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Serial dependence is absent at the 
time of perception but increases in 
visual working memory
Daniel P. Bliss1, Jerome J. Sun1 & Mark D’Esposito1,2

Recent experiments have shown that visual cognition blends current input with that from the recent 
past to guide ongoing decision making. This serial dependence appears to exploit the temporal 
autocorrelation normally present in visual scenes to promote perceptual stability. While this benefit has 
been assumed, evidence that serial dependence directly alters stimulus perception has been limited. 
In the present study, we parametrically vary the delay between stimulus and response in a spatial 
delayed response task to explore the trajectory of serial dependence from the moment of perception 
into post-perceptual visual working memory. We find that behavioral responses made immediately 
after viewing a stimulus show evidence of adaptation, but not attractive serial dependence. Only as the 
memory period lengthens is a blending of past and present information apparent in behavior, reaching 
its maximum with a delay of six seconds. These results dovetail with other recent findings to bolster the 
interpretation that serial dependence is a phenomenon of mnemonic rather than perceptual processes. 
However, even while this pattern of effects in group-averaged data has now been found consistently, 
we show that the relative strengths of adaptation and serial dependence vary widely across individuals. 
Finally, we demonstrate that when leading mathematical models of working memory are adjusted to 
account for these trial-history effects, their fit to behavioral data is substantially improved.

Even in contexts where visual input varies randomly from trial to trial, human observers tend to blend stimuli 
from previous trials into their representation of the current one, leading to a bias in behavioral reports1–14. This 
smoothing of representations – termed “serial dependence” – is a function of how close successive stimuli are in 
space1,15 and time1–7,12,14,15. It is also sensitive to their featural similarity1–3,7–10,12,14,16,17. Serial dependence has been 
observed in judgments of orientation1,8,9, and location16,17, as well as more complex attributes like the identity2 
and attractiveness3,5,11 of human faces. That the bias is observed for such disparate features suggests it may be a 
universal principle of visual processing, and recent work has sought to demonstrate its adaptiveness8: In natural 
environments – where the input to our eyes is generally very similar from moment to moment18 – temporal 
smoothing would be expected to stabilize perception in the face of noise and occlusion1,8.

While the benefits of perceptual stability seem obvious, it is important to note that serial dependence impedes 
another goal of perception, which is to be sensitive to change. A classic example of how visual perception prior-
itizes change detection is the tilt after-effect19. This illusion (which is a type of adaptation20) is the quantitative 
opposite of serial dependence: Perception of the current moment is repelled away from, rather than merged with, 
recently processed stimuli – exaggerating differences. Like serial dependence, adaptation spans different types 
of stimulus features20–24. However, unlike adaptation, the attractive bias depends on attention: the observer must 
attend to each stimulus for serial dependence to occur1. Attention is thought to rely on the same neural and psy-
chological mechanisms as working memory25–31. Hence, it is possible that whereas adaptation is a phenomenon 
of visual perception20–24, serial dependence arises instead from post-perceptual visual working memory9,32 If this 
were true, stability would operate in parallel with (rather than compete against) change detection, as these func-
tions would be relegated to distinct cognitive systems9.

Preliminary efforts have been made to resolve whether serial dependence is perceptual or mnemonic in 
nature, with mixed results1,9. Using a comparison task that minimizes memory demands, one group identified 
positive serial dependence in a small number of individuals1 – in favor of the perceptual account. However, an 
attempt to replicate this effect with a larger sample size only revealed repulsive adaptation9. That is, no attractive 
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serial dependence was observed when memory demands were removed using the same comparison task in the 
follow-up study, in support of the idea that serial dependence requires working memory9. A complementary strat-
egy for clarifying this issue has been to boost memory demands – by increasing the delay between stimulus and 
response in delayed-estimation tasks – to determine whether this potentiates the attractive bias9,32. Traditionally, 
errors that scale with delay length are interpreted as mnemonic in origin, whereas those that are constant over 
time are assumed to be tied to the perceptual or motor demands that are also fixed33. Over a limited range, the 
magnitude of the serial dependence effect increases the longer that working memory is active9,16,17. Despite this 
potential connection to working memory, serial dependence has yet to be incorporated into the many mathe-
matical models that have been developed in recent years to fit the dispersion of errors in human memory-guided 
behavior34–44.

In the present study, we investigate temporal smoothing in visual cognition over a wider range of memory 
delays than has been used in the past. We use a spatial delayed response task, which has been shown to produce 
serial dependence in non-human primates16,17. Previous experiments using delayed response tasks to measure 
serial dependence have included a visual mask after the stimulus presentation period1,2,8,9, as well as a delay period 
of at least several hundred milliseconds before a response is permitted1,2,8,9,16,17, which encourages encoding into 
working memory and cannot cleanly measure more fragile perceptual representations45,46. In our shortest delay 
condition, we allow participants to respond immediately after stimulus offset, with no mask. From this 0-s base-
line, we parametrically increase the delay length up to 10 s. In a separate experiment, we parametrically manipu-
late the length of the inter-trial interval (ITI). This permits us to assess the decay rate of the trial-history effect in 
the absence of intervening trials – clarifying its potential functional and biological implementation. Finally, we 
pursue a novel formal unification of the serial dependence phenomenon with mathematical models of working 
memory34,35,37–41. This sets the stage for future experiments to dissect the neural mechanisms of serial dependence 
in the context of ongoing research into the organization of the working memory system32.

Results
Experiment 1: Manipulation of visual working memory delay. Participants completed a spatial 
delayed response task, depicted in Fig. 1. For Experiment 1, the length of the working memory delay period in 
this task was varied randomly from trial to trial (0, 1, 3, 6, or 10 s). Collapsing across these five delay conditions, 
we identified serial dependence in the group dataset significantly greater than zero ( < −p 10 4, group permutation 
test; peak-to-peak = 1.67°; bootstrapped 95% confidence interval = [1.48°, 1.85°]). To do this analysis, we meas-
ured the magnitude of serial dependence as the peak-to-peak of the curve fit to the pattern of errors across all 
possible differences between current and previous stimulus location (see Methods). The peak-to-peak is a meas-
ure of the maximal pull of responses away from the correct stimulus feature value as a result of this trial-history 
bias. Previous studies have used similar measures of amplitude to quantify serial dependence1,2,8,9,16. No bias was 
present in the data in the direction of the stimulus on the upcoming trial ( . .n s , group permutation test; peak-to-
peak 0 14= − . °; bootstrapped 95% confidence interval = [−0.59°, 0.15°]), which supports the conclusion that the 
dependence of behavior on the previous trial is not due to spurious correlations in the particular randomized 
sequences of stimuli generated for the subjects10,14.

Next we examined each of the delays individually. The magnitude of serial dependence across memory delays 
from 0–10 s is plotted in Fig. 2a. When participants reported the location of the stimulus immediately after view-
ing it, presumably relying at least in part on residual neural activity associated with perception, their responses 
showed signs of sensory adaptation, an effect that is opposite in direction from serial dependence ( < −p 10 4, 
group permutation test; peak-to-peak = − .1 72 ; bootstrapped 95% confidence interval [ 2 30 , 1 09 ] = − . − . ; 
Fig. 2b). In contrast, for every other delay tested, serial dependence was significantly greater than zero (all 

< .p 0 01, group permutation tests). Moreover, the magnitude of serial dependence increased from 0–1 s 
( < −p 10 4, group permutation test; peak-to-peak at 1 s = . °0 85 ; bootstrapped 95% confidence interval 
= . ° . °[0 48 ,1 20 ]) and again from 3–6 s ( < −p 10 3; peak-to-peak at 6 s = . °3 37 ; bootstrapped 95% confidence inter-
val [2 88 ,3 84 ]= . ° . ° ) before asymptoting between 6 and 10 s ( . .n s ; peak-to-peak at 10 s = . °2 86 ; bootstrapped 95% 
confidence interval [2 28 ,3 41 ]= . ° . ° ). Serial dependence was numerically strongest in the 6-s condition, shown in 
Fig. 2c. Here, the peak-to-peak is visible as the distance along the y-axis between the maximal and minimal values 

Figure 1. The events in each trial of the generic spatial judgment task used for Experiments 1 and 2 (not 
to scale, see Methods for exact dimensions). Stimuli were presented in black against a gray background. 
Participants maintained fixation at the central square whenever it was on the screen (all task stages aside 
from the response period). Each trial started with the presentation of the cue whose location needed to be 
remembered for either a variable (Experiment 1) or fixed (Experiment 2) delay. Upon the disappearance of the 
central square at the end of the delay, the mouse cursor appeared at the exact center of the screen (not shown), 
and subjects used the mouse to make their response. Responses were not timed. Immediately after the response 
was made, the fixation square returned for a fixed (Experiment 1) or variable (Experiment 2) inter-trial interval.
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of the model fit to the data. We note that the asymptote in serial dependence between 6 and 10 s does not corre-
spond to an asymptote in the accumulation of noise in working memory. Consistent with a recent theoretical 
study and reanalysis of empirical data47, we observed a sublinear increase in the variance of responses, which in 
the case of our data continued up to the 10 s delay (bootstrapped 95% confidence interval at 6 s = . ° . °[41 28 ,44 92 ]2 2 , 
at 10 s = . ° . °[50 22 ,54 40 ]2 2 ; Fig. 3).

The large sample of participants from whom we collected data enabled us to assess the nature and range of 
individual differences in the pattern of trial-history effects that we observed at the group level. Adaptation and 
serial dependence are subtle effects – just a few degrees in magnitude at their peaks – whose tuning can be meas-
ured accurately only with many trials. Hence, we were statistically underpowered to detect differences between 
delay conditions for each individual subject (though we provide results divided by delay for a few sample subjects 
as Supp. Fig. 1). Instead, we collapsed over delay conditions for the purposes of evaluating which (if any) 
trial-history effect dominated throughout all time points in perception and working memory for each participant. 
The results are displayed in Fig. 4. Participants fell into three categories. Seven subjects showed evidence of strong 
repulsive adaptation that dominated across time points (all p < 0.05, permutation tests; all bootstrapped 95% 
confidence intervals < 0). One of these, whose repulsive bias was strongest (peak-to-peak 5 08= − . °), is presented 
in Fig. 4b (and Supp. Fig. 1A). Another 11 subjects had data that showed weak and/or noisy variation as a func-
tion of the previous stimulus’ location (all . .n s ). The remaining majority of subjects (n 20= ) displayed visibly 
apparent and statistically significant attractive serial dependence (all < .p 0 05; all bootstrapped 95% confidence 
intervals 0> ). However, among these, there was noticeable diversity in the tuning of the effect. Figure 4c shows 

Figure 2. (a) Magnitude of serial dependence in the group data for each delay period tested in Experiment 1. 
Serial dependence is measured as the peak-to-peak of a least squares fit of the derivative of Gaussian (DoG) 
tuning function to the data. Error bars represent bootstrapped 95% confidence intervals. The magnitude of the 
serial dependence increases during the first 6 s of the delay period, and goes from significantly negative (evident 
of sensory adaptation) to significantly positive between 0 and 1 s. (b) Tuning of serial dependence across all 
possible angular differences between the current and previous stimulus, for the 0-s delay condition. The thin 
black line represents the group moving average of response errors, with the standard error in gray shading. The 
thick black line is the best-fitting DoG curve, and the orange line depicts the best fit of an alternative model – 
the Clifford model (see Methods) – which cannot capture the pattern of sensory adaptation in this condition. 
Although its positive and negative peaks are asymmetrical, adaptation is significantly stronger than chance at 
0 s, with a peak-to-peak of − . °1 72 . (c) Tuning of serial dependence for the 6-s delay condition. Here, serial 
dependence is significantly more positive than chance, and the peak-to-peak of the DoG fit – indicated by the 
blue double-headed arrow in the figure – is 3.37°. Note that in this condition both the DoG and Clifford models 
capture the amplitude of the effect equivalently well.



www.nature.com/scientificreports/

4SCIeNtIfIC REPORTS | 7: 14739  | DOI:10.1038/s41598-017-15199-7

the tuning over stimulus differences for one subject with a low-amplitude (peak-to-peak = . °1 57 ) and narrow 
attractive serial dependence surrounded by negative “peripheral bumps”9 (where the bias changes direction to 
repulsion when consecutive stimuli are far apart). In contrast, the participant highlighted in Fig. 4d (and Supp. 
Fig. 1B) evinced the canonical shape of the effect – a broad spread of the attractive effect (peak-to-peak 5 11= . °) 
and less prominent peripheral bumps.

The time course of serial dependence we observed at the group level over the current trial’s delay period was 
not reproduced when trials were sorted based on the previous trial’s delay period. For each of the possible preced-
ing delay period lengths, serial dependence in the current trial’s response was significantly greater than zero (all 

< .p 0 01, group permutation tests; Fig. 5a). Between 0 and 6 s (of delay on the previous trial), serial dependence 
varied little (all comparisons . .n s , group permutation tests; minimum peak-to-peak at 6 s 1 78= . °; maximum 
peak-to-peak at 3 s = . °2 21 ; all bootstrapped 95% confidence intervals overlapping). However, when the previous 
delay was as long as 10 s, serial dependence was significantly reduced relative to each of the other delay lengths (all 

< .p 0 005; peak-to-peak at 10 s = . °0 91 ; bootstrapped 95% confidence interval = . ° . °[0 50 ,1 20 ]). Tuning for the 
conditions with the strongest (3 s) and weakest (10 s) serial dependence are displayed in Fig. 5b and c, respectively. 
This set of findings is partially consistent with results from another study that tested a narrower range of delays 
(0.8 – 3.2 s) in non-human primates16. In this earlier study, it was found that the amplitude of serial dependence 
remained constant over this range (of previous delay length). Here, we extend this result to show that the previous 
trial’s influence does eventually decay when the previous trial’s delay is especially long.

In line with past work on the sources of error in working memory9,33, our findings suggest that the increasing 
serial dependence over longer delays (in the current trial) reflects its association with mnemonic processes rather 
than perceptual and motor processes that were held constant in our experiment. Research over the last decade 
has yielded several mathematical models designed to isolate distinct sources of error in working memory34,35,37–41. 
None of these include parameters for the proactive interference that serial dependence represents32. Also, the 
only substantive difference between the models is their characterization of noise in the distribution of behavioral 
responses. As a form of systematic error, serial dependence is separable from noise, and so can be incorporated 
into any of these models without changing their definitions or differences. The simplest model (sometimes called 
the “equal precision” model37,39) fits random error with a single von Mises distribution34. In contrast, the “variable 
precision” model assumes the standard deviation parameter of the von Mises varies from trial to trial according 
to a gamma distribution37,38. A third model explicitly regards the precision of working memory as arising from 
noise in Poisson-distributed spike trains of individual neurons40,41. Errors in this model are distributed according 
to a von Mises random walk41. We will refer to these three working memory models as EP (equal precision), VP 
(variable precision), and VMRW (von Mises random walk).

As a first pass, we fit each of these models to the behavioral data from Experiment 1. Model comparison on the 
basis of the corrected Akaike Information Criterion (AICc) revealed that the VMRW model fit the data about as 
well as the VP model (Δ AICc 3 9 5 3= . ± .  in favor of VMRW). Both of these models fit the data better than the 
EP model (Δ AICc 40 2 9 6= . ± .  in favor of VMRW; Δ AICc 36 2 8 1= . ± .  in favor of VP). This relative perfor-
mance is consistent with published comparisons of the three models using behavioral data from other working 
memory tasks37–40.

Next, we created a hybrid model that incorporates serial dependence into the mean of the VMRW distribution 
– sliding the mean clockwise or counterclockwise on each trial by the magnitude dictated by the tuning of the 
history effect (see Methods). This hybrid model significantly outperformed the base VMRW model (Δ AICc 

29 2 7 9= . ± . ). However, this result on its own falls short of confirming that the serial dependence tuning func-
tion is needed to quantify the influence of the history effect on each trial. To verify that inclusion of the tuning 
curve visible in Figs 2 and 4–6 is needed for the improvement in fit, we developed an alternative hybrid “memory 
confusion”2 model that takes trial history into account in a different way. In this model, it is assumed that on a 
subset of trials, subjects simply mix up which stimulus belongs to the current trial and report the previous trial’s 

Figure 3. Variance of response errors as a function of the current trial’s delay in Experiment 1. The thin black 
line depicts the group mean, with bootstrapped 95% confidence intervals in gray shading. The thick black line is 
the linear best fit, which is a mismatch to the sublinear increase of variance with delay. A better fit is achieved 
with a power law (modified to allow for non-zero variance in the 0-s condition), depicted in orange. The power 
law is ∼ + βy x t( ) , with β = .0 47.
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location when probed (analogous to a “swap”36,43 over time rather than space). This “memory confusion” model 
provided no benefit above the base VMRW model and made it worse, due to the addition of parameters that 
captured little variance (Δ AICc = − . ± .7 7 2 7).

Finally, we tested whether the addition of the serial dependence tuning function to all three of the base models 
would change the order of performance among them. Whereas the VMRW and VP models performed equiva-
lently without taking account of serial dependence, we found that the extended VMRW model outperformed the 
extended VP model when fit to our data (Δ AICc = . ± .12 2 4 1). The fit of the extended EP model was still worse 
than that of the VP model with serial dependence terms (Δ AICc 14 7 5 2= . ± . ). Hence, the overall best-fitting 
model to our data was the VMRW model with added terms for the DoG-shaped serial dependence effect.

Experiment 2: Manipulation of baseline interval between trials. It is possible that the delay manip-
ulation in Experiment 1 confounded two variables1: the time for which subjects must hold the current item in 
memory and2 the time that has elapsed since the behavioral response on the previous trial, before the current tri-
al’s response. To assess whether the time course of serial dependence we observed (Fig. 2a) corresponds to mne-
monic processes and not the simple passage of time, we conducted a second experiment in which the inter-trial 
interval (ITI) varied randomly among 1, 3, 6, and 10 s. The delay in this new task was held constant at 3 s. In all 
other respects, the tasks for the two experiments were identical.

Figure 4. (a) Magnitudes of serial dependence observed for the individual participants tested in Experiment 1. 
For all but three individuals, serial dependence was measured as the peak-to-peak of the DoG fit to the data. The 
DoG was a qualitatively poor fit to the remaining participants (e.g., Fig. 4c), due to the prominence of peripheral 
bumps in their serial dependence tuning functions, which the DoG cannot capture. (The term “peripheral 
bumps” refers to repulsion at large differences between consecutive stimuli, in the same condition in which 
attraction occurs at small differences.) These participants are colored orange in this plot. Letters in this plot refer 
to the subfigures that follow. Significant negative adaptation and positive serial dependence (p < 0.05, 
permutation tests) are labeled with asterisks. Error bars are bootstrapped 95% confidence intervals. (b) Tuning 
of sensory adaptation across all possible angular differences between the current and previous stimulus, for the 
subject whose adaptation was strongest (peak-to-peak 5 08= − . °. The thin black line represents the group 
moving average of response errors, with the standard error in gray shading, and the thick black line is the best-
fitting DoG curve, which fits the data as well as the Clifford model (in orange). (c) Tuning of serial dependence 
for a subject with a non-canonical pattern of the effect (peak-to-peak 1 57= . °). The peripheral bumps are high 
in amplitude and wide relative to the narrow central attractive bias. The Clifford model in orange captures the 
positive and negative peaks of the effect well (even while the widths are misestimated), whereas the DoG 
mischaracterizes the bias as adaptation (negative peak-to-peak). (d) Tuning of serial dependence for a subject 
with strong, canonical serial dependence (peak-to-peak 5 11= . °). Here, the central peaks of serial dependence 
are wider and higher-amplitude than the peripheral bumps, and both the DoG (in black) and Clifford model (in 
orange) capture the magnitude of the effect well, though the DoG misses the peripheral repulsion.
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Collapsing across ITIs, we identified serial dependence in the group dataset significantly greater than zero 
( < −p 10 4, group permutation test; peak-to-peak 1 62= . °; bootstrapped 95% confidence interval = . ° . °[1 38 , 1 86 ]). 
As for Experiment 1, there was no bias in the data in the direction of the stimulus on the upcoming trial ( . .n s , group 
permutation test; peak-to-peak = 0.23°; bootstrapped 95% confidence interval = − . ° . °[ 0 15 , 0 80 ]), an important con-
trol10,14. This pair of results replicates our finding from Experiment 1 of serial dependence in this spatial delayed 
response task, using an independent dataset.

Next we examined each of the ITIs individually. The magnitude of serial dependence across ITIs from 1–10 s 
is plotted in Fig. 6a. The magnitude of serial dependence decreases gradually during the interval between trials, 
marginally from 3–6 s ( = .p 0 01, group permutation test, Bonferroni-corrected α = .0 008; lower bound of boot-
strapped 95% confidence interval at 3 s 2 48= . °; upper bound of confidence interval at 6 s 1 81= . °) and signifi-
cantly from 6–10 s ( < −p 10 4; lower bound of bootstrapped 95% confidence interval at 6 s = . °1 00 ; upper bound 
of confidence interval at 10 s = . °0 48 ). The difference in serial dependence between the 1-s (Fig. 6b) and 3-s ITIs 
was statistically non-significant. The slope of this time course is opposite that obtained in Experiment 1, strength-
ening our conclusion that increased serial dependence with increased delay length is due to the prolongation of 
memory demands rather than the mere passage of time. For the largest ITI (10 s), participants’ responses on the 
trial after the ITI were repelled away from the preceding trial’s stimulus, an effect consistent with sensory adapta-
tion ( = .p 0 006; peak-to-peak = −1.38°; bootstrapped 95% confidence interval = − . ° − . °[ 2 15 , 0 48 ]; Fig. 6c). In 

Figure 5. (a) Peak-to-peak of serial dependence in the group data for each length of the previous trial’s delay 
tested in Experiment 1. The peak-to-peak was calculated using a least squares fit of the Clifford tuning function 
to the data. Statistics could not be computed reliably using the DoG function due to its inability to capture the 
“peripheral bumps” of serial dependence, which were prominent when the data were sorted by the length of 
the previous delay period (see Supp. Fig. 2). Error bars represent bootstrapped 95% confidence intervals. Serial 
dependence is constant between 0 and 6 s, but then drops in magnitude between 6 and 10 s. (b) Tuning of serial 
dependence across all possible angular differences between the current and previous stimulus, for responses that 
followed trials with a delay length of 3 s. The thin black line represents the group moving average of response 
errors, with the standard error in gray shading, and the thick orange line is the best-fitting Clifford curve (2.21° 
peak-to-peak). The DoG fit (thick black line) misses the large-amplitude peripheral bumps at the extremes of 
the x-axis in this plot. (c) Tuning of serial dependence when the preceding trial’s delay period was 10 s. Here, 
the peak-to-peak of the Clifford fit is 0.91°. The attractive peaks of serial dependence in this condition are 
clearly reduced relative to Fig. 5b, but the peripheral bumps are just as prominent. The best DoG fit reasonably 
approximates the magnitude of the attractive effect, but its failure to account for the peripheral bumps causes 
resampling and permutation statistics to be unstable (Supp. Fig. 2).
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contrast, for every other ITI tested, serial dependence was significantly greater than zero (all ≤ −p 10 3, group 
permutation tests).

Discussion
In everyday visual experience, humans rely not just on moment-to-moment perception but also on continued 
maintenance of information in working memory to navigate their environments and accomplish tasks. While 
there is much evidence to suggest that working memory recruits the same cortical areas active during sensory 
perception48–56, remembered visual content differs in quality33,57,58 – and potentially representational format59,60 
– from feedforward signals driven by the presence of an external stimulus. Both behavioral data33,57,58 and com-
putational theory61 have implied that passage of visual percepts into memory makes them less precise. This past 
work has also claimed that mnemonic processes do not attach to percepts any accumulating systematic bias – just 
random noise due to drift and/or decay33,57,58,61. With the experiments reported here, we provide new evidence to 
disconfirm this view. Serial dependence – a systematic bias in the direction of the preceding trial’s stimulus – is 
absent from percepts until the working memory system is engaged. Our demonstration of repulsive adaptation 
– with no attractive serial dependence – in the perception condition extends previous work9 by showing that 
this oppositely valenced effect that precedes working memory does not require that subjects make a comparison 
between two simultaneously presented stimuli9; adaptation occurs in the context of the same delayed response 
task that yields serial dependence when memory demands are increased.

By testing a wider range of delays between stimulus and response than used in previous studies9,16,17, we were 
able to chart the time course of serial dependence in visual working memory. This technique – of probing partic-
ipants to report the contents of memory at variable points in time after stimulus offset – is common in visual psy-
chophysics62. It has revealed how information passing through the visual system progresses from a rich perceptual 
code to a more impoverished mnemonic one. For a few hundred milliseconds after visual input ceases, a great deal 

Figure 6. (a) Peak-to-peak of serial dependence in the group data for each ITI tested in Experiment 2. The 
peak-to-peak was calculated using a least squares fit of the DoG tuning function to the data. Error bars represent 
bootstrapped 95% confidence intervals. Serial dependence decreases in magnitude as the ITI lengthens, and 
then flips to significant repulsive sensory adaptation at an ITI of 10 s. (b) Tuning of serial dependence across all 
possible angular differences between the current and previous stimulus, for the 1-s ITI condition. The thin black 
line represents the group moving average of response errors, with the standard error in gray shading, and the 
thick black line is the best-fitting DoG curve (2.59° peak-to-peak). In orange is the best fit of the Clifford model, 
which captures the amplitude of the effect as well as the DoG. (c) Tuning of sensory adaptation for the 10-s ITI 
condition. Here, the peak-to-peak of the DoG fit is −1.38°. The Clifford model cannot conform to the narrow 
width of the effect in this condition and underestimates its magnitude.
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of perceptual detail is still accessible to the observer in iconic memory – a form of storage intermediate between 
perception and working memory63. After that, within one second of delay, capacity-limited, distraction-resistant 
working memory comes online in parallel with a larger-capacity system that is vulnerable to distraction – fragile 
memory45,46,64–67. Our experiments demonstrate that the residual sensory trace associated with iconic memory is 
free of serial dependence – though it does carry the opposite, repulsive bias associated with sensory adaptation. 
The attractive bias arises slowly in the later short-term memory systems, but asymptotes before long-term storage 
processes are engaged (at approximately 20 seconds of delay58). Future research may resolve with finer resolution 
the exact moment at which serial dependence appears and whether it is most strongly associated with fragile or 
distraction-resistant stages of working memory. (Consistent with most work in this area68,69, we have tended to 
use the term “working memory” as a shorthand for both of these systems.)

Our results indicate that not only do the relative strengths of serial dependence and adaptation differ over 
time (between perception and working memory) – they also differ across individuals (Fig. 4). This suggests that 
serial dependence may appear in behavior sooner – perhaps as early as the perceptual period – in individuals 
for whom adaptation processes are especially weak (Supp. Fig. 1). By the same reasoning, experimental manip-
ulations employed to dimish the strength of adaptation might help reveal an earlier onset of weak, underlying 
positive serial dependence in most subjects. However, as it can take as little as 50 ms for a viewed stimulus to 
be consolidated into working memory70, it seems unlikely that future investigations conducted at finer tempo-
ral resolution will identify robust serial dependence at time points that definitively exclude the involvement of 
working memory – especially given that positive serial dependence is weaker the sooner the response is made to 
a stimulus. (We note that subjects are likely to have engaged working memory encoding processes even in our 
0-s delay condition, where serial dependence was not consistently observed. Our argument is that consolidation 
into working memory is likely necessary, but not always sufficient – if maintenance times are short – for the 
occurrence of the effect.) The measurement of neural signals associated with serial dependence may be needed 
to definitively disambiguate whether the effect originates in low-level sensory cortex immediately upon sensory 
perception or hundreds of milliseconds later, after sensory input has propagated to higher-level areas involved in 
the maintenance of short-term perceptual memories32.

Beyond demonstrating that serial dependence accumulates for longer in working memory than previous stud-
ies have indicated9,16,17, we have taken strides to integrate this phenomenon into the study of working memory in 
ways it has not been before32. Specifically, we have made concrete, formal improvements to prominent mathemat-
ical models designed to characterize the psychological architecture of working memory. The provision of terms 
for serial dependence to these models allows them to capture more variance in behavioral data and ensures that 
the variance associated with the temporal smoothing operation of serial dependence does not distort estimates of 
the models’ other parameters. Furthermore, our results demonstrate that the inclusion of these terms can reveal 
performance differences between seemingly equivalent models – we found that the VMRW model performs 
better than the VP model only after the tuning of the trial-history effect is taken into account. Claims that have 
been made about the nature of decay rates in working memory without consideration of trial-history biases must 
now be reëvaluated. For example, one study that modeled behavioral responses following different delay period 
lengths concluded that maintained representations are susceptible to spontaneous complete erasure from working 
memory as the delay length increases (measured as an increase in guess rates), but not to subtle degradations in 
precision (measured with the κ parameter of a variation on the EP model)42. However, because this study ignored 
potential serial dependencies in the data, as well as alternative models of noise (e.g., VP and VMRW), the validity 
of this conclusion is unclear. It is impossible to address claims about total loss of information from memory with 
our data, because guess rates in our simple one-item spatial task were near zero. In the future, however, the hybrid 
models we have developed that incorporate serial dependence may help elucidate the nature of working memory 
storage in more difficult multi-item tasks44. To what extent serial dependencies occur when multiple items are 
held in mind at once is an open question that the hybrid models we have validated can help answer.

Our experiments have filled other gaps in the field’s understanding of the temporal properties of serial depend-
ence. We have determined the approximate duration for which this effect persists between trials. At least in spatial 
working memory, the attractive bias disappears within ten seconds after the end of each trial, and is replaced by 
(or exposes a persistent) low-amplitude adaptation. This constrains possible neural theories of serial dependence 
– viable mechanisms must have time constants on the order of 10 s, which rules out especially short-term (e.g., 
synaptic facilitation) and long-term (e.g., long-term potentiation) forms of plasticity. Previous attempts to meas-
ure the washout period of serial dependence in humans have used a short, fixed ITI, preventing the measurement 
of pure time in the absence of intervening trials1,14. One experiment using non-human primate subjects did report 
a decrease in serial dependence between 2 and 7 s of ITI16. Over this range, the effect remained above baseline for 
two of three subjects, and no crossover to adaptation was observed. We have also shown that serial dependence 
weakens when the stimulus on the previous trial is maintained for as long as 10 s. It is possible that the neural code 
changes abruptly around this time point: for example, elevated neural firing keeping the representation active 
may begin to fail spontaneously (as happens in some neural-network models71), leaving the representation in 
an “activity silent” state supported by short-term plasticity72,73. Exponential decay of this synaptic trace (without 
continued active firing to keep it in place) may explain the reduced influence on responses on the subsequent trial.

Reframing serial dependence as a phenomenon of working memory rather than perception does not change 
the theories that have been put forth about its functional importance32. Thus, it remains an important mechanism 
for stabilizing representations against interruptions in visibility1,8. The contents of working memory track the 
focus of attention25–31, which, during the execution of a single goal, can remain the same for several seconds, even 
as the raw visual input that impinges on the retina fluctuates due to saccades, occlusion, and changes in lighting. 
Hence, temporal autocorrelation in visual working memory is potentially even higher than it is in visual scenes 
(and perception). If true, this would explain why serial dependence may have evolved in working memory as 
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opposed to perceptual circuits – more autocorrelation enhances the ability of temporal smoothing to limit the 
influence of noise and boost signal. Moreover, the offloading of attractive serial dependence to memory systems 
may accord perceptual systems enhanced capacity to specialize in novelty detection, in part via adaptation. More 
research is needed to elucidate the ways in which serial dependence and adaptation interact, and to reveal the eco-
logically valid situations in which one or the other (perhaps both at the same time) enhance visual performance32. 
Such continued study should aim to clarify the mechanisms and functional consequences of the striking diversity 
we observed in the strength and tuning shape of these effects across individuals.

Methods
Participants. Fifty-five adults (34 female) from the UC Berkeley community were recruited to participate in 
this study. Thirty-five of these individuals completed Experiment 1 only, fourteen completed Experiment 2 only 
and six completed both experiments. All aspects of data collection and analysis were conducted in accordance 
with guidelines approved by the Committee for the Protection of Human Subjects at UC Berkeley. Informed con-
sent was obtained from all subjects, and they were compensated monetarily for their time.

Experimental Procedures. Participants completed the protocol in a soundproof, dimly lit testing room. 
For both experiments, they completed a spatial delayed response task, depicted in Fig. 1 (adapted from44). The 
task was programmed in MATLAB using the Psychophysics Toolbox74 (version 3) and run on a Mac mini (OSX 
El Capitan 10.11). For eight subjects in Experiment 1, a 17-in monitor was used with a screen resolution of 
1280 × 1024 pixels. The remaining sessions were run with a 23-in monitor, 1920 × 1080 pixels. Results with regard 
to serial dependence were not appreciably different between the two groups that used different monitors (Supp. 
Fig. 3). All participants were seated such that their eyes were approximately 60 cm from the center of the testing 
display.

The stages of the generic task used for both experiments are as follows (with angle measurements reported in 
degrees of visual angle). Each trial began with the presentation of a black circle for 1 s at a random polar angle 
from fixation, with eccentricity fixed at °12 . The circle’s diameter was °1 . All stimuli were displayed against a gray 
background. Participants were instructed to fixate a central black square – which spanned . °0 5  × . °0 5  – whenever 
it was on the screen (all stages of the task aside from the response period). In Experiment 1, participants remem-
bered the location of the presented circle for a delay that varied randomly from trial to trial (0, 1, 3, 6, or 10 s). The 
delay was always 3 s in Experiment 2. At the end of the delay, the fixation square was replaced with the mouse 
cursor (at the exact center of the screen), and participants indicated the location in mind by moving the cursor to 
that location and clicking once. No feedback was given. Errors were measured in degrees of polar angle. In 
Experiment 1, a 1-s ITI followed the response period, before the start of the next trial. The ITI varied randomly 
from trial to trial in Experiment 2 (1, 3, 6, or 10 s). Each participant completed 1,000 trials (200 per delay) in 
Experiment 1, divided into 40 blocks over the course of one or two experimental sessions. All but two participants 
completed 1,008 trials (252 per ITI) in Experiment 2. The remaining two participants completed 999 and 1,017 
trials, respectively.

Data Analysis. The data were analyzed using Python, MATLAB, and shell scripts. All code written for this 
study is available in a public Git repository (https://github.com/dabliss/bliss_sd_behavior_2017.git).

Before model fitting for trial-history effects, the data were submitted to preprocessing. First, trials with 
responses that were within 5° of visual angle of the origin were dropped, as were trials with responses further than 
three standard deviations from the participant’s mean error (<0.7% of all trials, across subjects). Next, we com-
puted systematic directional error as the mean response for each stimulus location. This mean was then sub-
tracted from the response on each individual trial (ignoring the location of the previous trial) to obtain the 
residual error that was used to characterize serial dependence. Replicating the procedure in16, we computed the 
systematic error by spatially low-pass filtering the responses as a function of stimulus location using the MATLAB 
function loess. Finally, to ensure that our analyses were restricted to data from participants who performed the 
task correctly, we removed those with noticeably poor performance. Specifically, we removed subjects with an 
overall mean absolute error greater than °10  of polar angle. This criterion, though arbitrary, removed only subjects 
with qualitatively noisy error histograms while retaining those whose errors were roughly normally distributed 
around the correct value (the expected pattern). Only three subjects in Experiment 1 failed to pass this criterion 
(mean absolute error . ± .37 3 19 5 for these three compared to . ± .4 7 0 2 for the others). Data from two subjects 
in Experiment 2 were excluded ( . ± .53 9 1 8 for these compared to . ± .4 7 0 4 for the others).

Studies that have modeled the tuning of serial dependence to featural differences between past and current 
visual stimuli have used the derivative of Gaussian (DoG)1,2,8,9 (or the very similar Gabor function16,17). There is 
another function in the perception literature, developed by Clifford and colleagues20, that has been used to model 
sensory adaptation – and that therefore fits serial dependence readily (when multiplied by −1). Overall, these 
functions fit the data from our Experiment 1 equivalently well (collapsing over delays, Δ AICc = . ± .0 8 1 0, favor-
ing DoG over Clifford), and this equivalence also holds for Experiment 2 (collapsing over ITIs, Δ 
AICc = 1 1 1 0. ± . , favoring DoG over Clifford). However, we noted significant differences between the Clifford 
and DoG models in certain conditions. Occasionally, the attractive bias of serial dependence is accompanied by a 
repulsion effect (“peripheral bumps”9) when previous visual input is close to maximally different from the input 
on the current trial (the extremes of the x-axis in Fig. 2c). The DoG cannot account for this reversal of the 
response bias, so when it is prominent in the data, the best fit of the DoG tends to mischaracterize the true effect 
size (e.g., 4C). The Clifford model is a combination of sinusoids of different frequencies designed to capture the 
peripheral bumps when they appear20. However, when the trial-history effect is narrow over stimulus differences 
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and there are no peripheral bumps, the Clifford model tends to fail (e.g., Fig. 2a). This is because the Clifford 
model – unlike the DoG – does not have an independent width parameter; shrinking the central width of the 
Clifford fit requires that the peripheral bumps be increased. To be consistent with previous literature on serial 
dependence, we use the DoG for all analyses, except in cases where it provides a poor fit to the data, in which case 
we use the Clifford model (as noted below). The mathematical definitions of both models are reported next.

In this study, differences between past and current visual input ranged between −180 and °180  of polar angle 
(a complete circle). The DoG is defined as

= −y xawce , (1)wx( )2

where y is the signed error, x is the relative angle of the previous trial, a is the amplitude of the curve peaks, w is 
the width of the curve, and c is the constant − .e2 / 0 5.

The Clifford model is stated as follows:

+ =
− +

y x x

s x c x
sin( ) sin( )

( cos( ) ) sin ( )
,

(2)2 2

where s is a scaling parameter and c is a centering parameter.
We used the scipy75 function least_squares (in the optimize module) to find the values of a and w, in the case 

of the DoG, or c and s, in the case of the Clifford model, that minimized the difference, for each x, between the 
estimated y and the subject’s actual error. Across all values of x, we take the magnitude of serial dependence (or 
adaptation) to be the peak-to-peak of y x( ), with the sign adjusted to match the direction of the effect (see Fig. 2c).

To determine whether the magnitude of serial dependence was significantly greater than zero, or greater in 
one condition than in another, we submitted the data to permutation testing at the group level2,9. Specifically, we 
shuffled the values of x (current trial’s location relative to the previous trial’s) while leaving in place the corre-
sponding errors. We then fit the DoG to the shuffled dataset. This process was repeated 10,000 times. The p-values 
we report are the proportion of permutations that led to equal or higher values for the peak-to-peak of the func-
tion fit than the one estimated for the unshuffled data. In the case of a comparison between conditions, we sub-
tracted the null peak-to-peaks for one condition from those for the other, and report the proportion of these 
differences that had equal or higher values than the empirical difference. The criterion for significance was 
Bonferroni-corrected for each family of tests.

We computed bootstrapped confidence intervals as follows:2,9 We resampled the data with replacement 10,000 
times. We then fit the DoG to each resampled dataset. This yielded a distribution of peak-to-peak values from 
which we selected the boundaries of the 95% confidence interval – separately for each delay and ITI condition.

In our statistical analyses of group data, only one condition – the 10-s condition in the analysis of the previ-
ous trial’s delay length for Experiment 1 – could not be fit reliably using the DoG, due to large peripheral bumps 
(Fig. 5c; Supp. Fig. 2). Hence, for this analysis we used the Clifford model, which estimated the peak-to-peak 
reliably. In our plot of individual subjects’ data (Fig. 4a), the DoG fit (with bootstrapped confidence intervals) is 
reported for all but three subjects, for whom the Clifford model was a qualitatively superior fit. These three sub-
jects are labeled in the figure, and one is highlighted in Fig. 4c.

Three base mathematical models of working memory – EP34, VP37,38, and VMRW40,41 – were fit to our behav-
ioral data, as described in the Results. Model fitting was done using the MATLAB function fminsearch, separately 
for each delay condition. EP is defined as

π
| =

−
ˆ

ˆ
p s s k ek

l k
( ; )

2 ( )
,

(3)

scos(s )

0

the von Mises probability density function. Here, ŝ  is each trial’s response, s the corresponding stimulus, and I0 the 
modified Bessel function of the first kind, order zero. The concentration parameter, κ, is a measure of response 
precision, spanning all trials, and is the model’s one free parameter for fitting.

In VP, precision is drawn anew for each trial from a gamma (γ) distribution with mean J  and scale parameter 
τ (the model’s free parameters). Built from EP, this gives

∫τ γ τ| = Φˆ ˆp s s J EP s s J J J dJ( ; , ) ( ; , ( )) ( ; , ) , (4)

where EP’s concentration parameter κ is a function of J  – here expressed as Φ J( ) – and J  is formally defined as 
Fisher information. The analytical relation between κ and J  is κ= κ

κ
J I

I
( )
( )

1

0
, and Φ J( ) is approximated numerically 

using this equation. The integral in Equation (4) has no analytical expression and so is also approximated using 
Monte Carlo simulations37,39.

Finally, in VMRW, noise in working memory is distributed according to a von Mises random walk, as derived 
from a population coding model of cortex41. Specifically, behavioral errors for a random walk of length r are von 
Mises distributed:

π
| =

−
ˆ

ˆ
p s s r k e

l kr
( ; , )

2 ( )
,

(5)

r s sk cos( )

0

where the distribution of r for m walk steps is
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ψ| = .p r m k l kr
l k

r r( , ) ( )
( )

( )
(6)m m

0

0

Here, ψr r( )m  is the probability density function for a uniform random walk of length r and number of steps m. 
The variable m is itself Poisson-distributed, with expected value ξ. For additional equations and a full derivation, 
including the neural interpretation of these variables, see41. In order to fit this model to data, we approximated the 
density ψ r( )m  via Monte Carlo simulation. The free variables for fitting are κ (the concentration parameter) and ξ, 
which corresponds to gain.

We added terms to these base models to capture temporal smoothing in the data in the form of serial depend-
ence (or adaptation). In particular, we allowed the mean of each model’s probability density function to vary on a 
trial-by-trial basis, as a function of the location of the previous trial’s stimulus. Given a particular difference in 
location between the current and previous trial’s stimuli, the mean shift was set to be the value of the DoG model 
fit to the data at that point. (That is, in visual terms, the input to the model was a point on the x-axis in Fig. 2c, for 
example, and the output mean shift was the DoG function’s value on the y-axis.) This procedure added two addi-
tional variables to each of the base models – a and w.

As an alternative to the base models with the serial dependence expansion, we made alternative models that 
account for trial history by assuming that participants, on a subset of trials, confuse which stimulus was presented 
most recently and report the wrong item when probed. This alternative similarly allowed the mean of the base 
probability density functions to shift, depending on the difference between the previous trial’s location and the 
current one, without altering their shape or width. This “swap over time” model is defined as36

α α| = − − + −ˆ ˆ ˆ ⁎p s s BM s s BM s s( ) (1 ) ( ) ( ), (7)

where BM is a base model, α (an additional free parameter) sets the frequency of swaps, and ⁎s  is the stimulus 
location for the previous trial.

Within each model, we used a separate set of parameters for each memory delay length, and formally com-
pared the fits of different models using the Akaike Information Criterion (as recommended in39), with the stand-
ard correction for finite sample sizes (AICc). AICc values were averaged across subjects for these comparisons.
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