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Object Recognition when Features Arrive Dynamically
Samuel M. Harding (hardinsm@indiana.edu)

Richard M. Shiffrin (shiffrin@indiana.edu)
Department of Psychological and Brain Sciences; Cognitive Science Program

Indiana University, Bloomington, IN, 47405

Abstract

We report a model for object identification based on an exper-
iment that varies the arrival times of different features of the
objects. A single object, a circle with four spokes extending
in different directions, is presented and must be classified as
either one of four well trained target stimuli, or one of four
well trained foil stimuli. The features (spokes) are presented
either simultaneously or successively at intervals of 16, 33, or
50 ms., with target diagnostic features arriving first or last. All
durations are short enough that the display appears simultane-
ous. The data show that individual decisions vary with both
timing and diagnosticity. We apply a dynamic model based on
one reported in (Cox & Shiffrin, 2017) for episodic recognition
memory. Our model assumes features are perceived at vary-
ing times following presentation, possibly in error. At each
moment the current features are compared to the well learned
memory representations of the eight stimuli, producing a like-
lihood ratio for target vs foil. A decision is made when the log
likelihood first exceeds a target decision boundary or falls be-
low a foil decision boundary. The model implements a form of
Bayesian optimal decision making given the assumptions con-
cerning feature perception. It predicts the key findings quite
well.
Keywords: response time modeling; dynamic stimuli; visual
search; object recognition; feature sampling

Introduction
The time course and outcome of recognition decisions are
frequently used to inform our understanding of perceptual,
memory, and preference judgments. Many successful mod-
els of classification and recognition treat the choice and its
time as the outcome of a dynamic process that samples and
integrates stimulus information over time. For example, the
drift diffusion (Ratcliff & Rouder, 1998) and Linear Ballistic
Accumulator (LBA) (Brown & Heathcote, 2008) models suc-
cessfully capture response patterns to static stimuli by con-
tinually sampling evidence at a constant rate, throughout the
time that a single decision is being made. It is of consider-
able theoretical interest to explore the way these kinds of de-
cisions vary when stimuli change over the course of a single
trial, but few studies have explored this domain. In this report
we model data from a study that manipulates the timing and
amount of evidence available within each decision trial.

A wealth of existing models have explored how decision
processes vary over time according to the influences of in-
ternal factors. For example primacy and recency effects in
perceptual and preference judgments are thought to arise due
to lateral inhibition between response options (Usher & Mc-
Clelland, 2001) or by applying differential weight to evidence
arriving early versus late during deliberation (Busemeyer
& Townsend, 1993). Shifting attention to consider differ-
ent aspects of response alternatives can lead to reversals in

preference within the course of each trial (Diederich & Os-
wald, 2014). When responses are made under time pressure,
choices made with only partial information may be reversed
when given sufficient time to sample all relevant features
(Lamberts, 1995; Cohen & Nosofsky, 2003). Such feature
sampling may also account for response reversals in asso-
ciative recognition, as initially context-based retrieval is bol-
stered by item, and finally associative features over time (Cox
& Criss, 2017).

Less work, however, has focused on capturing how exter-
nal changes in stimuli affect the decision process. Lamberts
and Freeman (1999) asked participants to categorize items
comprised of several discrete features; on some trials, the en-
tire item was shown, while other trials presented single fea-
tures in isolation. They found that responses to individual fea-
tures could be used to predict those made to the entire object,
suggesting that categorization decisions are made, in part, by
integrating information across constituent parts. In another
study, Holmes, Trueblood, and Heathcote (2016) changed the
direction of coherent motion of a cloud of randomly moving
dots, before a left/right motion discrimination response was
made. Using a version of the LBA model with two distinct
rates of processing the authors found evidence that partici-
pants noticed the change after a short delay and adjusted their
decision process in light of the new information. Together,
these studies highlight the novel insights provided by dynam-
ically modifying stimuli during the course of an ongoing de-
cision decision.

We present here an alternative dynamic model for ob-
ject perception and categorization, based on a paradigm that
changes the timing and order of the arrival of features of vary-
ing diagnosticity during a single decision. The data modeled
are a subset of a larger experiment (other conditions are re-
ported in Cousineau and Shiffrin (2004) and in Cousineau,
Donkin, and Dumesnil (2015)). The task is one of visual
search for well practiced targets and foils that do not change
roles over 58 sessions of training. Some conditions in the
study presented objects sequentially and others presented fea-
tures of those objects sequentially. We apply our model to
accuracy and reaction time data for three subjects who pro-
vided sufficient data in the feature sequential conditions that
presented a single target or foil for a binary target-foil deci-
sion.

The model is an extension of one recently proposed to ac-
count for recognition decisions via perceptual sampling of
features during storage and retrieval (Cox & Shiffrin, 2017).
The present model compares the relative evidence in favor of
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either response, at each moment, derived from matching the
perceptually sampled features against well-learned represen-
tations of the eight objects stored in memory. The response
given, and its time, are determined by the point in time at
which the evidence passes one of two decision boundaries.

Method
The three participants carried out visual search for 58 sessions
approximately an hour in length, over several weeks. Four
stimuli were defined as ‘targets’, four others were defined as
’foils’ and the stimuli maintained these roles over the course
of the experiment. Following the terminology of (Schneider
& Shiffrin, 1977; Shiffrin & Schneider, 1977) such training
is termed consistent mapping, or CM. Each trial in the con-
ditions we model presented a single stimulus to be classified
as a ‘target’ or ‘foil’. The four features of this test object ap-
peared simultaneously, or sequentially with 16, 33, or 50 ms
between each onset. This timing was chosen because even
the slowest presentation rate was fast enough that the dis-
plays appeared simultaneous (albeit a bit ‘flickery’) making
it unlikely that strategies would differ with presentation rate.
Finally, the order of the sequentially presented features varied
in diagnosticity, with the most diagnostic features presented
either first or last (this is described in more detail below).

Participants
The three participants gave informed consent in accord with
the Indiana University IRB. Monetary compensation was pro-
vided, and the participants were instructed to respond as
quickly as possible without exceeding 5% error rate.

Figure 1: (a) Stimuli used throughout the course of the ex-
periment were drawn from this set of eight objects, which
were consistently mapped (CM) to either the “Target” or
“Foil” category. (b) Each object was formed with four fea-
tures (spokes) extending radially from a central black circle.
Target-diagnostic features are highlighted; these pairs of ob-
jects only ever appeared, together, on items in the “Target”
category.

Stimuli
A set of 8 novel objects was employed throughout the ex-
periment. Stimuli were black circles with lines (spokes) ex-

tending outward from four out of eight potential locations per
object (see Figure 1). There were four ‘target’ objects, and
four ‘foil’ objects. No single feature distinguished targets
from foils, but a particular two features could identify two of
the targets uniquely, and a different set of two features could
identify the other two targets uniquely. Generally, feature
combinations differed in the degree to which they provided
diagnostic evidence concerning a target versus foil decision.

Procedure
Displays alternated between 1, 2, and 4 objects on any given
trial, but the interest here is in the single object test displays,
which occurred on a random one third of the trials. At each
of the three sequential presentation rates, the order in which
features appeared varied by diagnosticity: for targets the two
diagnostic features appeared either first or last; for foils, only
one of the target-diagnostic features was shown, and it was
either the first or the last to appear. Each trial began with the
presentation of a fixation cursor in the center of the screen for
1000ms, which was followed by the appearance of a feature-
less circle for 500ms in the location of the subsequent test ob-
ject. The features were then added one-by-one and remained
visible until the subject made a response.

Results
The results of the experiment are broken down by accuracy
and median response time in Figures 2 and 3. Of primary
interest are the patterns of results when using sequential pre-
sentation of features, when compared to the simultaneous pre-
sentation condition (the data shown as grey squares).

Accuracy
When a target object was shown, accuracy stayed near ceiling
if early-arriving features were strongly diagnostic of targets
(diagnostic-first); however, when the first two features were
instead diagnostic of foils, subjects were less likely to iden-
tify the object as a target. This pattern was reversed when
the presented object was a foil: if the first feature to appear
was highly-diagnostic of a target, participants tended to report
that it was a target, while a late-appearing target feature did
little to decrease performance1. Use of a generalized linear,
mixed-effects model showed a significant two-way interac-
tion that indicated that the number of correct responses was
significantly related to the order of target-diagnostic feature
presentation (first versus last) and the identity of the object
(target versus foil), F(1,2148) = 138.600, p < .0012.

The amount of delay between features played a role only
when early features provided deleterious information, as the
presence of early, useful information did little to improve the
already near-ceiling performance. This was revealed via a 3-
way interaction of including delay, object identity, and feature

1Note that foil objects only included one target-diagnostic fea-
ture.

2Binomial (link = logit) model, fit using MATLAB function, fit-
glme with Fixed Effects for Order (First, Last), ISI (16, 33, 50ms)
and Object Identity (Target, Foil), and Random Effects for Subject.
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Figure 2: Mean accuracy data (shapes) and qualitative model fits (lines) for subjects (S1-S3) separated into ‘Hits’ (respond
“Target” to targets; top row) ‘and Correct Rejections’ (respond “Foil” to foils; bottom row). Accuracy in the simultaneous
condition is shown for reference (grey square), and each of the delay conditions is presented in the colored shapes (dark-to-
light: 16ms, 33ms, 50ms). Target-diagnostic features appeared were the first (triangles) or last (circles) to appear.

order, F(2,2148) = 3.4716, p < .05. These results suggest that
subjects began to accumulate evidence towards a decision be-
fore all of the features were presented, and that later-arriving
features did not entirely mitigate this effect.

Response Times
Median response times were analyzed using a similar gener-
alized linear mixed-effects model. Overall, response times
were slowed when the features arrived sequentially. This
makes sense, given that the amount of information available
to the decision process was limited by the number of avail-
able features; this was supported by a significant main effect
of ISI, F(2,2148) = 42.015, p < .001. The order of feature
appearance was also important: response times were faster
when early-arriving features aligned with the eventual ob-
ject identity. For example, target-diagnostic features arriving
first on a target object led to faster “target” responses than
when these crucial features were the last to appear. Again,
this pattern was reversed for foil objects. The 2-way interac-
tion between stimulus and order was significant, F(1,2148) =
36.982, p < .001.

It is difficult to draw strong conclusions from the accu-
racy and response time data when analyzed separately, but

these patterns suggest that the decision process operated con-
tinuously as features were sampled, and that early-arriving
features tended to bias the eventual response. We therefore
turn to a dynamic process model to account for both response
times and accuracy as they vary with timing and order of ap-
pearance of diagnostic features.

The Model
The proposed model is based on one proposed to account for
accuracy and response data in episodic recognition memory
and reported in (Cox & Shiffrin, 2017). The model captures
variability in response times and response proportions via
a feature-sampling process that unfolds stochastically over
time: as time passes following presentation of the test stim-
ulus, the subject extracts features, which are entered into a
probe and used to search long-term memory. At each mo-
ment this comparison yields a relative likelihood that the test
stimulus matches objects from ‘target’ and ‘’foil’ categories.
A response is generated when the relative likelihood exceeds
a “target” response criterion or drops below a “foil” response
criterion. A key to the model’s predictions is the differential
arrival times of different feature types into the probe.

459



Figure 3: Median empirical (shapes) and predicted (lines) response times for correct responses made to Targets (top row) and
Foils (bottom row). Responses were longer when the amount of delay between features was increased (timing conditions: 16,
33, or 50ms). When informative information appeared early (Targets, diagnostic-first; Foils, diagnostic-last), responses were
faster than when this information was withheld until later in the trial. Error bars show the 25th and 75th quantile of the response
time distributions.

Feature Sampling
The present model treats stimuli as comprised of discrete fea-
tures, assumed to be the eight spokes of the stimuli. The fea-
tures are not perceived immediately upon presentation, but
are sampled probabilistically over time. Note that both the
presence and absence of features provide information about
the identity of the object: the presence of single diagnostic
feature merely suggests a “Target” response. When paired
with a second diagnostic feature, the two provide definitive
evidence; the absence of this second feature conversely iden-
tifies the item as a foil. At each moment, the current belief
about each feature is in one of three possible states: ‘Present’,
‘Absent’, or ‘Unknown’. Each of the 8 features begins in the
‘Unknown’ state, and beliefs are updated via the accumula-
tion of noisy perceptual evidence, modeled using a diffusion
process (Ratcliff & Rouder, 1998), approximated via the ma-
trix method given in Diederich and Busemeyer (2003). This
feature sampling process is notably different than that pro-
posed by Lamberts (1995), which assumes features are absent
until sampled; our ternary framing is necessary when missing
features actively contribute to the decision.

The diffusion process operates by integrating perceptual
information about the stimulus over time. When a feature
is absent, the mean rate of accumulation is controlled by the
mean drift rate, µAbsent ; similarly, when a feature is added to
the display, the rate of accumulation switches to a different
rate, µPresent . Unlike the standard diffusion process, which
terminates as soon as the evidence crosses a decision thresh-
old, we utilize non-absorbing boundaries, which allows the
process to continue monitoring for changes in the visible fea-
tures. A delayed feature that is identified as “Absent” early in
the trial can therefore be recognized as “Present,” with suffi-
cient information. The parameter that controls how much ev-
idence is needed to move out of the “Unknown” state is gov-
erned by a parameter θ, which is a proportion of the total dis-
tance from the starting point of the process (assumed to be 0)
to either non-absorbing boundary: smaller values correspond
to more conservative identification. Regardless of timing of
presentation, different features are perceived independently;
the joint probability of any combination of ‘Present/Absent’
judgments, φ(t), is the product of the individual probabilities.
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Memory Retrieval
At each moment in time the currently beliefs about the fea-
tures, φ(t), are compared to the well-learned object repre-
sentations stored in long-term memory. The probability that
the presented object is a “target” is given by dividing the
number of matching traces from the target class by the total
number of retrieved items from either class, each count be-
ing augmented by a small constant to add some noise to the
comparison process. Pr(Target|φ) = nT+ε

nT+nF+ε
. This fram-

ing highlights the role of feature diagnosticity; if a pair of
target-diagnostic features have been perceived and sampled
into φ(t), only traces from the target class will be retrieved
from long-term memory, the small amount of noise excepted
and thus Pr(Target|φ) = nT

nT = 1.

Decision
In this framing, evidence is grounded in relative, rather than
absolute terms (Cox & Shiffrin, 2012), and can be tracked
using a log-likelihood ratio. Two decision boundaries are es-
tablished such that decisions occur when the log-likelihood
favoring one of the responses first crosses one of the bound-
aries. We generate a log-likelihood for each collection of fea-
tures, which expresses the relative evidence in favor of the
current object being a target versus a foil:

βTarget(φ) = log

[
Pr(Target|φ)

Pr(Foil|φ)

]
(1)

These log-likelihoods do not depend directly on time, only
on the collection of features in short-term memory, φ, which
changes as time passes. In order to find the distribution of
evidence over time, βTarget(t) we compute a weighted sum
of log-likelihoods from each collection, according to the cor-
responding probability of having each such collection at that
time. We utilize the method presented in Cox and Shiffrin
(2017), to approximate this distribution as Gaussian, with
mean and variance given by3:

µ(t) = log(β)Pr(φ, t) (2)

σ(t) = log(β)T
Σ(t)log(β) (3)

Responses are generated when the log-odds sufficiently fa-
vor one result, which is instantiated by tracking the process
until it crosses one of two response boundaries. The two
boundaries, are estimated to lie at a distance (A/2) away from
the starting point (b), and correspond to target and foil re-
sponses (BTarget ,BFoil). Computing the probability of cross-
ing either boundary at time, t, is easily accomplished using
the standard normal cumulative density function, evaluated at

3The approximation utilizes the fact that the distribution over
feature combinations, φ(t) is a multinomial distribution that must
sum to 1. Multiplying by a weight vector (here, the βs for each
state), projects the distribution onto a univariate subspace of famil-
iarity, which is approximately normal for large N.

the boundary: Pr(r = R) = Φ(BR,µ(t),σ(t)). Because fea-
ture sampling is independent across time, the Gaussians rep-
resenting the distribution of evidence over time are also in-
dependent; the probability of first-passage time is thus given
by the probability of having not yet crossed either boundary
by time, t, times the immediate probability of crossing. The
duration of the decision process is then added to a residual
non-decision component, which is estimated separately for
Target and Foil responses, allowing for e.g. greater response
inhibition for Foils (NDTT , NDTF ).

Model Fitting
There are three parameters associated with this perceptual
feature sampling process: the two drift rates (µPresent , µAbsent ),
and the proportion of the decision space that corresponds to
being in the ‘Unknown’ state (determined by θ). The deci-
sion process yielded an additional four parameters, the initial
starting bias (b), the distance to the response boundaries (A),
and the two non-decision components (NDTT ,NDTF ).

In spite of the relatively small number of parameters in
the model, we were able to produce a high degree of match
between the empirical data across three subjects providing
somewhat heterogeneous data. Bayesian posterior estimates
for the parameters were found using Differential Evolution
(Turner & Sederberg, 2012). We fit, jointly, the response pro-
portions and the complete response time distributions for cor-
rect responses, but only the response proportions for incorrect
choices, as there were insufficient trials to estimate the shape
of the response time distribution. Table 1 shows the priors for
each parameter, as well as the posterior mode for each subject
(across the columns).

The model successfully captured the patterns of all three
subjects, with the minor exception of predicting too-few Cor-
rect Rejections for Subject 3. The parameters associated
with feature sampling show the expected result, namely that
visible features provide more evidence for a feature being
‘Present’ than when they were not yet visible in the dis-
play (µPresent > µAbsent). For subject 1, missing features pro-
vided evidence against its being in the stimulus, as expected;
however, for subjects 2 and 3, missing features provided
weak, positive evidence, though this was offset by requiring
more evidence before deciding whether a feature was present
(smaller θ values). One possible interpretation is that this
‘head-start’ allows for more rapid detection of new features
when added to the display, which was consistent with their
overall faster responding.

For all participants, the non-decision component associated
with “Target” responses was lower than for “Foil” responses,
which is justified within the context of the visual search task
from which these conditions were drawn, in that rejecting a
display and indicating that a target was “Absent” likely re-
quires greater evidence than finding a target and responding
“Present.”
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Name Prior Distribution Posterior Mode
µPresent ∼ N(0,5) 1.96 3.22 3.76
µAbsent ∼ N(0,5) -0.82 0.77 0.99

θ ∼U(0,0.5) 0.3 0.08 0.04
b ∼U(0,0.5) 0.51 0.52 0.52
A ∼ N(20,10) 10.3 10.05 9.98

NDTT ∼U(0,300) 123 3 40
NDTF ∼U(0,300) 187 44 58

Table 1: Prior distributions and posterior modes (columns
corresponding to individual subjects) of model parameters.

Discussion
Aside from technical details the model we employ is concep-
tually simple and coherent: features are sampled and accumu-
late as time passes. At each moment the collection of current
features is matched to the well learned set of eight stimuli.
The matching process produces a likelihood that the current
collection matches one of the targets versus one of the foils.
When this likelihood exceeds a target boundary or falls below
a foil boundary a corresponding response is made.

It is clear from the data that a model like this is needed,
because the timing and diagnosticity of features changes the
pattern of results, for both accuracy and response time. We
plan to pursue comparisons of our proposed model with ex-
isting approaches aimed at similar problems, such as EGCM-
VS (Guest et al., 2017) and EBRW-PE (Cohen & Nosofsky,
2003), as well as extending the model to the conditions in
which objects but not features arrive sequentially.
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