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EXPERT REVIEW OPEN

The neurobiology of irritable bowel syndrome
Emeran A. Mayer 1✉, Hyo Jin Ryu 2 and Ravi R. Bhatt 3

© The Author(s) 2023

Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the
general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with
altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions
(anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal
motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central,
peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of
brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric
comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions,
starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural
brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging
correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We
will incorporate this new information into a systems-based disease model of IBS. Finally, we will discuss the implications of such a
model for the improved understanding of the disorder and the development of more effective treatment approaches in the future.

Molecular Psychiatry (2023) 28:1451–1465; https://doi.org/10.1038/s41380-023-01972-w

INTRODUCTION
IBS is one of the most common disorders of brain-gut interaction
globally, with prevalence rates between 1.1 and 45% worldwide,
and between 5 and 10% for most Western countries and China [1].
In contrast to many chronic non-communicable diseases, such as
metabolic, neurological, cardiovascular and some forms of cancer,
there has been no progressive increase in prevalence during the
past 75 years, even though prevalence numbers have been
fluctuating due to the periodic changes in official symptom
criteria. Based on questionnaire data, women are 1.5–3.0 times
more likely to have IBS, reflecting a prevalence in women of 14%
and in men of 8.9% [2, 3]. However, based on healthcare system
utilization, women are up to 2–2.5 times more likely to see a
healthcare provider for their symptoms [4]. Based on the current
symptom criteria [5], IBS is defined by chronically recurring
abdominal pain associated with altered bowel habits in the
absence of detectable organic disease. IBS symptoms can be
debilitating in a small number of patients, but are mild to
moderate in the majority of affected individuals [6]. Based on this
definition, other frequently associated somatic or visceral pain and
discomfort, as well as anxiety and depression are considered so
called comorbid conditions.
The gut-restricted definition of the Rome criteria overlooks the

fact that a large number of individuals who meet diagnostic
criteria for an anxiety or depressive disorder have IBS and vice
versa [7–10], and a majority of IBS patients show elevated levels of
trait anxiety and neuroticism [10–13], or meet diagnostic criteria

for an anxiety disorder [14]. Currently, the commonly associated
psychiatric and somatic symptoms are generally referred to as
comorbidities, separate from the primary GI diagnosis [15] and not
present in all patients. However, detailed patient histories,
frequently reveal symptoms of abdominal discomfort, anxiety
and behavioral disturbances starting in early childhood in a
majority of patients, and a large recent genetic epidemiological
study has provided an intriguing explanation for the co-
occurrence of abdominal and psychiatric symptoms in IBS patients
on the basis of several shared single nucleotide polymorphisms
(see paragraph IBS related genes shared with anxiety disorders
below) [8]. These new findings are consistent with genetic
vulnerabilities affecting both the central and the enteric nervous
system (ENS), and argue against the long held linear pathophy-
siological concepts that emotional factors may cause IBS
symptoms, or that chronic IBS gut symptoms lead to anxiety
and depression Box 1.
Much of research and drug development in IBS patients has

been based on descriptive and symptomatic features, rather than
on biology-based disease definitions. These definitions suggest a
core abnormality shared by all IBS patients (chronic, recurrent
abdominal pain) as well as heterogeneity based on self reports of
predominant bowel habit. However, a comprehensive identifica-
tion of distinct biology-based subgroups of patients including
those based on sex, with different underlying pathophysiological
components and differential responsiveness to specific therapies,
has not been achieved. Subtypes based on bowel habits are
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generally based on subjective reports of altered bowel habits,
without consistent correlates in intestinal transit times, altered
regional motility patterns or altered fluid and electrolyte handling
by the gut [16]. Even though some of the most commonly used
pharmacological and behavioral therapies are targeted at the level
of the brain (low dose tricyclic antidepressants [17], serotonin
reuptake inhibitors [18], cognitive behavioral therapies [19, 20], gut
directed hypnosis, stress management [21]), research and drug
development efforts are still predominantly focused on single,
usually peripheral targets identified in preclinical models [16].
Based on such studies and on clinical reports from small

samples, an astonishing list of biological abnormalities at various
levels of the brain gut axis have been reported in the last 30 years
and proposed as potential biomarkers or pathophysiological
factors [2]: smooth muscle cells [22, 23], the gut epithelium [24];
bile acids [25–28]; immune system activation [29, 30]; neuroendo-
crine mechanisms [31]; brain structure and function [32, 33]; stress
responsiveness [34]; affective [35, 36], cognitive [37–40], pain
modulation [41, 42], gene polymorphisms [8]; and most recently
the gut microbiome [43–47]. In addition, there has been a wealth
of comprehensive data and clinical reports demonstrating a
strong relationship between psychosocial factors and IBS symp-
toms [48]. However, despite the emergent discoveries about
possible peripheral [29, 30] and central [32, 33, 35, 49, 50]
components in IBS pathophysiology, the development of animal
models with high face and construct validity [51], the reproduc-
tion of visceral hypersensitivity and IBS-relevant features after
transplantation of human biospecimen into rodent models, and
the recent acceptance of a brain-gut model of IBS [52], the
controversy on the primary role of the nervous system versus
peripheral factors still persists in the field [33, 53].
In this review, we will discuss the evidence supporting an

integrative brain gut microbiome (BGM) model (Fig. 1) which
incorporates a large body of evidence from studies on peripheral
and central neurobiological disease mechanisms, brain and gut
targeted influences of the exposome, and results from recently
reported large scale genetic analyses with relevance for neuronal
dysfunction of the CNS (central nervous system) and ENS (enteric
nervous system). This systems biological model is consistent with
the frequent comorbidity of IBS with other so-called functional GI
disorders, and with other chronic pain and psychiatric disorders, in
particular with anxiety. We will use this model to discuss the
implications for the pathophysiology of IBS, its association with
psychiatric symptoms, and the development of more effective
treatment approaches in the future.

THE BRAIN-GUT-MICROBIOME SYSTEM
The enteric nervous system and gut connectome
The ENS is a vast network of different types of intrinsic enteric
neurons and glia which are “sandwiched” between the mucosa,
and the circular and longitudinal muscle layers of the gut,
containing motor neurons, intrinsic primary afferent neurons, and
interneurons. Nearly every neurotransmitter class found in the
CNS is present in the ENS [54]. These neurons are organized into
two interconnected networks, the myenteric and submucosal
plexus, which regulate motility and secretion respectively in a
coordinated fashion [55]. Different classes of neurons are
chemically coded by different combinations of neurotransmitters
and modulators, many of which are also found in the CNS [56].
Within the gut, the ENS is closely connected with the gut-based

immune system, endocrine system, glial and epithelial cells,
making up the gut connectome [57] (Fig. 2). The term connectome
reflects close proximity, connectivity, and functional interactions
between many cell types and functions in the gut that interact
with ENS and CNS.

Box 1. Brain-gut-system abnormalities reported in IBS

Gastrointestinal
Altered intestinal motility and transit time
Altered fluid secretion/absorption
Hypersensitivity of visceral afferents
Altered mucus layer

Gut microenvironment
Altered microbiome composition
Altered fecal bile acid profile
Increased intestinal barrier permeability

Neurological
Structural and functional brain alterations
Alterations in brain receptors for cortical corticotropin release factor (CRF),
neurokinin-1 (NRK-1), and cannabinoid-1 receptor systems

Genetic
Female sex
Gene polymorphisms
CADM2
BAG6
PHF2, FAM120AOS
NCAM1
CKAP2, TPTE2P3
DOCK9

Fig. 1 The brain-gut-microbiome system. The brain connectome,
gut connectome and gut microbiome communicate in a bidirec-
tional way. The response characteristics of the system are
determined by vulnerability genes interacting with different
influences from the exposome. The different loops use neural,
endocrine, paracrine and immune signaling mechanisms. Perturba-
tions (stressors) of the different nodes of the system (brain, gut,
immune, microbiota) result in non-linear effects and alterations in
response characteristics manifesting as psychiatric and/or gut
symptoms. ANS autonomic nervous system, SNS sympathetic
nervous system, PBMCs peripheral blood mononuclear cells, SCFAs
short chain fatty acids, AhR aryl hydrocarbon receptor.
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Beyond the gut, the ENS is connected with the spinal cord,
brainstem, and brain via primary spinal and vagal afferents, and
postganglionic sympathetic and vagal efferent fibers [58, 59].
Although the ENS is capable of regulating all GI functions without
input from the CNS, the CNS (brain and spinal cord) has strong
modulatory functions in regulating intestinal behaviors [60] in
accordance with the overall state of the organisms and homeo-
static perturbations [53].
Even though the ENS is often being referred to as the “second

brain” [61], evolutionarily speaking, the ENS can be traced back to
the cnidaria phylum and epitomized by the hydra genus 650
million years ago [62]. Historically, it has been classified as a nerve
net, but evidence has shown specialized neurons with neuro-
transmitters such as serotonin, catecholamines, and neuropep-
tides are also involved [63, 64]. In the hydra, the main function of
the ENS is peristalsis, mixing movements and expulsion in
addition to avoidance behaviors, [62]. The process of cephalization
and the development of bilateria (i.e., organisms through
evolution with a head/tail [anterior/posterior axis] and belly/back
[dorsal/ventral axis]) led to the development of more complex
neuronal systems, most notably the CNS around a central region
and highly developed brains. Thus from an evolutionary
standpoint, the ENS can be considered “the first brain” [56, 62].

ENS related genes
A recent profiling of the human ENS at single-cell resolution
highlighted important genes related to neuropathic, inflamma-
tory, and extraintestinal diseases [65]. Overlapping with the largest
GWAS of IBS to date [8], CADM2, encoding the cell-adhesion
molecule, was highly expressed in myenteric but not mucosal glia
[65]. The known functions of myenteric glia include modulating
myenteric neuron activity, regulating oxidative stress and
neuroinflammation, providing trophic support, gliogenesis, and

neurogenesis [66]. CADM2 encodes a member of synaptic cell
adhesion molecules (SynCAMs) involved in synaptic organization
and signaling [67], and cell adhesion-mediated mechanisms
underlying the communication between glia and neurons in the
ENS are important in understanding of ENS function in health and
disease. For example, perturbed communication between enteric
glia and neurons may play a role in dysfunctional ENS circuits in
IBS [66]. The mechanisms underlying neuronal-glia signaling of the
ENS in the context of gastrointestinal disorders, IBS, and visceral
pain has recently been extensively reviewed [66, 68]. It is worth
noting that CADM2 has been implicated in a wide range of
psychological and neurological traits often observed in IBS patient
including, but not limited to psycho-behavioral traits, risk-taking
behavior, nervousness-like traits, and neurodevelopmental dis-
orders (e.g., intellectual disability and autism spectrum disorder)
[69]. Moreover, SynCAMs have a large role in synaptogenesis, axon
guidance, and synaptic plasticity at a basic neurodevelopmental
level which has the potential to affect a variety of disorders [70].
Similarly, NCAM1 is another gene found in the largest GWAS to

date and has been implicated in the development of the ENS. In a
similar manner to CADM2, NCAM1 has been shown to play a role in
the ENS regarding cell migration, axon growth, neuronal plasticity
and fasciculation [71], but has not been as thoroughly investi-
gated as CADM2. A recent cross-tissue atlas applied single-nucleus
RNA sequencing from eight healthy human organs showed that a
cluster of genes including NCAM1 and CADM2 were involved
particularly with cognitive/psychiatric symptoms including general
cognitive ability, risk-taking behavior, intelligence, and neuroti-
cism [72]. Even though the study did not contain tissue samples
from the intestinal regions of the ENS, these genes involved in
cognitive/psychiatric functions were highly expressed in Schwann
cells in the esophagus mucosa, and interstitial cells of Cajal (ICCs)
and neurons in the esophagus muscularis [72].

Fig. 2 Bidirectional interactions of the gut microbiome with the Enteric Nervous System, the enteroendocrine system, the gut-associated
immune system, and the brain. Alterations in these interactions can present as psychiatric and/or IBS symptoms. Modified with permission
from [79].
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The gut microbiome
The term gut microbiome refers to the 40 trillion microbial
organisms (bacteria, fungi, and archae) and their millions of genes
that live throughout the gastrointestinal tract, from the oral cavity
to the rectum, with the highest concentration and diversity in the
large bowel [73]. The symbiotic interactions of the 3 groups of
microorganisms within the microbiome, and with the extensive
gut virome are incompletely understood [74, 75]. The character-
ization of these microorganisms in IBS to date is primarily based
on identification of relative abundances and diversity using 16S
rRNA sequencing techniques with limited resolution beyond the
species level. We refer to several recent review articles on this
topic [76, 77]. The extensive literature reveals inconsistent findings
and a causative relationship of specific microorganisms with IBS
symptoms has not been demonstrated. However, both preclinical
and some clinical studies have demonstrated a significant effect of
psychosocial stress on the relative abundance of gut microbes
which is mediated both by stress-induced alterations in regional
transit and secretion, and by direct effects of norepinephrine and
possibly other signaling molecules released from gut cells on gut
microbial gene expression and virulence [78], suggesting the
possibility that the microbiome in subgroups of IBS patients with
greater stress reactivity may contribute to certain symptoms [79].

Brain Connectome alterations in IBS
A growing body of research paired with clinical observations
supports a critical role of the brain in the generation and
maintenance of IBS symptoms. Regardless of primary symptom
triggers, the brain is ultimately responsible for constructing and

generating the conscious perception of abdominal pain, discom-
fort, and anxiety based on sensory input from the gut. Stressful
and traumatic events during early life increase chances of
developing IBS, and psychosocial stressors in adulthood play a
crucial role during the first onset, symptom flare, and perceived
severity of the symptoms [80]; centrally targeted pharmacological
treatments and cognitive behavioral strategies have been some of
the most effective IBS treatment strategies [3, 16, 81].
Specific brain functions such as sensory processing and

modulation, emotion regulation, or cognition are the result of
dynamic interactions of distributed brain areas operating in large-
scale networks. As summarized in Fig. 3C and Table 1, these
central networks and their properties have been assessed by
neuroanatomical and neurophysiological studies in animals [51],
as well as by a wealth of studies using different structural and
functional brain imaging techniques and analyses in humans
[82–86].
In humans, several types of networks have been reported [33]

(summarized in Table 1): functional brain networks based on
evoked responses [87] or intrinsic connectivity of the brain during
rest [82, 83]; structural networks based on gray matter parameters
[88] and white matter properties; and anatomical networks based
on white matter connectivities [89]. Both evoked and resting state
studies performed in patients with IBS have demonstrated
abnormalities in regions and task-related networks linked to
salience detection [90, 91], emotional arousal [92–95], central
autonomic control [38, 96–98], central executive control
[90, 94, 99], and sensorimotor processing [38, 100, 101]. IBS-
related alterations in these networks have provided plausible

Fig. 3 Programming of the brain and gut connectome based on shared vulnerability genes and environmental influences. a Vulnerability
genes and prenatal influences (including maternal health, nutrition, and stress level) on BGM system development. b the brain and gut
transcriptome is influenced by mode of delivery, early adversity, and early nutrition, leading to the development of distinct intermediate brain
gut phenotypes c which shape the adult response to influences from the exposome (diet, psychosocial stress).

E.A. Mayer et al.

1454

Molecular Psychiatry (2023) 28:1451 – 1465



Table 1. Brain network alterations in IBS.

Default Mode Network Brain Regions Medial prefrontal cortex (mPFC); posterior cingulate or retrosplenial cortex;
precuneus; inferior parietal cortex; lateral temporal cortex; hippocampal formation

Function • self-awareness processing, episodic memory, monitoring internal thoughts, external
goals, and future planning [182–185]

Alterations in IBS • altered functional connectivity and topological reorganization in various regions,
consistent with dysregulation in chronic visceral pain [111].
Lower morphological integrity, resting-state, and anatomical connectivity predicts
symptom exacerbation over time in women with IBS [109]

Shared alterations in
anxiety disorders

• Reduced resting-state functional connectivity across anxiety disorders [186–188].
• Lower volume in mPFC and hippocampus [189]

Treatment response • Responders to CBT have reduced functional connectivity between the brainstem
and lateral temporal cortices, sensorimotor network regions and lateral temporal
cortices, and amygdala and lateral temporal cortices [177].
• Responders to hypnotherapy show a reduced activation of ventromedial PFC to
rectal distension [172].
• Increased coherence of DMN in response to rectal lidocaine, which is associated
with decreased perceived pain [113]

Sex
Difference

• N/A

Sensorimotor
Network

Brain Regions Thalamus; basal ganglia (BG); sensorimotor cortex; posterior operculum/INS; area 24
of the cingulate cortex.

Function Processing and modulation of visceral and somatic sensory information [190]

Alterations in IBS • Increased frequency power of spontaneous brain oscillations [100]
• Widespread microstructural white matter changes [114, 191]
• Female IBS greater volume and cortical thickness, correlated with symptom severity
[115, 117]
• Greater gray matter in pINS, correlated with symptom duration [116]
• ACC and thalamus are hubs in structural network analysis [117]
• Greater betweenness centrality of cingulate gyrus and thalamus [117]
• Lower gray matter volume in thalamus and basal ganglia in adolescent girls.
Thalamus volume is inversely associated with heat pain threshold. Greater functional
connectivity between the caudate nucleus and precentral gyrus [108].
• Greater cortical thickness and volume in the sensorimotor network and basal
ganglia respectively. Lower cortical thickness in the posterior insula. Pain intensity
during rectal distention associated with primary somatosensory cortex thickness and
pain threshold is associated with nucleus accumbens volume [192].
• Greater sensorimotor-salience resting-state and anatomical connectivity predicts
symptom exacerbation over time in women with IBS [109]

Shared alterations by
anxiety disorders

• Increased top-down sensorimotor resting-state effective connectivity in
sensorimotor cortices [193]
• Increased sensorimotor connectivity associated with panic-related symptoms
[187, 188].
• Lower thalamus volume [194]

Treatment Response • Responders to CBT have decreased functional connectivity between the pINS and
brainstem, salience network, and DMN [177].
• Responders to hypnotherapy show a reduced activation of pINS to rectal distension
[172].
• 5-HT3 receptor antagonism is associated with decreased activity in the basal
ganglia in response to rectosigmoid stimulation [195].
• NK-1R antagonism is associated with decreased activity in pINS in response to
visceral distension [196]

Sex Difference • Females with IBS have lower fractional anisotropy (FA) by diffusion MRI in the
thalamus and basal ganglia, and greater mean diffusivity in the thalamus and basal
ganglia [191].
• Females with IBS have lower FA in the thalamus, primary sensory cortex, and lower
MD in globus pallidus [114]

Salience
Network

Brain Regions mPFC, OFC, mid ACC; aINS; amygdala

Function • Detection of behaviorally relevant stimuli, response to experience or expectation of
any interoceptive and exteroceptive stimulus threatening homeostasis [82, 103, 197]
• Coordination of the appropriate attentional, behavioral, affective, and autonomic
nervous system responses to such stimuli [82, 197]

Alterations in IBS • Greater engagement of aINS and mACC in response to actual and expected rectal
distension [32].
• Increased affective, central, emotional arousal processes as well as enhanced
visceral stimulus perception [104–106].
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Table 1. continued

• Alterations in the activity and connectivity of aINS in females both during the
resting-state [99, 100] and abdominal pain threat [198]
• Lower NKR-1 receptor availability in the aMCC [107]
• Lower gray matter volume in the aMCC in adolescent girls [108].
• Greater salience-sensorimotor connectivity predicts symptom exacerbation in
women with IBS [109]

Shared alterations by
anxiety disorders

• Greater resting-state salience network functional connectivity and reactivity in
generalized and social anxiety disorders [187, 188, 199]
• Lower volume in the aMCC [189].

Treatment Response • Responders to CBT have reduced functional connectivity between the aINS and
dorsal ACC, aINS and sensorimotor network, and aINS and DMN [177].
• Responders to hypnotherapy show reduced activation of aINS, aMCC to rectal
distension. Reduced activation of the aINS was associated with reduced visceral
sensitivity [172].
• NK1R antagonist is associated with decreased activity in the aMCC in response to
visceral distension [196]

Sex Difference • Females had greater negative connectivity of aINS to mPFC [99].

Emotional
Arousal
Network

Brain Regions mPFC, ventrolateral prefrontal cortex (vlPFC), amygdala, hippocampus,
hypothalamus, posterior, subgenual cingulate cortex (sgACC), and locus
coeruleus (LC).

Function ○ Activated by perceived or real disruption in homeostasis [200]
○ Generation of rapid feedback inhibition of amygdala, thereby limiting the
magnitude and duration of network activity and related activity in the central
autonomic network [201, 202]

Alterations in IBS • Decrease in inhibitory feedback loop [94, 104, 170]; also seen in healthy controls
whose central serotonin levels were lowered by acute tryptophan depletion [203].
• Increased responsiveness to both expected and delivered visceral stimuli in females
[139, 204, 205].
• More consistent activation in response to controlled rectal distension [95].
• reactivity associated with serotonin (5-HT)-related gene polymorphisms [206].
• Functional alterations are accompanied by structural brain alterations [117]

Shared alterations by
anxiety disorders

• Lower amygdala, striatum, hippocampus, and hypothalamus volume [194]
• Greater functional connectivity of emotion regulating regions to the sensorimotor
and salience networks [194]

Treatment Response • Responders to CBT have reduced functional connectivity between the amygdala
and the DMN [177].
• Responders to hypnotherapy show a reduced activation of aINS, sgACC,
hippocampus to rectal distension. Reduced hippocampus activation was associated
with reduced GI symptoms [172].
• CRF-R1 receptor antagonism induces greater BOLD reduction in the hypothalamus
of IBS patients compared to controls, moderated by anxiety [170].
• 5-HT3 receptor antagonism is associated with decreased activity in the sgACC,
amygdala and hippocampus in response to rectosigmoid stimulation [195].
• NK-R antagonism is associated with decreased activity in the amygdala and
hippocampus in response to visceral distension [196]

Sex Difference • Greater emotional-arousal network reactivity and altered connectivity in female IBS
[91].
• Greater emotional-arousal network reactivity to specific stimuli (faces depicting fear
and anger) in male IBS [94].
• Females with IBS have lower cortical thickness in the sgACC compared to males
with IBS [115]

Central Autonomic
Network

Brain Regions Control centers in the pontine-medulla (including PAG and hypothalamus), LC, the
central nucleus of the amygdala, and several cortical regions (including the anterior
INS, sgACC, ACC, prefrontal, and motor regions)

Function • Central control and modulation of the autonomic nervous system [118, 119]
• Regulation of respiratory, cardiovascular, endocrine, and digestive activities during
cognitive, affective, and motor tasks and sensations [119]

Alterations in IBS • Alterations in CRF-R1 [170, 171] and norepinephrine–adrenergic receptor signaling
system [205].
• Reduced inhibition of dorsal brainstem regions during anticipation associated with
greater activity in the orbitofrontal cortex and sgACC during rectal distension [205].

Shared alterations by
anxiety disorders

• Greater volume of the ventral diencephalon in males with generalized anxiety
disorder [207].
• Altered functional connectivity between the amygdala and frontal regions [188]

Treatment Response • Greater connectivity between the central autonomic network and emotional
arousal network in individuals who are responders to CBT treatment [177].
• 5-HT3 receptor antagonism is associated with decreased activity in the
hypothalamus and amygdala in response to rectosigmoid stimulation [195]
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neurobiological substrates for several information-processing
abnormalities reported in patients with IBS, such as stress
hyperresponsiveness, biased threat appraisal, expectancy of out-
comes, cognitive inflexibility, autonomic hyperarousal (emotional
arousal and central autonomic networks), symptom-focused
attention (central executive network) [33, 53] and cognitive
inflexibility (central executive network). Supporting the concept
of shared pathophysiological factors (so called p-factors), several
reported brain network alterations have also been described in
other chronic pain conditions [102] and in anxiety disorders (see
Table 1).

The Salience Network
The salience network (SN) is integral in mediating the switching of
activation between the default mode network (DMN) and central
executive network, coordinating and adjusting physiologic/beha-
vioral responses to internal and environmental perturbations of
homeostasis [103]. Visceral inputs to the affective-motivational
component of the SN converge onto the anterior insula
coordinating response selection and conflict monitoring with
the dACC [103]. Controlled rectal distention in IBS subjects has
been shown consistently to result in increased engagement of the
core hubs of the SN which are associated with increased affective,
emotional, and arousal processes [104–106]. Reduced neurokinin-
1 receptor (NK-1R) availability in the dACC, reflecting NK-1R
endocytosis in response to substance P release, was found to be

associated with duration of IBS symptoms [107]. Increased
substance P release is thought to result from noxious visceral
stimuli and increased engagement of endogenous pain or stress
inhibition systems [107]. In adolescent girls with IBS, lower gray
matter volume of the dACC has been observed [108], and greater
salience-sensorimotor connectivity quantified by multiple neuroi-
maging techniques predicts a lack of symptom alleviation over
3–12 months in patients with IBS [109].

The default mode network (DMN)
The DMN’s role in pain perception is known to act as an opposite
manner to the SN, such that the DMN is suppressed when
attention is placed on present sensory stimuli, and is activated
when attention is engaged with thoughts away from present
sensory stimuli and engaged in mind wandering (i.e., thoughts
unrelated to the present sensory environment) [110]. Studies in
chronic pain subjects have shown altered functional connectivity
and topological reorganization in various regions, consistent with
DMN dysregulation [111]. Overall neuroimaging research suggests
decreased activity of the DMN in patients with IBS [112]. Lower
integrity of anatomical connectivity and resting-state functional
connectivity, and lower morphological integrity within the DMN
(between the aMPFC and PCC) were found to be predictive of
sustained IBS symptom severity over 3–12 months [109]. Rectal
lidocaine administration in IBS subjects was associated with
decreased pain perception and with increased coherence in the

Table 1. continued

Sex Difference • Greater activation of dorsolateral PFC INS and dorsal pons/PAG in response to
visceral stimulus in male IBS [91].
• Greater activation of ventromedial PFC, right ACC and left amygdala in response to
visceral stimulus in female IBS [91].
• Females have greater mean diffusivity via diffusion imaging in the brainstem [191].

Central
Executive
Network

Brain Regions Lateral PFC and posterior parietal cortices

Function • Activated during tasks involving executive functions such as attention, working
memory, planning and response selection [208–210]
• Often co-activated with regions of the SN, as the brain attempts to focus its limited
processing capacity to only salient information via attention, working memory,
planning and response selection [211]

Alterations in IBS • Deficient activation of inhibitory cortical regions involved in down-regulation of
pain and emotion as well as attention during expectation and experience of aversive
gastrointestinal stimuli [95].
• Selective recall of negative and gastrointestinal sensation words, as well as selective
attention to threat-related stimuli [212–215].
• Reduced effective connectivity during repeated exposure to the anticipation and
experience of a threatening gastrointestinal stimulus, which was linked to a
reduction in IBS hypersensitivity [216].
• Altered error feedback mechanisms linked to decreased dorsolateral PFC activity in
Japanese IBS patients [37].
• Strong negative association between the cortical thickness and gray matter density
of the dorsolateral PFC and pain catastrophizing [217, 218].
• Altered prepulse inhibition (a process by which an organism can filter the flow of
information from its internal and external environments) [101].
• Lower gray matter volume in the dorsolateral PFC in adolescent girls [108].
• Lower cortical thickness in the superior frontal gyrus/sulcus in patients with IBS
[192].
• Lower morphological integrity, anatomical and resting-state connectivity in the
dorsolateral PFC predicts symptom exacerbation over time in women with IBS [109]

Shared alterations by
anxiety disorders

• Lower functional coherence in the dorsolateral PFC and inferior parietal gyrus in
social anxiety disorder [219].
• Reduced dorsolateral PFC activity in response to passive, congruency, emotion
modulation and memory tasks [189].
• Lower dorsolateral lPFC resting-state functional connectivity [189]

Treatment Response • N/A

Sex Difference • In response to rectal balloon dilation (evoked pain paradigm), males with IBS had
greater activation in the dlPFC [220].
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DMN [113], supporting an involvement of the DMN in visceral
hypersensitivity in patients with IBS.

The Sensorimotor Network
Similar to other chronic pain disorders, imaging studies in IBS
subjects have shown alterations of the sensorimotor network
(SMN), consistent with alterations in central processing and
modulation of viscerosensory and somatosensory information
[32, 100, 109, 114–117]. This network consists of the primary
motor cortex, area 24 of the cingulate cortex, premotor cortex,
supplementary motor area (SMA), posterior operculum/insula, as
well as primary and sensory cortices in the parietal lobe. In
addition, lower gray matter volume in the basal ganglia and
thalamus as well as greater functional connectivity within the SMN
have been observed in young children with chronic pain [108].
Greater intrinsic functional connectivity in adults, greater cortical
thickness of the posterior insula positively associated with
symptom duration, and increasing functional coupling of area
24 and the thalamus, and greater SMN connectivity to the SN
predicting sustained symptoms over 3–12 months [109]. When
viewed together, current evidence suggests patients with IBS have
functional, morphological, and microstructural SMN alteration,
which are likely to play a role in the increased perception of both
visceral and somatic stimuli.

The central autonomic network
The central autonomic network (CAN) regulates visceromotor,
neuroendocrine, pain, and behavioral responses essential for
survival [118]. Afferents project through the spinal cord and
eventually arrive at the main homeostatic processing sites in the
brainstem/central autonomic network (including hypothalamus,
amygdala, and PAG), and higher cortical processing and
modulatory regions [119]. Historically it has been difficult to
non-invasively study the brain stem nuclei in humans due to the
limited spatial resolution of neuroimaging methods, but new
imaging protocols with a resolution of 1mm3 and below are
allowing new insights [120].
The CAN is closely connected by vagal and sympathetic efferent

projections with the ENS, and afferents from the ENS send
viscerosensory signals back to the brain. The hubs of the SN also
participate in autonomic control via descending projections to the
amygdala (tagging emotional valence and engaging autonomic
survival responses to behaviorally relevant stimuli), hypothalamus
(regulating homeostasis and a pattern generator for the stress
response) and brainstem structures including the periaqueductal
gray (PAG) and locus coeruleus (LC). The PAG is a key structure for
integrating autonomic, pain modulatory/analgesic, and motor
responses to stress [121], and the LC-norepinephrine system plays
a central role in behavioral arousal and stress responses [122–124].
When viewed together, based on a large number of structural,

and functional (resting state and evoked) studies, IBS patients
show alterations in several brain networks related to salience
assessment, attention, stress perception and responsiveness, and
sensory processing. The responsiveness and connectivity of these
networks are modulated by several vulnerability genes, which are
shared both with ENS genes, and with genes identified in anxiety
disorders. Based on these findings, we hypothesize that perturba-
tions of homeostasis arising from the exposome, in the form of
psychosocial and gut-targeted stressors interact with genetic
factors to a spectrum of clinical phenotypes, ranging from gut
symptoms to anxiety.

IBS-related genes shared with anxiety disorders
Prior to the availability of biobank scale data, many candidate
gene studies uncovered potential pathways underlying IBS
symptoms. These pathways have been extensively reviewed and
include the serotonin pathway, SCN5A, and intestinal channelo-
pathy, and sucrase-isomaltase malabsorption [125]. As serotonin is

secreted from enteroendocrine cells and activates enteric sensory
and motor neurons, expression level alterations in serotonin
receptors and transporters are likely to play a potential role in
visceral hypersensitivity, pain, intestinal motility, and secretion.
SCN5A encodes the voltage-gated sodium Nav1.5 channel present
on interstitial cells of Cajal (ICCs) in the ENS [31, 126]. Genetic
mutations on this gene have shown to impair peristalsis and cause
constipation, even though slow transit constipation is an
uncommon finding in IBS-C [127]. Lastly, two faulty copies of
the SI gene result in reduced disaccharide activity responsible for
degradation of sucrose and starch, resulting in diarrhea and gas
production in the large intestine from bacterial fermentation and
is termed congenital sucrase-isomaltase deficiency (CSID), and
should not be considered as IBS [125]. Even though these findings
have established causal relationships between specific genetic
abnormalities and non-specific IBS-like GI symptoms in a small
number of affected individuals, it is highly unlikely that they play
an important role in the great majority of patients.
Recently, the largest genome wide association study with

53,000 cases of IBS across multiple cohorts was completed [8]. In
this study, the strongest risk factors for IBS included long-term or
recurring antibiotic exposure in childhood, somatic pain condi-
tions (back pain, limb pain, headaches), psychiatric conditions
(anxiety, depression, excessive worrying) and fatigue. The genes
included CADM2, BAG6, PHF2/FAM120AOS, NCAM1, CKAP2/TPTE2P3,
and DOCK9. Four of the six loci are highly implicated in anxiety/
mood disorders and there was a strong genome-wide genetic
correlation of IBS with anxiety, neuroticism, depression, insomnia,
and schizophrenia. Moreover, the high genetic correlations
persisted after taking into account individuals with phenotypic
overlap, suggesting common etiological pathways between IBS
and anxiety/mood disorders. Implication of the central nervous
system was further suggested by the finding that the six identified
loci regulate gene expression in many genes primarily expressed
in the brain. As already mentioned under ENS above, the genes
NCAM1 and CADM2 were two genes which regulate neural circuit
formation and influence changes in white matter microstructure in
IBS and mood disorders [128–130]. Specifically, they regulate
synaptic cell adhesion molecules, which are present in dorsal root
ganglia sensory neurons throughout development, mediate
adhesion of sensory axons, and induce neurite outgrowth [130].
Mechanisms relating to brain development were further impli-
cated by the genes PHF2 (i.e., proper expansion of neural
progenitors) and DOCK9 (i.e., dendritic development of the
hippocampus), but have not yet been studied in patients with
IBS [131–133].
Importantly, the heritability of IBS was estimated to be a modest

5.8%, suggesting that perturbation of the brain-gut axis by
environmental factors arising from the exposome such as early
adversity, psychosocial stress, learned behaviors, diet, and possibly
dysbiosis play a prominent role.
Considering these new genetic findings and the reported

frequent comorbidities of IBS with other chronic pain and
psychiatric conditions it is becoming increasingly recognized that
IBS is part of a constellation of symptoms that occur on a larger
spectrum of altered brain-body interactions [134, 135]. This
concept is consistent with the “somatic symptom disorder”
concept, previously proposed [2]. The main co-occurring symp-
toms include hypersensitivity to multiple internal and external
sensory stimuli, which could explain the observed association with
a variety of seemingly unrelated external and internal factors,
previously reported. Other co-occurring symptoms include mood
problems, fatigue, and problems with sleep onset and main-
tenance, as well as memory disturbance [134]. The neurogenetic
basis integrating mood/anxiety and central amplification of
sensory inputs (“central sensitization”) based on many of these
genetic hits have been well established, which will be
discussed below.

E.A. Mayer et al.

1458

Molecular Psychiatry (2023) 28:1451 – 1465



Known functions of NCAM1, DOCK9, and PHF2 and possible roles
in IBS pathophysiology are summarized in Table 2.

Central sensitization and comorbid chronic pain conditions
The primary mechanism for the core symptom of persistent,
chronically recurring abdominal pain that patients with IBS report
is thought to result from alterations in the central processing of
sensory input from the gut, also referred to as central sensitization
[134, 136]. The term was originally coined to represent the specific
spinal mechanisms responsible for the amplification of nocicep-
tive signaling involving spinal activation of the NMDA receptor
[137, 138], and is present in various chronic pain disorders such as
chronic neuropathic pain, fibromyalgia, headaches, and IBS
[6, 134, 139–141]. Today, it is understood that spinal and
supraspinal mechanisms both play key roles in the development
and maintenance of central sensitization. Based on rodent models
of pain, plausible spinal mechanisms include alterations in
converging sensory input from different sites on the GI tract
and body, temporal and spatial summation, reduced endogenous
dorsal horn inhibition, and glial cell activation. Based on human
brain imaging studies, supraspinal mechanisms include an altered
balance between facilitatory and inhibitory endogenous pain
modulation influences, hyperconnectivity between brain net-
works, alterations of gray matter architecture, elevated CSF
glutamate and substance P levels, reduced GABAergic transmis-
sion, altered noradrenergic signaling/receptors, and glial cell
activation [122, 134].
The large overlap - up to a 4.27 odds ratio - between psychiatric

phenotypes (primarily anxiety and depression [136, 142]) and IBS
and other chronic pain disorders, as well as genetic overlap
[8, 143–145] mentioned earlier, suggests central sensitization as a
possible shared pathophysiological factor (p factor)
[134, 146–148]. The concept of central sensitization was intro-
duced in psychological research in the 1990s based on the

observation that highly sensitive persons (HSPs) often share a
history of early adversity, psychological profile of introversion
(“neuroticism”), and greater emotionality [149]. Patients with IBS
are significantly more likely to exhibit qualities of HSPs, and show
central sensitization which is expressed as general sensory
hypersensitivity [150]. The association between chronic pain
disorders, psychiatric symptoms, and mechanisms of central
sensitization is likely due to the above-mentioned supraspinal
alterations, including monoamine neurotransmitter systems (i.e.,
serotonin, dopamine, noradrenaline), the amino acid GABA, and
brain regions underlying both pain transmission/modulation and
mood disorders [151, 152]. Striato-thalamic-frontal cortical path-
ways including the prefrontal cortex, amygdala, nucleus accum-
bens, and thalamic nuclei are key hubs, and alterations in neuronal
firing and communication underlie sensory sensitivity and
psychiatric symptoms including altered perception, arousal,
cognition, and mood [152–154]. Behaviorally, chronification of
central sensitization and negative mood states have been
proposed to be in the same continuum of aversion, such that
pain motivates the avoidance of further injury, and anxiety
promotes behaviors that diminish anticipated danger [154].
An extensive literature supports the importance of early

programming by early adverse life (EAL) events for the develop-
ment not only of IBS [76], but also of other chronic pain conditions
and psychiatric syndromes [155, 156]. Perturbations to the
developing brain play a large sole in sensitizing cortical
nociceptive circuitry [157], with the most mechanistic study in
humans showing larger event-related potentials (ERPs) to
nociceptive stimuli, but not tactical stimuli in infants exposed to
many invasive, skin-breaking, painful procedures and morphine
[158]. Moreover, up to 68.4% of children who are exposed to early
life traumatic events such as the NICU can develop chronic pain by
age 10. Greater amounts of pain-related stressors, painful
procedures, and morphine are associated with lower global gray

Table 2. Genetic Factors in the Neurobiology of IBS.

Gene Known/Implicated Functions Supporting neurological findings in IBS

NCAM1 • Implicated in mood/psychiatric disorders such as neuroticism
[221].
• Implicated in central sensitization [222].
• Upregulated rapid turnover of NCAM1 in the ACC contributes to
central sensitization by increasing neuronal connectivity [222].

• The ACC is a main hub of the salience network found to be
highly implicated in IBS pathophysiology [33, 53].
• Reduction in ACC connectivity and increased positive mood in
response to cognitive behavioral therapy was associated with
IBS symptom improvement [177].

DOCK9 • Implicated in proper growth and development of hippocampal
neurons [131].

• Increased functional connectivity of the hippocampus
observed in IBS [223].
• Rodent models show early life trauma can lead to increased
expression of hippocampal AMPA GluR2 receptors and
associated visceral hypersensitivity. AMPA GluR2 inhibitors
alleviated visceral hypersensitivity [224].
• Lower volumes of the hippocampus have been observed in
patients with IBS [117].
• Greater integrity of the inferior longitudinal fasciculus predicts
symptom improvement over 3–12 months [109]. Analogous to
rodent models, the integrity of this bundle is affected by early
life trauma [225].

PHF2 • Essential for hippocampal-dependent learning and memory.
Facilitates LTP in CA1 pyramidal neurons [226].

• Hippocampal CA1 LTP is associated with increased nociceptive
processing and anxiety-induced hyperalgesia [227, 228].
• Administration of a CRF-R1 antagonist has been shown to
reduce upregulated CRF via suppressed BOLD activity in the
hippocampus during conditioned fear extinction [170, 171].

CADM2 • Encodes a member of the synaptic cell adhesion molecule 1
(SynCAM) family involved in synaptic organization and signaling,
more abundantly expressed in brain tissue compared to other
tissue [69, 229].

• Mechanistic studies needed in the context of IBS

BAG6 • Involved in membrane protein quality control, apoptosis, gene
regulation, and immunoregulation [230–232].

• Mechanistic studies needed in the context of IBS

CKAP2 • Encodes a microtubule-associated protein playing a large role in
cell division during mitosis and cell proliferation [233, 234].

• Mechanistic studies needed in the context of IBS
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matter volumes throughout childhood [159, 160]. In addition to
the well documented changes in stress response systems
[161–163], the effect of early-life dietary influences on the gut
microbiome and the BGM axis have received increasing attention,
even though a direct link with chronic abdominal pain has not
been established [164, 165].

Clinical and therapeutic implications
Despite a decades-long effort by the pharmaceutical industry, a
large number of IBS candidate drugs identified and validated in
preclinical models and targeted at both central and gut
mechanisms have failed, either due to lack of efficacy or serious
side effects [16]. Of the small number of new drugs obtaining FDA
approval, efficacy above placebo has generally not exceeded 10%
in phase 3 trials. The great majority of available, FDA approved IBS
medications are targeted at intestinal secretion and motility, and
the gut microbiome with the goal to improve altered bowel habits
and bloating-type symptoms in subgroups of patients [16].
Pharmacological treatments have been clinically divided into

first and second-line approaches [16], and are aimed at specific
symptoms. Moderate quality data has shown low-dose tricyclic
antidepressants and SSRIs to be effective for pain (primarily the
former) and comorbid anxiety and depression (primarily the latter)
[16, 18]. As 5-HT receptor-mediated signaling plays important
roles both in the brain, as well as in the gut, there is a good
rationale for IBS treatments targeted at these receptors. 5-HT
released from enterochromaffin cells mediates many GI functions
including peristalsis, secretion, pain, and nausea via receptors on
ENS and vagal nerve endings [31]. For example, 5HT-3 receptor
antagonists (acting on both gut and brain-located 5HT-3 receptors
(such as alosteron, and ramosteron) have shown effectiveness in
slowing colonic transit, improving diarrhea, and reducing visceral
pain in well-designed randomized controlled trials [16]. High-
quality preclinical data has shown the antagonism of 5HT-3
receptors on the area postrema and vagus nerve have shown a
reduction of visceral pain and diarrhea [16, 18, 166], and older
data have demonstrated anxiolytic effects [167–169].
Despite evidence obtained in rodent models of IBS, efforts to

develop peripheral visceral analgesics or central stress modulators
(antagonists for CRF-1 and NK-1 receptors) have failed to show
therapeutic benefits in IBS. This is surprising, as multiple preclinical
studies as well as a human brain imaging study had demonstrated
effectiveness of the CRF-R1 antagonist Emicerfont (GW876008) on
evoked visceral pain and on central stress circuits [170, 171].
Because of these disappointing results, increased attention has
been shifted to behavioral treatments, including gut-directed
hypnosis [21, 81, 172–175], mindfulness-based stress reduction
[176], and cognitive behavioral approaches [19, 20, 177–179].
Several of these therapeutic approaches have shown promise in
improving IBS symptoms, and a few studies have demonstrated
associated neurobiological effects on brain mechanisms in
salience, emotional arousal, and executive networks [172, 177].
As access to therapists specialized in these behavioral IBS

treatments is limited, and traditional delivery is time-consuming,
web-based versions of these therapies have been evaluated, some
of which have been FDA approved and are becoming available to
patients [180]. In addition, several randomized controlled studies
have shown some benefits of certain dietary interventions (low
FODMAP diet [16]), and microbiome-targeted treatments (probio-
tics, antibiotics) [181].

SUMMARY AND CONCLUSIONS
Even though in subsets of patients, SSRIs and bowel movement
targeted therapies are helpful, the model of IBS presented in this
review provides precedence for a multidisciplinary therapeutic
approach including pharmacological, behavioral, and dietary
approaches. Current evidence suggests that there are significant

interindividual variations in the response to such therapies,
including the predominant bowel habit subtype, severity of gut
and psychiatric symptoms, and possibly the presence of gut
microbial alterations.
There is growing evidence from clinical, preclinical, and genetic

studies supporting the existence of shared p factors in IBS and
often comorbid gastrointestinal and non-gastrointestinal pain
conditions, as well as psychiatric conditions. Despite shared
vulnerability genes, different influences from the environment
(exposome) in particular during childhood ultimately shape the
specific clinical phenotype. The emerging disease model can
explain the failure of reductionistic single mechanism targeted
treatment approaches, and is consistent with the evidence for the
effectiveness of personalized multidisciplinary approaches invol-
ving behavioral, dietary, and pharmacological interventions.

GLOSSARY
irritable bowel syndrome (IBS); brain-gut-microbiome (BGM);
gastrointestinal (GI); enteric nervous system (ENS); central nervous
system (CNS); synaptic cell adhesion molecules (SynCAMs); default
mode network (DMN); salience network (SAL); sensorimotornNet-
work (SMN); central autonomic network (CAN); central executive
network (CEN); locus coeruleus (LC); periaqueductal grey (PAG);
dorsal anterior cingulate cortex (dACC); posterior cingulate cortex
(PCC); N-methyl-D-aspartate (NMDA); gamma-aminobutyric acid
(GABA); cerebrospinal fluid (CSF); early adverse life events (EAL);
serotonin (5-HT); selective serotonin reuptake inhibitor (SSRI);
long-term potentiation (LTP); event-related potentials (ERPs).
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