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Abstract—Optimization of distributed power assets is a pow-
erful tool that has the potential to assist utility efforts to
ensure customer voltages are within pre-defined tolerances and to
improve distribution system operations. While convex relaxations
of Optimal Power Flow (OPF) problems have been proposed for
both balanced and unbalanced networks, these approaches do not
provide universal convexity guarantees and scale inefficiently as
network size and the number of constraints increase. In balanced
networks, a linearized model of power flow, the LinDistFlow
model, has been successfully employed to solve approximate OPF
problems quickly and with high degrees of accuracy. In this
work, an extension of the LinDistFlow model is proposed for
unbalanced distribution systems, and is subsequently used to
formulate an approximate unbalanced OPF problem that uses
VAR assets for voltage balancing and regulation. Simulation
results on the IEEE 13 node test feeder demonstrate the ability of
the unbalanced LinDistFlow model to perform voltage regulation
and balance system voltages.

NOMENCLATURE

Vφ,k : Voltage phasor at node k on phase φ
Vk : Vector of voltage phasors at node k
yφ,k : Square magnitude of voltage at node k on phase φ
Yk : Vector of square magnitudes of voltage at node k
Zφφ,jk : Impedance of segment (j, k) on phase φ
Zφψ,jk : Impedance of segment (j, k) between phases (φ, ψ)
Zjk : Impedance matrix of line segment (j, k)
Iφ,k : Current phasor entering node k on phase φ
Ik : Vector of current phasors entering node k
iφ,k : Load current of phase φ at node k
ik : Vector of load currents at node k
Sφ,k : Phasor of complex power entering node k on phase φ
Sk : Vector of complex power phasors entering node k
sφ,k : Complex load on phase φ at node k
sk : Vector of complex loads at node k
uφ,k : Inverter VAR dispatch on phase φ at node k

This work was supported in part by the U.S. Department of Energy ARPA-
E program (DE-AR0000340).

I. INTRODUCTION

Coordination of a diverse set of Distributed Energy Re-
sources (DER) presents many challenges to utility operators,
who strive to ensure power of sufficient quality and quantity is
available to retail customers at least cost. Such assets can vary
in size from residential rooftop PV units to larger PV arrays
and, perhaps, battery storage systems located at residential,
commercials and industrial sites. As has been experienced in
Hawaii [1], the negative impact of high levels of distributed PV
under current interconnection standards is significant, and has
led to financial impacts to both consumers and the utility. How-
ever, distributed generation resources could, under the correct
operational control scenarios, provide numerous benefits to the
grid, including voltage support and VAR compensation.

A variety of strategies for the management of DER presently
exist for balanced distribution system models. Turitsyn et
al. [2] considered a suite of distributed control strategies for
reactive power compensation using four quadrant inverters.
The work of [3] studies distributed voltage regulation in the
absence of communication, relying on locally obtained infor-
mation. Their results extend to optimize the cost of reactive
power and are based on linearized power flow approximations.
In [4], a two-stage control architecture for voltage regulation is
considered where distributed controllers inject power based on
local sensitivity measurements. The authors of [5] study local
voltage reference tracking with integral-type controllers, based
on local voltage measurements. The authors of [6] address
voltage regulation and loss minimization through solving an
Optimal Power Flow (OPF) problem, and address convexity
issues using second order cone relaxations. The work of [7]
also considers an OPF approach for voltage regulation in
distribution networks by framing the decision-making process
a semidefinite program. The authors provide conditions under
which the semidefinite relaxation of the nonconvex power flow
problem is tight in balanced circuits. It is worth noting that
many of the aforementioned approaches can be traced back to
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the seminal work of [8], that introduced nonlinear and linear-
approximated recursive branch power flow models.

Approaches to coordinate DER in unbalanced distribution
systems are much less prevalent. Perhaps the best known
efforts have been put forth by the authors of [9], who consider
semidefinite relaxations for OPF problems in unbalanced sys-
tems, but do not provide conditions under which optimality
is guaranteed. In addition to inefficient scaling as the problem
size increases, the work of [10] points out that it becomes more
difficult to find a tight relaxation as the ratio of constraints to
network buses increases. A likely reason that more strategies
focusing on coordination of distributed energy resources in
unbalanced systems do not exist is the lack of suitable linear
models that approximate three phase power flow.

This work attempts to fill that void by proposing a linearized
unbalanced power flow model that can be viewed as an
extension of the LinDistFlow [8] linear approximation for
balanced systems. Using this linear model, we construct an
OPF formulation that dispatches reactive power resources
from controllable power electronic inverters to perform voltage
balancing and regulation. Our results show that OPF for-
mulations that utilize the linearized three phase LinDistFlow
model results in a dispatch of inverter VAR resources that
successfully drives system voltages into acceptable regimes
and simultaneously balances voltages by reducing magnitude
differences between phases.

This work is organized as follows. A model of nonlinear
three phase unbalanced power flow is introduced in Section
II. This model, used in simulations later in the paper, is also
used in the derivation of the linear approximation for three
phase power flow in Section III. In Section IV, we formulate
an OPF to perform voltage regulation and balancing, and
discuss results from simulation. Finally, concluding remarks
are provided in Section V.

II. PRELIMINARIES

Let T = (H,E) denote rooted tree graph representing a
balanced radial distribution feeder, where H is the set of
nodes of the feeder and the transmission link and E is the
set of line segments. Nodes are indexed by i = 0, 1, . . . ,m,
where m is the order (number of nodes) of the distribution
feeder, and node 0 denotes the feeder head (or substation).
We treat node 0 as an infinite bus, decoupling interactions
in the downstream distribution system from the rest of the
grid. While the substation voltage may evolve over time, we
assume this evolution takes place independently of our inverter
control action. For adjacent nodes j and k, the current/voltage
relationship is captured by KVL and KCL:VaVb

Vc


j

=

VaVb
Vc


k

+

Zaa Zab Zac
Zba Zbb Zbc
Zca Zcb Zcc


jk

IaIb
Ic


k

(1)

IaIb
Ic


j

=

iaib
ic


j

+
∑

k:(j,k)∈E

IaIb
Ic


k

, (2)

where ia denotes phase a load current, and Zaa and Zab
are the self impedance for phase a and mutual impedance
between phases a and b, etc.. We assume that each node
serves a complex load in each phase, sφ,k = Vφ,ki

∗
φ,k whose

real and reactive power components are given by (3) and (4),
respectively.

pφ,k(Vφ,k) = pφ,k

(
a0φ,k + a1φ,k |Vφ,k|

2
)

(3)

qφ,k(Vφ,k) = qφ,k

(
a0φ,k + a1φ,k |Vφ,k|

2
)
+ uφ,k (4)

where a0k + a1k = 1 and are, for simplicity, assumed constant
across all phases at each node. uφ,k is the reactive power
that can be sourced or consumed from a VAR resource on
phase φ at node k. In our convention, positive demand denotes
power consumption and negative demand is power injected,
or supplied, to the grid. Equations (1)–(4) represent the power
flow model that will be used to generate simulations in Section
IV.

III. DERIVATION OF LINEARIZED MODEL

In this section, we derive a linear approximation of three
phase power flow. This model can be thought of as an
extension of the LinDistFlow model to unbalanced circuits.
Consider two adjacent nodes of the distribution feeder, (j, k) ∈
H . We begin by expressing (1)–(2) in vector form:

Vj = Vk + ZkIk (5)

Ij = ij +
∑

k:(j,k)∈E

Ik. (6)

We now right multiply each side of (5) by its complex
conjugate and right multiply both sides of (6) by V∗j and
take the complex conjugate, resulting in:

VjV∗j = VkV∗k + ZkIkV∗k + VkI∗kZ∗k + ZkIkI∗kZ∗k
= VkV∗k + 2Re {VkI∗kZ∗k}+ ZkIkI∗kZ∗k, (7)

VjI∗j = Vji∗j +
∑

k:(j,k)∈E

(Vk + ZkIk) I∗k. (8)

Similar to the derivation of the LinDistFlow system, we
neglect loss terms in (7)–(8), which yields:

VjV∗j ≈ VkV∗k + 2Re {VkI∗kZ∗k} (9)

VjI∗j ≈ Vji∗j +
∑

k:(j,k)∈E

VkI∗k. (10)

where (7)–(8) are 3× 3 matrix equations. Focusing our atten-
tion first on (8), we apply the power equation Sφ,k = Vφ,kI

∗
φ,k

to the diagonal elements and collect these into the vector
equation:

Sj ≈ sj +
∑

k:(j,k)∈E

Sk (11)

Returning attention to (9), we expand Ik according to
Sφ,k = Vφ,kI

∗
φ,k, resulting in:

VjV∗j ≈ VkV∗k+

2Re
{
Vk
[
SaV

−1
a SbV

−1
b ScV

−1
c

]
k
Z∗jk
} (12)

which is equivalent to:
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VjV∗j ≈ VkV∗k+

2Re


 Sa VaSbV

−1
b VaScV

−1
c

VbSaV
−1
a Sb VbScV

−1
c

VcSaV
−1
a VcSbV

−1
b Sc


k

Z∗jk

 (13)

Note that even after neglecting the loss terms, (13) is
still nonlinear. To further simplify the system, we adopt an
approximation that assumes the ratio of voltage phasors are
constant:

Va,kV
−1
b,k ≈ α Vb,kV

−1
c,k ≈ α Va,kV

−1
c,k ≈ α

2 (14)

where

α =1∠120◦ =
−1 + j

√
3

2
, α2 = 1∠240◦ = −1 + j

√
3

2
.

(15)

The simplification of the quotient of the voltage phasors
according to (14)–(15) transforms (13) into:

VjV∗j ≈ VkV∗k + 2Re


 Sa αSb α2Sc
α2Sa Sb αSc
αSa α2Sb Sc


k

Z∗jk


(16)

Although (16) is a 3×3 matrix equation, we are intertested
only in the diagonal elements, which we gather and place into
3× 1 vectors resulting in (17):

Yj ≈ Yk+

2Re


Z∗aa,jkSa,k + αZ∗ab,jkSb,k + α2Z∗ac,jkSc,k
α2Z∗ba,jkSa,k + Z∗bb,jkSb,k + αZ∗bc,jkSc,k
αZ∗ca,jkSa,k + α2Z∗cb,jkSb,k + Z∗cc,jkSc,k

 ,

(17)

where we have defined the vector of the square of voltage
magnitudes in phases a, b, c as Yk =

[
ya yb yc

]T
k

. The
3 × 1 vector inside the Re operator can be broken up into a
3×3 matrix of impedances for line segment (j, k) and a 3×1
vector of node k power injections, as is shown in (18).

Yj ≈ Yk+

2Re


 Z∗aa αZ∗ab α2Z∗ac
α2Z∗ba Z∗bb αZ∗bc
αZ∗ca α2Z∗cb Z∗cc


jk

SaSb
Sc


k

 (18)

Viewed in this form, the approximation to the ratio of
voltage phasors essentially introduces ±120◦ rotations of the
cross-phase impedances. Expanding the impedance matrix
entries as Zφψ,k = rφ,ψ,k + jxφ,ψ,k, the complex power as
Sφ,k = Pφ,k + jQφ,k, and using the definition of α, it can
be shown that (18) simplifies into the following linear matrix
equation:

Yj ≈ Yk −MP
jkPk −MQ

jkQk (19)

where

MP
jk =

 −2raa rab −
√
3xab rac +

√
3xac

rba +
√
3xba −2rbb rbc −

√
3xbc

rca −
√
3xca rcb +

√
3xcb −2rcc


jk

(20)

MQ
jk =

 −2xaa xab +
√
3rab xac −

√
3rac

xba −
√
3rba −2xbb xbc +

√
3rbc

xca +
√
3rca xcb −

√
3rcb −2xcc


jk

.

(21)
We now restate (11) for completeness:

Sj ≈ sj +
∑

k:(j,k)∈E

Sk (22)

Equations (19)–(22) represent a linearized model of un-
balanced distribution power flow that maps node k real and
reactive power injections into squared voltage magnitude dif-
ferences. As the system shows, power contribution in all three
phases collectively influence each phase’s squared voltage
magnitude difference. It is easily verified that a reduction
to a single phase network results in the LinDistFlow model
discussed in [8].

IV. SIMULATION RESULTS

In this section, we incorporate the linearized three phase
power flow model into an OPF program. The goal of the opti-
mization is to control inverter VAR resources in a distribution
system to regulate and balance system voltages. We define the
problem as:

minimize
u,yi,Qi,Pi

∑
i∈H

 ∑
φ,ψ∈{a,b,c}

φ6=ψ

(yφ,i − yψ,i)2

+ ρu2φ,i

subject to (19)− (22),
y ≤ yi ≤ y, ∀i ∈ H,

(23)

where ρ is positive (0.5 in simulations) and y and y represent
upper and lower bounds on voltage magnitude (which are fixed
to 0.952 and 1.052), respectively. The first term in the objective
function is the sum squared Euclidean distances of squared
voltage magnitude differences across phases at each node. The
second term penalizes the use of inverter VAR resources.

The OPF is performed on the IEEE 13 test node distribution
feeder [11], seen in Fig. 1. This simulation neglects the
presence of the voltage regulator between nodes 650 and
632, the transformer between nodes 633 and 634, the switch
(assumed closed) between nodes 671 and 692, and capacitors
at nodes 675 and 611. Constant power and constant impedance
load fractions were assigned as a0i = 0.85 and a1i = 0.15.

Feeder configurations, per-length line segment impedances,
and line segment lengths can be found in [11]. All line segment
impedances were increased by a factor of 1.25. Spot loads
(also found in [11]) were assigned to nodes according to Table
I. Distributed loads were neglected. For the simulation, feeder
power and voltage base values were chosen as the power rating
and secondary voltage of the substation transformer, 500kVA
and 4.16kV respectively. Additionally, feeder head voltage was
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646 645 632 633 634

650

692 675611 684

652

671

680

Fig. 1: IEEE 13 node feeder model.
fixed to 1 p.u.. Controllable three phase inverter resources were
placed at nodes 632, 675, 680, and 684. These resources were
purposefully left unconstrained to test the effectiveness of the
OPF, with the ability to source or sink arbitrary amounts of
reactive power.

TABLE I: SPOT LOADS OF 13 NODE FEEDER.

Phase
Node a [pu] b [pu] c [pu]
650 0 0 0
632 0 0 0
633 0 0 0
634 0.032 + j 0.022 0.024 + j 0.018 0.024 + j 0.018
645 – 0.034 + j 0.025 0
646 – 0.046 + j 0.0264 0
671 0.077 + j 0.044 0.077 + j 0.044 0.077 + j 0.044
692 0 0 0.034 + j 0.0302
675 0.097 + j 0.038 0.0136 + j 0.012 0.058 + j 0.0424
680 0 0 0
684 0 – 0
652 0.0256 + j 0.0172 – –
611 – – 0.034 + j 0.0106
Total 0.2316 + j 0.1212 0.1946 + j 0.1254 0.227 + j 0.1506

Simulation results are presented in Figs. 2 - 5 and in Table
II. Voltage profiles for the base scenario (where inverter VAR
resources are not utilized) and control scenario (inverter VAR
resources are determined by the OPF of (23)) can be seen
in Fig. 2, with phase a, b and c voltage magnitudes plotted
in Fig. 2a, Fig. 2b, and Fig. 2c, respectively. As the figures
show, in the control case, the voltage magnitudes of phase
a are kept almost constant with the base case. The voltage
magnitudes of phase b are decreased, and of c are increased,
to achieve greater voltage magnitude balance. Additionally,
the voltages of phase c, originally in violation of the lower
voltage bound, are now within the acceptable ±5% threshold.
It should be noted that the rise in voltage magnitude for the
base scenario from node 632 to node 671 reconciles with
power-flow simulation results in [11] and is likely due to the
fact that off diagonal components of (20)-(21) have opposite
signs of the diagonal components, indicating that large voltage
drops in some phases actually contribute to voltage rises in

other phases.
A comparison of voltage magnitudes for all phases at each

node can be seen in Fig. 3, with the base scenario in Fig. 3a,
and the control scenario in Fig. 3b. As the figures show, the
voltage magnitudes are much closer together when inverter
reactive power is dispatched according to the results of the
OPF of (23).

Figure 4 evaluates the first term of objective function of (23)
for all nodes with and without control action. The results show
that the objective function value (which measures the Euclid-
ian distance between squared voltage magnitudes) decreases at
all nodes following control action with the exception of node
646, which increases very slightly.

Optimal inverter control output is shown in Fig. 5 and listed
in II. As the figure shows, to balance the system, inverters at
node 675 and 632 actually consume VARs. We believe that this
effect occurs as these phase voltages are increasing compared
to voltages in the remaining phases.

TABLE II: OPTIMAL INVERTER VAR DISPATCH.

Phase
Node a [pu] b [pu] c [pu]
632 -0.0081 -0.0346 0.0437
675 0.005 0.0522 -0.058
680 0.003 0.0011 -0.0038
684 -0.0003 – -0.0389
Total -0.0003 0.0187 -0.057

V. CONCLUSION

This paper considered optimization of three phase unbal-
anced distribution systems. To do so, we derived a linearized
model of distribution system power flow that maps real
and reactive power injections into squared voltage magnitude
differences. This approximate model can be viewed as an
extension of the LinDistFlow [8] linear model to unbalanced
distribution systems. The model itself, although approximate,
was also used to give insight into an interesting phenomena
regarding voltage rises on lightly loaded phases. As was
discussed in the Simulation Results section, a rise in voltage
magnitude in one phase can now be attributed to the fact that
off diagonal components of (20)-(21) have opposite signs of
the diagonal components, indicating that large voltage drops
in some phases actually contribute to voltage rises in others.

Using the linear approximate model, we also developed an
Optimal Power Flow (OPF) program to drive system voltages
to within a ±5% threshold of 1 p.u. while simultaneously
minimizing the squared Euclidian distance between squared
voltage magnitudes at each node. Our approach resulted in
voltages that were much more balanced at each node, com-
pared to the uncontrolled case.

Although the objective considered in this work was to bal-
ance feeder voltages, the derived model is capable of optimiz-
ing over a variety of objectives as the equality constraints are
now linear. Our future work is aimed at exploring other useful
applications of three phase unbalanced OPF such as voltage
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(a) Voltage magnitudes without control.
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(b) Voltage magnitudes with control.

Fig. 3: Phase a, b, and c voltages magnitudes plotted together for base and control scenarios.
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(a) Phase a voltage magnitudes.
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(b) Phase b voltage magnitudes.
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(c) Phase c voltage magnitudes.

Fig. 2: Phase a, b, and c voltages magnitudes for base and control
scenarios plotted individually. Dashed lines represent line segments
between nodes.
reference tracking, battery and electric vehicle charging, and,
perhaps, forecasting.
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