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Population Pharmacokinetics of Fluconazole in Premature Infants
with Birth Weights Less than 750 Grams

Jeremiah D. Momper,a Edmund V. Capparelli,a Kelly C. Wade,b Anand Kantak,c Ramasubbareddy Dhanireddy,d James J. Cummings,e

Jonathan H. Nedrelow,f Mark L. Hudak,g Gratias T. Mundakel,h Girija Natarajan,i Jamie Gao,k Matt Laughon,k P. Brian Smith,j,k

Daniel K. Benjamin, Jr.,j,k for the Fluconazole Prophylaxis Study Team

University of California, San Diego, La Jolla, California, USAa; Children’s Hospital of Philadelphia, Pennsylvania, USAb; Children’s Hospital Medical Center of Akron, Akron,
Ohio, USAc; University of Tennessee Health System, Memphis, Tennessee, USAd; East Carolina University, Brody School of Medicine, Greenville, North Carolina, USAe; Cook
Children’s Medical Center, Fort Worth, Texas, USAf; University of Florida College of Medicine, Jacksonville, Florida, USAg; Kings County Hospital, Brooklyn, New York, USAh;
Wayne State University, Detroit, Michigan, USAi; Duke University Medical Center, Durham, North Carolina, USAj; Duke Clinical Research Institute, Durham, North Carolina,
USAk

Fluconazole is an effective agent for prophylaxis of invasive candidiasis in premature infants. The objective of this study was to
characterize the population pharmacokinetics (PK) and dosing requirements of fluconazole in infants with birth weights of
<750 g. As part of a randomized clinical trial, infants born at <750 g birth weight received intravenous (i.v.) or oral fluconazole
at 6 mg/kg of body weight twice weekly. Fluconazole plasma concentrations from samples obtained by either scheduled or scav-
enged sampling were measured using a liquid chromatography-tandem mass spectrometry assay. Population PK analysis was
conducted using NONMEM 7.2. Population PK parameters were allometrically scaled by body weight. Covariates were evaluated
by univariable screening followed by multivariable assessment. Fluconazole exposures were simulated in premature infants us-
ing the final PK model. A population PK model was developed from 141 infants using 604 plasma samples. Plasma fluconazole
PK were best described by a one-compartment model with first-order elimination. Only serum creatinine was an independent
predictor for clearance in the final model. The typical population parameter estimate for oral bioavailability in the final model
was 99.5%. Scavenged samples did not bias the parameter estimates and were as informative as scheduled samples. Simulations
indicated that the study dose maintained fluconazole troughs of >2,000 ng/ml in 80% of simulated infants at week 1 and 59% at
week 4 of treatment. Developmental changes in fluconazole clearance are best predicted by serum creatinine in this population.
A twice-weekly dose of 6 mg/kg achieves appropriate levels for prevention of invasive candidiasis in extremely premature
infants.

Invasive candidiasis is a common cause of death and neurodevel-
opmental impairment in extremely premature infants (1). Flu-

conazole, a triazole antifungal drug that exhibits fungistatic activ-
ity against a variety of Candida species, is an effective agent as a
prophylaxis for treatment of invasive candidiasis in this popula-
tion (2–4). Fluconazole exhibits pharmacokinetic (PK) character-
istics that make it an attractive candidate for prevention of
Candida infections. It has a long half-life allowing infrequent ad-
ministration, is minimally (12%) bound to plasma proteins, pen-
etrates the cerebrospinal fluid, and achieves saliva and lung con-
centrations that are 1.3 and 1.2 times the plasma concentrations,
respectively, thereby providing higher concentrations at key areas
of colonization (5–7). Additionally, in adults, fluconazole has very
high (�90%) oral bioavailability (8, 9).

Previous PK studies in infants suggested increasing fluconazole
clearance (CL) over the first postnatal weeks (10–13). However,
the PK of fluconazole in infants of �750 g birth weight have not
been extensively evaluated, and it is this population that has the
highest risk for invasive candidiasis where prophylaxis has the
most potential for benefit (14). Therefore, the objective of this
study was to characterize the population PK and dosing require-
ments of fluconazole in infants of �750 g birth weight.

MATERIALS AND METHODS
Study design. This PK study was associated with a multicenter, random-
ized, placebo-controlled trial that evaluated the efficacy and safety of flu-
conazole in preventing death or invasive candidiasis in premature infants

weighing �750 g at birth (4). Inclusion criteria required that infants were
�120 h old at the time of randomization and of �750 g birth weight and
that informed consent was received from a legally authorized representa-
tive. Participants were excluded from the trial if they had significant liver
dysfunction (aspartate aminotransferase [AST] and alanine aminotrans-
ferase [ALT], �250 U/liter), renal dysfunction (serum creatinine [SCR],
�2 mg/dl), a diagnosis of invasive candidiasis or congenital Candida in-
fection, or a history of hypersensitivity to any azole antifungal. Partici-
pants randomized to fluconazole therapy received 6 mg/kg of body weight
twice weekly (Tuesdays and Fridays) for up to 42 days of treatment. The
fluconazole dose was administered either by an intravenous (i.v.) infusion
given over approximately 60 min or orally (in infants that were receiving
enteral medications). Clinical data were collected and included demo-
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graphic information (gestational age [GA], postnatal age [PNA], birth
weight, current weight, race, sex, and ethnicity), laboratory values col-
lected within the 72 h prior to the first fluconazole dose and during treat-
ment (serum creatinine [SCR], total bilirubin, alanine transaminase
[ALT], and albumin [ALB]), details of concomitant medications of inter-
est (all antimicrobials and vasopressors), intubation status, mode of de-
livery (Cesarean section or vaginal), and microbiological cultures from
sterile sites. The study was approved by the Institutional Review Boards at
each center, and informed consent was obtained from a legally authorized
representative.

PK sample collection. Participants were randomized to 1 of 8 sam-
pling schemes with a maximum of 3 timed blood samples. Each infant had
two PK samples drawn after a single dose taken around the time of ad-
ministration of dose 3, 5, 7, or 9 and one sample taken around the time of
administration of the final dose. Samples obtained from infants receiving
placebo were used for other purposes. One additional plasma PK sample
was requested from infants who developed invasive candidiasis. Up to 10
scavenged samples left over from laboratory blood samples obtained per
routine care were also collected for PK evaluation. Sample collection con-
sisted of whole blood (200 �l) collected in EDTA tubes. Timed blood
samples were processed within 6 h of collection, and plasma was stored at
�80°C until analysis for fluconazole concentration determination.

Bioanalytical assay. Plasma samples were analyzed for fluconazole
concentrations using a validated liquid chromatography method with
tandem mass spectrometric detection (LC-MS/MS). The lower limit of
quantitation for fluconazole was 10 ng/ml. The precision determined at
each concentration level did not exceed 8.5% of the coefficient of varia-
tion, including the lower limit of quantification.

Population PK analysis. Concentration-time data were analyzed with
nonlinear mixed-effect modeling using NONMEM version 7.2 (Icon; El-
licott City, MD, USA). Plasma samples were excluded from the analysis if
they (i) were below the limit of quantitation (�10 ng/ml), (ii) were col-
lected �120 h after the last recorded fluconazole dose, (iii) demonstrated
increased fluconazole concentrations (compared to prior samples) with-
out a recorded dose, or (iv) were extreme outliers (�10-fold difference
between observed and predicted concentrations). A 1-compartment
model (ADVAN2, TRANS2 subroutine) and a first-order conditional es-
timation method (FOCE with interaction) were used to describe the flu-
conazole concentration data. Plasma concentrations following intrave-
nous and oral administration were simultaneously analyzed, allowing
estimation of absolute oral bioavailability. Parameters of the model were
the absorption rate constant (ka), volume of distribution (V), clearance
(CL), and bioavailability (F1). Diagnostic plots were executed in PLT
Tools 5.1.0 (PLTSoft; San Francisco, CA), SAS 9.3 (Cary NC), and R
Project 3.0.1 (downloaded from a website of the University of California,
Los Angeles, Los Angeles, CA). The bootstrap procedure was performed
using WINGS for NONMEM version 7.2 (Auckland, NZ), and 1,000
bootstrap sample data sets were generated. Consistent with prior PK anal-
yses of fluconazole, a 1-compartment model with first-order absorption
was selected for development. Population PK parameters were scaled by
body size prior to evaluation of potential covariates. Clearance was scaled
by allometric weight (WT0.75), and volume of distribution was scaled by
weight (WT1.0). The initial model used a combined proportional error
and additive residual error value. Diagnostic plots were used to assess the
appropriateness of this structure for the base model.

Once the base model was identified, covariates were investigated for
their potential influence on PK parameters, CL, and volume (V). Contin-
uous covariates were evaluated by normalization to median values and
included PNA, GA, postmenstrual age (PMA), SCR, and ALB. Categorical
covariates included race and ethnicity, intubation status, and mode of
delivery (Cesarean section or vaginal). Missing covariate values were im-
puted using the closest value available for that participant and either a
carry-forward approach or a backfill approach, depending on which date
was closest. The investigation of the relationship between potential cova-
riates and PK parameters proceeded by developing the base population

PK model and post hoc generation of the Bayesian estimates of individual
PK parameters. Individual subject etas (�), representing deviation from
the typical population parameter values, were generated. Graphical as-
sessment of the relationships between PK parameters and potential cova-
riates was performed by plotting etas versus potential clinically relevant
covariates. Covariates with an evident graphical relationship to �CL and
�V were evaluated for inclusion in the final model. A forward-addition,
backward-elimination approach to covariate selection was used when two
or more covariates were found to be significant for CL or V. The threshold
for the significance of a single covariate was reduction of the objective
function value (OFV) by �7.88.

Model evaluation. Model evaluation included successful minimiza-
tion, goodness-of-fit plots, precision-of-parameter estimates, bootstrap
procedures, and visual predictive checks. The precision of the final pop-
ulation PK model parameter estimates was evaluated using nonparamet-
ric bootstrapping (1,000 replicates) to generate the 95% confidence inter-
vals for parameter estimates. The final model was used to perform Monte
Carlo simulations in 14,100 virtual subjects with demographic and labo-
ratory characteristics simulated from the same distribution as the study
population. The simulated trough fluconazole concentrations were deter-
mined during an 8-week course of fluconazole and predose concentra-
tions compared to a minimum target of 2,000 ng/ml. This target was
selected based upon typical drug MICs for Candida species in infants.

RESULTS
Study population and PK samples. A total of 141 premature in-
fants weighing �750 g at birth who received i.v. or oral flucona-
zole were included (Table 1), and fluconazole concentrations were
determined from 619 plasma samples obtained from the infants.
Of these, 15 samples (2.4%) were excluded, resulting in 604
plasma samples available for population PK modeling. Samples
were excluded for the following reasons: concentration below the
limit of quantitation (n � 7); collection �120 h after the last dose,
indicating an incomplete dosing history (n � 3); outlier concen-
trations based on individual predictions (IPRED) and population
predictions (PRED) (n � 3); and increased concentrations com-
pared to prior samples without a documented dose (n � 2). The
majority of PK samples (n � 368, 61%) were from scavenged
samples. The PK collection time after dose was most frequently
the first 6 h postdose, with an overall median (range) of 30 h (0 to
115 h). The medians (ranges) of the fluconazole concentrations

TABLE 1 Patient demographic and clinical data at first PK evaluationa

Parameter Value

PNA (days) 23 (3–47)
GA (wks) 24.7 (22.6–28.7)
PMA (wks) 28.3 (23.7–35.1)
Wt (g) 710 (345–2,680)
Serum creatinine (mg/dl) 0.7 (0.1–3.6)
Albumin (g/dl) 2.5 (1.0–4.7)
Male 40
Intubation status 81
Delivery by Cesarean section 67

Race
American Indian or Alaska Native 5
Asian 1
Black or African American 53
White 40

a n � 141. Values presented as median (range), except for sex, intubation status,
delivery by Cesarean section, and race, which are presented as percentages.
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were 4,144 ng/ml (491 to 14,050 ng/ml) from scavenged samples
and 6,154 ng/ml (320 to 13,167 ng/ml) from timed samples.

Population PK model building. A 1-compartment model
with first-order absorption and with combined proportional error
plus additive residual error adequately described the concentra-
tion versus time data (Fig. 1). Due to limited numbers of early
samples after oral administration in the data set, between-subject
variability (BSV) was not estimated for the absorption rate con-
stant (ka). Data from the base fluconazole population PK model of
observed and conditionally weighted residuals versus population
and individual-predicted concentrations were evenly scattered at
the line of unity with no obvious biases.

Graphical plots of GA, PNA, PMA, SCR, and mode of delivery
were suggestive of a relationship with �CL, which was consistent
with the significant changes in OFV that resulted during the uni-

variable screen assessment of these covariates for CL (Table 2).
Plots of PMA and SCR were suggestive of a relationship with �V,
and both of these covariates met the OFV reduction criteria. All of
the potential covariates identified in the univariate screen were
incorporated into a combined model for backward elimination
assessment. Although PMA had the second greatest impact on
OFV during the univariable screen, it is a function of PNA and GA,
both of which were also identified as potential covariates. The
multivariable process started with the elemental components of
PMA (PNA and GA) rather than PMA itself. Sequential removal
was performed in the reverse order of the magnitude of OFV
change seen with the covariate in the univariable screening pro-
cess. Attempts to remove GA (CL), PNA (CL), and SCR (CL) each
resulted in increases of �10 in the OFV, and the parameters were
thus deemed significant independent covariates. Finally, a model

FIG 1 Goodness-of-fit plots for the base model. (A) Predicted versus observed concentrations (Conc). (B) Individual (Indiv) predicted versus observed
concentrations. (C) Conditional weighted residuals (CWRES) versus population predictions. (D) Conditional weighted residuals versus time after dose. For
panels A and B, the line of identity is included as a reference. For panels C and D, a solid line at y � 0 is included as a reference.
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using SCR (CL) and PMA (CL) as a function of GA and PNA was
assessed and performed better than the model with SCR (CL), GA
(CL), and PNA (CL) with an OFV reduction of 37.3 despite having
one fewer covariate. The model-estimated absolute oral bioavail-
ability of fluconazole was 100% in the final model, which is in
agreement with prior adult data.

No significant relationships were observed between flucona-
zole CL or V and sex, race, ethnicity, intubation, or mode of infant
delivery. The typical population PK parameter estimates in the
final model were as follows: CL (liters/h/kg0.75) � 0.0127 * (SCR/
0.8)�0.41 * (PMA/28)2.05; V (liters/kg) � 1.00; ka (1/h) � 0.96;
F1 � 100% (where SCR is in milligrams per deciliter and PMA is
in weeks). BSV was estimated as 23% for CL, 13% for V, and 25%
for F1. The final PK parameters are displayed in Table 3. The
model was evaluated using a 1,000-set bootstrap analysis with the
program WINGS for NONMEM; 98.7% of bootstrap data sets
converged to �3 significant digits. The medians of bootstrap

fixed-effect parameter estimates were within 1% of population
estimates from the original data set for all parameters (Table 3).
The visual predictive check indicated that the model adequately
described the data, with 3.1% of observed values �95th percentile
and 4.1% �5th percentile (Fig. 2).

The potential influence of the collection type on the final
model was assessed by fitting a reduced data set that contained
only timed samples to the final model structure. The parameter
estimates using this reduced data set were within 10% of those
estimated with the full data set, indicating that the scavenged sam-
ples did not bias the PK parameter estimates and were as informa-
tive as the scheduled samples. Further, the visual predictive check
demonstrated that the model adequately captured fluconazole
concentrations irrespective of the sample type (Fig. 2). While the
residual error was somewhat smaller when limiting the analysis to
scheduled samples, of particular interest, the CL estimated from
timed samples was altered by only 6% compared to that estimated
from the full data set (0.0119 versus 0.0127 liters/h/kg0.75).

Using Monte Carlo simulations, the fluconazole exposure
from doses of 6 mg/kg twice weekly was assessed. The trough
fluconazole concentrations were determined during an 8-week
course of fluconazole, and predose concentrations were compared
to a minimum target of 2,000 ng/ml. This threshold was exceeded
in 80% of simulated infants at week 1 and in 59% of simulated
infants at week 4 of fluconazole prophylaxis. This is consistent
with 95.7% of the first measured fluconazole concentrations being
�2,000 ng/ml and with 89.9% of the overall fluconazole concen-
trations being �2,000 ng/ml (Fig. 3).

DISCUSSION

The present study evaluated the population PK of fluconazole in
141 premature infants of �750 g birth weight receiving twice-
weekly fluconazole for 42 days for candidiasis prophylaxis. This
represents a particularly difficult study population for collecting
PK samples, and the use of scavenged samples more than doubled
the data set size, leading to improved parameter estimates. In this
population, fluconazole CL is low and is associated with a long
half-life, which allows infrequent administration. Oral bioavail-
ability appears to be high, as has been demonstrated in older pop-
ulations, and fluconazole may therefore be given at the same dose

TABLE 2 Summary of key univariable population PK model building
processa

Model description Population model OFV
Change in OFV
from base model

CL (base model) CL � �CL * (WT)0.75 9,624
PNA CL � �CL * (WT)0.75 *

(PNA/25)�CL-PNA

9,492 �132

GA CL � �CL * (WT)0.75 *
(GA/25)�CL-GA

9,599 �25

PMA CL � �CL * (WT)0.75 *
(PMA/28)�CL-PMA

9,450 �174

SCR CL � �CL * (WT)0.75 *
(SCR/0.8)�CL-SCR

9,405 �219

CSCT CL � �CL * (WT)0.75 *
�CL-CSCTCSCT

9,617 �7

V (base model) V � �V * (WT)1.0 9,624
PMA V � �V * (WT)1.0 *

(PMA/28)�V-PMA

9,620 �4

SCR V � �V * (WT)1.0 *
(SCR/0.8)�V-SCR

9,600 �24

a OFV, objective function value; CSCT, delivery by Cesarean section.

TABLE 3 Final PK model parametersa

Parameter Symbol Point estimate SEE

Bootstrap CI

2.5% Median 97.5%

V (liters/kg) �V 1.00 0.0378 0.93 1.00 1.08
CL (liters/h/kg0.75) �CL 0.0127 0.00033 0.0120 0.0127 0.0133
F1 (%) �F1 1.00 0.065 0.86 1.00 1.13
ka (1/h) �KA 0.96 0.25 0.52 0.96 1.81
SCR-CL �SCR �0.410 0.0498 �0.53 �0.41 �0.32
PMA-CL �PMA 2.05 0.35 1.23 2.05 2.62

Interindividual variance (CV%)
V 	2

V 13 61 1 13 18
CL 	2

CL 23 29 15 22 27
F1 	2

F1 31 73 1 22 50

Residual variance (CV%) 
2 46 27 37 46 51

Additive value (ng/ml) 
2 505 329 5 495 858
a CI, confidence interval; CV%, percent coefficient of variation; SEE, standard error of estimate.
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in young infants and administered either as an oral suspension or
intravenously. The population PK model identified SCR as the
best predictor of developmental changes in fluconazole CL. Given
fluconazole’s renal CL in adults, this is not surprising. Although
SCR levels decrease with age and are significantly correlated with
measures of maturation, PMA was also independently associated
with fluconazole CL. The individual impacts of GA and PNA on
CL were modest and not of a magnitude to justify dose stratifica-
tion in this population during the first 30 days of life. Overall, CL
and V were in the range expected based on prior neonatal flucona-
zole PK studies. In the study by Wade et al., the typical CL was
0.015 liters/h/kg0.75 for a typical infant (GA, 26 weeks; PNA, 2
days) (10). This is similar to our typical CL value of 0.0127 liters/
h/kg0.75 at 28 weeks PMA. Wade et al. also found that GA, PNA,
and SCR were significant covariates for fluconazole CL in infants
(10).

This study employed scavenged PK sampling, which is a min-
imal-risk approach that uses leftover blood collected in the course
of routine clinical care that would otherwise be discarded (15).
The scavenged samples were as informative as the scheduled sam-
ples and did not bias parameter estimates. Scavenged PK sampling
is particularly effective in populations that are difficult to study,
such as infants, and has been successfully used in population PK
studies of anti-infection drugs (16, 17). In addition, scavenged

sampling is useful for drugs with long half-lives where traditional
sampling schemes may not capture the full PK profile.

Effective prophylaxis dosing in adults suggests that fluconazole
concentrations of �2,000 ng/ml would be beneficial. Further, flu-
conazole MICs for Candida species in infants typically range from
250 to 4,000 ng/ml (18–20). In this study, 90% of measured flu-
conazole concentrations were �2,000 ng/ml, and the Monte
Carlo simulations predict that trough concentrations would be
maintained at �2,000 ng/ml in a high proportion of participants
receiving 6 mg/kg twice weekly for the first few weeks of life. Mat-
uration of renal function and other developmental processes
would result in lower fluconazole concentrations at later PNA.
Another commonly used fluconazole regimen for the prophylaxis
of invasive candidiasis is 3 mg/kg given twice weekly (2, 3). Al-
though the lower fluconazole regimen of 3 mg/kg twice weekly
may be effective for Candida species with an MIC of �2,000 ng/
ml, our results suggest that the higher 6 mg/kg twice-weekly regi-
men would be needed to optimize fluconazole exposure for the
first few weeks of life, when the fluconazole MIC range for Can-
dida species is �2,000 ng/ml.

This study had several limitations. Only 2 infants with PK data
had invasive candidiasis, which precluded any meaningful explo-
ration regarding fluconazole exposure and outcomes. Addition-
ally, on the basis of typical MICs of Candida species in infants, we

FIG 2 Visual predictive check of the final model for scheduled samples (A) and scavenged samples (B), displaying time after first dose.

FIG 3 Monte Carlo simulations of fluconazole given at 6 mg/kg intravenously (IV) twice weekly using the final population PK model displaying simulated
fluconazole concentrations (left) and proportion of fluconazole troughs of �2,000 ng/ml (right). Min, minimum.
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chose a pharmacodynamic target of 2,000 ng/ml by which to eval-
uate fluconazole dosing regimens. Alternative fluconazole dosing
strategies may be appropriate in instances where the MIC differs
significantly from 2,000 ng/ml. Additionally, MIC-based ap-
proaches to guide antifungal drug selection and dosing do not take
into consideration the complexity of host-drug-microbe interac-
tions, which may limit the power of correlation with patient out-
comes. Finally, since only about 20% of the PK samples were col-
lected following oral administration and since there was limited
sampling available during the absorption phase, no BSV was esti-
mated for ka.

In summary, the population PK of fluconazole were success-
fully characterized in premature infants of �750 g birth weight
using sparse sampling that included scavenged samples. Much of
the variability in fluconazole CL was explained by SCR and, to a
lesser extent, by PMA. SCR was confounded with PNA and GA,
and SCR explained most of the BSV in CL, limiting the impact of
age on CL. The 6 mg/kg twice-weekly dosage given by either i.v. or
oral administration maintained trough fluconazole concentra-
tions of �2,000 ng/ml in the vast majority of infants for the first
few weeks of life. While the clinical outcomes of this trial did not
show a survival benefit (4), the fluconazole prophylaxis dosage
used appears to be appropriate for maintaining fluconazole
trough concentrations above 2,000 ng/ml in extremely premature
infants.
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