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Highlights 22 

• Horizontal canopy structure is included in a hyperspectral radiative transfer scheme.  23 

• Clumping index improves the hyperspectral shortwave radiation partitioning.  24 

• Accounting for horizontal structure improves calculated SIF against NASA’s OCO-3 data.  25 

• SIF correlation to NIRv improves when canopy clumping is considered. 26 

• SIF canopy escape fraction better correlates with fAPAR when clumping is considered. 27 

Abstract 28 

Three-dimensional (3D) vegetation canopy structure plays an important role in the way radiation 29 

interacts with the land surface. Accurately representing this process in Earth System Models 30 

(ESMs) is crucial for the modeling of the global carbon, energy, and water cycles and hence future 31 

climate projections. Despite the importance of accounting for 3D canopy structure, the inability to 32 

represent such complexity at regional and global scales has impeded a successful implementation 33 

into ESMs. An alternative approach is to use an implicit clumping index to account for the 34 

horizontal heterogeneity in vegetation canopy representations in ESMs at global scale. This paper 35 

evaluates how modeled hyperspectral shortwave radiation partitioning of the terrestrial biosphere, 36 

as well as Sun-Induced Chlorophyll Fluorescence (SIF) are impacted when a clumping index 37 

parameterization is incorporated in the radiative transfer scheme of a new generation ESM, the 38 

Climate Machine (CliMA). An accurate hyperspectral radiative transfer representation within 39 

ESMs is critical for accurately using of satellite data to confront, constrain, and improve land model 40 

processes. The newly implemented scheme is compared to Monte Carlo calculations for idealized 41 

scenes from the Radiation transfer Model Intercomparison for the Project for Intercomparison of 42 

Land‐Surface Parameterizations (RAMI4PILPS), for open forest canopies both with and without 43 

snow on the ground. Results indicate that it is critical to account for canopy structural heterogeneity 44 
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when calculating hyperspectral radiation transfer. The RMSE in shortwave radiation is reduced for 45 

reflectance (25%), absorptance (66%) and transmittance (75%) compared to the scenario without 46 

considering clumping. Calculated SIF is validated against tower and satellite remote sensing data 47 

with the recently launched NASA Orbiting Carbon Observatory (OCO) 3, showing that including 48 

vertical and horizontal canopy structure when deriving fluorescence can improve model predictions 49 

in up to 51% in comparison to the scenario without clumping. By adding a clumping index into the 50 

CliMA model, the relationship between canopy structure and SIF, Gross Primary Productivity 51 

(GPP), hyperspectral radiative transfer and viewing geometry at the canopy scale can be explored 52 

in detail. 53 

Keywords: canopy structure, Sun-Induced Chlorophyll Fluorescence, hyperspectral radiative 54 

transfer scheme, Earth System models, energy balance, carbon cycle, NASA Orbiting Carbon 55 

Observatory 3 56 

1.0 Introduction 57 

Terrestrial vegetation is the largest carbon sink globally, consistently absorbing almost a third 58 

of all anthropogenic carbon emissions (Friedlingstein et al., 2020). However, the fate of the 59 

terrestrial carbon sink in the future is unclear (Friedlingstein et al., 2014; Schimel et al., 2015; 60 

Wieder et al., 2015; Arora et al., 2020) and addressing this important uncertainty lies in improving 61 

Earth System Models (ESMs) (Sellers, 1997; Prentice et al., 2015; Bonan and Doney, 2018).  62 

Most state-of-the-art land surface models (LSMs) within ESMs are confined to one-63 

dimensional (vertical) radiation transfer, often following a plane-parallel turbid media assumption 64 

based on pioneering work from Sellers (1985) and Verhoef  (1984). The radiative transfer within 65 

vegetation canopies is rather complex because it involves multiple scattering and mutual 66 
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shadowing of leaves, which are non-infinitesimal elements arranging themselves in hundreds of 67 

thousands of different angular configurations.  68 

A number of studies have shown that neglecting 3D vegetation canopy structural features may 69 

result in significant biases in estimating the land surface energy and carbon balances. For example, 70 

Sprintsin et al. (2012) showed that differences between sunlit and shaded leaves can lead to a 71 

significant underestimation of the canopy gross primary productivity (GPP), similar to other studies 72 

(Chen et al., 2012; Loew et al., 2014; Braghiere et al., 2019, 2020). In alignment with these previous 73 

results, Loew et al. (2014) found that in extreme cases GPP might be underestimated by as much 74 

as 25% and surface albedo might be overestimated by up to 36%, leading to a radiative forcing of 75 

the order of -1.25 W.m-2.  76 

Although highly accurate 3D canopy radiative transfer models have been developed and 77 

validated against observations (Wang and Jarvis, 1990; Gastellu-Etchegorry, 2008; Duursma and 78 

Medlyn, 2012), they often demand extreme computational power and cannot be employed at large 79 

scales over long periods of time (Song et al., 2009). Therefore, these highly parameterized 3D 80 

radiative transfer models are unsuitable for direct implementation into ESMs. To account for the 81 

structural effects of vegetation on radiation partitioning, different parameterizations were 82 

developed and applied in radiative transfer models within LSMs, which often work by modulating 83 

the optical depth, or the leaf area index (LAI), of the vegetation canopy through the addition of an 84 

effective variable, the so-called clumping index (Nilson, 1971; Baldocchi and Harley, 1995; 85 

Kucharik et al., 1999; Pinty et al., 2006; Ni-Meister et al., 2010; Braghiere et al., 2019, 2020). 86 

The clumping index characterizes the horizontal spatial distribution of trees and leaves, from 87 

small to whole-canopy scales (Nilson, 1971; Norman and Jarvis, 1974), and it can be derived from 88 

gap size distribution measured in-situ with ceptometers or digital hemispherical photography 89 

(DHP)  (Chen and Cihlar, 1995; Leblanc et al., 2002; Leblanc et al., 2005; Ryu et al., 2010b; Fang 90 
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et al., 2018; Yan et al., 2019), as well as from space with multi-angular remote sensing data (Pisek 91 

et al., 2015; He et al., 2016) and, more recently, from LiDAR data (Wang and Kumar, 2019). 92 

Although the clumping index has been commonly used to account for the impacts of vegetation 93 

structure on radiative transfer modeling and further impacts on land surface processes (Baldocchi 94 

et al., 2002; Ryu et al., 2010a; Chen et al., 2012; Braghiere et al., 2019, 2020), previous studies are 95 

often limited to broadband spectral analysis in the photosynthetically active radiation (PAR, 400-96 

700 nm) and Near Infrared (NIR, 700-2500 nm), mainly due to the direct applicability of these two 97 

broadbands in current ESMs, as well as the limited information about hyperspectral canopy optical 98 

properties. However, new generation ESMs should be able to include hyperspectral canopy 99 

radiative transfer schemes because high resolution spectral data is now available from aircrafts and 100 

will soon be available from space, on the International Space Station (ISS) and later, globally, via 101 

the US Surface Biology and Geology (SBG) concept (Schimel and Schneider, 2019).  102 

Hyperspectral data can provide a wide range of unique constraints on plant functional traits 103 

(Butler et al., 2017). For instance, imaging spectroscopy can map terrestrial vegetation properties, 104 

such as canopy water content, leaf nitrogen and phosphorus compositions, as well as a wide range 105 

of traits related to photosynthesis, respiration, and decomposition of leaf material (Singh et al., 106 

2015). However, current state-of-the-art ESMs are not able to make use of all the extra information 107 

provided by hyperspectral measurements of vegetation, nor are they able to calculate radiative 108 

transfer in such high spectral resolution.  109 

The benefits of using a hyperspectral radiative transfer scheme versus the general broadband 110 

spectral analysis used in current LSMs are linked to: (i) the direct inversion of ecosystem related 111 

parameters from remotely-sensed data (Dutta et al., 2019; Cheng et al., 2020), that has been broadly 112 

used as predictors of ecology related variables, e.g., maximum photosynthetic capacity (Meacham-113 

Hensold et al., 2019), GPP (Dechant et al., 2019), leaf pigments (Féret et al., 2017), plant traits 114 
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(Féret et al., 2019), and other morphological and physiological properties (Serbin et al., 2014); and, 115 

(ii) the reduction of uncertainty in surface albedo (Majasalmi and Bright, 2019), and therefore 116 

radiative partitioning and forcing, by moving away from the time-invariant look-up tables of 117 

broadband (PAR and NIR) canopy optical properties originally based on a study published more 118 

than 30 years ago (Dorman and Sellers, 1989). In addition, biases associated with surface 119 

reflectance derivation from remotely-sensed data products are often found when converting 120 

hyperspectral radiation to multispectral radiation through convolution across multiple sensors 121 

(Burggraaff, 2020). 122 

Previous studies have developed coupled  LSMs   to simulate Sun-Induced Chlorophyll 123 

Fluorescence (SIF) (e.g., the Community Land Model (CLM) 4 (Lee et al., 2015), the Biosphere 124 

Energy Transfer Hydrology (BETHY) model (Norton et al., 2019), and the Boreal Ecosystem 125 

Productivity Simulator (BEPS) (Qiu et al., 2019)). In studies with CLM and BETHY, the authors 126 

coupled the original LSMs, capable of simulating carbon assimilation, ecosystem respiration, as 127 

well as the energy and water balances, with the SCOPE (Soil Canopy Observation, Photosynthesis 128 

and Energy fluxes) model (van der Tol et al., 2009; Van Der Tol et al., 2014). The SCOPE model 129 

is a 1D (vertical) radiative transfer and energy balance model that calculates photosynthesis and 130 

chlorophyll fluorescence. SCOPE is based on the 4-stream radiative transfer theory from the SAIL 131 

(Scattering by Arbitrarily Inclined Leaves) model (Verhoef, 1984) and the leaf radiative transfer 132 

model of Fluspect (Vilfan et al., 2016), which is based upon leaf optical properties from the 133 

PROSPECT model (Jacquemoud and Baret, 1990). Apart from recent developments of the SCOPE 134 

model to include some representation of canopy vertical heterogeneity (mSCOPE; Yang et al., 135 

2017), a limitation of mSCOPE is that it only accounts for vertical variation in canopy properties, 136 

and it has no information about horizontal canopy structure.  137 
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While the study with BEPS-SIF (Qiu et al., 2019) has explored the impacts of canopy clumping 138 

on SIF emission, the ‘two-leaf’ radiation regime in BEPS (i.e., one vertical vegetation layer with 139 

sunlit and shaded leaves) is different from a vertical multi-layered radiative transfer scheme (e.g., 140 

two-stream scheme (Sellers, 1985) and 4-stream (Verhoef, 1984)), which had led to divergent 141 

impacts of clumping on GPP (Braghiere et al., 2019) and other aspects of the land surface (Bonan 142 

et al., 2021). 143 

The main goal of this study is to introduce and evaluate a clumping index parameterization 144 

scheme used to represent horizontal vegetation canopy structure within a vertically resolved 1D 145 

canopy model, the Climate Model Alliance (CliMA)-Land, within a new generation ESM, the 146 

CliMA model. Here, we aim to investigate the impacts of horizontal vegetation canopy structure 147 

on hyperspectral shortwave radiation partitioning, as well as to determine if by using a 148 

parameterization scheme of vegetation canopy structure through the clumping index, it is possible 149 

to make the commonly used SAIL 4-stream theory (Verhoef, 1984) match the shortwave radiation 150 

partitioning of a more complex 3D radiative transfer model, raytran (Govaerts and Verstraete, 151 

1995, 1998; Widlowski et al., 2011; Hogan et al., 2018).  152 

Part of the SCOPE model has been incorporated into BETHY but without the inclusion of 153 

horizontal canopy heterogeneity. Whereas for the clumping index, several LSMs have used this 154 

parameterization scheme in the past (Ni-Meister et al., 2010; Yang et al., 2010; Chen et al., 2012), 155 

but without the fully resolved hyperspectral shortwave radiation. Therefore, the main advantage of 156 

the clumping index implementation in CliMA-Land is bridging the hyperspectral radiative transfer 157 

with explicit consideration of the horizontal canopy heterogeneity. First, the shortwave radiation 158 

partitioning calculated with CliMA-Land is compared with reference values generated in the 159 

Radiation transfer Model Intercomparison for the Project for Intercomparison of Land-Surface 160 

Parameterizations (RAMI4PILPS) experiment (Widlowski et al., 2011), a radiative transfer model 161 
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intercomparison exercise. Within the RAMI4PILPS framework, models can be evaluated under 162 

perfectly controlled experimental conditions, i.e., all structural, spectral, illumination, and 163 

observation related characteristics are known without ambiguity. Therefore, possible deviations 164 

between model simulations can thus be directly attributed to the assumptions and shortcuts entering 165 

model‐specific implementations of the radiative transfer equations. The parameters of a structural 166 

parameterization scheme of clumping index (Pinty et al., 2006) are tested in the CliMA-Land 167 

hyperspectral radiative transfer scheme under different scenarios with and without snow.  168 

Second, we use the updated hyperspectral radiative transfer scheme with clumping index 169 

to explore the impact of vegetation structure on the estimation of SIF emission (He et al., 2017; 170 

Magney et al., 2017; Yang et al., 2019; Zeng et al., 2019; Dechant et al., 2020) and related 171 

vegetation indices, commonly used as GPP predictors, such as the fraction of absorbed PAR 172 

(fAPAR), absorbed PAR (APAR), and the near-infrared reflectance of vegetation (NIRv) (Badgley 173 

et al., 2017; Zeng et al., 2019). We validate the estimation of SIF emission using SIF retrievals 174 

from the NASA Orbiting Carbon Observatory 3 (OCO-3) (Eldering et al., 2019) over a subalpine 175 

evergreen needle-leaf forest in Niwot Ridge, Colorado,  and a deciduous broadleaf forest at the 176 

University of Michigan Biological (UMB) Station, Michigan, USA. OCO-3's new “snapshot 177 

mode” feature enabled by the instrument’s ability to swivel and point rapidly, produces 178 

measurements over an area of about 80 by 80 kilometers, which allows scanning across a range of 179 

view zenith angles over a single overpass within about 2 minutes. OCO-3 is also unique as far as 180 

spaceborne SIF instruments because it samples over the day following the ISS orbit, which also 181 

allows a broad coverage of different sun zenith angles. 182 

The rationale behind the SIF evaluation with and without clumping index lies in a number 183 

of recent studies suggesting that APAR is among the dominant factors explaining the variability of 184 

SIF, and the strong relationship between SIF and GPP (Miao et al., 2018; Wieneke et al., 2018; 185 
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Yang and van der Tol, 2018; Li et al., 2020; Magney et al., 2020). More recently, a growing number 186 

of studies have suggested that APAR alone cannot explain observed SIF variability, and that other 187 

factors, such as the physiological SIF emission yield (ΦF) and the fluorescence escape ratio (fesc) 188 

would also play a significant role in determining SIF (Du et al., 2017; Migliavacca et al., 2017; 189 

Yang et al., 2018; Zeng et al., 2019; Dechant et al., 2020). fesc has been linked to canopy structure, 190 

commonly described in terms of LAI and leaf angular distribution, and more recently to the 191 

clumping index (Zeng et al., 2019). In this study we also explore some of the impacts of clumping 192 

index on the variability of SIF and its linkage to canopy structural heterogeneity.  193 

2.0 Materials and Methods  194 

In this section, firstly, a description of the CliMA-Land radiative transfer model is presented, 195 

followed by a description of independent methods of derivation of SIF relationship with other 196 

vegetation indices, as well as how canopy structure can impact these relationships. Secondly, a 197 

description of the experimental setup and its elements are presented following: (i) a 1D – 3D model 198 

validation exercise against the RAMI4PILPS dataset (Widlowski et al., 2011), as well as the 199 

methodology used to allow a direct intercomparison between broadband and hyperspectral 200 

radiative transfer; and (ii) an independent validation against SIF estimates via satellite remote 201 

sensed observations over an area of evergreen needleleaf forest canopy with heterogeneous canopy 202 

architecture.  203 

2.1 CliMA-Land Radiative Transfer Scheme 204 

In this study, we present and evaluate a new important feature of the canopy radiative transfer 205 

model in the land component of a new generation of Earth System Model developed by the Climate 206 

Modeling Alliance (CliMA). The CliMA-Land model addresses soil water movement, plant water 207 

transport, stomatal regulation, canopy radiation, and the fluxes of water, carbon, and energy in a 208 
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highly modular manner. Code and documentation of the in-progress CliMA-Land model are freely 209 

and publicly available at https://github.com/CliMA/Land.  210 

The CliMA-Land Radiative Transfer model is based on the vertically heterogeneous mSCOPE 211 

(Yang et al., 2017), which uses Fluspect (Vilfan et al., 2016) to simulate leaf reflectance, 212 

transmittance, and fluorescence at the leaf level, and SAIL based models to compute spectrally 213 

resolved radiative transfer, as well as emitted fluorescence (van der Tol et al., 2016).   214 

The CliMA-Land Radiative transfer model was adapted to overcome the assumption of 215 

horizontal vegetation homogeneity following a parameterization scheme proposed by Pinty et al. 216 

(2006), which accounts for horizontal structural heterogeneity with the addition of an extra 217 

parameter, referred to as the clumping index (Nilson, 1971). Nilson (1971) first introduced the 218 

clumping index (Ω) into the Beer-Lambert's law, to describe plant canopy direct transmittance, or 219 

the gap fraction probability (Pgap(θ)) as:	220 

𝑃!"#(𝜃) = exp	 *$%(')∙*+,∙-
./0'

+																																																(1.0)	221 

where θ is the sun zenith angle, LAI is the leaf area index, and G(θ) is the projection coefficient of 222 

unit foliage area on a plane perpendicular to the view direction (Ross, 1981).  223 

Analogously to the clumping index, Pinty et al. (2004) developed a parameterization scheme 224 

that modulates the canopy optical depth in order to replicate the behavior of more complex 3D 225 

radiative transfer schemes but accounting for zenith angular variations of canopy structure. The 226 

hypothesis behind this scheme suggests that throughout the day and year, solar radiation crosses 227 

different pathways associated with different structures. Therefore, the clumping index also varies 228 

with sun zenith angle following: 229 

Ω(𝜃) = 𝜁(𝜃) = −ln	(1 − 𝐹!)
"
#$%

+ b ∙ (1 − cosθ)																																		(2.0) 230 
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where θ is the sun zenith angle, LAI is the leaf area index and Fc is the vegetation cover 231 

corresponding to the ground fractional cover by all vegetation elements including canopy gaps.  232 

The parameter ‘b’ has no empirical formulation but it can be derived from observations (Braghiere 233 

et al., 2020). Here ‘b’ is set to zero throughout all the experiments because of its lack of an empirical 234 

formulation that would further limit the applicability of CliMA-Land to other sites on Earth where 235 

information about clumping zenithal variation is not directly available from remotely-sensed 236 

datasets. Therefore, the zenith variation of clumping index is not considered. The clumping index 237 

varies with the radiation pathway, which is linked to the viewing zenith angle, but also to the sun 238 

zenith angle. The clumping index varying with sun zenith angle can be interpreted as the radiation 239 

pathlength varying with sun zenith angle (Kucharik et al., 1999; Pinty et al., 2006; Ryu et al., 240 

2010b). This parameterization scheme was previously implemented, validated, and tested with the 241 

land surface model of the UKESM, JULES following Braghiere et al. (2018, 2019, 2020). 242 

The parameterization scheme can be directly implemented into the classical SAIL 4-stream 243 

model by assuming that the canopy optical depth is equal to an 'effective LAI' (LAI ⋅Ω) instead of 244 

the 'true LAI' (LAI). Hence, the SAIL 4-stream theory can be recast as: 245 

&'!
(⋅#$%&*

= 𝑘𝐸+                                                                (3.a) 246 

&'"

(⋅#$%&*
= −𝑠𝐸+ + 𝑎𝐸, − 𝜎𝐸-                                                  (3.b) 247 

&'#

(⋅#$%&*
= 𝑠.𝐸+ + 𝜎𝐸, − 𝑎𝐸-                                                 (3.c) 248 

&'$
(⋅#$%&*

= 𝑤𝐸+ + 𝜈𝐸, + 𝜐.𝐸- − 𝐾𝐸/                                                 (3.d) 249 

where Es is the direct solar flux, E− is the downward diffuse flux, E+ is the upward diffuse flux, and 250 

Eo is the flux in the viewing direction. x is the so-called relative optical height, 251 

which runs from −1 at the bottom to zero at the canopy top, and LAI is the leaf area index. k and K 252 
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are the extinction coefficients dependent on canopy geometrical characteristics, such as the leaf 253 

angular distribution, the angular positioning of the sun for K, and the sun-observer geometry for k. 254 

The remaining scattering coefficients (s, a, σ, s′, w, 𝜈,	𝜈’) depend on canopy and sun-observer 255 

geometry, as well as the canopy optical properties (i.e., leaf reflectance and transmittance). These 256 

coefficients were first described in Verhoef (1984) and revisited in Yang et al. (2017). 257 

2.2 Determining SIF, fesc, and NIRv  258 

CliMA-Land calculates SIF emission following the mSCOPE model approach (Yang et al., 259 

2017), where the incident radiation is converted into emitted chlorophyll fluorescence on each side 260 

of the leaf across all canopy layers and leaf angular orientations. The mSCOPE model framework 261 

was used to simulate light scattering within the canopy but using the ‘effective LAI’ (LAI·	Ω(𝜃)) 262 

as the canopy optical depth, instead of ‘true LAI’ (LAI), in order to consider the effects of 263 

horizontal canopy heterogeneity on SIF determination via the addition of a clumping index (Ω(𝜃)). 264 

The emitted SIF at the top of the canopy in the viewing direction, as well as the hemispherical 265 

integration are calculated following the same radiative transfer equations, but also accounting for 266 

the emitted radiation. Therefore, SIF estimates depend on the radiative transfer throughout the 267 

canopy, the conversion of incident radiation into chlorophyll emission, and finally, the propagation 268 

of re-emitted chlorophyll fluorescence through the canopy (van der Tol et al., 2009; Yang et al., 269 

2017).  270 

The far-red part of SIF (>740 nm) is an optical signal in the NIR spectrum in which radiation 271 

is highly scattered by leaves allowing only a part of it to escape the vegetation canopy (Knyazikhin 272 

et al., 2013; Yang and van der Tol, 2018; Zeng et al., 2019; Dechant et al., 2020). Studies found 273 

that reflectance can be used to explain part of the SIF scattering signal (Liu et al., 2016; van der 274 

Tol et al., 2016; Badgley et al., 2017; Yang and van der Tol, 2018), but the observed SIF from a 275 
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tower or from space cannot be totally explained  by the cumulative signal of SIF emitted by leaves 276 

due to variabilities in canopy structure (Guanter et al., 2014; Zeng et al., 2019; Dechant et al., 277 

2020). Therefore, observed SIF (SIFobs) can be described as: 278 

SIF/0+ = 𝐴𝑃𝐴𝑅 × ΦF × 𝑓1+!																																															(4.0) 279 

where ΦF is the physiological SIF emission quantum yield of the whole canopy and fesc is the 280 

fluorescence escape ratio, which is a fraction of SIF emitted from leaves that actually escape from 281 

the vegetation canopy. 282 

 Determining fesc is rather a difficult task because it requires information about: i) canopy 283 

structural properties, such as LAI (Fournier et al., 2012; Yang and van der Tol, 2018), leaf angular 284 

distribution (Du et al., 2017; Migliavacca et al., 2017), and the clumping index (Zeng et al., 2019; 285 

Dechant et al., 2020); ii) leaf spectral properties; and iii) observation-illumination geometry (Zeng 286 

et al., 2019). While a number of studies have explored the influence of ΦF × fesc together on SIFobs 287 

(Yang et al., 2015; Miao et al., 2018; Wieneke et al., 2018; Li et al., 2020), the potentially strong 288 

impact of leaf angular orientation and canopy clumping on fesc has often been neglected, or overly 289 

simplified by treating fesc as a constant (Guanter et al., 2014). Recently, the whole canopy far-red 290 

SIF emission fesc was approximated by a relationship of NIRv and fAPAR following Zeng et al. 291 

(2019): 292 

𝑓1+! ≈
2%3%
4$5$3

																																																																(5.0) 293 

where NIRV is the product of NIR reflectance at 792 nm and NDVI 294 

(R23456-R78256 R23456 + R78256⁄ ; Tucker, 1979), a variable that has been shown to be strongly 295 

correlated with SIFobs at large spatiotemporal scales (Badgley et al., 2017). In order to test the 296 

impact of clumping index on the validity of Eq. (5), an independent study (Yang and van der Tol, 297 

2018) showed that fesc can be estimated over a black soil condition as:  298 
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𝑓1+! =
3

6×8&
																																																																(6.0) 299 

where R is the NIR reflectance (740 nm), i is the canopy interceptance, which represents the 300 

probability of a photon interacting with the canopy and it is defined as one minus the directional 301 

gap fraction (Smolander and Stenberg, 2005), ωl is the leaf single scattering albedo and it 302 

corresponds to the fraction of photons at a specific wavelength that escape the canopy (Knyazikhin 303 

et al., 2013). 304 

Re-writing Eq. (6) in terms of the escape probability theory (Huang et al., 2007), the 305 

recollision probability theory (Smolander and Stenberg, 2005), and the fraction of diffuse radiation, 306 

fesc can be written as: 307 

𝑓1+! = (1 − 𝑓&) ×
9!

:,;!×8&
+ 𝑓& ×

9'
:,;'×8&

																																							(7.0) 308 

where fd is the fraction of diffuse solar radiation, 𝜌+/& is the escape probability of 309 

sunlit/shaded leaves, 𝑝+/& is the recollision probability of sunlit/shaded leaves, and 𝜔= is 310 

the leaf single scattering albedo. More details on the derivation of Eq. (7) and the equations 311 

for 𝜌+/& and 𝑝+/& can be found in Appendix A. The impact of clumping index on the 312 

relationship described in Eq. (5) is independently tested following the derivation of fesc 313 

through Eq. (7), and fAPAR and NIRv directly calculated from CliMA-Land.  314 

In order to verify that the version of CliMA-Land radiative transfer with clumping index is 315 

indeed a better approximation of the relationship proposed by Zeng et al. (2019), two popular 316 

measures of  model  parsimony (Aho et al., 2014) were also calculated to determine: the  Akaike  317 

information  criterion  (AIC; (Akaike, 1973)) and the Bayesian information criterion (BIC; 318 

(Schwarz, 1978)).  The AIC and BIC are statistical variables used to represent how accurately a 319 

determined model fits the data. A better model presents smaller values of AIC and BIC. 320 
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2.3 RAMI4PILPS benchmarking  321 

Evaluating models can be challenging, especially when it focuses on highly accurate details, 322 

such as 3D architectural features of a scene (Kobayashi et al., 2012). There are different ways to 323 

evaluate the performance of a specific radiative transfer model including comparisons against 324 

different sources of observed data, such as bidirectional reflectance (North, 1996; Malenovský et 325 

al., 2008), transmittance (Wang and Jarvis, 1990; Norman and Welles, 1983; Tournebize and 326 

Sinoquet, 1995; Law et al., 2001; Sinoquet et al., 2001), and gap fraction measurements (Cescatti, 327 

1997; Kucharik et al., 1999; Yang et al., 2010). The use of these observed datasets is often limited 328 

by a restricted spatiotemporal coverage, as well as by a restricted number of suitable instruments. 329 

To eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, 330 

spectral, and illumination conditions related to canopy characteristics, typical of model validations 331 

with in-situ observations, the RAdiative transfer Model Intercomparison (RAMI) (Pinty et al., 332 

2001, 2004; Widlowski et al., 2007, 2011, 2013, 2015) have been used to evaluate models against 333 

the extensively verified 3D reference Monte Carlo model, raytran (Govaerts and Verstraete, 1995, 334 

1998) under perfectly controlled conditions. In particular, the RAMI4PILPS (Project for 335 

Intercomparison of Land‐Surface Parameterizations) suite of experiments (Widlowski et al., 2011) 336 

was designed to evaluate the accuracy and consistency of shortwave radiative transfer formulations 337 

as commonly used in ESMs. Here we use the RAMI4PILPS heterogeneous canopy scenario where 338 

tree crowns were approximated by woodless spheres in an open forest canopy scene. Details of the 339 

RAMI4PILPS experiments used in here are summarized in Table 1. For each scenario, simulations 340 

for different LAI values and varying soil albedos are performed, assuming direct radiation for three 341 

different sun zenith angles. 342 

We simulate all three components of the radiative partitioning: (i) canopy reflectance, 343 

which is defined as the ratio of reflected to incident radiation at the top‐of‐canopy, (ii) canopy 344 
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absorption, which is defined as the fraction of radiation entering the canopy through a reference 345 

plane at the top‐of‐canopy, and absorbed by the elements in the scene, and (iii) canopy 346 

transmittance, which is defined as the amount of spectral energy transmitted through the vegetation. 347 

 348 

Table 1. Summary of variables defining structurally heterogeneous scenes (see Widlowski et al. 349 

(2011) for details). Different soil albedos are defined as BLK = black, MED = medium, SNW = 350 

snow. 351 

Variable Identification Values (Units) 

Leaf Area Index ⁄ whole canopy 0.50S, 1.50M and 2.50D (m².m-²) 

Leaf Area Index ⁄ each tree 5.0S, 5.0M and 5.0D (m².m-²) 

1 – Pgap (θ = 0°) 0.09S, 0.26M and 0.43D   

Tree density 12.80S, 38.24M and 63.68D (trees/hectare) 

Maximum canopy height 16 m 

Minimum sphere center height 7 m 

Maximum sphere center height 11 m 

αsoil, PAR / αsoil, NIR BLK: 0.00/0.00; MED: 0.12/0.21; SNW: 0.96/0.56 

Soil scattering law Lambertian 
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𝜌 leaf, PAR / 𝜌 leaf, NIR 0.0735/0.3912 

𝜏 leaf, PAR / 𝜏 leaf, NIR 

 
0.0566/0.4146 

Leaf scattering law Bi-Lambertian 

Sun zenith angle 27.0°/60.0°/83.0° 

Scatterer Normal Distribution spherical 

Woody area index 0.0 (m².m-²) 

S Sparse vegetation condition. 352 

M Medium vegetation condition. 353 

D Dense vegetation condition. 354 

 355 
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 356 

Figure 1. Graphical representation of the open forest canopy environments used in the 357 

RAMI4PILPS experiment. Three different leaf area index (LAI) values and three different 358 

background soil albedos (adapted from Widlowski et al. (2011)). 359 

 360 
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2.4 Moving the reference values from two broadbands to hyperspectral resolution 361 

The RAMI4PILPS experiment focused on two separate broadbands (PAR and NIR) to be 362 

directly comparable to ESMs, which often make use of the two-stream radiative transfer scheme 363 

in these only two broadbands, separately. Therefore, the canopy spectral properties, i.e., leaf 364 

reflectance and leaf transmittance, are given as an average value representing the entire broadbands 365 

PAR and NIR. In order to move from a broadband radiative transfer scheme to a hyperspectral one, 366 

the reference spectral properties were fitted using the Fluspect model (Table 2).  367 

The average broadband values of leaf reflectance PAR (ρleaf,PAR), leaf reflectance NIR 368 

(ρleaf,NIR), leaf transmittance PAR (τleaf,PAR), and leaf transmittance NIR (τleaf,NIR) were prescribed  369 

as ρleaf,PAR= 0.0735, ρleaf,NIR = 0.3912, τleaf,PAR = 0.0566, and τleaf,NIR = 0.4146 (Table 1), as 370 

previously defined in the RAMI4PILPS experiment. To find the optimal combination of leaf 371 

parameters described in Table 2 that approximate the prescribed values of leaf optical properties, 372 

each one of the 9 parameters (N, CAB, CAR, ANT, CS, CW, CM, CX, and FQE) in its range of plausible 373 

values were minimized independently, following the sum of squared difference between modeled 374 

and prescribed average ρleaf,PAR, ρleaf,NIR, τleaf,PAR, and τleaf,NIR.  375 

A publicly available customized multiple dimensional optimization algorithm was used to 376 

fit leaf spectral parameters (see Data availability). In this method: (i) each parameter in Table 2 377 

is initialized with an initial guess value; (ii) The first parameter (i.e., N) is calculated to minimize 378 

the sum of squared error, while holding all the other parameters constant; (iii) this method is 379 

repeated for the other variables; (iv) when the set of leaf spectral parameters reaches equilibrium, 380 

the increment step decreases in 10%; and (v) steps ii-iv are repeated until all steps were below their 381 

solution tolerances (10-9). 382 

Nine parameters (Table 2) were fitted to minimize the sum of square difference between 383 

modeled and prescribed average ρleaf,PAR, ρleaf,NIR, τleaf,PAR, and τleaf,NIR. To best represent leaf biological 384 
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properties, we constrained the parameters to their physiological ranges: N in [1,3], CAB in [0,100], 385 

CAR in [0,30], ANT in [0,40], CS in [0,1], CW in [0,0.05], CM in [0,0.5], CX in [0,1], and FQE in [0,1]. 386 

Figure 2a shows the hyperspectral canopy reflectance and transmittance minimized against 387 

the RAMI4PILPS reference values using Fluspect. The average values for two broadbands 388 

separately are shown as circles in Figure2b.  389 

 390 

Table 2. Leaf spectral variables and parameters in leaf biochemical model. See (J.-B. Féret et al., 391 

2017; Jacquemoud et al., 2009; Jacquemoud and Baret, 1990) for further details. 392 

VARIABLE DESCRIPTION UNITS VALUE 

N Leaf structure parameter - 1.6 

CAB Chlorophyll a + b content μg cm−2 30.0 

CAR Carotenoid content μg cm−2 5.0 

ANT  Anthocyanin content μg cm−2 2.75 

CS Senescent material (brown pigments) fraction 0.0 

CW Equivalent water thickness cm 5.0E-03 

CM Dry matter content μg cm−2 0.0 

CX Fraction between Zeaxanthin and 

Violaxanthin in Car (1=all Zeaxanthin) 

fraction 0.0 

FQE Leaf fluorescence efficiency - 0.01 

 393 
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 394 

Figure 2a. Hyperspectral leaf reflectance (blue) and leaf transmittance (red) obtained from 395 

Fluspect using values given in Table 2; b. The average values of these curves are represented by 396 

circles for two broadbands and single scattering albedo term, separately, i.e., PAR (400-700 nm) 397 

and NIR (700-2500 nm); reflectance (ρ) and transmittance (τ).  398 

 399 

2.5 Study sites  400 

2.5.1. Niwot Ridge, Colorado, USA 401 

The validation study for CliMA-Land radiative transfer simulated SIF was conducted at the 402 

subalpine forest of the Niwot Ridge AmeriFlux Core site (US-NR1) in the Rocky Mountains in 403 

Colorado, USA (40.03°N, 105.55°W, 3050 m elevation). The forest is composed of three dominant 404 

evergreen needleleaf species: lodgepole pine (P. contorta Douglas ex Loudon), Engelmann spruce 405 

(Picea engelmannii Parry ex Engelm.), and subalpine fir (Abis lasiocarpa (Hook.) Nutt). The 406 

vegetation canopy structure consists of an average stem density of 4000 stems.ha-1, average tree 407 
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height of 12.5 m, and LAI of 3.8 m2.m-2 (Bowling et al., 2018; Magney et al., 2019). Due to its 408 

high elevation, this forest is exposed to cold winters with persistent snowpacks from October to 409 

May (Blanken et al., 2009; Burns et al., 2015).  410 

The clumping index at Niwot Ridge was reported as 0.740 ± 0.057 by Sprintsin et al. (2012) 411 

after the remote sensing work of Chen et al. (2005) using POLDER (POLarization and 412 

Directionality of the Earth’s Reflectances; 6 km). However, a more recent algorithm based on 413 

MODIS BRDFs (He et al., 2012) reports a clumping index of 0.48 for the 500 m pixel that includes 414 

the US-NR1 flux tower. The main difference from the MODIS clumping index and the one from 415 

POLDER is the spatial resolution.  416 

2.5.2. UMB Station, Michigan, USA 417 

The validation study for CliMA-Land radiative transfer simulated SIF was conducted at a 418 

maturing aspen-dominated forest AmeriFlux Core site (US-UMB) in the upper Great Lakes region 419 

in Michigan, USA (45.58°N, 84.72°W, 234 m elevation). The forest is composed of dominant 420 

deciduous broadleaf species: bigtooth aspen (Populus grandidentata) and trembling aspen 421 

(Populus tremuloides), but with significant presence of maple (Acer rubra, A. saccharum), red oak 422 

(Quercus rubra), birch (Betula papyrifera), and beech (Fagus gran-difolia) as well. The vegetation 423 

canopy structure consists of an average stem density of 700-800 stems.ha-1, average tree height of 424 

~22 m, and LAI of 3.5 m2.m-2 ( Schmid, 2003; Gough et al., 2013). The clumping index at UMB 425 

was reported as 0.700 ± 0.047 by Sprintsin et al. (2012) after the remote sensing work of Chen et 426 

al. (2005) and 0.52 from MODIS BRDFs for the 500 m pixel that includes the US-UMB flux tower.  427 

2.6 OCO-3 SIF Retrievals 428 

To assess the effect of the clumping index on CliMA Radiative Transfer model estimates 429 

of SIF, we compared simulated SIF computed with and without the clumping index to spaceborne 430 
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SIF retrievals from the Orbiting Carbon Observatory 3 (OCO-3). We ran the model for each OCO-431 

3 sounding in three snapshot area maps (SAMs) taken by OCO-3 at Niwot Ridge, Colorado, USA, 432 

two of which were obtained on June 12th and June 16th, 2020, and two SAMs at UMB Station, 433 

Michigan, USA, taken on August 6th and August 11th, 2020.  434 

OCO-3 is a spectrometer that is similar to OCO-2 and is on the ISS. OCO-3 has the unique 435 

ability to obtain SAMs by scanning a target several times in a single overpass with scans being 436 

offset to obtain a wider sampling of the Earth’s surface, which yield large contiguous scans of ~ 437 

100 km by 100 km (Eldering et al., 2019). The spatial resolution of each OCO-3 sounding footprint 438 

is ≤ 4 km, with the size varying due to viewing geometry. The ISS orbit is precessing rather than 439 

sun-synchronous and it orbits the Earth about 16 times a day, thus overpasses do not occur at the 440 

same local time for any latitude and the amount of time between overpasses for any given target 441 

location is highly variable and unpredictable in the long term. 442 

For each sounding footprint, the OCO-3 data provides, among other variables, solar and 443 

viewing zenith and azimuth angles, instantaneous SIF retrieved at 757 nm, landcover classification, 444 

cloud flags, and quality control flags (Frankenberg et al., 2014; Taylor et al., 2020). From these 445 

sun and sensor geometries, we calculated relative azimuth and phase angles for each sounding. 446 

Prior to analysis, we removed soundings classified as barren or urban and also those soundings not 447 

classified as ‘best’ by the quality control flag and ‘clear’ by the cloud flag.  448 

We also calculated area weighted mean LAI, Cab, and clumping index for each sounding. 449 

We have illustrated SIF757 and the clumping index for one of the June 12th, 2020 overpasses in 450 

Figure 3. The LAI map, PROBA-V LAI V2, was produced by Copernicus at 1 km resolution 451 

(Fuster et al., 2020) without consideration of any canopy, understory, or foliage clumping effects, 452 

as stated in their Algorithm Theoretical Basis Documents (ATBD) (Verger et al., 2019). The 453 

temporal resolution is variable, but the file we used had a start date of January 3rd, 2020 and an end 454 
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date of June 30th, 2020. The Cab map had a spatial resolution of 0.5 degrees and a weekly temporal 455 

resolution for the years 2003-2011 (Croft et al., 2020). To approximate differences in Cab between 456 

pixels during the OCO-3 overpass, we computed weekly means using all years and used Cab 457 

concentrations from the week in which the overpasses occurred (weeks 24 and 25).  458 

The global MODIS-derived clumping map produced by He et al. (2012) was used to 459 

provide a clumping index estimate for the CliMA-Land radiative transfer model. The global 460 

clumping index map has a spatial resolution of 500 m and was produced for the year of 2006. We 461 

assume that the global clumping index map derived for 2006 data is reliable for usage in 2020 since 462 

the interannual variability of clumping index is generally small (He et al., 2016). The data were 463 

derived from the NASA‐MODIS BRDF/albedo product (MCD43) by considering the difference in 464 

forward and backward scattering from the surface, which is primarily controlled by the structure 465 

of the vegetation (Braghiere et al., 2019). The MODIS clumping index (He et al. 2012) is an 466 

average for all view zenith angles, not specific to nadir or other angles. It can be derived from 467 

different combinations of hotspot and dark spot values, but the authors used nadir for hotspot and 468 

47.7° for dark spot in order to produce a map that correlates well with observed in-situ 469 

measurements. 470 

After simulating instantaneous SIF757 for each OCO-3 sounding using the CliMA radiative 471 

transfer model and input data from OCO-3 (sun-sensor geometries) and area weighted mean LAI, 472 

Cab, and clumping index, we grouped soundings by phase angle and computed the mean for each 473 

group. Individual SIF retrievals are noisy and differences in sun-sensor geometry between 474 

soundings can contribute to differences in the retrieved SIF values. Thus, it is advised not to use 475 

individual soundings for analysis, but retrievals can be averaged across space and/or time to reduce 476 

their standard errors and offset potential differences in viewing geometry ( Frankenberg et al., 477 
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2014; Köhler et al., 2018; Doughty et al., 2019). Thus, the points in Figure 3 are mean SIF757 478 

values of soundings from a single orbit with nearly identical viewing geometries and the error bars 479 

represent the standard error of the mean for that group of soundings. Groups with fewer than 10 480 

soundings (n < 10) were excluded from the analysis. We ran the model for each OCO-3 sounding 481 

footprint, not only for the sounding including the flux tower (represented by a white circle with a 482 

black dot in the middle in Figure 3 for reference). To reduce the error, we take their means where 483 

sun-sensor geometry is nearly identical.  484 

Topographic effects can be observed on OCO-3 CO2 retrievals due to air mass 485 

dependencies, but no effect on retrieved SIF. It appears the main effect is physiological in a direct 486 

comparison of OCO-2 targets and CFIS (airborne) overpasses to tower SIF at Niwot Ridge 487 

(Parazoo et al., 2019).  488 

 489 
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 490 

Figure 3. OCO-3 retrieved SIF at 757 nm over a. Niwot Ridge, Colorado, USA on June, 12th, 2020, 491 

and c. UMB Station, Michigan, USA on August 11th, 2020.  MODIS derived clumping index map 492 

from He et al. (2012) over b. Niwot Ridge, Colorado, USA and d. UMB Station, Michigan, USA, 493 

for the year of 2006 matching the OCO-3 scan. The white circle with a black dot in the middle 494 

represents the position of the flux towers for reference. 495 
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3.0 Results 496 

3.1 Validating canopy radiative partitioning: broadbands PAR and NIR 497 

Figure 4a shows the three components of the radiation partitioning (lines) using the default 498 

case (no clumping) and the respective RAMI4PILPS reference values (circles) for the sparse 499 

canopy case with LAI = 0.5 m2.m-2 and 10% vegetation cover over a black soil (asoil = 0.0). Figure 500 

4b shows the same example but including clumping derived from Eq.(2), with Ω = 0.37 and b = 501 

0.0. For similar figures for all the other canopy structures and soil albedos, see Supplemental 502 

material.  503 

Figure 5 shows a total of 27 cases (3 canopy densities, 3 soil albedos, and 3 sun zenith 504 

angles) for two separate wavebands (PAR and NIR) evaluated separately for reflectance, 505 

absorptance, and transmittance. For the PAR and NIR wavebands, the addition of canopy clumping 506 

improved the agreement between CliMA-Land and the RAMI4PILPS reference values for all terms 507 

of the radiation partitioning.  508 

In the PAR waveband, accounting for clumping index significantly improves the model 509 

predictive skill, as RMSE dropped from 0.12 to 0.03 for reflectance, from 0.21 to 0.06 for 510 

absorptance, and from 0.22 to 0.06 for transmittance. The addition of clumping improved the r2 for 511 

all terms of the radiative partitioning to r2 > 0.97. The 1D case underestimates reflectance and 512 

transmittance, while overestimates absorptance over all the evaluated cases.  513 

In the NIR spectral region, the addition of clumping significantly improves the r2 for all 514 

terms of the radiative partitioning: from r2 = 0.87 to r2 = 0.98 for reflectance; from r2 = 0.73 to r2 = 515 

0.97 for absorptance, and for transmittance from r2 = 0.90 to r2 = 0.99. The clumping index 516 

parameterization scheme has decreased the RMSE for reflectance (from RMSE = 0.05 to RMSE = 517 
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0.02), for absorptance (from RMSE = 0.13 to RMSE = 0.04), and for transmittance (from RMSE 518 

= 0.17 to RMSE = 0.08).  519 

These results indicate that the addition of clumping improves the agreement between the 520 

1D and the 3D cases for all terms of the radiation partitioning for both spectral regions. 521 

 522 

Figure 4. Intercomparison of zenith profile of the fraction of direct absorbed (red), reflected (blue), 523 

and transmitted (green) (a-b) PAR (400-700 nm) and (c-d) NIR (700-2500 nm) calculated with 2 524 

different model setups with (clumping) and without clumping (no clumping), and the 525 

RAMI4PILPS reference values obtained with a 3D Monte Carlo ray-tracing model, raytran. 526 
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 527 

Figure 5. Intercomparison of reflected, absorbed, and transmitted PAR (400-700 nm) and NIR 528 

(700-2500 nm) for 3 canopy densities, 3 soil albedos, and 3 sun zenith angles calculated with 2 529 

different model setups with clumping (orange) and without clumping (blue) (1D) and the 530 

RAMI4PILPS reference values (3D) obtained with a 3D Monte Carlo ray-tracing model, raytran. 531 

 532 

3.2 Validating canopy radiative partitioning: hyperspectral shortwave radiation 533 

The three hyperspectral components of the radiation partitioning were compared to the 534 

RAMI4PILPS reference values. Figure 6 shows one example of the three components of the 535 

hyperspectral radiation partitioning (lines) using the default case (no clumping) and the modified 536 

version with clumping. The average values for PAR and NIR are shown as circles and the 537 

respective RAMI4PILPS reference values are shown as crosses. Figure 6 shows the sparse canopy 538 

case with LAI = 0.5 m2.m-2 and 9% vegetation cover over a black soil (asoil = 0.0) for a sun zenith 539 

angle of 27°. For similar figures for all the other canopy structures and zenith angles, see 540 

PAR (400 – 700 nm)

NIR (700 – 2500 nm)
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Supplemental material. The hyperspectral cases were only evaluated over a black soil albedo due 541 

to complexities involved in scaling up soil albedos in the presence of snow. Polar plots showing 542 

the difference in Far-Red SIF, NDVI, and NIRv between the clumped and non-clumped cases can 543 

be found in Supplemental material. 544 

 545 

 546 

Figure 6. Intercomparison of reflected, absorbed, and transmitted hyperspectral shortwave 547 

radiation (400-2500 nm) for a sparse case (LAI = 0.50 m2.m-2 and 9% vegetation cover), over black 548 

soil, with sun zenith angle = 27° calculated with 2 different model setups with clumping (orange) 549 

and without clumping (blue) (1D). The RAMI4PILPS reference values (3D) obtained with a 3D 550 

Monte Carlo ray-tracing model, raytran (black crosses represent the average PAR and NIR, 551 

separately). The average values for PAR and NIR are shown as points and horizontal dashed lines 552 
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for clumping (orange) and no clumping (blue). The values of NDVI and NIRv, with and without 553 

clumping, are also indicated. 554 

 555 

Figure 7 shows a total of 18 cases (3 canopy densities, 3 sun zenith angles, and two spectral 556 

regions) for reflectance, absorptance, and transmittance. The addition of canopy clumping 557 

improved the agreement between CliMA-Land and the RAMI4PILPS reference values for all terms 558 

of the radiation partitioning.  559 

For reflectance, the RMSE between CliMA-Land and the RAMI4PILPS reference values 560 

dropped from 0.04 to 0.03 when clumping was considered. For absorptance, the RMSE between 561 

CliMA-Land and the RAMI4PILPS reference values dropped from 0.17 to 0.05 when clumping 562 

was considered. For transmittance, the RMSE between CliMA-Land and the RAMI4PILPS 563 

reference values dropped from 0.20 to 0.06 when clumping was considered. The 1D case 564 

overestimates reflectance and absorptance, while underestimates transmittance over all the 565 

evaluated cases. The addition of clumping has also improved the r2 for all terms of the radiative 566 

partitioning (from r2 = 0.98 to r2 = 0.99 for reflectance; from r2 = 0.86 to r2 = 0.98 for absorptance; 567 

and from r2 = 0.89 to r2 = 0.97 for transmittance). These results indicate that clumping has improved 568 

the agreement between the 1D and the 3D cases throughout all wavelengths in the shortwave 569 

radiation spectrum from 400 to 2500 nm.  570 

 571 

 572 
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Figure 7. Intercomparison of reflected, absorbed, and transmitted averaged in the PAR (400-700 573 

nm) and NIR (700-2500 nm) wavebands for 3 canopy densities, 3 sun zenith angles, and a black 574 

soil albedo calculated with 2 different model setups with clumping (orange) and without clumping 575 

(blue) (1D). The RAMI4PILPS reference values (3D) were obtained with a 3D Monte Carlo ray-576 

tracing model, raytran. The vertical black bars indicate the standard deviation of the mean values 577 

for each waveband considered in 10 nm spectral resolution. 578 

 579 

3.3 Validating SIF emission with OCO-3 observations  580 

In order to estimate the effect of the clumping index on model estimates of SIF from 581 

CliMA-Land radiative transfer, we also compared simulated SIF computed with and without the 582 

clumping index to canopy-scale remote sensing SIF retrievals from OCO-3 on board of the ISS, at 583 

Niwot Ridge, Colorado and UMB Station, Michigan, USA. 584 

Figure 8 shows a scatter plot of Far-Red SIF (at 757 nm) from CliMA-Land radiative 585 

transfer (with clumping in yellow and without clumping in blue) versus Far-Red SIF derived from 586 

OCO-3 for both sites in 2020. The individual points in the linear fit represent the whole scan area 587 

shown in Figure 3. For each OCO-3 overpass, there are several scans for the SAMs. Basically, 588 

each scan has very similar sun-sensor geometry and the soundings can be grouped based on phase 589 

angle. Each point in Figure 8 represents the mean of all the soundings with approximately the same 590 

phase angle in order to reduce the error associated with sensor geometry. 591 

The estimates of Far-Red SIF from CliMA-Land radiative transfer with clumping index 592 

indicate an improvement with observations. The linear fit between model and observations shows 593 

a higher r2 (0.58 for Niwot Ridge and 0.85 for UMB Station) and a lower RMSE (0.20 for Niwot 594 

Ridge and 0.18 for UMB Station) when considering canopy structure with a clumping index, versus 595 
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the original version of the model (default) without clumping index. The reduction of 51.2% in 596 

RMSE over Niwot Ridge and 21.7% over UMB Station when considering canopy structure through 597 

clumping highlights the importance of considering canopy structure when deriving SIF products 598 

from remote sensing.  599 

 600 

 601 

Figure 8. Intercomparison of SIF (757 nm) between CliMA-Land radiative transfer (with clumping 602 

in yellow and without clumping in blue) and two SAMs that were taken by OCO-3 at a. Niwot 603 

Ridge, Colorado, USA obtained on June 12th and June 16th, 2020, and b. UMB Station, Michigan, 604 

USA obtained on August 06th and August 11th, 2020. The r2 and RMSE of the linear fits are also 605 

shown. Each point represents the mean of all the soundings with approximately the same phase 606 

angle in order to reduce the error associated with sensor geometry, represented by the error bars. 607 

 608 

3.4 The impact of canopy clumping on vertical APAR, fAPAR, and NIRv  609 

The radiation partitioning from the CliMA-Land radiative transfer model has been validated 610 

against a detailed model benchmarking, as well as the SIF estimates from the model have been 611 

tested against SIF observation from satellite remote sensing data. In both cases, results indicate that 612 

whenever the clumping index parameterization scheme is considered when modeling the transfer 613 

a. b.
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of radiation, the agreement between both model and highly accurate 3D radiative transfer models 614 

and model and satellite observations is higher (RMSE ~50% smaller).  615 

To further evaluate the impacts of canopy structure on the carbon and water cycles, the 616 

impacts of clumping on vertical fAPAR and APAR should be tested because these variables drive 617 

the light limiting regime of photosynthesis in ESMs. Figure 9 shows the vertical zenith profile of 618 

the difference in APAR between the modified CliMA-Land radiative transfer with clumping index 619 

minus the default version (without clumping) for 3 canopy densities (0.5, 1.5, and 2.5 m2.m-2) over 620 

3 soil albedos (BLK, MED, SNW). The CliMA-Land version without clumping is equivalent to 621 

the mSCOPE, and so, the validation with the mSCOPE model is indirectly present in all 622 

evaluations.  623 

Throughout all the evaluated scenarios, APAR increases when clumping is considered, with 624 

a stronger difference towards the bottom of the evaluated canopy. This result is not straightforward, 625 

because the vertical fAPAR does not follow the same behavior as the vertical APAR (see 626 

Supplemental material). While the clumping index acts to decrease the total optical depth of the 627 

vegetation canopy, fAPAR decreases at the top of the canopy and increases at the bottom. The 628 

effect of soil albedo is mostly noted when the value of soil albedo is high (i.e., over SNW with 629 

αsoil,PAR = 0.96), and the zenith angle of incident radiation is small (SZA = 27◦), because at nadir 630 

the optical path length is the shortest. For the sparse canopy, the clumping index reduces the total 631 

fAPAR in approximately half of the one obtained by the default CliMA-Land radiative transfer, 632 

and the distribution of fAPAR throughout the vertical canopy is homogenous. Over a bright soil, 633 

the fAPAR at the bottom of the canopy is relatively larger than at the top because of the scattering 634 

effects from the background soil underneath. This effect has also been shown by Pinty et al. (2006) 635 

and Braghiere (2018), whose work reaffirms that for low vegetation densities, fAPAR is rather 636 

small and so the differences between the 1D canopy and the 3D canopy remain limited over a 637 
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darker soil. For the medium and dense canopies, the clumping index affects the vertical profile of 638 

fAPAR in two primary ways: i) it reduces the total amount of PAR absorption at the top layers, 639 

and; ii) it increases fAPAR at the bottom of the canopy, especially over brighter soils. Over a bright 640 

soil, fAPAR at the bottom of the canopy is more than twice as large as the one calculated by the 641 

default version of the model for the dense canopy, and about one and a half times larger than for 642 

the medium canopy. This effect is observed throughout all sun zenith angles, with an increase 643 

towards larger zenith angles. 644 

However, it is expected that although fAPAR decreases in most cases, APAR increases 645 

throughout all the evaluated scenes and sun zenith angles because more light penetrates the canopy 646 

and, therefore, there is more available energy to be absorbed. For this reason, it is important to 647 

evaluate the impacts on fAPAR together with a change in the incident radiation in the top layers of 648 

the canopy. In order to keep consistency with reality for the evaluations of vertical APAR, the 649 

value of incident PAR at the top of the canopy was modulated following the cosine of the sun 650 

zenith angle.  651 

 652 

 653 

 654 

 655 
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 656 

Figure 9. Vertical zenith profile of normalized APAR difference between the modified CliMA-657 

Land radiative transfer with clumping index minus the non-clumping version for 3 canopy densities 658 

(0.5, 1.5, and 2.5 m2.m-2) over 3 soil albedos (BLK, MED, SNW). x is the relative optical height, 659 

which runs from −1 at the bottom to zero at the top of the canopy. 660 

 661 

To evaluate the impacts of canopy clumping on the relationships between NIRv and SIF740nm 662 

described in Badgley et al. (2017), as well as on the relationship between fesc and NIRv.fAPAR-1 663 

as described in Zeng et al. (2019), Eq.(2) was used to recreate multiple canopy densities with 664 

different cover fractions, representing a structurally diverse vegetation canopy with LAI varying 665 

from 0.01 m2.m-2 to LAI = 4.50 m2.m-2, and vegetation cover fraction calculated as LAI over 5. All 666 

scenes were simulated over all possible sun zenith angles with background soil albedo set to black 667 

(BLK; 0.0). 668 
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Figure 10a. shows the linear fit between calculated SIF740nm versus NIRv for the modified 669 

CliMA-Land radiative transfer with clumping index (in yellow) and the default version (in blue) 670 

for multiple canopy densities. The consideration of canopy clumping improves the relationship 671 

between estimated SIF and NIRv from the CliMA-Land radiative transfer model, with an increase 672 

in r2 from 0.89 to 0.94, and a decrease in RMSE from 2.21 mWm2nm-1sr-1 to 1.75 mWm2nm-1sr-1. 673 

While Figure 10b. shows the linear fit between the fluorescence escape ratio (fesc) and the 674 

NIRv.fAPAR-1 for the modified CliMA-Land radiative transfer with clumping index and the default 675 

version for multiple canopy densities (from LAI = 0.01 m2.m-2 to LAI = 4.50 m2.m-2) over a black 676 

soil albedo (BLK) with clumping calculated through Eq.(2) for sun zenith angles from 0° to 30°. 677 

For similar figures over medium (MED) and snowy (SNW) soil albedos, see Supplemental 678 

material. The linear fit improves when canopy clumping is considered with an increased r2 values 679 

from 0.78 to 0.83. While, the RMSE value decreased for the linear relationship when the clumping 680 

index was considered, the relationship described in Zeng et al. (2019) does not refer to an absolute 681 

equal equation, but rather to an approximation of fesc and NIRv.fAPAR-1, and so, the absolute values 682 

should not be strictly considered.  683 

In Figure 10b., the linear fit of the CliMA-Land radiative transfer without clumping index 684 

has AIC = - 4923.44 and BIC = - 4907.90, while the version with clumping index has AIC = - 685 

5291.47 and the BIC = - 5275.94. The AIC and BIC values indicate a stronger relationship between 686 

fesc and NIRv.fAPAR-1, as proposed by Zeng et al. (2019), when canopy structure is considered.  687 

 688 

 689 
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 690 

Figure 10. a. Linear fit between SIF740nm and NIRv for the modified CliMA-Land radiative transfer 691 

with clumping index (yellow) and the default version (blue) for multiple canopy densities (from 692 

LAI = 0.01 m2.m-2 to LAI = 4.50 m2.m-2) over a black soil albedo (BLK) with clumping calculated 693 

through Eq.(2) for sun zenith angles from 0° to 89°, and; b. linear fit between the fluorescence 694 

escape ratio (fesc) and the NIRv/fAPAR for the modified CliMA-Land radiative transfer with 695 

clumping index and the default version for multiple canopy densities and over a black soil albedo 696 

(BLK) as in Fig.10a. with clumping calculated through Eq.(2) for sun zenith angles from 0° to 30°. 697 

For CliMA-Land radiative transfer without clumping index the AIC = - 4923.44 and the BIC = - 698 

4907.90, while for CliMA-Land radiative transfer with clumping index the AIC = - 5291.47 and 699 

the BIC = - 5275.94. 700 

 701 

4.0 Discussion  702 

In this study, we implemented and evaluated a parameterization of horizontal vegetation 703 

structure on the radiative transfer scheme of a new generation ESM, the CliMA model. We 704 

benchmarked the radiation partitioning of CliMA-Land radiative transfer with results from a 3D 705 

Monte-Carlo ray tracer previously presented in Widlowski et al. (2011). In each of the evaluated 706 
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scenarios, all terms of the radiation partitioning (reflectance, absorptance, transmittance) from the 707 

model version that included the effects of canopy structure showed a better agreement with the 708 

accurate 3D modeling, indicating the importance of considering not only the vertical heterogeneity 709 

of vegetation canopies, but also the horizontal effects of canopy structure. The improvement for 710 

reflectance was smaller than the ones for absorptance and transmittance partly due to the fact that 711 

reflectance values are the smallest terms of the radiation partitioning for the evaluated cases.  712 

The main difference between the present study and previous ones is the hyperspectral nature of 713 

the radiative transfer model combined with horizontal canopy structural heterogeneity in CliMA-714 

Land. By using a single value of clumping index following the work of Pinty et al. (2006), we were 715 

able to account for the effects of vegetation structure on the transfer of radiation across all 716 

wavelengths of the shortwave radiation spectrum with 10 nm spectral resolution. The results 717 

presented here highlight the capability of the new CliMA-Land model to be directly compared with 718 

observed canopy spectroscopy from high resolution spectral data currently available from aircrafts 719 

preparing Earth system modelers for a suite of global hyperspectral measurements that soon will 720 

be available from the US SBG concept (Schimel and Schneider, 2019).  721 

We also presented a validation exercise with observations of SIF emission over an evergreen 722 

needleleaf site and a deciduous broadleaf site in the USA from remote sensing with the recently 723 

launched OCO-3 sensor on board of the ISS at spatial resolution of not more than 4 km,  including 724 

the footprint of two flux tower sites (US-NR1 and US-UMB), in order to facilitate further 725 

evaluation and comparison to FLUXNET data (Baldocchi et al., 2001). Combining SIF from OCO-726 

3 with a suite of remote sensing products, including Copernicus LAI (Fuster et al., 2020) at 300 m 727 

spatial resolution, a chlorophyll product from ENVISAT MERIS (Croft et al., 2020), and clumping 728 

index from MODIS (He et al., 2012), we were able to determine a substantial improvement on 729 

modelled SIF when vegetation canopy structure was considered. The importance of directly 730 
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modeling SIF with an ESM is related to the SIF-GPP relationships required for remote large-scale 731 

estimations of GPP (Ryu et al., 2019; Dechant et al., 2020), as well as the direct assimilation of 732 

SIF data to improve GPP predictions (Norton et al., 2019; Parazoo et al., 2020), which are currently 733 

highly uncertain globally (Braghiere et al., 2019) (see Supplemental material for a model 734 

intercomparison with other SIF-enabled LSMs). SIF 740nm estimates from CliMA-Land are 735 

comparable to those of BETHY, while the impact of clumping decreases the total SIF signal. In 736 

the comparison with SCOPE, CliMA-Land slightly underestimates the SIF peak. 737 

After thorough validation with accurate 3D modeling and observations, we evaluated the 738 

impact of the clumping index parameterization scheme on proxies of GPP, i.e., vertical APAR, in 739 

order to characterize further impacts on GPP from CliMA-Land when absorbed radiation will be 740 

used to derived photosynthesis through the Farquhar-von Caemmerer-Berry model (Farquhar et 741 

al., 1980). Contrary to expectation, considering horizontal canopy structure through the addition of 742 

clumping on the radiative transfer scheme of CliMA-Land caused fAPAR to vary largely across 743 

different canopy densities, illumination angles, and soil backgrounds albedos, but with one single 744 

impact on the total APAR across the vertical canopy. Throughout all the evaluated scenes, APAR 745 

increased when canopy structure is considered, especially in the bottom layers of the vegetation 746 

canopy. This can be thought of as a reduction on the total optical depth of the canopy and, therefore, 747 

less plant material for the radiation to interact with along its pathway to the ground and back up 748 

after interacting with the surface underneath. These results are in alignment with previous studies 749 

that evaluated the impact of the clumping index on radiative transfer schemes in land surface 750 

models (Braghiere et al., 2020, 2019; Loew et al., 2014). 751 

The CliMA-Land model can simulate photosynthesis. However, photosynthesis is a process 752 

that includes many more different sub-models, e.g., the Farquhar ecophysiology model (Farquhar 753 

et al., 1980), model of root development, model of water distribution in soils and plants. Therefore, 754 
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the current study is limited to the evaluation of the radiative transfer scheme in CliMA-Land, in 755 

order to keep consistency and conciseness without completely leaving photosynthesis behind 756 

through the evaluation of the impact of clumping on vegetation indices. Nevertheless, further 757 

evaluation on CliMA-Land photosynthesis is required. 758 

Finally, we tested two relationships that were described in the literature as strongly influenced 759 

by canopy structure and that our new model allowed us to explore. The first one is the relationship 760 

between observed SIF and NIRv proposed by Badgley et al. (2017) and further evaluated in a 761 

number of studies (Badgley et al., 2019; Dechant et al., 2020). Here we showed an improved linear 762 

fit between NIRv and SIF when considering canopy structure when calculating the transfer 763 

radiation with a reduction of 20% on RMSE. This result reinforces previous evidence relating the 764 

effect of canopy structure, represented by fesc, on SIF emission, APAR, and GPP using modelling 765 

and observations (Dechant et al., 2020; Du et al., 2017; Migliavacca et al., 2017). 766 

The impacts of canopy clumping were also evaluated on the relationship demonstrated by Zeng 767 

et al. (2019) and described in Eq.(5) where fesc can be approximated by NIRv.fAPAR-1. Zeng et al. 768 

(2019) showed that fesc can be derived from NIRV properly even over sparsely vegetated areas with 769 

minimal effects from background soil albedo. In here, we showed an improved linear fit in Figure 770 

10b when considering clumping index in CliMA-Land radiative transfer, which highlights the 771 

important effect that horizontal canopy heterogeneity can have on the appropriate usage of Eq.(5). 772 

 773 

4.1 Data uncertainties and model limitations 774 

The non-linearity of clumping index spatial scaling at the landscape level has been 775 

previously explored using LAI-2000 and digital hemispherical photography datasets (Ryu et al., 776 

2010a). In our study, the clumping index and LAI values were linearly scaled up as area weighted 777 
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averages for the OCO-3 SIF validation experiment (<4 km vs. 500 m), which may introduce biases 778 

in our results, mainly due to changes in vegetation heterogeneity with spatial scale. The linear 779 

averaging method in this particular case was preferred due to: (i) the absence of high-resolution 780 

gap fraction and clumping index measurements; and, (ii) the fairly homogeneous clumping index 781 

values in the evaluated area (see Supplemental material). In addition, the MODIS clumping index 782 

was retrieved using the Normalized Difference between Hotspot and Darkspot (NDHD) algorithm 783 

(Chen et al., 2005) and validated with in-situ measurements over a set of 63 globally distributed 784 

LPV (Land Product Validation) and VALERI (VAlidation of Land European Remote sensing 785 

Instruments) sites (Baret et al., 2006; Garrigues et al., 2008; Nightingale et al., 2011; Pisek et al., 786 

2015b), as well as intercompared with higher resolution (275 m) data from the Multi-angle Imaging 787 

SpectroRadiometer (MISR) satellite (Pisek et al., 2013), showing a particularly good agreement 788 

over needleleaf forests, with MODIS showing a wider range of clumping index values (0.47–0.72 789 

compared to MISR 0.52–0.59) (Pisek et al., 2015b). 790 

Further intercomparison between MISR, MODIS, and POLDER clumping index datasets 791 

(Pisek et al., 2010) highlighted the importance of appropriately scaling up the clumping index 792 

values in order to match the scale of the application. For instance, if POLDER clumping index (~6 793 

km resolution) was to be used with our model, an alternative scaling methodology would be 794 

preferred in order to avoid the addition of significant biases due to the usage of coarser resolution 795 

data. Likewise, if an evaluation was to be performed using OCO-3 SIF grouped into larger areas 796 

(e.g., 0.5 degree as current ESMs), a non-linear averaging method would be indicated in order to 797 

limit uncertainty (Ryu et al., 2010a). In future validation studies of CliMA-Land at site level with 798 

scanning spectrometers, e.g., PhotoSpec (Grossmann et al., 2018), clumping index values should 799 

be derived at much finer spatial scales (<1m), taking into account clumping index variations with 800 

canopy height and view zenith/azimuth angles accordingly.  801 
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5.0 Conclusion 802 

Our work suggests that considering vertical and horizontal vegetation canopy structure 803 

through the addition of a clumping index parameterization scheme may significantly improve the 804 

hyperspectral shortwave radiation partitioning of an ESM without losing efficiency, with a RMSE 805 

reduction on the order of 25% for reflectance, 66% for absorptance, and 75% for transmittance in 806 

comparison to a highly accurate Monte Carlo 3D radiative transfer model. The dominant effect that 807 

introducing clumping has in our study is to allow more shortwave radiation to propagate further 808 

into lower canopy levels increasing APAR levels throughout the vertical canopy and across sun 809 

zenith angles.  810 

We also compared SIF emissions against observed data with a satellite spectrometer. The 811 

results presented here strongly support previous evidence that horizontal canopy structural features 812 

are crucial for an accurate estimation of SIF, as do further extrapolations that might come out from 813 

this variable, such as global photosynthesis. The improvement of SIF estimates with a clumping 814 

index indicates that the clumping index can capture the horizontal canopy structural features at 815 

remote sensing scales (<4 km). 816 

Finally, we showed how the clumping index parameterization scheme improved the SIF 817 

correlation to NIRv, as well the correlation of fesc with fAPAR, which provides further evidence for 818 

the role of vertical and horizontal canopy structure on SIF emission and the appropriate 819 

determination of other vegetation indices. 820 

Appendix A. Appendix 821 

A.1. Calculating escape and recollision probabilities 822 

This Appendix has additional information on the calculation of the escape and recollision 823 

probabilities. For the complete set of equations, see Huang et al. (2007) and Smolander and 824 



Paper accepted for publication at Remote Sensing of Environment 
https://doi.org/10.1016/j.rse.2021.112497  

 44 

Stenberg (2005). First, the canopy interceptance (i) refers to the probability of an incoming photon 825 

interacting with the vegetation canopy, and it can be approximated by 1 – Pgap, where Pgap is the 826 

direct transmittance. Second, the recollision probability (p) refers to the probability that a photon 827 

recollides with elements of the canopy at an n-th plus one time, on its n-th interaction with the 828 

canopy, and it can be obtained by rearranging equation 2 presented in Smolander and Stenberg 829 

(2005) as: 830 

𝑝+/& =
:,>
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*+,+-!/'
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where fAPAR is the fraction of absorbed PAR, Pgap is the direct transmittance, and wl is the single 832 

scattering albedo. Finally, the escape probability (r) refers to the probability of a photon escaping 833 

the vegetation canopy after interacting with elements of vegetation, and it can be obtained by 834 

rearranging equation 9 presented in Huang et al. (2007) as: 835 
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where R is the canopy albedo, Pgap is the direct transmittance, wl is the single scattering albedo, and 837 

p is the recollision probability. 838 

Data availability 839 

The CliMA project, code, simulation configurations, model output, and tools to work with the 840 

output are described at https://github.com/CliMA. The land model and examples are available at 841 

https://github.com/CliMA/Land. The minimization of hyperspectral leaf reflectance and 842 

transmittance was performed using a Julia package available at https://github.com/Yujie-843 

W/ConstrainedRootSolvers.jl. The LAI map, PROBA-V LAI V2, was produced by Copernicus at 844 

1 km resolution and it is available at https://land.copernicus.eu/global/products/lai. National 845 
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Ecological Observatory Network. 2020. Data Product DP3.30011.001, Albedo - spectrometer - 846 

mosaic. Provisional data downloaded from https://data.neonscience.org on November 30, 2020. 847 

Battelle, Boulder, CO, USA NEON. 2020.  848 
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List of Figure Captions 1369 

 1370 

Figure 1. Graphical representation of the open forest canopy environments used in the 1371 

RAMI4PILPS experiment. Three different leaf area index (LAI) values and three different 1372 

background soil albedos (adapted from Widlowski et al. (2011)). 1373 

 1374 

Figure 2a. Hyperspectral leaf reflectance (blue) and leaf transmittance (red) obtained from 1375 

Fluspect using values given in Table 2; b. The average values of these curves are represented by 1376 

circles for two broadbands and single scattering albedo term, separately, i.e., PAR (400-700 nm) 1377 

and NIR (700-2500 nm); reflectance (ρ) and transmittance (τ).  1378 

 1379 

Figure 3. OCO-3 retrieved SIF at 757 nm over a. Niwot Ridge, Colorado, USA on June, 12th, 2020, 1380 

and c. UMB Station, Michigan, USA on August 11th, 2020.  MODIS derived clumping index map 1381 

from He et al. (2012) over b. Niwot Ridge, Colorado, USA and d. UMB Station, Michigan, USA, 1382 

for the year of 2006 matching the OCO-3 scan. The white circle with a black dot in the middle 1383 

represents the position of the flux towers for reference. 1384 

 1385 

Figure 4. Intercomparison of zenith profile of the fraction of direct absorbed (red), reflected (blue), 1386 

and transmitted (green) (a-b) PAR (400-700 nm) and (c-d) NIR (700-2500 nm) calculated with 2 1387 

different model setups with (clumping) and without clumping (no clumping), and the 1388 

RAMI4PILPS reference values obtained with a 3D Monte Carlo ray-tracing model, raytran. 1389 

 1390 

Figure 5. Intercomparison of reflected, absorbed, and transmitted PAR (400-700 nm) and NIR 1391 

(700-2500 nm) for 3 canopy densities, 3 soil albedos, and 3 sun zenith angles calculated with 2 1392 
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different model setups with clumping (orange) and without clumping (blue) (1D) and the 1393 

RAMI4PILPS reference values (3D) obtained with a 3D Monte Carlo ray-tracing model, raytran. 1394 

 1395 

Figure 6. Intercomparison of reflected, absorbed, and transmitted hyperspectral shortwave 1396 

radiation (400-2500 nm) for a sparse case (LAI = 0.50 m2.m-2 and 9% vegetation cover), over black 1397 

soil, with sun zenith angle = 27° calculated with 2 different model setups with clumping (orange) 1398 

and without clumping (blue) (1D). The RAMI4PILPS reference values (3D) obtained with a 3D 1399 

Monte Carlo ray-tracing model, raytran (black crosses represent the average PAR and NIR, 1400 

separately). The average values for PAR and NIR are shown as points and horizontal dashed lines 1401 

for clumping (orange) and no clumping (blue). The values of NDVI and NIRv, with and without 1402 

clumping, are also indicated. 1403 

 1404 

Figure 7. Intercomparison of reflected, absorbed, and transmitted averaged in the PAR (400-700 1405 

nm) and NIR (700-2500 nm) wavebands for 3 canopy densities, 3 sun zenith angles, and a black 1406 

soil albedo calculated with 2 different model setups with clumping (orange) and without clumping 1407 

(blue) (1D). The RAMI4PILPS reference values (3D) were obtained with a 3D Monte Carlo ray-1408 

tracing model, raytran. The vertical black bars indicate the standard deviation of the mean values 1409 

for each waveband considered in 10 nm spectral resolution. 1410 

 1411 

Figure 8. Intercomparison of SIF (757 nm) between CliMA-Land radiative transfer (with clumping 1412 

in yellow and without clumping in blue) and two SAMs that were taken by OCO-3 at a. Niwot 1413 

Ridge, Colorado, USA obtained on June 12th and June 16th, 2020, and b. UMB Station, Michigan, 1414 

USA obtained on August 06th and August 11th, 2020. The r2 and RMSE of the linear fits are also 1415 
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shown. Each point represents the mean of all the soundings with approximately the same phase 1416 

angle in order to reduce the error associated with sensor geometry, represented by the error bars. 1417 

 1418 

Figure 9. Vertical zenith profile of normalized APAR difference between the modified CliMA-1419 

Land radiative transfer with clumping index minus the non-clumping version for 3 canopy densities 1420 

(0.5, 1.5, and 2.5 m2.m-2) over 3 soil albedos (BLK, MED, SNW). x is the relative optical height, 1421 

which runs from −1 at the bottom to zero at the top of the canopy. 1422 

 1423 

Figure 10. a. Linear fit between SIF740nm and NIRv for the modified CliMA-Land radiative transfer 1424 

with clumping index (yellow) and the default version (blue) for multiple canopy densities (from 1425 

LAI = 0.01 m2.m-2 to LAI = 4.50 m2.m-2) over a black soil albedo (BLK) with clumping calculated 1426 

through Eq.(2) for sun zenith angles from 0° to 89°, and; b. linear fit between the fluorescence 1427 

escape ratio (fesc) and the NIRv/fAPAR for the modified CliMA-Land radiative transfer with 1428 

clumping index and the default version for multiple canopy densities and over a black soil albedo 1429 

(BLK) as in Fig.10a. with clumping calculated through Eq.(2) for sun zenith angles from 0° to 30°. 1430 

For CliMA-Land radiative transfer without clumping index the AIC = - 4923.44 and the BIC = - 1431 

4907.90, while for CliMA-Land radiative transfer with clumping index the AIC = - 5291.47 and 1432 

the BIC = - 5275.94. 1433 




