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Transcriptional regulatory elements in the genome (cis-regu-
latory elements) play fundamental roles in development and 
disease1,2. Analysis of chromatin accessibility in primary tis-

sues using assays such as DNase-seq3,4 and ATAC-seq5,6 has identi-
fied millions of candidate cis-regulatory elements in the human and 
mouse genomes2,7. However, we still lack precise information about 
the cis-regulatory elements in specific cell types, because previous 
experiments performed on heterogeneous tissue samples yielded 
an ensemble average signal from multiple constituent cell types. In 
some cases, specific cell types can be isolated from heterogeneous 
tissues using protein markers6,8–10, but a more general strategy is 
needed to enable the study of cell-type-specific gene regulation on 
a larger scale.

In theory, single-cell-based chromatin accessibility studies 
can be used for unbiased identification of subpopulations in a 
heterogeneous biological sample and for identification of the 
regulatory elements active in each subpopulation. Indeed, proof 
of principle has been reported using cultured mammalian cells 
and cryopreserved blood cell types11–13. However, to make these 
approaches more widely applicable, it is necessary to optimize 
them for primary tissues. One major difficulty in working with 
primary tissues is that they are typically preserved by flash freez-
ing, which is not amenable to the isolation of intact single cells. 
Here we show that it is possible to isolate single nuclei from fro-
zen tissues and assay chromatin accessibility in these nuclei in a 
massively parallel manner.

Results
Method optimization and computational analysis framework. 
We adopted a combinatorial barcoding assisted single cell ATAC-
seq strategy12 and optimized it for frozen tissue samples (see 
Methods). Compared to previous reports12, key modifications 
were made to maximally preserve nuclei integrity during sample 
processing and optimize transposase-mediated fragmentation 
of chromatin in individual nuclei (Supplementary Figs. 1–3). We 
applied this modified protocol, hereafter referred to as snATAC-seq 
(single-nucleus ATAC-seq), to forebrain tissue from 8-week-old 
adult mice (postnatal day (P) 56) and from mouse embryos at seven 
developmental stages from embryonic day (E) 11.5 to birth (P0;  
Fig. 1a,b). DNA libraries were sequenced to near-saturation 
as indicated by a read duplication rate of 36–73% per sample 
(Supplementary Table 1). The barcode collision rate, which assesses 
the probability of two nuclei sharing the same barcode combina-
tion, was ~16%, slightly higher than expected and reported before 
(Supplementary Fig. 3c)12. We filtered out low-quality datasets 
using three stringent quality-control criteria including read depth 
(Supplementary Fig. 3d), recovery rate of constitutively accessible 
promoters in each nucleus (Supplementary Fig. 3e) and signal-
over-noise ratio estimated by fraction of reads in peak regions 
(Supplementary Fig. 3f and Methods). In total, 15,767 high-quality 
snATAC-seq datasets were obtained. The median read depth per 
nucleus ranged from 9,275 to 18,397, with the median promoter 
coverage at 11.6% and the median fraction of reads in peak regions 
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at 22% (Supplementary Tables 2 and 3). Our protocol maintains 
the extraordinary scalability of combinatorial indexing, while 
featuring a ~6-fold increase in read depth per nucleus compared 
to previous reports (Supplementary Table 3). The high quality of 
the single-nucleus chromatin accessibility maps was supported by 
strong concordance between the aggregate snATAC-seq data and 
bulk ATAC-seq data (R >​ 0.9) and excellent reproducibility between 
independent snATAC-seq experiments (R >​ 0.91; Fig. 1c and 
Supplementary Fig. 4).

The snATAC-seq profiles from each forebrain tissue arise from 
a mixture of distinct cell types. Enhancer regions are well known to 
display cell-type-dependent chromatin accessibility14, and are more 
effective at classifying cell types than promoters or transcriptomic 
data11 (Supplementary Fig. 5a,b). Thus, we focused on transcrip-
tional start sites (TSS)-distal accessible chromatin regions (defined 
as all genomic elements outside a 2-kb window upstream from the 
TSS), corresponding to putative enhancers, to group individual 
nucleus profiles into distinct cell types. We developed a computa-
tional framework to uncover distinct cell types from the snATAC-
seq datasets without requiring prior knowledge (Methods). First, 
we determined the open chromatin regions from the bulk ATAC-
seq profiles of mouse forebrain tissue at seven fetal development 
timepoints and at maturity, resulting in a total of 140,103 TSS-distal 

elements (Fig. 1d, Methods and Supplementary Table 4). Next, we 
constructed a binary accessibility matrix of open chromatin regions, 
using 0 or 1 to indicate the absence or presence of a read at each 
open chromatin region in each nucleus (Fig. 1d). We then calcu-
lated the pairwise similarity between cells using a Jaccard index 
and applied a nonlinear dimensionality reduction method, t-SNE15, 
to project the Jaccard index matrix to a low-dimension space  
(Fig. 1d)16. The final t-SNE plot depicts cell types as distinct clusters 
in a three-dimensional space (Fig. 1d).

Identification of forebrain cell types from snATAC-seq profiles.  
We applied this computational framework first to 3,033 high-
quality snATAC-seq profiles obtained from the adult forebrain 
(Fig. 2a and Supplementary Table 2). As a negative control, we 
included 200 ‘shuffled’ nuclear profiles (Supplementary Fig. 5c,d 
and Online Methods). This analysis revealed 10 total clusters. As 
expected, the shuffled nuclei formed a distinct cluster with low 
intracluster similarity. In addition, one other cluster showing 
low intracluster similarity likely represented low-quality nuclei 
or accessibility profiles resulting from barcode collision events 
(Supplementary Fig. 3c). After eliminating these nuclei, we deter-
mined eight distinct cell-type clusters from the adult forebrain 
(Fig. 2a and Supplementary Fig. 5c,d). Notably, the clustering 
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results were highly reproducible for two independent experi-
ments (Supplementary Fig. 5e,f).

To categorize each cluster, we generated aggregate chroma-
tin accessibility maps for each cluster and examined the patterns 
of chromatin accessibility at known cell type marker genes. We 

found three clusters with chromatin accessibility at Neurod6 and 
other excitatory neuron-specific genes17 (clusters EX1–3; Fig. 2b 
and Supplementary Fig. 6a); two clusters with accessibility at the 
gene locus of Gad1 likely representing inhibitory neurons (clusters 
IN1 and 2; Fig. 2b and Supplementary Fig. 6a)18; one cluster with 
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accessibility at the Apoe locus and other known astroglia mark-
ers19 (cluster AC; Fig. 2b); one cluster with accessibility at the Mog 
gene locus and other oligodendrocyte marker genes20 (cluster OC;  
Fig. 2b); and one microglia cluster with accessibility at genes encod-
ing complement factors including the gene C1qb (cluster MG;  
Fig. 2b and Supplementary Fig. 6c–e)21. We also compared the 
aggregate chromatin accessibility maps for each cluster to previ-
ously published maps from sorted excitatory neurons6, GABAergic 
neurons8, microglia21 and NeuN-negative nuclei (which mostly 
comprise non-neuronal cells including astrocytes and oligodendro-
cytes22; Fig. 2b and Supplementary Fig. 7a–c). Consistent with the 
accessibility patterns at marker gene loci, we observed that clusters 
EX1–3 were highly similar to sorted excitatory neurons. To further 
characterize the distinct excitatory neuron clusters, we compared 
EX1–3 with published bulk ATAC-seq data from different cortical 
layers and from dentate gyrus8,23. Notably, we found that EX1 and 
EX3 were more similar to upper and lower cortical layers, respec-
tively, whereas EX2 showed properties of dentate gyrus neurons 
(Supplementary Fig. 8a). Cluster IN1 was highly similar to sorted 
cortical GABAergic neurons. Unexpectedly, IN2 was more simi-
lar to sorted excitatory neurons than cortical GABAergic neurons. 
Distinctions between the inhibitory neuron clusters (IN1 and IN2) 
were not clear at this stage, but came into focus later when we ana-
lyzed transcription factor (TF) motifs enriched in the accessible 
chromatin regions (described below). Clusters OC and AC resem-
bled sorted NeuN-negative cells, and cluster MG is similar to sorted 
microglia (Fig. 2b,c).

According to our snATAC-seq data, the adult mouse forebrain 
consists of 52% excitatory neurons, 24% inhibitory neurons, 12% 
oligodendrocytes and 6% astrocytes and microglia, respectively 
(Fig. 2d). Since cell type proportions vary between different fore-
brain regions, for example, cortex and hippocampus17, the percent-
ages derived from snATAC-seq represent an average of all forebrain 
regions (Fig. 2e and Supplementary Fig. 7d,e). The predominance of 
neuronal nuclei derived from adult forebrain tissue was confirmed 
by flow cytometry analysis stained against the postmitotic neuron 
marker NeuN22 (Fig. 2e and Supplementary Figs. 6b and 7b,e).

Delineation of the cis-regulatory landscape of specific cell types 
in the adult forebrain. The power of snATAC-seq is not simply to 
delineate cell types but also to reveal the cis-regulatory landscape 
within each cell type. To this end, we calculated the cell-type-speci-
ficity of each putative cis-regulatory element (i.e., chromatin acces-
sibility region) using a Shannon entropy index (Supplementary 
Fig. 9). As expected, proximal promoter elements were accessible 
in more cell types, while the distal enhancer elements showed sig-
nificantly higher cell-type-specificity (median value of 4.2% for 
proximal elements vs. 0.4% for distal elements; Supplementary 
Fig. 9a,b,d). We next developed a feature selection method (see 
Methods) to identify the subset of elements that could best distin-
guish the eight cell type clusters from each other. This approach 
identified 4,980 elements showing clear cell-type-dependent acces-
sibility (Fig. 2e). To gain insight into the key transcriptional regula-
tors and pathways active in each cell type, we performed k-means 
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clustering followed by motif enrichment analysis for these genomic 
elements (Fig. 2e,f, Supplementary Fig. 9d and Supplementary 
Table 4). For each cell type, we observed an enrichment of binding 
motifs corresponding to key TFs (Fig. 2f). For example, the binding 
motif for ETS-factor PU.1 was enriched in MG elements24, motifs 
for SOX proteins were enriched in OC elements25, bHLH motifs 
were enriched in EX1–3 elements and DLX homeodomain fac-
tor motifs were enriched in IN elements (Fig. 2f)26. Moreover, this 
analysis revealed an important difference between the inhibitory 
neuron clusters IN1 and IN2. We found that a binding motif for 
MEIS factors was enriched in a subset of elements specific to IN2. 
Previous reports showed that MEIS2 plays a major role in genera-
tion of medium spiny neurons, the main GABAergic neurons in 
the striatum27. Accordingly, we identified gene loci of Ppp1r1b and 
Drd1, which encode markers of medium spiny neurons, as highly 
accessible in IN2 but not IN1 (Supplementary Fig. 10)27. These data 
suggest that IN2 may represent medium spiny neurons, while IN1 
could represent a distinct class of GABAergic neurons. We also iden-
tified motifs that were differentially enriched between EX1, EX2 
and EX3. Notably, regions specific for EX1 and 3 were enriched for 
motifs from the Forkhead family, and EX2 was enriched for motifs 
recognized by MEF2C (Supplementary Fig. 8c and Supplementary 
Table 4), which has been shown to play an important role in hip-
pocampus mediated memory28. A comparison with data from  

cell-type-specific differentially methylated regions identified by 
single cell DNA-methylation analysis of neurons showed that both 
methods were able to identify inhibitory and excitatory neuron 
specific elements (Supplementary Fig. 11)29.

Profiling embryonic forebrain development using snATAC-seq. 
We next extended our framework by analyzing the snATAC-seq 
profiles derived from fetal mouse forebrains at seven developmen-
tal stages (Fig. 1b), seeking to reveal developmental dynamics of 
transcriptional regulation at the cellular level. The developmental 
stages examined cover key events from the onset of neurogenesis 
to gliogenesis30. From 12,733 high-quality snATAC-seq profiles, 
we identified 12 distinct subpopulations (Fig. 3a) that exhibited 
changes in abundance through development (Fig. 3a–c). This 
broad cell-type classification allowed us to profile the dynamic 
cis-regulatory landscape of forebrain development. Based on chro-
matin accessibility profiles at gene loci of known marker genes, 
we assigned these cell populations to radial glia, excitatory neu-
rons, inhibitory neurons, astrocytes and erythromyeloid progeni-
tors (EMP; Fig. 3b)24,31. Notably, the EMP cluster was restricted to 
E11.5, whereas the astrocyte cluster was present after E16.5 and 
expanded dramatically around birth (Fig. 3b,c)24,30, highlighting 
two developmental processes: invasion of myeloid cells into the 
brain before neurogenesis and gliogenesis succeeding neurogenesis 

GREAT
(GO biological process)

Nuclei cluster

a b c d e
16

,3
64

 g
en

om
ic

 e
le

m
en

ts

Forebrain regionalization

Glial cell fate commitment

Cell morphogenesis involved 
in neuron differentiation

Central nervous system
developmnent

Myeloid cell development

Cell proliferation

Forebrain development

Negative regulation
of protein import

Skeletal muscle
organ development

Skeletal muscle
cell differentiation

CNS neuron differentiation

Positive regulation of
nuclear-transcribed

mRNA poly(A) tail shortening

Positive regulation of cell
projection organization 

Cortex GABAergic 
interneuron differentiation

CNS neuron differentiation

RG1
RG2

RG3
RG4

eI
N1

eI
N2

eI
N3

eI
N4

eA
C

EM
P

log2 (fold over mean)
–3 30

Transcription factor motifs
(top enriched de novo motifs,

best match)

LHX1 (Homeobox)

NF1-halfsite (CTF)
SOX2 (HMG)

LHX2 (Homeobox)
SOX3 (HMG)

NFIX
LHX2 (Homeobox)
NEUROD1 (bHLH)

LHX2 (Homeobox)
ASC11 (bHLH-CAG)

POU3F3 (POU)

LHX1 (Homeobox)

CTCF(Zf)
RFX1 (HTH)

TGIF2; MEIS1 (Homeobox)
X-box (HTH)

EMX1 (Homeobox)
TGIF1 (Homeobox)

EMX2 (Homeobox)

TCF12 (bHLH-CAG)
MEOX2 (Homeobox)

NEUROD1 (bHLH-CAT)
EMX2 (Homeobox)

NEUROD1 (bHLH-CAT)
NF1-halfsite (CTF)

AP-1 (bZIP)

BORIS (Zf)

eE
x1

eE
x2

0 0.5 1 1.5 2 2.5 3

VISTA:
relative enrichment 
(subpallial enhancer/

total forebrain enhancer)

K1 (880)

K2 (1660)

K3 (1838)

K4 (1015)

K5 (1276)

K6 (444)

K7 (1073)

K8 (1263)

K9 (1042)

K10 (764)

K11 (1238)

K12 (623)

K13 (1438)

K14 (1112)

K15 (698)

k-means
(number of
elements)

hs192

hs599

hs799

Fig. 4 | snATAC-seq analysis uncovers cis-regulatory elements and transcriptional regulators of lineage specification in the developing forebrain. a, 
A heat map shows the results of k-means clustering of 16,364 candidate cis-regulatory elements based on chromatin accessibility in different cell types. 
b, Gene ontology analysis of each cell type using GREAT32. c, Transcription factor motifs enriched in each group50. d, Enrichment of enhancers that were 
functionally validated as part of the VISTA database45. e, Representative images of transgenic mouse embryos showing LacZ reporter gene expression 
under control of the indicated subpallial enhancers. Pictures were downloaded from the VISTA database45.

Nature NeuroscIence | VOL 21 | MARCH 2018 | 432–439 | www.nature.com/natureneuroscience436

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/natureneuroscience


Technical ReportNATure NeurOsCienCe

after E16.530. Mature excitatory neurons (eEX2) were indicated by 
increased accessibility at Neurod6, which encodes a postmitotic 
neuron marker, and absence of signal at the Hes5 gene, which 
encodes a Notch effector and a marker gene for neuronal progeni-
tors (Fig. 3b,c)30,31. This cell type expanded in abundance between 
E12.5 and E13.5 and followed the emergence of early differentiat-
ing neurons (eEX1; Fig. 3b,c). Notably, inhibitory-neuron-like cells 
were already present at E11.5 (Fig. 3b).

Identification of lineage-specific transcriptional regulators dur-
ing embryonic forebrain development. To identify the transcrip-
tional regulatory sequences in each subpopulation, we identified 
16,364 genomic elements that showed cell-population-specific 
chromatin accessibility and best separated the cell subpopulations 
(Fig. 4a and Supplementary Table 4). To further characterize these 
elements, we performed motif enrichment analysis and gene ontol-
ogy analysis of each cluster using GREAT32. Our analysis showed 
that genomic elements that were mostly associated with radial 
glia like cell groups (RG1–4; Fig. 4a) fell into regulatory regions of 
genes involved in early forebrain developmental processes, includ-
ing forebrain regionalization (Fig. 4b; K1), central nervous system 
development (Fig. 4b; K3) or forebrain development (Fig. 4b; K5). 
These elements were enriched for homeobox motifs correspond-
ing to LHX-transcription factors including LHX2 (Fig. 4c; K1, K3 
and K5), which is critical for generating correct neuron numbers 
by regulating proliferation of neural progenitors33 and for tempo-
rally promoting neurogenesis over astrogliagenesis34. Notably, one 
of these clusters was also enriched for both the proneural bHLH 
transcription factor ASCL1 (Mash1) and its co-regulator POU3F3 
(Brn1; Fig. 4c; K5)35. ASCL1 is required for normal proliferation 
of neural progenitor cells36 and implicated in a DLX1/2-associated 
network that promotes GABAergic neurogenesis37. In line with this, 
associated genomic elements were also accessible in one inhibitory 
neuron cluster (eIN2; Fig. 4c; K5).

We also identified transcriptional regulators that were spe-
cifically associated either with neurogenesis or gliogenesis during 
forebrain development. For example, the early astrocyte (eAC)-spe-
cific elements were located in open chromatin regions near genes 
involved in glia cell fate commitment, and the top enriched tran-
scription factor motif was NF1-halfsite (Fig. 4a–c; K2). Previous 
studies show that NF1 transcription factor NF1A alone is capable of 
specifying glia cells to the astrocyte lineage25. NFIX is another NF1 
family member with proneural function38. This motif was enriched 
together with the bHLH transcription factor NEUROD1, binding 
sites mainly in open chromatin regions found in the excitatory neu-
ron cell population (Fig. 4c; K4, K12, K13)31. Based on chromatin 
accessibility profiles at marker gene loci, we had previously assigned 
two cell clusters to the excitatory neuron lineage (eEX1 and eEX2; 
Fig. 3b). Compared to cluster eEX2, eEX1 showed increased accessi-
bility at both radial glia associated open chromatin (Figs. 3b and 4a; 
K4) and chromatin regions associated with CNS neuron differen-
tiation (Fig. 4a; K12). In addition, eEX1 nuclei preceded the emer-
gence of eEX2 nuclei during development (Fig. 3c). These findings 
indicated that eEX1 might represent a transitional state during 
excitatory neuron differentiation.

The bHLH transcription factor family consists of several sub-
families that recognize different DNA motifs39. NEUROD1 belongs 
to a subfamily of transcription factors that bind to a central CAT 
motif, whereas other transcription factors, such as TCF12, prefer-
entially bind to a CAG motif39. Our snATAC-seq profiles revealed 
an enrichment of the TCF12-binding motif in regions associated 
with cortex GABAergic interneuron differentiation, in contrast to 
the excitatory neuron associated enrichment for NEUROD1 (Fig. 
4a–c; K4, K11–K13)26,31,40. Analysis of specific genomic elements of 
the inhibitory neuron cluster eIN3 showed a notable bias in proxim-
ity to genes associated with ‘skeletal muscle and organ development’ 

(Fig. 4a,b; K8). More detailed analysis revealed that the underlying 
genes Mef2c/d and Foxp1/2, as well as Drd2/3, encode transcrip-
tion factors and dopamine receptors, indicating differentiating 
striatal medium spiny neurons41,42. This finding was consistent with 
the enrichment for MEIS-homeodomain factors in these regions  
(Fig. 4c; K8) comparable to the medium spiny neuron cluster in 
adult forebrain (Fig. 2e,f (K8) and Supplementary Fig. 10). Further, 
genomic elements specific to the EMP cluster were associated with 
genes involved in myeloid cell development (Fig. 4a–c; K14) and 
enriched for motifs of the ubiquitous AP-1 transcription factor 
complexes that have been described as playing a role in shaping the 
enhancer landscape of macrophages43.

Finally, we attempted to identify developmental dynamics of ele-
ments within each cell cluster (Supplementary Fig. 11). Our analysis 
revealed between 41 and 2,114 dynamic genomic elements for each 
cell type (Supplementary Fig. 12c–g). Regions that are more acces-
sible after birth (P0) compared to early timepoints were enriched 
for the RFX1 motif in GABAergic neurons, including the cluster 
eIN1 as well as the excitatory neuron cluster eEX2 (Supplementary 
Fig. 12d,e), indicating a general role of the evolutionarily conserved 
RFX factors in perinatal adaptation of brain cells. Several family 
members, including RFX1, are expressed in the brain and have been 
implicated in regulating cilia, for example, in sensory neurons44.

Functional and anatomical annotation of identified candidate 
cis-regulatory elements. While assessment of open chromatin 
plays an important role in predicting regulatory elements in the 
genome2,7, it does not provide direct information of functional 
activity. To address this point, we asked whether cluster-specific 
transposase-accessible chromatin in the embryonic forebrain over-
laps with genomic elements tested in reporter assays to validate 
enhancer activity in mouse embryonic forebrain in vivo45. First, we 
focused our analysis on all genomic elements with validated func-
tional activity in the forebrain and on a subset shown to be active 
only in the subpallium46,47. The subpallium is a brain region that 
gives rise to GABAergic and cholinergic neurons46. In total, 63.1% 
(275 of 436) of all forebrain enhancers and 64.8% (59 of 91) of sub-
pallial enhancers were represented in our subset of genomic ele-
ments, indicating a high degree of sensitivity. Next, we calculated 
the relative enrichment of subpallial enhancers over total forebrain 
enhancers for each cluster. Notably, subpallial enhancers were only 
enriched in clusters K9–11, which were assigned to the GABAergic 
neuron lineage (Fig. 4d,e and Supplementary Fig. 13). Next, we 
found that elements mainly accessible in radial glia cells were active 
in pallial regions (K1, 3 and 4; Fig. 4a and Supplementary Fig. 13). 
Unexpectedly, elements of cluster K5 were active in dorsal and lateral 
pallial regions, as well as in the lateral ganglionic eminence, indicat-
ing conserved roles for these genomic elements in a wide variety 
of regions in the developing forebrain (Fig. 4a and Supplementary 
Fig. 13). Integration of genomic elements identified by snATAC-seq 
in specific cell clusters with transgenic enhancer assays confirmed 
the high specificity and sensitivity of snATAC-seq in identifying cell 
populations and their underlying regulatory elements.

Discussion
Tissue heterogeneity has been a significant hurdle in the dissec-
tion of gene regulatory programs driving mammalian development. 
While single-cell-based analysis of chromatin accessibility has been 
reported, a major challenge lies in the published methods’ require-
ment for fresh cell populations, whereas most biological samples in 
tissue banks are either frozen or in formalin fixed paraffin embed-
ded blocks. We report here a general approach (snATAC-seq) 
and a computational framework that can be used to dissect cellu-
lar heterogeneity and delineate cell-type-specific gene regulatory 
sequences in snap-frozen primary tissues. We applied snATAC-
seq to heterogeneous forebrain tissue from adult and embryonic 
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mice and resolved specific cell types in these samples. Similarly to 
other approaches, such as single-cell RNA-seq17,48 and single-cell 
DNA-methylation analysis29, snATAC-seq can be used to identify 
cell types de novo in heterogeneous tissue, facilitating generation 
of cell atlases in the brain and other tissues. In addition, snATAC-
seq catalogs the candidate enhancers for each cell type, enabling the 
dissection of gene regulatory programs without the need to purify 
specific cell types. As such, this method is particularly suitable for 
studying cell populations in complex tissues where cellular surface 
markers are not available. The current framework allows analysis of 
major cell types with a relative abundance of at least 5%, as shown 
for microglia in the adult forebrain. It is expected that increasing 
the number of cells profiled per experiment will linearly increase 
the sensitivity of cell-type detection. Indeed, the presented combi-
natorial barcoding protocol can be scaled up to >​ 5,000 high-quality 
nuclei per experiment simply by working in 384-well plates rather 
than 96-well plates. Increasing the number of barcodes during tag-
mentation will also help to lower the final barcode collision rate 
without limiting the throughput12.

Through integrative analysis of single-nuclei chromatin acces-
sibility profiles, we tracked changes in the relative proportions of 
these cell types during development, identified putative regulatory 
elements active within each cell type and used those regulatory ele-
ments to reveal key TFs in specific forebrain cell types. Therefore, 
our results provide a unique view of the cell-type-specific cis-regula-
tory landscape in the forebrain. We expect that with larger cell num-
bers in the future it will be possible to uncover previously unknown 
regulatory elements in rare cell types. Moreover, applying snATAC-
seq to human tissue samples and integration with genomic variants 
may reveal relative contributions of distinct cell types to diseases like 
schizophrenia or Alzheimer’s. We anticipate that our snATAC-seq 
approach will be a valuable tool for analysis of other brain regions 
and non-neuronal tissues and will help to pave the way to a better 
understanding of mammalian developmental programs.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0079-3.
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Methods
Mouse tissues. All animal experiments were approved by the Lawrence Berkeley 
National Laboratory Animal Welfare and Research Committee or the University of 
California, San Diego, Institutional Animal Care and Use Committee. Forebrains 
from embryonic mice (E11.5–E16.5) and early postnatal mice (P0) were dissected 
from one pregnant female or one litter at a time and combined. For breeding, 
animals were purchased from Charles River Laboratories (C57BL/6NCrl strain) or 
Taconic Biosciences (C57BL/6NTac strain) for E14.5 and P0. Breeding animals for 
other timepoints were received from Charles River Laboratories (C57BL/6NCrl). 
Dissected tissues were flash frozen in a dry ice ethanol bath. For the adult time 
point (P56), forebrains from 8-week old male C57BL/6NCrl mice (Charles River 
Laboratories) were dissected and flash frozen in liquid nitrogen separately. Tissues 
were pulverized in liquid nitrogen using pestle and mortar. For each timepoint, two 
replicates were processed (n =​ 2 per timepoint).

Transposome generation. To generate A/B transposomes, A and B oligos were 
annealed to common pMENTs oligos (95 °C for 2 min, cooled to 14 °C at a cooling 
rate of 0.1 °C/s) separately (Supplementary Table 5). Next, barcoded transposons 
were mixed in a 1:1 molar ratio with unloaded transposase Tn5, which was 
generated at Illumina. Mixture was incubated for 30 min at room temperature 
(20–25 °C, with an average of 23 °C). Finally, A and B transposomes were mixed. 
For combinatorial barcoding, we used eight different A transposons and 12 
distinct B transposons, which eventually resulted in 96 barcode combinations 
(Supplementary Table 5)51.

Combinatorial barcoding assisted single-nuclei ATAC-seq. Combinatorial ATAC- 
seq was performed as described previously with modifications12. We transferred 
5–20 mg frozen tissue to a 1.5-mL Lobind tube (Eppendorf) in 1 mL NPB (5% BSA 
(Sigma), 0.2% IGEPAL-CA630 (Sigma), cOmplete (Roche), 1 mM DTT in PBS) and 
incubated for 15 min at 4 °C. Nuclei suspension was filtered over a 30-µ​m Cell-Tric 
(Sysmex) and centrifuged for 5 min at 500 g. The nuclei pellet was resuspended in 
500 µ​L of 1.1×​ DMF buffer (36.3 mM Tris-acetate (pH =​ 7.8), 72.6 mM potassium-
acetate, 11 mM Mg-acetate, 17.6% DMF) and nuclei were counted using a 
hemocytometer. Concentration was adjusted to 500/µ​L, and 4,500 nuclei were 
dispensed into each well of a 96-well plate. For tagmentation, 1 µ​L barcoded Tn5 
transposome (0.25 µ​M, Supplementary Table 5)51 was added to each well, mixed 
5 times and incubated for 60 min at 37 °C with shaking (500 rpm). To quench 
the reaction, 10 µ​L of 40-mM EDTA were added to each well and the plate was 
incubated at 37 °C for 15 min with shaking (500 rpm). We then added 20 µ​L sort 
buffer (2% BSA, 2 mM EDTA in PBS) to each well, and all wells were combined 
afterwards. The nuclei suspension was filtered using a 30-µ​m CellTric (Sysmex) 
into a FACS tube, and 3 µ​M Draq7 (Cell Signaling) was added. Using a SH800 
sorter (Sony), 25 nuclei were sorted per well into four 96-well plates (total of  
384 wells) containing 18.5 µ​L EB (50 pM Primer i7 (Supplementary Table 5),  
200 ng BSA (Sigma)). Sort plates were shortly spun down. After addition of 2 µ​L  
0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm).  
We added 2.5 µ​L 10% Triton-X to each well to quench the SDS. Finally, 2 µ​L 25 µ​M  
Primer i5 (Supplementary Table 5) and 25 µ​L NEBNext High-Fidelity 2×​ PCR 
Master Mix (NEB) were added and samples were PCR-amplified for 11 cycles 
(72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72 °C 60 s) ×​ 11, held at 72 °C). 
Following PCR, all wells were combined (around 15.5 mL) and mixed with 80 mL 
PB including pH-indicator (1:2,500, Qiagen) and 4 mL sodium-acetate (3 M, 
pH =​ 5.2). Purification was carried out on four columns following the MinElute 
PCR Purification Kit manual (Qiagen). DNA was eluted with 15 µ​L EB, and eluate 
from all four columns was combined in a LoBind Tube (Eppendorf). For Ampure 
XP Bead (Beckmann Coulter) cleanup 170 µ​L EB buffer and 110 µ​L Ampure XP 
Beads (0.55×​) were added to 30 µ​L eluate. After incubation at room temperature 
for 5 min and magnetic separation, supernatant was transferred to a new tube and 
another 190 µ​L Ampure XP Beads (1.5×​) were added. After incubation, beads were 
washed twice on the magnet using 500 µ​L 80% EtOH. After drying the beads for 
7 min at room temperature, library was eluted with 20 µ​L EB (Qiagen). Libraries 
were quantified using a Qubit fluorimeter (Life technologies) and the nucleosomal 
pattern was verified using Tapestation (High Sensitivity D1000, Agilent).  
We loaded 25 pM library per lane of a HiSeq2500 sequencer (Illumina) using 
custom sequencing primers (Supplementary Table 5)51 and following read lengths: 
50 +​ 43 +​ 37 +​ 50 (Read1 +​ Index1 +​ Index2 +​ Read2). The first 8 bp of Index1 
correspond to the p7 barcode and the last 8 bp to the i7 barcode. The first 8 bp 
of Index2 correspond to the i5 barcode and the last 8 bp to the p5 barcode. Since 
Index1 and 2 each contain 2 barcodes separated by a common linker sequence,  
we generated a spike-in library using different transposon and PCR primer 
sequences to balance the bases within each detection cycle (Supplementary Table 
5). For the human–mouse mixture experiment, E15.5 forebrain and GM12878 
nuclei were mixed in a 1:1 ratio before tagmentation. Samples were processed as 
above with the exceptions that only 96 wells were used after nuclei sorting and PCR 
amplification was performed for 13 cycles. The final library was loaded at 15 pM and 
sequenced using a MiSeq (Illumina) with the following read lengths: PE 44 +​ 43 +​  
37 +​44 (Read1 +​ Index1 +​ Index2 +​ Read2).

Cell culture. GM12878 (Coriell Institute for Medical Research) cells were cultured 
in RPMI1640 medium (Thermo Fisher Scientific) containing 2 mM l-glutamine 

(Thermo Fisher Scientific), 15% fetal bovine serum (Gemini Bioproducts) and 
1% penicillin–streptomycin (Thermo Fisher Scientific) in T25 flasks (Corning) at 
37 °C under 5% carbon dioxide. For the snATAC-seq mixture experiment, cells 
were harvested by centrifugation, washed with PBS (Thermo Fisher Scientific) and 
resuspended in NPB (5% BSA (Sigma), 0.2% IGEPAL-CA630 (Sigma), cOmplete 
(Roche), 1 mM DTT in PBS). Samples were incubated 5 min at 4 °C, and finally 
nuclei were pelleted by centrifugation (500 g, 5 min, 4 °C). The nuclei pellet was 
resuspended in 500 µ​l of 1.1×​ DMF buffer (36.3 mM Tris-acetate (pH =​ 7.8), 
72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF), and nuclei were 
counted using a hemocytometer.

NeuN-negative sorting. We resuspended 10 mg adult forebrain tissue (P56) in 
500 µ​L lysis buffer (0.5% BSA, 0.1% Triton-X, cOmplete (Roche), 1 mM DTT 
in PBS) and incubated it for 10 min at 4 °C. After spinning down (5 min, 500 g), 
the sample was resuspended in 500 µ​L staining buffer (0.5% BSA in PBS). The 
nuclei suspension was incubated with anti-NeuN antibody (1:5,000, MAB377, 
Lot 2806074, EMD Millipore) for 30 min at 4 °C. After centrifugation, nuclei 
were resuspended in 500 µ​L staining buffer (0.5% BSA in PBS) containing anti-
mouse Alexa Fluor-488 antibody (1:1,000, A11001, Lot 1696425, Thermo Fisher 
Scientific). After incubating for 30 min at 4 °C, nuclei were pelleted (5 min, 500 g) 
and resuspended in 700 uL sort buffer (1% BSA, 1 mM EDTA in PBS). After 
filtration into a FACS tube, 5 uL DRAQ7 (Cell Signaling Technologies) were added 
and NeuN-negative nuclei were sorted using a SH800 sorter (Sony) into 5% BSA 
(Sigma) in PBS.

ATAC-seq. ATAC-seq was performed on 20,000 sorted nuclei, as described 
previously, with minor modifications52. After adding IGEPAL-CA630 (Sigma) in 
a final concentration of 0.1%, nuclei were pelleted for 15 min at 1,000 g. The pellet 
was resuspended in 19 µ​L 1.1×​ DMF buffer (36.3 mM Tris-acetate (pH =​ 7.8), 
72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF). After addition of 
1 µ​L Tn5 transposomes (0.5 µ​M), tagmentation was performed at 37 °C for 60 min 
with shaking (500 rpm). Next, samples were purified using MinElute columns 
(Qiagen), PCR-amplified for 8–10 cycles with NEBNext High-Fidelity 2×​ PCR 
Master Mix (NEB, 72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72 °C 60 s) per 
cycle, held at 72 °C). Amplified libraries were purified using MinElute columns 
(Qiagen) and Ampure XP Bead (Beckmann Coulter). Sequencing was carried  
out on a HiSeq2500 or 4000 (50 bp PE, Illumina).

Data analysis. Single-nuclei ATAC-seq data processing pipeline:

Step 1. Alignment. Paired-end sequencing reads were aligned to mm10 reference 
genome using Bowtie253 in paired-end mode with the following parameters: 
bowtie2 -p 5 -t -X2000–no-mixed–no-discordant.

Step 2. Alignment filtering. Nonuniquely mapped (MAPQ <​ 30) and improperly 
paired (flag =​ 1,804) alignments were filtered.

Step 3. Barcode error correction. Each barcode consists of four 8-bp long indexes 
(i5, i7, p5 and p7). Reads with barcode combinations containing more than one 
mismatch (or one edit distance) for any index were removed. Any index with less 
than one mismatch was changed to its closest index.

Step 4. Reads separation. Reads were separated into individual cells based on the 
barcode combination (Supplementary Tables 1 and 5).

Step 5. Mark and remove PCR duplicates. For individual cells, we sorted reads based 
on the genomic coordinates using ‘samtools sort’54, then marked and removed PCR 
duplicates using Picard tools (MarkDuplicates).

Step 6. Mitochondrial reads removal. Reads mapped to the mitochondrial genome 
were filtered.

Step 7. Adjusting position of Tn5 insertion. All reads aligning to the positive strand 
were offset by +​4 bp, and all reads aligning to the negative strand were offset –5 bp

Step 8. Quality assessment of each single cell. Coverage of constitutively accessible 
promoters (promoters that are accessible across all tissues/cell line from ENCODE 
DHS) was calculated, and the number of reads and signal-over-noise ratio 
estimated by a ‘reads in peaks’ ratio for each cell.

Step 9. Cell selection. We only kept cells that passed our threshold: (i) coverage 
of constitutively accessible promoter >​ 10%; (ii) number of reads >​ 1,000; (iii) 
reads in peak ratio greater than estimation from corresponding bulk ATAC-seq 
level (https://www.encodeproject.org/search/?type=​Experiment&lab.title=​Bing+​
Ren%2C+​UCSD&assay_title=​ATAC-seq&organ_slims=​brain).

Step 10. Replicates separation. Selected cells were separated into two replicates 
based on the predefined barcode combination.
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Single-nuclei ATAC-seq cluster analysis. Cluster analysis partitions cells into 
groups such that cells from the same group have higher similarity than cells from 
different groups. Here, we developed a pipeline to obtain cell clusters (https://
github.com/r3fang/snATAC). We first generated a catalog of accessible chromatin 
regions using bulk ATAC-seq data and created a binary accessible matrix. 
Chromatin sites were assigned a value of 1 for a given cell if there was a read 
detected within the peak region. Next, we calculated the pairwise Jaccard index 
between every two cells on the basis of overlapping open chromatin regions. Next, 
we applied a nonlinear dimensionality reduction method (t-SNE) to map the 
high-dimensional structure to a 3-D space15. This transforms high-dimensional 
structures to dense data clouds in a low-dimensional space, allowing partitioning 
of cells using a density-based clustering method16. We then identified the optimal 
number of cell clusters using the Dunn index55. Finally, we compared our cluster 
results to those of the shuffled set to further verify that our cluster result was not 
driven by library complexity or other confounding factors.

Step1. Determining accessible chromatin sites in single cells. To catalog accessible 
chromatin sites in individual cells, we first created a reference map of open 
chromatin sites determined by bulk ATAC-seq. The chromatin accessibility 
maps from different timepoints (from E11.5 to P56) were merged into a single 
reference file using BEDtools56. For clustering of single cells, we tested clustering 
performance using accessible promoters (2 kb upstream of TSS) and distal 
elements, respectively, and found that clusters by distal elements outperformed 
promoters with lower Kullback-Leibler divergence (Supplementary Fig. 5). 
Therefore, we decided to only focus on distal genomic elements as features to 
perform clustering. Reads in individual cells overlapping with accessible sites were 
identified. We generated an accessible matrix of the read counts overlapping each 
individual accessible sites (columns) in each cell (row).

Step 2. Binary accessible matrix. We next converted the chromatin accessibility 
matrix to a binary matrix MN×D, in which Mij is 1 if any read in cell i is mapped  
to region j.

Step 3. Jaccard index matrix. Jaccard index matrixes JN×N were calculated between 
every two cells in which Jij measures the commonly shared open chromatin regions 
between cell Ci and Cj as follows:
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Diagonal elements of JN×N are set to 0 as required by t-SNE analysis.

Step 4. Dimensionality reduction using t-SNE. Using Jaccard index matrix JN×N as 
input, we next applied t-SNE to map the N-dimensional data to a 3-D space15. Since 
t-SNE has a nonconvex objective function, it is possible for different runs to yield 
different solutions15. Thus, we ran t-SNE several times with different initiations and 
used the result with the lowest Kullback-Leibler divergence and best visualization. 
In a previous study, sequencing depth was a confounding factor and highly 
correlated with the first principle component of PCA analysis (Pearson correlation 
>​ 0.95)12. However, we did not observe correlation between sequencing depth 
and any of the t-SNE dimensions. We expected that the coherent structure of the 
open chromatin landscape of cells with high similarity would rely on a continuous 
and smooth 3-D structure and cells for different groups would locate to distinct 
parts of the plot. We used t-SNE to transform the high-dimensional structures to 
dense data clouds in the 3-D space15. Finally, we applied a density-based clustering 
method to identify different cell populations within the embedded 3-D space16.

Step 5. Density-based clustering. We applied a density-based clustering method to 
partition cells into groups in the embedded 3-D space16. The method identifies 
cluster centers that are characterized by two properties: (i) high local density ρi 
and (ii) large distance δi from points of higher density, which are centers of the 
clusters16. Any cells that showed values above defined thresholds (ρ0, δ0) were 
considered as centers of cluster. Next, the rest of cells were assigned to the center 
as described here16. Clearly, different thresholds (ρ0, δ0) will generate different 
number of clusters. To find the optimal number of clusters, we adopted the method 
developed by Habib et al. to evaluate the quality of different cluster results55.

Step 6. Number of clusters. In detail, Habib’s method applied the Dunn index to 
quantify the quality of cluster result as following55:
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in which Δ​(Ci,Cj) represents the intercluster distance between cluster Ci and Cj, 
Δ​(Ck) represents the intracluster distance of cluster Ck. We used the ‘MaxStep’ 
distance developed by Habib et al. to calculate the distance for the Dunn index55. 
Finally, we iterated all possible (ρ0, δ0) combinations that yield different clusters and 
calculated their Dunn index. The clustering result with the highest Dunn index was 
chosen as final cluster (Algorithm 3).

Algorithm 1. : Cluster assignment
Input: local density (ρ) and local distance (δ​) for every cell; pairwise Euclidean 

distance in embedded 3-D space (D).
Output: Cluster assignment (C)
Let n be the total number of cells
Let Cbest be an empty array of length n
Let DIbest =​ –INF
for ρ0 from 0 to max(ρ) do
for δ0 from 0 to max(δ) do
choose cells whose ρ(i) and δ(i) are greater than ρ0, δ0 as Centers
C =​ cluster_assignment(D,Centers)*
if Dunn(D,C) >​ DIbest

DIbest =​ Dunn(D,C)
Cbest = C
end
end
end
Return Cbest

* cluster_assignment(D, Centers) and Dunn(D,C) were described in ref. 55.

Step 7. Shuffled cells. Due to the limited genome coverage of each single cell, cells 
may cluster according to their sequencing depth rather than ‘true’ covariation12.  
To verify that our cluster results were not driven by such artifacts, we compared 
our results to a simulated dataset. For this dataset, binary accessible sites within 
each cell were randomly shuffled across all accessible sites. In other words, we 
shuffled the data and removed the biological significance, but maintained the 
distribution of sequencing depth across cells. Shuffled cells were uniformly 
distributed as a ‘ball’ in the embedded 3-D space without clear partition of cells. 
However, we did observe a small portion of cells that tend to form a cluster but  
did not pass the cutoff (ρ0, δ0) used for the P56 forebrain dataset12.

Identification of cluster-specific features. We next developed a computational 
method that combines stability selection with LASSO57 to identify genomic 
elements (features) that potentially distinguish cells belonging to different clusters. 
LASSO regression enables sparse feature selections through the use of an L1 
penalty. However, LASSO regression often does not result in a robust set of selected 
features and is sensitive to data perturbation. This is especially true when features 
are correlated. To overcome these limitations, we adopted a stable lasso to robustly 
identify features that distinguish every two cell clusters (Algorithm 2)57. Finally, 
we combined all identified features that distinguish different cell types to identify 
genomic elements (features) that potentially distinguish cells belonging to  
different clusters.
Algorithm 2:. Identification of cluster specific elements

Input: ϵX R (binary matrix)n p( , ) , ϵY {0, 1} (cluster label)n , α (subsampling rate) , 
β (perturbation rate) , T (iteration)

Output: importance score for each feature
for t =​1 to T do:
Randomly perturb the data:
Draw a subset (X Y,t t) of α of (X Y, )
Draw a vector β~w U ([ , 1] )p

Reweight the features: = ⋅
′

X X wt t
Compute the LASSO path of length α ⋅ n
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Bulk ATAC-seq. Paired-end sequencing reads were aligned to the mm10 reference 
genome using Bowtie2 in paired-end mode, with following parameters: bowtie2 -p 
5 -t -X2000–no-mixed–no-discordant (ref. 53), and PCR duplicates were removed 
using samtools54. Next, mitochondrial reads were removed and the position of 
alignments adjusted58. For visualization the ‘bamCoverage’ utility from deepTools2 
was used59.

Hierarchical clustering of ATAC-seq profiles in adult forebrain. DeepTools2 was 
used for correlation analysis and hierarchical clustering of ATAC-seq profiles from 
cell clusters and sorted cell types in the adult forebrain59. First, we computed read 
coverage for each dataset against the merged list of genomic elements that separate 
two cell clusters in the adult forebrain using the ‘multiBamSummary’ utility. Next 
we used ‘plotCorrelation’ to generate hierarchical clustering using Spearman 
correlation coefficient between two clusters59.
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reprocessed. In addition, bulk ATAC-seq data for embryonic time points generated 
by the ENCODE consortium were analyzed for comparison (https://www.
encodeproject.org/search/?searchTerm=​atac+​forebrain).

Statistics. No statistical methods were used to predetermine sample sizes, and we 
have not formally tested the distribution of the data. There was no randomization 
of the samples, and investigators were not blinded toward the developmental 
time point investigated. However, clustering of single nuclei based on chromatin 
accessibility was performed in an unbiased manner. Cell types were assigned 
afterwards. Low-quality nuclei were excluded from downstream analysis as 
outlined above.

Distal genomic elements to separate two cell clusters were identified using a 
stable LASSO approach57. A negative binomial test was used to identify promoters 
enriched in a specific cell clusters to enable annotation. To identify differentially 
accessible sites within a given cell type between developmental stages, a negative 
binomial test was used and the resulting P value was corrected using the 
Bonferroni method62. Motif enrichment for known transcription factor motifs 
in different sets of genomic elements was performed using a one-tailed Fisher’s 
exact test in combination with Bonferroni correction for multiple testing49. For 
significance testing of enrichment of de novo motifs, a hypergeometric test was 
used without correction for multiple testing50.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Accession codes. Raw and processed data have been deposited to NCBI Gene 
Expression Omnibus with the accession number GSE100033. Data analysis 
pipeline can be downloaded at https://github.com/r3fang/snATAC.

Data availability. Raw and processed data to support the findings of this study 
have been deposited to NCBI Gene Expression Omnibus with the accession 
number GSE100033.

Code availability. The scripts and pipeline for the analysis can be found at https://
github.com/r3fang/snATAC.
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Accessibility analysis and clustering of genomic elements. To cluster genomic 
elements based on their accessibility profile, we used promoter distal elements 
that were capable of distinguishing two cell clusters. For each feature, we extended 
the summits identified by MACS260 in both directions by 250 bp and generated a 
union set of elements using the ‘mergeBED’ function of BEDTools v2.17.056. Next, 
we intersected cluster-specific bam files with the peak list using the ‘coverageBED’ 
function of BEDTools56. We discarded elements that had fewer than five reads 
on average. After adding a pseudocount of one, we calculated cluster-specific 
RPM (reads per million sequenced reads) values for each genomic element. We 
divided the RPM value for a given cluster by the average value of all clusters (fold 
over mean) and finally log2-transformed the data. The generated matrix was used 
for k-means clustering of the elements using Ward’s method. We performed this 
analysis for all adult clusters, as well as for the excitatory neuron clusters and 
the 12 developmental cell clusters. A list of elements for each analysis can be 
found in Supplementary Table 4. To compare clusters of genomic elements in the 
adult forebrain with previously described single-cell DNA-methylation data29, 
we calculated the fraction of cell-type-specific differentially methylated regions 
(DMR) with each cluster using the ‘intersectBED’ function of BEDTools56 and 
normalized it by the total number of elements. Since Luo et al.29 focused on frontal 
cortex and specifically purified neurons, we centered the comparison on clusters 
associated with excitatory and inhibitory neurons.

Motif enrichment analysis. To identify potential regulators of chromatin 
accessibility, we performed motif analysis using the AME utility of the MEME 
suite49. For enrichment of known motifs, one-tailed Fisher’s exact test was used 
to calculate significance. P values were corrected by the Bonferroni method for 
multiple testing. A P value cutoff of <​ 10−5 was chosen for known motifs from the 
JASPAR database (JASPAR_CORE_2016_vertebrates.meme)61. For identification of 
de novo motifs, the HOMER tool was used with its default settings50.

Annotation of genomic elements. The GREAT algorithm was used to annotate 
distal genomic elements using the following settings to define the regulatory region 
of a gene: basal +​ extension (constitutive, 1 kb upstream and 0.1 kb downstream, 
up to 500-kb max extension)32. Gene ontology categories ‘molecular function’ and 
‘biological processes’ were used.

Analysis of dynamic chromatin accessibility within a cell cluster. First, the 
ATAC-seq reads were counted in all peaks for each stage, cell type and replicate. 
For each cell cluster, only stages with more than 250,000 reads overlapping ATAC-
seq peaks and more than 50 nuclei were used for dynamic analysis. Peaks with 
greater than 1 read per million reads (RPM) in at least two samples were kept. We 
used edgeR62 to assess the significance of difference between adjacent stages for cell 
clusters with at least 4 of 7 stages passing filtering criteria. P values were corrected 
using the Bonferroni method. Peaks with a Bonferroni P value <​ 0.05 were called 
dynamic peaks. The total numbers of dynamic peaks in each cell type are listed 
in Supplementary Fig. 11c. For each cell type, the read counts in each peak were 
normalized to a unit vector (i.e., values were divided by the square root of the sum 
of the squares of the values). k-means clustering was used for cell clusters with 
more than 200 dynamic elements (k =​ 3). Motif enrichment analysis was performed 
for each peak cluster using HOMER50.

VISTA analysis. Genomic locations of 484 VISTA validated elements45 were 
downloaded from https://enhancer.lbl.gov using the search term ‘forebrain’. 
Genomic locations were converted from mm9 to mm10 using the ‘liftOver’ tool 
(minimum rematch ratio of 0.95)63. Of these, 91 showed specific activity in the 
subpallium46. To identify developmental clusters that were enriched for subpallial 
enhancers, we first calculated the ratio of elements per k-means cluster overlapping 
with the total forebrain enhancer list and the subpallial subset separately. Finally, 
we calculated the relative enrichment using the ratio of subpallial over the complete 
forebrain regions. For anatomical annotation of distinct clusters, we intersected 
these regions with enhancers that are active in specific areas in the developing 
mouse forebrain47. After filtering clusters with fewer than five overlapping regions, 
we performed a binomial test to identify anatomical regions enriched for each 
cluster. The enrichment score is defined as –log10(binomial P value).

External datasets. Published ATAC-seq data of sorted excitatory neurons 
(GSM1541964, GSM1541965)6, GABAergic neurons (GSM2333635, 
GSM2333636)8, microglia (GSM2104286)21, neurons of the dentate gyrus 
(GSM2179990, GSM2179991)23 and distinct cortical layers (Layer2/3: 
GSM2333632, GSM2333633; Layer 4: GSM2333644, GSM2333645; Layer 5: 
GSM2333641, GSM2333642; Layer 6, GSM2333638, GSM2333639)8 were 
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    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical methods were used to predetermine sample size

2.   Data exclusions

Describe any data exclusions. Low quality single nuclei data sets (low number of reads, promoter coverage, read 
fraction in peaks) and nuclei clusters (low cluster density) were excluded from 
downstream analysis as outlined in the Methods section.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

For each developmental time point we performed two independent experiments 
and verified reproducibility by correlation of chromatin accessibility of aggregate 
single nuclei ATAC-seq data sets.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The experiments were not randomized.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Clustering of single nuclei for each data set were performed in an unbiased, 
blinded manner. Cluster names were assigned afterwards. Investigators were not 
blinded regarding the analyzed developmental time point  

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Bowtie2, SAMTools, BEDTools, DeepTools2, t-SNE, LASSO regression, Picardtools, 
MACS2, MEME suite, HOMER, GREAT, edgeR, liftOver 
The scripts and pipeline for the snATAC analysis can be found at https://
github.com/r3fang/snATAC

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

The hyperactive Tn5 transposase was acquired through a collaboration with 
Illumina. The mutations of this enzyme have been published.  
In addition, a protocol for production of a Tn5 transposase version with E54K and 
L372P mutations and wildtype at M56 has been published (Picelli et al. 2014). 
All other materials are commercially available.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

anti-NeuN antibody (1:5000, MAB377, Lot 2806074, EMD Millipore). 
The antibody was validated for mouse brain tissue and flow cytometry according to 
the manufacturer. 
anti-mouse Alexa488-antibody (1:1000, A11001, Lot 1696425, Thermo Fisher 
Scientific). Validated for flow cytomtery and reactivity with primary mouse 
antibodies by the manufacturer.  
 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. GM12878 from the Coriell Institute for Medical Research

b.  Describe the method of cell line authentication used. Cells were not authenticated

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Cells were not tested for mycoplasma

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

None of the cell lines used are listed in the ICLAC database

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Forebrains from embryonic mice (E11.5-E16.5) and early postnatal mice (P0) were 
dissected from one pregnant female or one litter at a time and combined. For 
breeding, animals were purchased from Charles River Laboratories (C57BL/6NCrl 
strain) or Taconic Biosciences (C57BL/6NTac strain) for E14.5 and P0.  Breeding 
animals for other time points were received from Charles River Laboratories 
(C57BL/6NCrl).  For the adult time point (P56), the forebrain from 8-week old male 
C57BL/6NCrl mice (Charles River Laboratories) were dissected and flash frozen in 
liquid nitrogen separately. 

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

 The study did not involve human research participants.
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    Data presentation
For all flow cytometry data, confirm that:

1.  The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

2.  The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of 
identical markers).

3.  All plots are contour plots with outliers or pseudocolor plots.

4.  A numerical value for number of cells or percentage (with statistics) is provided.

    Methodological details
5.   Describe the sample preparation. Forebrains from 8-week old male C57BL/6NCrl mice (Charles River 

Laboratories) were dissected and flash frozen in liquid nitrogen separately. 
Tissues were pulverized in liquid nitrogen using pestle and mortar. 10 mg 
adult mouse forebrain tissue (P56) were resuspend in 500 μl lysis buffer 
(0.5% BSA, 0.1% Triton-X, cOmplete (Roche), 1 mM DTT in PBS) and 
incubated for 10 min at 4°C. After spinning down (5 min, 500 x g) sample 
was resuspended in 500 μl staining buffer (0.5% BSA in PBS). Nuclei 
suspension was incubated with anti-NeuN antibody (1:5000, MAB377, Lot 
2806074) for 30 min at 4°C. After centrifugation nuclei were resuspend in 
500 μl staining buffer (0.5% BSA in PBS) containing anti-mouse Alexa488-
antibody (1:1000, Life Technologies). After incubation for 30 min at 4°C, 
nuclei were pelleted (5 min 500 x g) and resupended in 700 ul sort buffer 
(1% BSA, 1mM EDTA in PBS). After filtration into a FACS tube 5 ul DRAQ7 
(Cell Signalling Technologies) was added and NeuN- nuclei were sorted 
using a SH800 sorter (Sony) into 5% BSA (Sigma) in PBS.

6.   Identify the instrument used for data collection. Experiments were conducted on a Sony SH800 sorter 

7.   Describe the software used to collect and analyze 
the flow cytometry data.

Built-in SH800 software was used for data analysis

8.   Describe the abundance of the relevant cell 
populations within post-sort fractions.

NeuN- nuclei were reanalysed after sorting on a Sony SH800 sorter in 
analysis mode. The purity was >98 %.

9.   Describe the gating strategy used. First big particles were identified according to FSC/BSC area blot to get rid 
of small debris. Next duplicates were removed according to signal width in 
FSC and BSC channels. Finally, nuclei were identified in the gated events 
according to high DRAQ7 signal that stains DNA.

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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