### UC Berkeley Energy Use in Buildings Enabling Technologies

### Title

MEMS Piezoelectric Energy Harvesting From Ambient Vibrations

### Permalink

https://escholarship.org/uc/item/9qq73309

### Authors

Miller, Lindsay Chen, Alic Wright, Paul <u>et al.</u>

Publication Date

2010



### MEMS piezoelectric energy harvesting from ambient vibrations

Lindsay M. Miller, Alic Chen, Paul K. Wright, & Jim Evans

## Vision

Ubiquitous wireless sensor networks have extraordinary potential for use in applications such as demand response, environmental and manufacturing monitoring, & medical devices. Realization of these networks for wide-spread use requires that sensor nodes be low-cost, non-intrusive, & maintenance free. A micro-scale energy harvester addresses these needs by harnessing environmental vibrations to provide a replenishable source of power for the sensor node while reducing the volume of the power generator.

# **Ambient vibrations**



**Power Spectral Density vs Frequency.** Ambient vibration source: compressor. Power Spectral Density, V<sup>2</sup>/Hz or A<sup>2</sup>/Hz MEASURED ACCELERATION INPUT 10<sup>-5</sup> CALCULATED TRANSFER FUNCTION 10<sup>-10</sup> MEASURED BEAM OUTPUT CALCULATED BEAM OUTPUT 10 ō 100 150 200 250 50 Frequency, Hz

Tested 9 beams on 7 ambient sources: Prms = 1 pW/beam - 1 nW/beam (ambient vibration input). Model: measured accel. input  $\rightarrow$  predicted beam output.

# **Printed proof mass**



#### **RMS Power Output vs Frequency**



Beam signals add if connected in series.

## **Next steps**

Use model to redesign & optimize harvester for use with ambient input vibrations (goal: Prms = 1  $\mu$ W). Fabricate & test next generation harvester.

Integrate with power conditioning and other components.

