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Abstract: Obesity rates among children are growing rapidly worldwide, placing massive pressure on
healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of
obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obe-
sity in children have not been thoroughly investigated. Herein, we explored metabolites associated
with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting
serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched
normal-weight children. Three metabolomic assays were combined and yielded 726 unique identi-
fied metabolites: gas chromatography–mass spectrometry (GC–MS), hydrophilic interaction liquid
chromatography coupled to mass spectrometry (HILIC LC–MS/MS), and lipidomics. Univariate and
multivariate analyses showed clear discrimination between the untargeted metabolomes of obese
and normal-weight children, with 162 significantly differentially expressed metabolites between
groups. Children with obesity had higher concentrations of branch-chained amino acids and various
lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early
manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are
correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were
very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential
biomarkers and used to study obesity pathomechanisms.

Keywords: childhood obesity; untargeted metabolomics; lipidomics; obesity pathogenesis; obesity
biomarkers; obesity pathomechanisms

1. Introduction

The prevalence of pediatric obesity is rising globally [1,2]. Worldwide, over 379 million
children and adolescents are overweight or obese [1]. Obesity during developmental years
tends to persist into adulthood and increases the risk for other health disorders [3,4]. For
example, children with obesity have a higher risk of early puberty, cardiovascular and
pulmonary diseases at a younger age, and psychosocial issues [5,6]. The obesity epidemic
among children is leading to an increased prevalence of impaired fasting glucose (IFG),
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impaired glucose tolerance (IGT), and even full-blown type 2 diabetes (T2D) in early
adulthood [7,8]. Together, these conditions profoundly lower the quality of life of children,
affecting future health as adults. A better understanding of the mechanisms underpinning
the development of obesity and its early consequences, preferably before symptoms are
evident, is crucial for developing new therapies.

Metabolomics is a technology for profiling and measuring the levels of low-molecular-
weight metabolites (<1500 Da) in various systems, from cells to whole organisms [9,10].
There are two major approaches for metabolomics: untargeted and targeted metabolite
profiling. The untargeted approach involves agnostic profiling of all metabolites within
a sample, which aims to identify diverse metabolites to generate hypotheses. Targeted
profiling focuses on the quantitative measurement of specific metabolites and testing
hypotheses. Both approaches can be used to identify biomarkers to unveil the molecular
mechanisms of complex diseases, for monitoring diseases, and risk evaluation [11,12].

Metabolomics has been used to study the metabolic signature of obesity, character-
ize the differential responses to dietary or weight loss interventions, predict intervention
outcomes, and study the effects of specific dietary patterns on obesity-related metabo-
lites [12]. Metabolomics studies have also been carried out on specific cohorts, including
pediatric obesity [13–16]. Children with elevated concentrations of stearate, oleate, or
palmitate at birth, determined from umbilical cord samples, were found to develop obe-
sity by 3−5 years old [16]. Differential concentrations of plasma metabolites were also
seen in Hispanic children with obesity [15]. For example, children with obesity had in-
creased plasma concentrations of leucine, isoleucine, and valine but lower concentrations
of asparagine, aspartate, glycine, and serine [15]. Targeted metabolomics has also been
performed, such as targeted profiling of serum acyl-alkyl phosphatidylcholines and urine
steroid profiles in children with obesity [13,14]. However, studies on metabolomics in
pediatric populations remain limited. To better understand the pathogenesis of obesity, we
must validate previous findings and evaluate metabolic alterations in obese children yet to
develop disease symptoms.

In this study, we used three untargeted metabolomics platforms: gas chromatography–
mass spectrometry (GC–MS), hydrophilic interaction liquid chromatography coupled to
mass spectrometry (HILIC LC–MS/MS), and lipidomics, to investigate differences in the
serum metabolome between children with and without obesity. We aimed to understand
the metabolic signature of pediatric obesity before symptoms are evident, specifically for
children in Eastern European populations. We also attempted to identify potential obesity-
associated metabolite biomarkers that differentiate children with and without obesity. The
findings will help us better understand the development of obesity and could assist in
identifying new molecular targets for the treatment of the disease.

2. Materials and Methods
2.1. Studied Cohort

Untargeted metabolomic profiling was performed on fasting serum samples from
27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight
children. They were recruited from the patients referred to the Department of Pediatrics
and Nephrology, Medical University of Bialystok Children’s Clinical Hospital (Bialystok,
Poland), between 2017 and 2019. Patients who met all the following inclusion criteria
were enrolled into the obesity group: (1) age 5−18 years, (2) obesity defined as body mass
index (BMI) > 97th percentile of Polish population-specific data [17], (3) normal clinical
examination, (4) no clinical or laboratory signs of infection, (5) normal levels of cortisol
and thyroid-stimulating hormone, (6) normal electrocardiogram, and (7) signed informed
consent. The control group consisted of healthy, age- and sex-matched children admitted
to the Department due to suspicion of kidney or urinary tract anomalies. Children in the
control group were qualified based on medical history and screening tests. The exclusion
criteria in the obesity and the control groups were any chronic disease (except obesity in the
obesity group) or pharmacotherapy. The Bioethics Committee of the Medical University of
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Bialystok approved this study. Written informed consent was obtained from all subjects
and their parents.

2.2. Clinical Features

Height was measured to the nearest centimeter using a rigid stadiometer. Undressed
weight, in the fasted state, was measured to the nearest 0.1 kg using a calibrated balance
scale. BMI was calculated as body mass (kg) divided by height (m) squared. The BMI
z-score was calculated using Cole’s international childhood BMI cut-offs [18,19]. Blood
pressure was measured using an automated oscillometric device validated for use in
children. Four cuff sizes were available (child’s cuff, small adult cuff, adult cuff, and large
adult cuff). The appropriate cuff size (bladder width at least 40% of arm circumference
and length 80−100% of arm circumference) was determined by measuring the mid-upper
arm circumference. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were
measured in the non-dominant arm in triplicate, at 3 min intervals after a 5−10 min rest in
the sitting position with the arm and back supported. The average values of the second
and third measurements were used for subsequent analyses.

Venous blood samples were collected at 7:00 a.m., after overnight fasting for at least
10 h. Following coagulation at room temperature, blood samples were centrifuged for
10 min at 8000 rpm. Aliquoted serum samples were stored at −80 ◦C and thawed at room
temperature for the metabolomics assay. Collected blood samples were also used to measure
total serum triglycerides (TG), total cholesterol (TChol), high-density lipoprotein cholesterol
(HDL) and low-density lipoprotein cholesterol (LDL), urea, uric acid, creatinine, and plasma
glucose concentrations, using colorimetric Cobas c111 kits according to manufacturer’s
protocols (Roche Diagnostics, Basel, Switzerland). Serum thyroid-stimulating hormone
(TSH), cortisol, and insulin were measured by electrochemiluminescence immunoassays
on a Cobas e411 analyzer (Roche Diagnostics).

2.3. Metabolomics Data Acquisition and Processing

Untargeted metabolomic profiling was carried out in the West Coast Metabolomics
Center at the University of California Davis, USA. Analysis was performed as previously
described [20–23] along with detailed descriptions of internal standards [23]. Briefly,
serum samples were extracted for primary metabolites, complex lipids, and biogenic
amines. For primary metabolites, 20 µL serum samples were extracted with 1 mL degassed
cold (−20 ◦C) acetonitrile (ACN):isopropanol:water (3:3:2; v/v/v) solution. The super-
natant (500 µL) mixed with 500 µL of ACN:water (1:1) was dried and derivatized using
methoxyamine hydrochloride and N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA).
A mixture of fatty acid methyl esters (FAMEs) from C8 to C30 was added as internal
standards. For lipids and biogenic amines, 40 µL serum samples were extracted with a
biphasic solvent system of 300 µL of cold methanol containing internal lipid standards,
1000 µL methyl tert-butyl ether (MTBE) containing CE (22:1) internal standard, and 250 µL
of water. For the LC–MS analysis, the organic phase (100 µL) was vacuum-dried and
reconstituted in 100 µL of methanol:toluene (9:1, v/v) containing 1-cyclohexyl-ureido-3-
dodecanoic acid (CUDA; 150 ng/mL) internal standard. For HILIC analysis, the aqueous
phase was vacuum-dried and rinsed with ACN:water (1:1, v/v) for protein removal, then
vacuum-dried again. Sample reconstitution was performed using ACN:water (80:20, v/v)
solution containing CUDA (150 ng/mL) and deuterated internal standards.

GC–MS was performed on 0.5 µL primary metabolite extracts on an Agilent 6890
GC-LECO Pegasus III TOF instrument (Agilent, Santa Clara, CA, USA) equipped with a
Cooled Injection System (CIS4), an Automated Linear Exchange system (ALEX), and a
Multi Purpose Sampler (MPS, all Gerstel) [20,23]. Briefly, the injector conditions were as
follows: initial and final temperatures of 50 ◦C and 275 ◦C, respectively, at a rate of 12 ◦C/s,
volumes of 0.5 µL, and splitless mode with a purge time of 25 s. An Rtx-5Sil MS column
(30 m length, 0.25 mm i.d., 0.25 µM 95% dimethyl 5% diphenyl polysiloxane film) with
a 10 m integrated guard column. The GC temperature started at 50 ◦C for 1 min, then
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increased to 330 ◦C at 20 ◦C/min, and was held for 5 min. The transfer line and ion source
temperatures were 280 ◦C and 250 ◦C, respectively. The acquisition rate was 17 spectra/s
at a detector voltage of 1525 V and a scan mass range of 85–500 Da. ChromaTOF software
(v2.32) was used for peak deconvolution and picking, while BinBase [24] was used to
identify metabolites [20,23].

Complex lipid separation was carried out using a Waters Acquity UPLC CSH C18
column (100 × 2.1 mm; 1.7 µm; Waters) with an additional Acquity UPLC CSH C18 Van-
Guard precolumn (5 × 2.1 mm; 1.7 µm), maintained at 65 ◦C. The mobile phase for positive
mode was (A) ACN:water (60:40, v/v) with ammonium formate (10 mM) and formic acid
(0.1%) and (B) 2-propanol:ACN (90:10, v/v) with ammonium formate (10 mM) and formic
acid (0.1%). For negative mode, the mobile phase was (A) ACN:water (60:40, v/v) with am-
monium formate (10 mM) and (B) 2-propanol:ACN (90:10, v/v) with ammonium formate
(10 mM). A 2 µL sample was injected in each case. The separation gradient was 0 min 15%
B, 0−2 min 30% B, 2−2.5 min 48% B, 2.5−11 min 82% B, 11−11.5 min 99% B, 11.5−12 min
99% B, 12−12.1 min 15% B, and 12.1−15 min 15% B. An Agilent 6550 QTOF (Agilent,
Santa Clara, CA, USA) with a jet stream electrospray source was used with the following
parameters: mass range m/z 50−1700, capillary voltage ± 3 kV, nozzle voltage ± 1 kV,
gas temperature 200 ◦C, drying gas (nitrogen) flow rate 14 L/min, nebulizer gas (nitrogen)
35 psi, sheath gas temperature 350 ◦C, sheath gas flow rate (nitrogen) 11 L/min, acquisition
rate two spectra/s. Lipid identification was performed by collecting MS/MS spectra at
a collision energy of 20 eV. The acquisition rates for MS1 and MS/MS were 10 spectra/s
(100 ms) and 13 spectra/s (77 ms), respectively.

HILIC-Q Exactive MS/MS data acquisition was performed for biogenic amines. Sam-
ples (1 µL) were injected onto a Waters Acquity UPLC BEH Amide column (150 × 2.1 mm;
1.7 µm; Waters) coupled to an Acquity UPLC BEH Amide VanGuard precolumn (5 × 2.1 mm;
1.7 µm), maintained at 45 ◦C with a flow rate of 0.4 mL/min. The mobile phases were
(A) water with ammonium formate (10 mM) and formic acid (0.125%) and (B) ACN:water
(95:5, v/v) with ammonium formate (10 mM) and formic acid (0.125%). Gradient elution
was performed from 100% (B) at 0−2 min to 70% (B) at 7.7 min, 40% (B) at 9.5 min, 30%
(B) at 10.25 min, 100% (B) at 12.75 min, isocratic until 16.75 min. Positive and negative
mode electrospray ionization was performed using a Q Exactive Orbitrap MS, with the
following parameters: mass range 60−900 m/z, sheath gas flow rate 60, aux gas flow rate
25, capillary temperature 300 ◦C, aux gas heater temperature 370 ◦C. MSMS parameters
were MS1 accumulation time 100 ms at 60,000 resolution, MS2 accumulation time 50 ms,
isolation window 1.0 m/z, and normalized collision energies 20, 30, and 40.

Lipid and biogenic amine data processing was performed using MS-DIAL [25] for
deconvolution, peak picking, alignment, and identification. Metabolite annotation was
performed following Metabolomics Standard Initiative (MSI) guidelines [26,27], using
in-house mzRT libraries and MS/MS spectral databases [28–31].

2.4. Metabolomics Data Normalization and Analysis

A total of 726 unique metabolites, obtained from the three profiling methods, were
identified across 41 samples. Data normalization and analysis were carried out using
MetaboAnalyst 5.0 [32]. Data exclusion was performed for metabolites with constant
values across metabolites and interquartile filtering. The process resulted in 538 metabolites
for downstream analysis. Missing values were mean imputed, and normalization was
performed using log10 transformation.

For univariate analysis, fold changes and T-test values were calculated, then multiple
testing correction was performed based on false discovery rate (FDR). ROC-curve analysis
was also carried out for each metabolite, and 95% confidence intervals were calculated using
bootstrapping with 500 permutations. Multivariate exploratory analysis was performed
using principal component analysis (PCA) and orthogonal projections to latent structures
discriminant analysis (OPLS-DA), as implemented in MetaboAnalyst. Permutation testing
for OPLS-DA was applied to evaluate model stability to parameter addition. Linear support
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vector machine (SVM) classifiers were built to predict group class using Monte-Carlo cross-
validation (MCCV) and balanced subsampling. Six SVMs with an increasing number
of metabolites (maximum 100) were compared. Model evaluation was performed using
ROC curves, and biomarker identification was achieved using the feature ranking method
implemented in SVM.

3. Results
3.1. Clinical Characteristics of the Studied Population

The demographic and clinical characteristics of study participants are presented in
Table 1. The groups were matched for age and sex. As anticipated, subjects with obesity
had significantly higher body mass index (both BMI and BMI Z-score) after multiple testing
corrections. No significant differences were observed in fasting plasma glucose, lipids (total
cholesterol, HDL, LDL), creatinine, uric acid, TSH, and blood pressure values between
studied groups (p > 0.05).

Table 1. Clinical characteristics of studied groups. Results are means ± standard deviation (SD).
Multiple testing corrections were performed using the false discovery rate (FRD) method (p-value
adj.). BMI, body mass index; HDL, high-density lipoprotein cholesterol; LDL, low-density lipopro-
tein cholesterol; TSH, thyroid-stimulating hormone; SBP, systolic blood pressure; DBP, diastolic
blood pressure.

Parameter
Control Group

(n = 15)
Obesity Group

(n = 27) p-Value p-Value adj.

Mean SD Mean SD

Age (years) 10.88 ±5.14 10.41 ±3.87 0.823 1

Sex (F/M) 8/7 - 15/12 - 0.910 1

BMI (kg/m2) 17.63 ±3.19 26.91 ±3.77 <0.001 <0.001

BMI Z-score −0.45 ±1.72 2.18 ±0.12 <0.001 <0.001

Uric acid (mmol/L) 4.52 ±0.77 4.73 ±0.79 0.599 1

Creatinine (mg/dL) 0.53 ±0.22 0.51 ±0.12 0.665 1

Glucose (mg/dL) 88.27 ±2.98 91.3 ±9.49 0.792 1

Total cholesterol (mg/dL) 156.97 ±10.37 166.91 ±24.11 0.253 1

Triglycerides (mg/dL) 81.00 ±17.13 95.81 ±50.65 0.583 1

HDL (mg/dL) 51.80 ±7.30 50.26 ±11.95 0.407 1

LDL (mg/dL) 89.00 ±13.24 95.07 ±24.73 0.602 1

TSH (µIU/mL) 2.76 ±0.75 2.81 ±0.97 0.848 1

SBP (mmHg) 112.00 ±7.42 116.37 ±7.42 0.311 1

DBP (mmHg) 65.07 ±6.09 68 ±4.73 0.132 0.792

3.2. Metabolomics Differences between Studied Groups
3.2.1. Univariate Analysis

We identified 726 metabolites from three untargeted metabolomics platforms (GC–
MS, HILIC, and lipidomics). A total of 162 metabolites were significantly differentially
expressed between groups (83 after correction for multiple testing; Figure 1, Table S1).
Among significantly different metabolites after p-value adjustment, 76 metabolites showed
significantly higher concentrations in children with obesity, with fold changes up to 2.4.
By contrast, seven metabolites had lower concentrations, with fold changes reaching 0.54
(Figure 1, Table S1).
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Figure 1. Volcano plot of metabolites across groups, with log-transformed adjusted p-values and
fold changes. Red circles represent metabolites with increased expression in the obesity group. Blue
circles represent metabolites with decreased expression in subjects with obesity. Grey circles represent
non-significant metabolites (adjusted p-values ≥ 0.05). The top 15 top significant metabolites are
labeled. SM, sphingomyelin; PC, phosphatidylcholine; CE, cholesteryl ester; TG, triacylglycerol;
9,10-EpOME, 9,10-epoxyoctadecenoic acid; PI, phosphatidylinositol.

Among metabolites that were significantly differentially abundant in studied groups,
lipids and amino acids were among the top chemical classes (Figure 2). Children with
obesity had higher concentrations of lipid metabolites, including phosphatidylcholines
(PCs), cholesteryl esters (CEs), sphingomyelins (SMs), phosphatidylinositols (PIs), and
triglycerides (TGs). We also found significantly higher concentrations of amino acids,
including branched-chain amino acids (BCAA) leucine and valine.

The distributions of selected metabolites from each class are shown in Figures 3 and 4.
The top significant metabolites were SM d36:1 (d18:1/18:0; FC = 1.56, adj. p-value = 0.00018)
and phosphate (FC = 0.74, adj. p-value = 0.00018), with a higher and lower concentration in
children with obesity, respectively (Figure 3A,B).
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Figure 2. Metabolite classes with significantly different concentrations between patient groups.

Figure 3. Box-plots of selected metabolites with significantly different concentrations between chil-
dren with (green) and without (red) obesity. Fold changes and p-values are provided in Table S1.
(A) Sphingomyelin (SM) d36:1 (d18:1/18:0); (B) Phosphate; (C) Phosphatidylcholine (PC) 40:6
(18:1/22:5); (D) Cholesteryl eicosapentaenoic acid (CE (20:5); (E) Triacylglycerol (TG) 58:8; (F) 9,10-
epoxyoctadecenoic acid (9,10-EpOME).
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Figure 4. Box-plots of BCAAs with significantly different concentrations between children with
(green) and without (red) obesity. Fold changes and p-values are provided in Table S1. (A) Leucine;
(B) Isoleucine; (C) Valine.

Most PCs had significantly higher concentrations in children with obesity, and the
largest fold change was seen for PC 40:6 (18:1/22:5; FC = 2.16, adj. p = 0.0035; Figure 3C).
However, three PCs had lower concentrations in those with obesity, with the largest
reduction observed for PC (o-18:0/18:2; FC = 0.66, adj. p = 0.024, Table S1).

Children with obesity had higher concentrations of CE, with the largest change seen
in CE (20:5; FC = 2.3; adj. p = 0.0015; Figure 3D).

Among TGs, the largest increase was seen in TG (58:8; FC = 2.4, adj. p = 0.0076;
Figure 3E). All significant TGs had higher concentrations in children with obesity.

Interestingly, the metabolite with the biggest reduction in concentration in obese
subjects, compared to the non-obese group, was 9,10-epoxyoctadecenoic acid (9,10-EpOME;
FC = 0.54, adj. p = 0.0076, Figure 3F).

BCAA concentrations were significantly higher in children with obesity (Figure 4), as
seen for leucine (FC = 1.23; adj. p = 0.012), isoleucine (FC = 1.21; adj. p = 0.019), and valine
(FC = 1.17; ad. p = 0.012).

Fold changes and p-values for all detected metabolites are listed in Table S1.
Univariate ROC curve analysis was performed for each metabolite. A total of 541

and 37 metabolites have an area under the ROC curve (AUC) of at least 0.50 and 0.80,
respectively (Table S2). The top two metabolites that can discriminate the groups with
the highest accuracy are phosphate (AUC = 0.977, 95% CI = 0.921–1) and SM (d18:1/18:0;
AUC = 0.938, 95%CI = 0.834–0.99; Figure 5; Table S2). These metabolites are also the
most significant.

3.2.2. Multivariate Analysis

Two multivariate exploratory analyses were performed to evaluate separation between
patient groups; unsupervised PCA and supervised OPLS-DA. PCA showed that serum
metabolites clustered children with obesity together, but there were some overlaps with
children without obesity (Figure 6). The first principal component (PC1) explains 27%
of the overall variability and adding five PCs explains 54.4% (Figure 6). OPLS-DA was
validated with permutations test (n = 2000).
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Figure 5. Univariate ROC curve results for phosphate and sphingomyelin SM (d18:1/18:0). (A,B) ROC
curves for (A) phosphate (A) and (B) SM (d18:1/18:0). Sensitivity and specificity are shown on the
y- and x-axes, respectively. The area-under-the-curve (AUC) is in blue, and 95% CIs are shown.
(C,D) Box-plots of (C) phosphate and (D) SM (d18:1/18:0) between children with (green) and without
(red) obesity. The red horizontal line represents the optimal cut-off.

Figure 6. PCA analysis between patient groups. (A) Two-dimensional (2D) score plots between PC1
and PC2. Patients with obesity are shown in green, and those without obesity are shown in red.
(B) Scree plot showing the variance explained by PCs 1−5.
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A supervised OPLS-DA model was created to identify significantly differentially
abundant metabolites between groups and validated using permutation tests (Figure 7).
A random permutations test (n = 2000) resulted in an interpretation rate (R2) and prediction
ability (Q2) of 0.974 and 0.706, respectively (Figure 7). According to the variable importance
in projection (VIP) scores, the top 10 metabolites were SM d36:1 (SM (d18:1/18:0)), phos-
phate, CE 22:6, CE 20:5, PC 40:6 (PC(18:1/22:5)), L-glutamine, L-phenylalanine, TG 58:8,
9,10-EpOME (9,10-epoxyoctadecenoic acid) and L-alanine (Figure 6B). These metabolites
displayed significantly different concentrations between groups, with fold changes >1.2 or
<0.8 (Table S1).

Figure 7. OPLS-DA analysis between patient groups. (A) Score plot of all metabolite features.
(B) Permutation analysis with observed and cross-validated R2Y and Q2 coefficients. (C) Important
metabolites identified by OPLS-DA. Colored boxes on the right indicate metabolite concentrations
in each patient group. SM, sphingomyelin; PC, phosphatidylcholine; CE, cholesteryl ester; TG,
triacylglycerol; 9,10-EpOME, 9,10-epoxyoctadecenoic acid.

Support vector machine (SVM) classifiers were built to evaluate the ability of metabo-
lites to predict patient groups (Figure 8). SVM with only five metabolites had a good
AUROC (0.902, 95% CI = 0.681-1), and increasing the number of metabolites to 25 improved
the AUROC to 0.94 (95% CI = 0.722-1). Further addition of metabolites only slightly im-
proved AUROC (AUROC with 100 metabolites = 0.95, 95% CI = 0.865-1; Figure 8A). Similar
observations were made for prediction accuracies (Figure 8B), where adding 20 metabolites
increased accuracy by 6%, compared to the model with five metabolites. However, using
100 metabolites only improved accuracy by 1.6%, compared to SVM with 25 metabolites.
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Figure 8. Model performance of six SVM classifiers with an increasing number of metabolites.
(A) ROC curves for each SVM classifier, based on average cross-validation performance. AUCs and
95% CIs are presented in the figure legend. (B) Predictive accuracy for each SVM. The model with the
highest accuracy is highlighted in red.

Variables selected in the SVM model with 25 metabolites are shown in Figure 9. Most of
these metabolites had significantly different concentrations between patient groups (unadj.
p-values ≤ 0.05, Table S1). Interestingly, two non-significant metabolites were selected
in the model: PI 36:1(18:0/18:1; FC = 0.844, p-value = 0.178) and SM d38:1.1 (FC = 1.077,
p-value = 0.086).

3.3. Clinical Correlations of Selected Metabolites

The top metabolites from univariate analyses had moderate to high correlations with
BMI and several other clinical variables (Figure 10). Except for phosphate and 9,10-EpOME,
all these metabolites were significantly positively correlated with BMI. This relationship is
also shown in Figure 3. Similar correlations were seen for BMI Z-scores, but the positive
correlations between Z-scores and leucine, isoleucine, and valine were not significant after
FDR correction. Weight showed a significantly negative correlation with phosphate and
9,10-EpOME. SM d36:1 was moderately correlated with total cholesterol and LDL. CE
20:5 was moderately correlated with systolic blood pressure. The metabolites had low to
moderate relationships with other clinical variables, such as age, glucose, TGs, and HDL,
but the correlations were not significant after FDR correction (Figure S1).

Moreover, the top metabolites had moderate to high correlations with each other
(Figure 10). Phosphate and 9,10-EpOME were negatively correlated with all metabolites
but not between each other. The rest were mainly positively correlated. These relationships
were significant after FDR correction, except for correlations between isoleucine and SM
d36:1 and leucine (Figure 10A).
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Figure 9. Variable importance from the SVM model with 25 metabolites. Metabolites are ranked from
most to least important. The colored boxes on the right indicate metabolite concentrations in each
patient group. SM, sphingomyelin; PC, phosphatidylcholine; PI, phosphatidylinositol; CE, cholesteryl
ester; TG, triacylglycerol; 9,10-EpOME, 9,10-epoxyoctadecenoic acid; LPC, lysophosphatidylcholine;
FA, fatty acid; Cer, ceramide; G-Glu-Glu, gamma-glutamyl-glutamic acid.

Figure 10. Heatmap of the Pearson correlation coefficient matrix: (A) Correlations between selected
metabolites and (B) between selected metabolites and clinical variables. Red and blue indicate nega-
tive and positive correlations, respectively. Color intensity indicates the absolute correlation value.
Empty cells indicate non-significant correlations (adjusted p-values > 0.05). SM, sphingomyelin; PC,
phosphatidylcholine; CE, cholesteryl ester; TG, triacylglycerol; 9,10-EpOME, 9,10-epoxyoctadecenoic
acid; BMI, body mass index; LDL, low-density lipoprotein cholesterol; SBP, systolic blood pressure.
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4. Discussion

Obesity is a serious and growing health problem worldwide that affects adults and
children. However, the exact mechanism involved in obesity development in children is
not well known. Thus, in our study, we attempted to determine the metabolomic signature
of obesity in children yet to develop metabolic consequences of the disease. Moreover, we
evaluated whether metabolite patterns of obesity in pediatric populations are similar to
those observed in adults.

Obesity alters lipid levels through processes linked to lipid metabolism, such as lipoly-
sis, oxidation of FAs, and lipogenesis [33], which may lead to the onset and development of
several metabolic disorders [34]. Additionally, many lipids function as signaling molecules
involved in inflammation pathways or insulin resistance [35,36], thereby mediating the
development of obesity complications like T2D or cardiovascular disease [37]. We showed
that lipids are the most crucial group of altered metabolites in obese children compared to
the non-obese control group. This observation aligns with the other metabolomics studies
on obesity in adults [38,39] and limited data on pediatric populations [40,41]. Obesity is
associated with elevated levels of TGs [42,43], sphingolipids [44], SM [45], CE [43], and
phospholipids (PLs) [46] in adult obese patients. Similarly, elevated TG levels were ob-
served in children from Taiwan [47] and Denmark [48]. Elevated TG levels in plasma is one
of the most common manifestations of obesity, as well as a risk factor for the development
of cardiovascular disease, insulin resistance, and metabolic syndrome [49]. This is due
to the fact that TGs are crucial for lipid storage and the transport of FAs in plasma [50].
Furthermore, lipid intermediates (e.g., free FAs, diacylglycerols, and ceramides) generated
during TAG synthesis or lipolysis interfere with insulin signaling, which can lead to in-
sulin resistance development [51]. Therefore, observed increases in TG concentrations in
obese children require particular attention and should be an important target for obesity
management to prevent the development of disease complications.

Another class of lipids that was increased in the obese group was SMs. These are
components of lipid rafts, precursors of ceramides, and other sphingolipid metabolites, and
they are involved in signaling pathways [52]. Recent studies have shown that increased SM
levels are associated with the development of prediabetes [53,54] and positively correlate
with CE and waist-to-hip ratio in pre-diabetic men with abdominal obesity [54]. Our
results are in line with studies on pediatric populations in Portugal showing elevated
circulating SM concentrations in obese children [55]. This finding is especially interesting
in the context of the precursor role of SMs in ceramide synthesis, known to be involved in
atherosclerosis and insulin resistance development [56]. Moreover, SMs are also positively
correlated with other lipids, such as CE [54]. Cholesterol esterification is a mechanism to
avoid cellular toxicity due to the overabundance of unesterified cholesterol [57]. CE can be
found in circulating lipoproteins in their hydrophobic cores (i.e., chylomicrons and low-
and high-density lipoproteins) [57] and intracellular lipid droplets [58]. The main roles
of CEs are the transport and storage of cholesterol and Fas [58]. Therefore, CE elevation
in obese children observed in our work may be associated with impaired lipolysis and
increased plasma FA levels and SM levels.

In our study, we also observed higher concentrations of two other lipid classes (PC
and PI), consistent with a study on obese children in Portugal [55], but not with another
study on Chinese adolescents [59]. PC and PI are the most abundant phospholipids in
all mammalian cell membranes [60]. Lipid intermediates of PI, such as diacylglycerol or
phosphatidic acid, are important lipid signaling agents, especially phosphatidylinositol-
3,4,5-trisphosphate, which is required for activation of protein kinase B (Akt) involved in
cell proliferation [61] and development of obesity and T2D [62]. Meanwhile, PC inhibits
the activation, processing, and maturation of master regulator of de novo lipid synthesis
sterol-regulatory-element-binding protein 1 (SREBP-1) [60]. Through changes in SREBP-1
target gene expression, PC modulates FAs, phospholipids, and TAG synthesis and their
concentrations in plasma [60].
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Interestingly, we found elevated concentrations of 9,10-epoxyoctadecenoic acid (9,10-
EpOME), a member of the linoleic epoxide (EpOME) class, in obese children. Moreover,
the concentration of 9,10-EpOME was negatively correlated with body weight and BMI.
EpOMEs play roles in a variety of biological functions, including immune responses, pain
perception, and cytotoxic processes [63–65]. 9,10-EpOME is synthesized via conversion
of linoleic acid (LA), the most abundantly consumed polyunsaturated fatty acid (PUFA).
The main source of LA in humans is diet, especially vegetable oils, nuts, seeds, meats,
and eggs [65,66]. Through cytochrome P450-dependent metabolism, LA is converted
to 9,10-EpOME, which can be metabolized by soluble epoxide hydrolase (sEH) to 9,10-
dihydroxyoctadecenoic acid (9,10-DiHOME) [65]. Although knowledge on the role of
EpOMEs in human metabolism remains limited, it is believed that most of the effects at-
tributed to EpOMEs are caused by their secondary metabolites, the corresponding linoleic
diols (DiHOMEs). Accumulation of DiHOMEs in the heart is associated with impaired
cardiac function, including that resulting from lipopolysaccharide (LPS)-induced endotox-
emic shock [67,68]. Therefore, DiHOMEs may be considered crucial metabolites mediating
the toxicity of LA epoxides [69–72]. 9,10-EpOME is available from food sources such as
seed oil and rice (Oryza sativa L.) [65], and its concentration can also be determined from
the amount of linoleic acid in the diet [63].

Furthermore, elevated levels of EpOMEs can contribute to the pathology of obesity [73]
and low-degree inflammation induced by obesity [64]. The limited data available for 9,10-
EpOME shows that it can mediate inflammation by induction of oxidative stress in vascular
endothelial cells through activation of nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and activator protein 1 (AP-1) transcription factors [74]. It can also
lead to mitochondrial dysfunction and cell death in (rabbit) renal proximal tubules via un-
coupling of oxidative phosphorylation induction [75]. Our results demonstrated decreased
serum concentrations of 9,10-EpOME, which we hypothesize might be a protective mech-
anism during the early stage of the development of obesity to reduce immunometabolic
consequences of the disease. Another possible explanation might be related to diet. LA,
the main source of 9,10-EpOME, is mainly derived from food considered ‘healthy’. In
children with obesity, the main cause of disease development is poor diet, and specifically
high-calorie, highly-processed food lacking non-animal sources of fat, which may result
in lower concentrations of LA, and hence decreased synthesis of 9,10-EpOME in obese
children. However, the exact mechanism needs further investigation.

Higher levels of BCAAs were previously observed in T2D [76,77], but few studies
have focused on obesity, especially in children with obesity. Higher plasma concentrations
of BCAAs were observed in Chinese adults [78], adult patients with morbid obesity [79],
and older male former Finnish athletes [76], and they have been positively correlated with
obesity in an Iranian adults cohort [80]. BCAA metabolites can be associated with adiposity
and cardiometabolic risk during mid-childhood [81]. Furthermore, altered BCAA levels
in offspring were found to be caused by maternal obesity. BCAAs were also proposed as
biomarkers of metabolic syndrome [82]. Changes in BCAA concentrations can be responsi-
ble for altered plasma lipid levels through modulation of lipid metabolism. Disruption of
BCAA levels can lead to impaired protein expression through changes in mammalian target
of rapamycin complex1 (mTORC1) activity [83,84], and they can affect the phosphorylation
level of protein kinase B (Akt), a marker this can also affect insulin signaling in muscle and
liver [85,86]. Disruption of mTORC1 and Akt activity can lead to insulin resistance [83],
one of the most common consequences of obesity in adults. Additionally, by activating
SREBPs, both mTORC1 and Akt can modulate de novo lipogenesis [87], offering another
explanation for the observed changes in circulating lipids in obese children. Therefore, our
results help to reveal a novel mechanism of obesity and insulin resistance development in
children associated with increased BCAA concentrations.

Finally, we observed a significant reduction in serum phosphate concentration in
children with obesity. This is in line with observations in adult obese populations, but
it has not been studied extensively in pediatric patients [88,89]. Phosphorus availability
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modulates adenosine triphosphate (ATP) production. In patients with obesity, two main
factors contribute to decreased availability of phosphorus; firstly, ‘western’ dietary patterns,
including high consumption of refined cereals, potatoes, fructose, and oils, all of which
negatively impact phosphorus availability; secondly, insulin resistance, one of the most
common consequences of obesity, characterized by increased insulin release, which in turn
stimulates the phosphorylation of many compounds and limits phosphorus availability
for ATP production, exacerbating the effects of low phosphorus availability caused by
diet [88]. Thus, in our study, the decreased concentration of phosphate might indicate the
early stages of insulin resistance development in obese children.

Our study has several limitations. The relatively small size of the studied groups
requires relatively large effect sizes in differences in metabolites in order to infer statis-
tical significance, especially for sex-specific ones. Moreover, in our study we used BMI
as a criterion for obesity diagnosis, rather than body-fat content which would be a more
accurate parameter of adiposity. However, even a body-fat criterion requires the applica-
tion of an arbitrary cutoff value to classify obesity vs. non-obesity, the precise definition
of which remains matter of debate in the field. Additionally, findings from untargeted
metabolomic analysis would require further validation using targeted approaches. How-
ever, this study does not attempt to resolve the relative contributions of molecules to obesity
development in children but instead presents whole-metabolome data on understudied
pediatric populations.

5. Conclusions

Herein, we present the early manifestation of obesity pathogenesis and its metabolic
consequences in children using serum metabolome data, and the results reveal lipid
metabolism as a key mechanism. The novel whole-metabolome approach identified dif-
ferent metabolites, including polar metabolites, in a pediatric population for the first time.
We confirmed that findings from adult populations could be applied to pediatric popula-
tions. We identified several metabolites, including 9,10-EpOME, phosphate, and BCAAs,
that contribute to obesity development, especially its consequences, which can be further
investigated in mechanistic studies. Our findings will contribute to better exploration of
these topics in future studies, and they will inspire future directions in the field.
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