP) as a 

function of frequency. Pipe radius is 10-8 m. The curves marked as on Figure 6. 
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APPENDIX A 

Cylindrical vector system 

 The cylindrical vector system used in this paper was introduced by Korneev and Johnson 

(1993).  Use of those vectors makes expressions for the Lamé equation especially simple since they 

thoroughly imply a special symmetry of the problem.  They allow formulation of wave propagation 

problems in displacements, avoiding the potentials.  

The cylindrical vector system has the form 

3
0 eY mm Y ,    1 2

1
( )

2m m mY iY  Y e e ,     1 2

1
(

2m m mY iY  Y e )e ,  (A1) 

where  

  ( , ) exp ( )m m zY Y z i m h z    ,   ,...2,1,0m ,          (A2) 

and is the projection of the wavenumber onto the OZ-axis, zh 1i .  Vectors  are the 

natural unit vectors of the cylindrical coordinate system ( ,

321 ,, eee

, )r z . 

The cylindrical vectors of the system in (A1) are orthonormal at any point on a cylindrical 

surface.  In the space of vector functions   20),( f


 defined on a circle 

the vectors (A1) satisfy the following orthogonality relations ., .r const z const 

1

1 1

2

0

( )m m mmd



1    Y Y ,        ,,0            (A3) 

where kl is equal to 1, when lower indexes are the same, and equal zero otherwise.  

The system A1 is complete in the sense of convergence in the mean for a Fourier series 

expansion.  This means that any vector function  

( , , ) ( , ) exp( )zu u r z U r ih z   
 

           (A5) 

can be represented in the form 

0

( , , ) ( ) ( , )m m
m

u r z f r z 



 




 Y


                     (A6) 

The Lamé equation for a homogenous elastic medium is  
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2( ) u u         0u
  

                (A7) 

where the dependence of the displacement field u


on time t  is given by  ti exp , where   is the 

angular frequency. The parameters    and   from A7 are the Lamé constants, and  is the density. r

Substitution of the form (A6) into equation A7 and use of the orthogonality property A3 yields 

the differential Bessel equations for radial functions ( )m mf f r  :  

0 0 (mq mq m q )f d Z r ,    1(mq mq m q )f d Z r 
 ,    1( )mq mq m qf d Z r 

 ,  spq , ,    (A8) 

where  - are the cylindrical Bessel functions of order , and )(xZk k mqd  are the arbitrary constants.  

The parameter q  from equation (A8) has two forms  

2 2
p pk h   z ,   2 2

s s zk h    ,                (A9) 

where    p/ vpk  ,   s/ vsk 

 /)2(vp  ,   and    /vs                              (A10) 

are the propagation velocities of compressional ( pu


) and shear ( su


) field components. 

 The simplicity of equations A8 illustrates the main advantage of employing the cylindrical 

vectors of the form A1. In other systems the expressions for radial functions contain combinations of 

Bessel functions and their derivatives.  

Introduction of functions 

( , ) ( )mp m m pY z Z r      and    ( , ) ( )ms m m sY z Z r    (A11) 

 

allows representation of the field u  from Equation A8 in the form 


    (A12)  ( ) ( ) ( )
V H

0

( , , ) m m
m m m

m

u z a b c 




   P S S
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containing the canonical compressional p- waves 

( ) 0
1 1

m
mp z m m p m m p m mih Z Z Z   
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im
Z Z ih Z
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 
e e e Y
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           (A13) 

and two sets of shear s- waves 

 ( )
V 3 1
m
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In expressions the Bessel functions and their derivatives have arguments pr  and 

sr correspondently for compressional  and shear   fields , which satisfy the equations  ( )mP ( ) ( )
V H,m mS S

( ) 0m P ,         , ( ) ( )
V H 0m m    S S  ( ) ( )

V H 0m m S S   (A16) 

When  the field is polarized along OZ axis, while polarization of is always 

orthogonal to this axis.  

0h  ( )
H
mS ( )

V
mS

For any integer index  the fields ,  and  satisfy equation of motion 

A7, and represent an independently propagating harmonic of this index. 

0, 1, 2,...m   
( )mP ( )

V
mS ( )

H
mS

The expressions for the traction field on a surface .r const  

1 1( ) 2r

u
u u

r
         

t e e u




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    (A17) 

have forms: 
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APPENDIX B 
 
Biot slow wave for a pipe 

Consider equation 3 in a cylindrical coordinate system and use the rigid wall 

assumption.  In such model, the interaction between walls and the fluid occurs through 

viscous friction forces.  The fluid motion is mostly directed along the central axis with a 

parabolic distribution across the fracture, which reaches the maximum at the center line z=0 

and zero at the walls, so  

2 2
1 0( )zu u R r  u z z1 0 .u const,        (B1) 

Introducing the total flow  

0

2
R

zF u r  dr         (B2) 

across any z = const, reduces equation 3 to  
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Note that pipe permeability is , and, therefore, it is embedded in the 

denominator of the second term of equation B2.  (Compare to a fracture permeabilty 

).  In the frequency domain, equation B3 has the solution (Korneev et al, 2004) 

2 / 8c R 

2 /12fr h 

exp( )exp( )u ikx i t  , k k i               (B4) 

with the wave number k, the attenuation coefficient   and the angular frequency  .  The 

wavenumber components have the forms 
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where 
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At low frequencies, the phase velocity of the wave described by equation B5 has the 

asymptotic form 

fV

 

     .             (B8) 

Biot
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APPENDIX C 
 
Biot slow wave for a porous medium 

Low-frequency asymptotic for the Biot slow wave can be found in the original papers 

(Biot, 1956a,b).  Since then numerous papers dealing with Biot’s poroelastic equations were 

published.  For example, in more contemporary notations this equation can be found in Dutta 

and Ode (1979).  Slightly changing their notations (in order to avoid interference with those 

used in the main text) one can obtain a low-frequency asymptotic for Biot’s slow wave in the 

form  

22 (2 )
f

D DG H i
V

H




 
 ,              (C1) 

where   is a viscosity coefficient,  is an angular frequency,   is a permeability of the rock. 

Parameters 

1
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,   ……...(C2) 

2H    ,                 (C3) 

1 m

s

K
G

K
  .                 (C4) 

from equation C1 depend on the bulk moduli sK , fK  and  of the discrete solid grains, the 

fluid, and the matrix, respectively,  Lame constants of the fluid-filled matrix 

mK

  and  , and  

porosity  . 
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