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We propose a schematic model of nucleons moving in spin–orbit partner levels, j = l ± 1
2 , to explain 

Gamow–Teller and two-nucleon transfer data in N = Z nuclei above 40Ca. Use of the L S coupling scheme 
provides a more transparent approach to interpret the structure and reaction data. We apply the model 
to the analysis of charge-exchange, 42Ca(3He,t)42Sc, and np-transfer, 40Ca(3He,p)42Sc, reactions data to 
define the elementary modes of excitation in terms of both isovector and isoscalar pairs, whose properties 
can be determined by adjusting the parameters of the model (spin–orbit splitting, isovector pairing 
strength and quadrupole matrix element) to the available data. The overall agreement with experiment 
suggests that the approach captures the main physics ingredients and provides the basis for a boson 
approximation that can be extended to heavier nuclei. Our analysis also reveals that the SU(4)-symmetry 
limit is not realized in 42Sc.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In two recent papers Fujita et al. [1,2] report on results 
of (3He,t) charge-exchange experiments that determine Gamow–
Teller (GT) strength in nuclei with mass numbers A = 42, 46, 50 
and 54. They observe a concentration of most of the GT strength 
in the lowest 1+ state at 0.611 MeV in the 42Ca → 42Sc reaction 
and, as A increases, a migration of this strength to higher energies. 
Both features can be reproduced either by a shell-model calcula-
tion with a realistic interaction in the pf shell or by calculations 
in the quasi-particle random phase approximation that include an 
isoscalar (or spin-triplet) interaction. The migration of the strength 
towards higher energies with A can be understood intuitively as a 
result of the increasing importance of the ν0 f7/2 → π0 f5/2 com-
ponent of the GT transition. The low-energy strength in 42Sc is 
more difficult to fathom and is attributed to the isoscalar compo-
nent of the residual nuclear interaction. As a result, the authors 
[1,2] claim the 1+

1 level in 42Sc to be a “low-energy super GT 
state”, and its existence is attributed to the restoration of Wigner’s 
SU(4) symmetry [3].

Relevant to these studies are the results of earlier measure-
ments of two-nucleon transfer using the 40Ca(3He,p)42Sc reac-
tion [4,5]. The coherent properties of the transfer mechanism of 
the neutron–proton (np) pair, in both isospins channels, provide 
a complementary tool to probe the wave functions of the low-
lying 0+ and 1+ levels in 42Sc. The comparable cross-sections to 
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these states appear, a priori, at odds with the “super GT” conjecture 
above.

In this letter we propose an explanation of these observations, 
assuming that the nucleons occupy two orbitals with radial quan-
tum number n, orbital angular momentum l and total angular mo-
mentum j = l ± 1

2 . This is the analogue of a single- j approximation, 
for example the 0 f7/2 model [6], but for an l orbital. Since the 
properties of the nuclear interaction are more transparent in L S
coupling, we analyze the problem in this basis instead of the more 
usual j j coupling. Results are of course independent of the cho-
sen basis and generally intermediate between the two bases [7]. 
Two nucleons with isospin projection T z = ±1, angular momen-
tum J = 0 and isospin T = 1 have two possible components with 
(L S) = (00) and (11), where L refers to the orbital angular mo-
mentum of the two nucleons and S to their spin. Three states with 
( J T ) = (10) occur for a neutron–proton pair and they are admix-
tures of (L S) = (01), (10) and (21). One state with ( J T ) = (11)

exists for T z = 0 and it has (L S) = (11). These are the only states 
that enter into the discussion of the GT strength and np transfer.

The character of the eigenstates of a nuclear Hamiltonian in this 
basis is first of all determined by the one-body spin–orbit term

Ĥso = ε−n̂− + ε+n̂+ = �ε 1
2 (n̂− − n̂+) + ε̄ n̂, (1)

where n̂ is the nucleon-number operator, n̂± are the nucleon-
number operators for the two orbitals j = l ± 1

2 with single-particle 
energies ε± , �ε ≡ ε− − ε+ and ε̄ ≡ 1 (ε− + ε+). The operator Ĥso
2
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is a non-diagonal one-body operator in the (L S J T ) basis with the 
following matrices:

• for ( J T ) = (01) in the basis (L S J T ) = (0001) and (1101):

2ε̄ + �ε

2l + 1

⎡
⎣ −1

√
4l(l + 1)

√
4l(l + 1) 1

⎤
⎦ ; (2)

• for ( J T ) = (11) in the basis (L S J T ) = (1111):

2ε̄; (3)

• for ( J T ) = (10) in the basis (L S J T ) = (0110), (1010) and 
(2110):

2ε̄ + �ε

2l + 1

⎡
⎢⎢⎢⎢⎣

−1 −
√

4l(l + 1)

3
0

−
√

4l(l + 1)

3
−1

√
2(2l − 1)(2l + 3)

3

0

√
2(2l − 1)(2l + 3)

3
2

⎤
⎥⎥⎥⎥⎦ .

(4)

For each ( J T ) a complete set (L S J T ) is given and therefore the 
diagonalization of the above matrices leads to the correct eigen-
values 2ε− , ε− + ε+ and/or 2ε+ . Matrices for different ( J T ) can 
be constructed likewise but the ones given in Eqs. (2) to (4) suffice 
for the applications considered below.

To Ĥso must be added contributions from the two-body in-
teraction V̂ , which can have diagonal matrix elements V L S J T ≡
〈L S J T |V̂ |L S J T 〉 as well as off-diagonal ones 〈L S J T |V̂ |L′ S ′ J T 〉, 
where it is assumed that the interaction is invariant under ro-
tations in physical and isospin space and therefore conserves J
and T .

The structure of the eigenstates is mostly determined by the 
splitting �ε , to which the interactions V L S J T provide a correc-
tion. Off-diagonal matrix elements due to spin-dependent or tensor 
forces are small compared to those induced by Ĥso and can be 
neglected in this context, 〈L S J T |V̂ |L′ S ′ J T 〉 ≈ 0 if (L S) 
= (L′ S ′). 
Furthermore, the nuclear interaction in spatially anti-symmetric 
states (L odd) is weak, V 11 J1 ≈ V 1010 ≈ 0. These approximations 
follow from the short-range attractive nature of the residual nu-
clear interaction and are exactly satisfied by a delta interaction [8]. 
They lead to a description of structural properties in terms of three 
essential quantities: the spin–orbit splitting �ε , and the isoscalar 
and isovector pairing strengths V 0110 and V 0001, which we denote 
from now on as g0 and g1, respectively. There is an additional de-
pendence on the quadrupole matrix element V 2110, which appears 
in the ( J T ) = (10) matrix, but this dependence is weak and the 
value of V 2110 can be estimated from data (see below).

To calculate various properties in the L S J T basis, we consider a 
general one-body operator with definite tensor character λl under 
SOL(3), λs under SOS (3), coupled to total λ j , and λt under SOT (3). 
It has the matrix elements

〈l2L S J T |||
∑

i

[t̂(λl)

i × t̂(λs)
i ](λ j)t̂(λt )

i |||l2L′S ′ J ′T ′〉

= −2[λ j][L][S][ J ][T ][L′][S ′][ J ′][T ′]〈l‖t̂(λl)‖l〉〈 1
2 ‖t̂(λs)‖ 1

2 〉

× 〈 1
2 ‖t̂(λt )‖ 1

2 〉(−)λl+λs+λt

⎧⎨
⎩

L S J
L′ S ′ J ′
λl λs λ j

⎫⎬
⎭

{
L L′ λl
l l l

}

×
{

S S ′ λs
1
2

1
2

1
2

}{
T T ′ λt
1
2

1
2

1
2

}
, (5)
where the symbols in curly brackets are 6 j- and 9 j-coefficients [8]
and with [x] ≡ √

2x + 1. The triple bars on the left-hand side in-
dicate that the matrix element is reduced in J and T while the 
double-barred matrix elements on the right-hand side are singly 
reduced in L, S or T . With this expression one can calculate matrix 
elements of the M1 operator (λ j = 1), which has spin (λl, λs) =
(0, 1), orbital (λl, λs) = (1, 0) and tensor (λl, λs) = (1, 1) parts of 
both isoscalar (λt = 0) and isovector (λt = 1) character. For the GT 
operator one takes (λl, λs, λ j, λt) = (0, 1, 1, 1). One finds three al-
lowed GT transitions, namely (L S) = (00) → (01), (11) → (10) and 
(11) → (11). The strengths are independent of the orbital angular 
momentum l with J T -reduced matrix elements given by −√

18, √
6 and −√

24, respectively.
To obtain predictions for the np-transfer strengths, we treat the 

ground state of 40Ca as the vacuum |o〉 and write the wave func-
tions of the 0+

i and 1+
i states in 42Sc as

|42Sc(0+
i )〉 = αi

00|l20001〉 + αi
11|l21101〉,

|42Sc(1+
i )〉 = αi

01|l20110〉 + αi
10|l21010〉 + αi

21|l22110〉, (6)

with coefficients αi
L S obtained from the diagonalization of the ma-

trices (2) and (4). In L S coupling the L = 0 transfer strengths 
follow naturally from

|〈42Sc(0+
i )||A†

L=0,S= J=0,T =1||40Ca(0+
1 )〉|2 = (αi

00)
2,

|〈42Sc(1+
i )||A†

L=0,S= J=1,T =0||40Ca(0+
1 )〉|2 = 3(αi

01)
2, (7)

where A†
L S J T is a two-nucleon creation operator.

We apply the above schematic model to the properties of 
A = 42 nuclei. We fix the spin–orbit splitting to its value taken in 
Refs. [1,2], �ε = 6 MeV, and vary the pairing strengths g0 and g1. 
We take as a first estimate equal isoscalar and isovector pairing 
strengths, and allow for a variation of 15% of the isoscalar strength, 
that is, we consider g0 = g1/x with x between 0.85 and 1.15, indi-
cated by shaded bands around the ‘canonical’ estimate g0 = g1. 
In this way the sensitivity of the various properties to the ra-
tio of isoscalar-to-isovector pairing strengths is highlighted. The 
quadrupole matrix element V 2110 ≈ V 2021 is fixed such that the 
excitation energy of the 2+

1 level in 42Ca (1.525 MeV) is repro-
duced. Essentially the same results are obtained if V 2110 is varied 
within a wide range.

Results are summarized in Fig. 1. Panel (a) shows the excitation 
energies of levels in 42Sc (relative to the 0+ level) as a function of 
the pairing strengths. The 1+

1 level is at an essentially constant en-
ergy for g0 = g1 but its energy is very sensitive to the ratio of the 
two pairing strengths. The near-degeneracy of the ( J T ) = (01) and 
(10) states, therefore, cannot be used as an indication of Wign-
er’s SU(4) symmetry in 42Sc, which is only realized in the extreme 
limit of g0 = g1 � �ε . On the other hand, it is to be expected 
that the isovector pairing strength g1 can be constrained from the 
corresponding observed pairing gap. The “pairing gap” for the odd-
mass nucleus 41Ca, that is, the binding-energy difference

�(3) = 1

2

[
BE(42Ca) + BE(40Ca) − 2BE(41Ca)

]
, (8)

is the only quantity of this kind that is available within our 
schematic model. Its experimental value of 1.5585 MeV is also 
shown in panel (a) of Fig. 1 and fixes the isovector pairing strength 
to g1 ≈ −5 MeV.

Panel (b) shows the B(M1; 1+
i → 0+

1 ) values in 42Sc, calculated 
with a spin quenching factor of 0.74. The M1 strength from the 1+

1
level is known experimentally [9], B(M1; 1+

1 → 0+
1 ) = 6.1(2.7) μ2

N, 
but its error is too large to constrain the pairing strength.
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Fig. 1. (Color online.) Results for (a) excitation energies in 42Sc and the pairing gap �(3) , (b) B(M1; 1+
i → 0+

1 ) values in 42Sc, (c) B(GT; 0+
1 → 1+

i ) strength in the 42Ca → 42Sc
reaction and (d) cross-sections for the 40Ca → 42Sc reaction. Experimental values are indicated by the black dashed lines with uncertainties in gray. The results of the 
schematic model are in blue for T = 0 and in red for T = 1 states. The calculated pairing gap �(3) in panel (a) and the calculated ratio of cross-sections σ(1+

1 )/σ (0+
1 ) in 

panel (d) are in purple. All curves are for equal isoscalar and isovector strengths g0 = g1, and the shaded areas around them are obtained for g0 = g1/x with x varying 
between 0.85 and 1.15.
Panel (c) shows the B(GT; 0+
1 → 1+

i ) strength for the
42Ca(3He,t)42Sc charge-exchange reaction, using the same quench-
ing factor as in the spin part of the M1 operator. Experimentally, 
most of the observed strength is concentrated in the 1+ state at 
0.611 MeV [1,2], which is indicated in the figure, with some frag-
mentation at higher energies (not shown). This is in qualitative 
agreement with the schematic model, where the main strength is 
indeed found in the 1+

1 level with some minor components in two 
excited 1+ states with T = 0 and T = 1, respectively. Note also 
that the uncertainty associated with the ratio of pairing strengths 
is fairly small for the GT strength.

Finally, panel (d) shows results for the 40Ca → 42Sc np-transfer 
reaction. We pay particular attention to the ratio of squared am-
plitudes from Eq. (7) that gives directly the ratio of cross-sections, 
σ(1+

1 )/σ (0+
1 ). The experimental ratio, ∼2, is consistent with our 

results at the value of the pairing strength g1, derived from the 
B(GT) measurement and from the pairing gap �(3) . A better agree-
ment would be expected by introducing small admixtures of the 
p3/2 and p1/2 orbits, not included in the schematic model. We 
note here that we have also checked the calculated ratio in the 
j j-coupling scheme by transforming the pair amplitudes into their 
corresponding f 2

7/2, f 2
5/2 and f7/2 f5/2 (for T = 0) components, 

which were used in DWUCK4 [10] to calculate the cross-sections 
at forward angles (L = 0 transfer).

The available experimental data [2,5,9] are summarized in Ta-
ble 1 and compared with the results of the schematic model. The 
latter are obtained with spin–orbit splitting �ε = 6 MeV and pair-
ing strengths g0 = g1 = −5 MeV. The isoscalar pairing strength g0

is varied by 15% around g1 to obtain an estimate of the theoret-
ical uncertainty. Because of the restricted model space with only 
the f orbital, several observed levels are absent from the theory, 
as indicated with a dashed line.

We can now also study the components in L S coupling of the 
yrast 0+ and 1+ states, for which the schematic model should be 
reliable. Table 2 lists the amplitudes of 0+

1 and 1+
1 , written in the 

(L S J T ) basis of Eqs. (2) and (4). It is seen that the spatially un-
favored components (L odd) are important, which contradicts the 
assumption of SU(4) symmetry. The fact that nevertheless a strong 
B(GT; 0+

1 → 1+
1 ) is observed is due to the constructive addition of 

the L = 0 → L = 0 and L = 1 → L = 1 transitions. Also shown in 
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Table 1
Summary of available experimental data [2,5,9] and the results of the schematic 
model for the adopted values of the parameters.

Probe 42Sc level Experiment Schematic modela

Jπ Ex (MeV)

(3He,p) Relative Intensity

0+
1 0 1 1

1+
1 0.61 2 2.20(17)

(0+,1+) 1.89 0.17 –

1+ 3.69 1.3 1.57(16)

1+ 3.86 0.38 –

(3He,t) B(GT)

1+
1 0.61 2.17(5) 2.11(8)

1+ 1.89 0.097(3) –

1+ 3.69 0.127(3) 0.62(8)

Lifetime B(M1) (μ2
N)

DSAM 1+
1 0.61 6.1(2.7) 4.80(2)

a The theoretical uncertainties correspond to a ±15% variation in the isoscalar 
pairing strength g0, as discussed in the text.

Table 2
L S-coupling amplitudes (in %) of the yrast 0+ and 1+ states of 42Sc, in the 
schematic model and for the KB3G interaction.

Schematic model KB3G ( f 2)

L = 0 L = 1 L = 2 L = 0 L = 1 L = 2

0+
1 75 25 – 73 23 –

1+
1 55 31 14 65 26 4

Table 2 are the corresponding components for the modified Kuo–
Brown KB3G Hamiltonian [11], which is a realistic interaction for 
the entire pf shell [12]. The f 2 components carry the majority of 
the strength (∼95%) and the mixing of spatially favored and unfa-
vored components is consistent with that found in the schematic 
model.

In summary, charge-exchange and np-transfer reactions de-
fine the elementary modes with isovector and isoscalar pairs that 
are spatially favored as well as unfavored. We have applied this 
approach to 40,42Ca → 42Sc reactions to determine the nature 
of these elementary modes. Good agreement with the experi-
mental data suggests the adequacy of the model. Although the 
1+

1 state carries a large fraction of the GT strength, our anal-
ysis of both (3He,t) and (3He,p) reactions points out that the 
SU(4)-symmetry limit is not reached, as the spin–orbit potential 
breaks the L S-coupling scheme. The elementary pairs thus deter-
mined can be treated as bosons, leading to an interpretation of GT 
and np-transfer data in heavier 0 f7/2 nuclei in terms of an inter-
acting boson model—an approach which is currently under study. 
We believe that this may provide an intuitive and simple picture, 
which is complementary to state-of-the-art shell-model calcula-
tions.
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