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ABSTRACT: A novel method for joining four components together in a single pot
leading to an assortment of N-amino-benzylated phenols is described. The method
involves the addition of different Grignard reagents to various o-OBoc
salicylaldehydes in the presence of assorted 4,5-dihydrooxazoles, followed by aqueous
workup. Seventeen examples are presented with varied (-R, -R′ -R″, -R‴, -R⁗, and
Cn) substituents.

We recently described a synthetic method involving ortho-
quinone methides (o-QMs), which are base generated

by the addition of assorted Grignard reagents to various ortho-
OBoc salicylaldehydes and observed to undergo reaction with
the sp2 nitrogen atom of various imine nucleophiles and afford
the corresponding 3,4-dihydro-2H-1,3-benzoxazines in good
yields and diastereoselectivities (Scheme 1: i).1 As a multi

three-component reaction (M3CR)2 comprised of a salicy-
laldehyde, a Grignard reagent, and an imine, this earlier process
enables the rapid exploration of benzylic amine substrate
space.3 Herein, we report an unexpected M4CR from
replacement of the imine with dihydro-4,5-oxazole derivatives
followed by hydrolytic workup of a zwitterionic intermediate.
Originally, we had postulated that introduction of 4,5-

dihydrooxazoles should deliver the corresponding tricyclic 1,3-
benzoxazine adduct as opposed to the earlier bicyclic adducts
observed for imines (Scheme 1: ii).1 When this result failed to
transpire, we paused to consider the inherent reactivity of 4,5-
dihydrooxazoles with electrophilic reagents (Scheme 2). We
found the literature bursting with examples of cationic ring
opening polymerization, and reports of block copolymer
formation leading to polyamides via a pseudo-living
oxazolinum terminus thermodynamically driven toward
amide formation (Scheme 2: i).4 These were instigated by
the addition of a small amount of an electrophilic initiator,
which included an assortment of Brønsted or Lewis acids, as
well as alkylation or acylation reagents under neat conditions.

These reactions afforded poly-N-acylethylenimines of tunable
molecular weight that were bioisosteric with polypeptides. In
addition, several nonpolymerizing ring openings of dihydroox-
azole have been noted at reduced temperatures. These
required that the electrophile and nucleophile be introduced
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Scheme 1. Prior Reactions and Expected Outcome

Scheme 2. Some Reported Ring Opening Reactions of 4,5-
Dihydrooxazoles
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at a near parity of equivalents under dilute conditions. For
example, after Lewis acid activation, aryl nucleophiles had been
observed to add at the 5-position of the oxazolium
intermediates in a diastereoselective fashion (Scheme 2: ii).5

Other ring openings included protonation with an acid
displaying a weakly nucleophilic counteranion followed by
the addition of a secondary amine (Scheme 2: iii).6 Upon
application of ethyl chloroformate, on the other hand, the
chloride anion was found to open the oxazolium ring (Scheme
2: iv).7 In addition, there was a solitary report of “wet” low-
temperature conditions, whereby opportunistic water inter-
cepted the cationic species to provide an ammonium
intermediate that underwent regioselective ring opening and
amine expulsion to produce an ester and ammonium species
(Scheme 2: v)8 with regioselective ring opening attributed to
stereoelectronic control.9

We were therefore keen to determine if any related products
had arisen from our low temperature in situ generation of
electrophilic o-QMs in the presence of various 4,5-dihydroox-
azoles. Our analyses showed that products 25−41 (Table 1)
had emerged from our usual conditions; addition of the
Grignard reagent to the aldehyde 0.1 M in diethyl ether at −78
°C, followed by addition of the 4,5-dihydrooxazole (2 equiv)
and slowly warming to RT over 24 h, followed by an aqueous
workup with 1 M NaHCO3. Upon close inspection of the
respective 1H NMR spectra, we noted that the benzylic
methine resonances displayed a signal of about 4.0 ppm,
whereas the corresponding benzylic amide methines generally
arise at about 5.0 ppm. Thus, the 1H NMR spectra and the lack
of rotamers revealed that the reaction had followed pathway v
in Scheme 2, whereby opportunistic water had intercepted the
oxazolium intermediate upon workup as the fourth component
of a new M4CR.
Fruitful combinations of salicylic aldehydes, Grignard

reagents, and dihydrooxazoles, followed by aqueous bicarbon-
ate are shown in Figure 1. The trend among yields for the
aromatic cores 1−4 (Table 1, entries 1−5) reflected of our
earlier observations in which similar o-QMs have been
generated and intercepted by either organometallic species,10

alkenes,11 imines,1 or other carbon nucleophiles.12 Salicylalde-
hydes displaying electron donating substituents (C2−C4)
usually provide stable o-QM species leading to better
controlled reactions,13 whereas the o-QM derived from
compound 1 (-R = -H) (entry 4, Table 1) without donating
substituents resulted in moderate self-destruction and lower
overall yields (entry 4, 49%).14 Grignard reagents 6−9
containing bromide (Table 1, entries 5−11) proved equally
effective for o-QM generation as Grignard reagents containing
chloride. Their reactions with aldehydes 1−4 and compound
10 delivered products 25−34 in similar yields. Variations
among yields for products 35−41, which arise from
dihydrooxazoles 11−17 (Table 1, entries 10−16), as well as
the ineffective examples (Figure 2, 18−25) indicate several
undesirable dihydrooxazole features. For example, branching at
the α-position in R‴ led to poorer outcomes as did
introduction of R″ and R⁗ substituents (Table 1, entries 11,
15−16; 12, 16−17). However, the reaction tolerated several
straight chain R‴ substituents.
Remarkably, the furyl oxazole derivative 15 proved

successful (Table 1, entry 15, 29% yield), whereas the
dihydrooxazole analogues 18 and 19 (Figure 2) did not.
Given that oxazole 20 also failed to provide significant product,
we attribute their collective shortcomings to a combination of

steric encumbrances interfering with nitrogen atom nucleo-
philicity, as well as an enhanced oxazolium stability and lower
reactivity of the respective intermediates. These traits thwart
either the initial addition of the nitrogen nucleophile, or the
subsequent addition of water. We ascribed unsuccessful
reactions of compounds 21−24 to proton acidities within
their relevant oxazolium intermediates resulting in a propensity
toward substrate deprotonation and destruction.
Compound 25 was observed to undergo several useful and

illuminative transformations. For example, its ester moiety
undergoes saponification with potassium carbonate in

Table 1. MCRs of ortho-OBoc Salicylic Aldehydes 1−4 in
Combination with Various Grignard Reagents,
Dihydrooxazoles, and Water
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methanol to provide the 1° alcohol 42 (95%). Upon refluxing
compound 25 at 110 °C in toluene for 48 h, we observed
formation of the styrene 43 (75% yield). Lower temperatures
(<60 °C) returned the starting material unchanged. We
postulated this transformation proceeds by rearrangement of
the ester to its corresponding amide and subsequent expulsion
resulting in an o-QM equilibria at 90 °C, whereby the Z isomer
participates in a 1,5-sigmatropic shift to produce styrene 43.
On the other hand, upon heating compound 25 to 90 °C in
acetonitrile in the presence of imidazole (1 equiv), we
observed formation of compound 44 (55%) along with styrene
(<25%). The styrene likely arises from a proton transfer from
within the imidazolium zwitterionic formed after imidazole
addition to the o-QM.
Figure 3 shows our postulated mechanism and explains

formation of the compounds in both Table 1 and Scheme 3.

We find aldehyde 3a and methyl Grignard 5 undergo reaction
at −78 °C (0.1 M in Et2O) to provide the speculative cyclic
intermediate A. This alkoxide species can collapse three
possible ways. It collapses to afford the more stable phenoxide
B, as opposed to the two other plausible albeit less stable
alkoxides. Next, at some temperature between −60 to −20 °C
(both R and R′ substituent dependent), the phenoxide expels
the less basic tert-butyl carbonate sequestered as a magnesium
salt to form the highly reactive o-QM C. Remarkably, lithium
salts do not appear to undergo the β-elimination from B to
C.10a,15 At these temperatures o-QMs with a β-methyl, as
opposed to β-phenyl systems, undergo rapid self-destruction in
the absence of a nucleophilic partner. However, in the presence
of the dihydrooxazole, we surmise that it engages the o-QM
around −20 °C to form the dihydrooxazolium zwitterion D,
which appears more stable than intermediate B. It can be
stored at room temperature for days, and then later redeployed
as an o-QM around 60 °C for a variety of applications.
Removal of the solvent and 1H NMR analysis of D showed no
indication of the expected tricyclic 1,3-benzoxazine or the ester
25. Instead, only intermediate D and the expected t-butyl
carbonate sequestered as its magnesium salt were evident.
However, upon subsequent aqueous workup at RT, oxazolium
D undergoes facile addition of water at its 2-position to form
the fleeting speculative intermediate E, which collapses to the
kinetic ester 25, rather than the more common and
thermodynamically stable amide F.7 While Deslongchamps’s
stereoelectronic model has been proposed to explain this hemi-
ortho amide collapse in acyclic and six membered ring
examples,8 we suspect formation of the ester 25 may be
favored due to the basicity of the nitrogen atom and the
internally available Lewis acidic proton of the phenol that
facilitates amine expulsion. Remarkably, compound 25 is also
another o-QM precursor. Upon heating compound 25 to 90
°C, we postulate that the ester moiety undergoes rearrange-
ment to the corresponding amide G, which undergoes
immediate and irreversible elimination of the amide alcohol
to provide the E-o-QM C.
To strengthen these mechanistic hypotheses, we carried out

the experiments shown in Scheme 4. First, we deployed our

traditional low temperature cycloaddition protocol with
ethoxyvinyl ether (EVE),10 which afforded the benzopyran
45a as single diastereomer. This outcome supports the notion
that at these low temperatures the o-QM E-C is not in
equilibrium with the o-QM Z-C, because no styrene is
observed, and endo diastereoselectivity for the benzopyran
45a is outstanding. Remarkably, our attempts toward
orchestrating a crossover or disrupting stereochemistry by
heating 45a (>120 °C) for 2 days failed. Thus, we concluded
that 45a is not an o-QM precursor at 120 °C. Next, we replaced

Figure 1. Productive reagents among MCRs tested.

Figure 2. Unproductive dihydrooxazoles, oxazoles, and oxazines.

Figure 3. Postulated mechanism.

Scheme 3. Some Transformations of Compound 25

Scheme 4. Experiments with o-QM Precursors
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EVE with dihydrooxazole 10 and carried out the same process
resulting in the speculative zwitterion D, whereupon we
introduced EVE. No formation of benzopyran 45 was apparent
over the course of 24 h at RT. However, upon heating to 60 °C
we isolated the benzopyran 45b in a 1.6:1 diastereomeric ratio
along with the dihydrooxazole 10. Thus, we speculate that
around 60 °C the zwitterion D undergoes elimination to return
the o-QM E-C and either undergoes reaction in both endo and
exo manifolds, or it exists in an equilibrium alongside the o-QM
Z-C′ which undergoes reaction in an endo format. However,
the absences of styrene 43 supports the former notion. Lastly,
we heated the amine 25 in the presence of EVE at 60 °C in a
sealed tube for 2 days and observed no reaction. Thus, we
surmise from the experiment that the order of stability among
these o-QM precursors is 45a > 25 > 44 > D > B, with all
being R and R′ dependent.
To further illuminate the regioselective collapse of

intermediate E, we used 2-methoxy-4,5-dihydrooxazole 46 in
reaction with salicylaldehyde 3a and MeMgCl 5. This
modification results in three plausible outcomes and
potentially affords compounds 47−49 (Scheme 5). We were

surprised to find that none of the carbonate 49 had formed.
Instead, the reaction provided the oxazolidinone 47 (54%)
along with the carbamate 48 (19% yield). On the other hand,
use of 2-(methylthio)-4,5-dihydrothiazole 50 solely gave the
thiazolidin-2-one 51 in a 78% yield.
Several natural products and their derivatives can be

imagined as amenable to synthesis using this novel M(4)CR
method (Figure 4). (±)-Stritida B and C (51a,b) are the first

pyridocarbazole alkaloids reported to display an N-2-
hydroxyethyl residue.16 (+)-Hispidacine (52), an 8,4′-oxy-
neolignan alkaloid displaying vasorelaxant activity, also
manifests this motif.17 (±)-Irpexine (53), an isoindolinone
alkaloid, exhibits this substituent as well.18 However, we chose
to explore the application of this M(4)CR toward the synthesis
of mariline B (54), a naturally occurring racemic phthalimidine
isolated from the sponge derived fungus Stachylidium sp.19

Construction of the isoindolinone from adduct 29
necessitated a carbonylation to replace the phenol residue
and connect it with the neighboring benzylic amine. This first
required conditions for selective phenol triflation in the
presence of a free amine (Scheme 6). This was modestly

accomplished using biphasic conditions developed by
Sonesson, and it provided a sufficient yield of the
corresponding triflate 55 to test our strategy.20 Using a
modified palladium carbonylation chemistry developed by
Crisp,21 we observed the phthalimidine to smoothly form upon
exposure to carbon monoxide and palladium with the
appropriate catalyst. Further in situ saponification afforded
the desired phthalimidine 56 in 61% yield.
In conclusion, a M4CR has been developed that enables

various combinations of ortho-OBoc salicylaldehydes,
Grignards, dihydrooxazoles, and water. The method provides
a large array of structurally diverse products possessing a
masked N-2-hydroxyethyl residue. This transformation in-
volves an unusual zwitterionic dihydrooxazole o-QM precursor
that proves stable at RT. This unexpected species leads to the
corresponding benzopyran [4 + 2] adducts without diaster-
eoselectivity. In addition, this zwitterionic intermediate
undergoes regioselective opportunistic addition of water.
Moreover, we anticipate this species D can be selectively
intercepted by other nucleophiles at either its 2- or 5-
positions.22 Progress in this endeavor will be reported in due
course.
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