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Abstract

We report here an electrochemical reactor that converts 3.0 M KHCO3 into methane at the cathode, and

oxidizes water at the anode. The molar ratio of methane product to unreacted CO2 gas (defined herein as

“methane yield”) was measured to be ca. 30% at a partial current density of 120 mA cm-2. The highest

previously reported CO2-to-methane yield is 3%. Our reactor achieved this improvement in methane

yield because it is fed with 3.0 M KHCO3, a type of reactive carbon solution, rather than gaseous CO2.

The reactor is designed so that H+ delivered by the bipolar membrane reacts with HCO3
– at the cathode

to form CO2. This CO2 is then reduced to methane. A cationic surfactant added to the catholyte

suppressed hydrogen evolution to increase the methane yield. A 1D continuum model confirmed that H+

from the membrane promotes the formation of methane over multi-carbon products. These findings

present design principles for electrochemical methane synthesis.

We report an electrochemical reactor that converts 3.0 M KHCO3 into methane at the cathode, and

oxidizes water at the anode. The molar ratio of methane product to unreacted CO2 gas (defined herein as

“methane yield”) was measured to be 34% at a partial current density of 120 mA cm-2. The highest

previously reported CO2-to-methane yield is 3%. Our reactor achieved this improvement in methane

yield because it is fed with 3.0 M KHCO3, a type of reactive carbon solution, rather than gaseous CO2.

The reactor uses H+ delivered by a bipolar membrane to form CO2 at the cathode. This CO2 is

subsequently reduced into methane. A cationic surfactant added to the catholyte suppressed hydrogen

evolution and increased methane formation. A 1D continuum model confirmed that H + from the

membrane promotes the formation of methane over multi-carbon products at the cathode. These findings

present design principles for electrochemical methane synthesis.
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The reduction of CO2 into carbon-neutral chemicals and fuels could potentially store renewable

energy and reduce greenhouse gas emissions. Methane is an appealing target because this fossil fuel

stores more energy per mole of CO2 (higher heating value: 802 kJ/mol CO2) than any other CO2-derived

product and is used on a massive scale (~4 trillion cubic meters in 2019).1,2 However, it is challenging to

electrochemically convert CO2 into methane;3,4 the highest-performance electrochemical CO2-to-CH4

reactor yields a molar ratio of methane to CO2 in the product stream (“methane yield”) of only 3%. This

methane yield needs to increase by at least an order-of-magnitude to be commercially relevant.4

All previously reported electrochemical systems that convert CO2 to methane supply gaseous

CO2 to the cathode. Our program has instead focused on the electrochemical conversion of liquid

(bi)carbonate solutions, a common eluent of carbon capture systems,5 into higher-value

carbon-containing products.6,7 This electrochemical process would eliminate the expensive step of

thermally extracting CO2 and OH– from (bi)carbonates.5,8–10 (Reactive carbon solutions based on amines

can also be electrochemically reduced to form CO2 at the cathode.11,12)

We have designed electrochemical reactors where protons supplied from the membrane (Eq.

1)6,7,12 react with (bi)carbonate to form CO2 at a porous cathode that is pressed against the membrane.

The CO2 that is generated in situ (“i-CO2”) is then reduced to carbon-containing products at the cathode.

The liquid bicarbonate feedstock minimizes the amount of unreacted CO2 in the product stream

compared to a gaseous feedstock. Hence, the product yield for CO2 reduction reaction (CO2RR) products

can be higher with liquid bicarbonate than with CO2 gas.13,14

H+
(aq) + HCO3

–
(aq) → CO2(g) + H2O(l) Eq. 1

The other major consideration when designing such a reactor is the environment at the cathode.

Copper is known to promote the formation of methane over multi-carbon products (e.g., ethylene) in
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more acidic environments.15,16 However, the pH is typically >12 at the cathode surface at high current

densities (i > 200 mA cm–2) because hydroxide is a CO2RR byproduct (Eq. 2).17–19 This alkalinity

suppresses the unwanted hydrogen evolution reaction (HER; Eq. 3),20 but it also suppresses the

protonation steps needed to form methane (Eq. 2).16,21 These alkaline conditions instead promote the

formation of multi-carbon products.16,22

CO2(aq) + H2O(l) + 8e– → CH4(g) + 8OH–
(aq) Eq. 2

2H+
(aq) + 2e– → H2(g) Eq. 3

These observations prompted us to design and build an electrochemical reactor capable of

converting potassium bicarbonate (KHCO3) into methane. The membrane electrode assembly (MEA) of

the reactor contains a bipolar membrane (BPM) that supplies protons to a porous copper cathode to

convert KHCO3 into i-CO2 (Eq. 1), which is then reduced to methane (Eq. 2). A cationic surfactant was

added to the electrolyte to suppress HER at the cathode (Eq. 3). This electrochemical reactor yielded a

partial current density for methane formation (iCH4) of 120 ± 10 mA cm–2 and methane yield of 34 ± 7%.

This methane yield is 10-fold higher than any other documented reactor (Fig. 1). We developed a 1D

continuum model to map out the dynamic reaction chemistry within the electrochemical reactor. This

model shows that avoiding extreme alkalinity in the reactor can favor methane formation over

multi-carbon products.
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Figure 1: (a) Schematic diagram of the bicarbonate electrochemical reactor used to produce CH4 from a
reactive carbon solution. A bipolar membrane (BPM) separates the nickel foam anode and
copper foam cathode. 1 M KOH and 3 M KHCO3 solutions are fed to the anode and cathode
compartments, respectively. (b) Methane yields reported in literature as a function of current
density (i) for CO2 electrochemical reactor studies performed at iCH4 > 100 mA cm–2.23–26 Methane
yield (defined as the molar ratio of methane to unreacted CO2 in the product stream) was
determined using a carbon mole balance where the molar flow rate of unreacted CO2 was
calculated by subtracting the reported inlet molar flow rate of CO2 from the total moles of carbon
atoms in the reduced carbon species (e.g., methane, formate, ethylene, etc.).

The bicarbonate electrochemical reactor used in this study contained a MEA with an active area

of 4 cm2 sandwiched between anodic and cathodic serpentine flow plates.6 Within the MEA, a bipolar

membrane (BPM) consists of an anion exchange layer (AEL) pressed against a cation exchange layer

(CEL). A catalyst layer (made of either metal or graphene oxides) at the AEL|CEL interface mediates

water dissociation under a reverse-bias to transport OH– and H+ to the anode and cathode, respectively.27

The OH– is reduced to O2 and H2O at the nickel foam anode.28 The H+ reacts with HCO3
– at the

CEL|cathode interface to form i-CO2 (Eq. 1).6 i-CO2 that is formed by this reaction is electrochemically

reduced by a porous copper cathode fabricated by etching copper foam with 3 vol % nitric acid.
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Scanning electron microscopy (SEM) show an approximate pore size of 10 µm for the porous copper

electrodes (Fig. S1).

For bicarbonate electrochemical reactor testing, 3 M KHCO3 solutions containing a cationic

surfactant (cetrimonium bromide; CTAB) at concentrations ranging from 0 to 10 mM were delivered to

the cathode flow plate. A 1 M KOH solution was delivered to the anode flow plate. Gaseous N2 was

sparged into the catholyte reservoir to sweep the gaseous species (CH4, CO, CO2, H2) from the

electrochemical reactor to a gas chromatograph (GC) to determine the faradaic efficiency (FE) and

methane yield (see Supporting Information for details). Liquid CO2RR product, formate, was quantified

by proton nuclear magnetic resonance (1H NMR) analysis of electrolyte aliquots after 20 min of

electrolysis. Control experiments were performed with an analogous electrochemical reactor containing

an anion exchange membrane (AEM) (Fig. S3). This electrochemical reactor produced formate, but no

methane was observed over a range of cathode potentials (–1.75 to 2.3 V vs. Ag/AgCl/KCl saturated)

(Fig. S3a) and current densities (Fig. S4). These results confirm that a supply of H+ is key to forming

methane from reactive carbon solutions.

The cumulative FE for the CO2RR and HER was measured to be 88% on average (range: 74% to

100%) for all electrochemical reactor experiments (Fig. S5). The concentration of CTAB in the

electrolyte did not have a pronounced effect on the cumulative FE for the CO2RR and HER. We assume

that formate accounts for the remaining 12% of FE, but this value is difficult to quantify because

formate that accumulates in the MEA would not be detected by the post-electrolysis 1H NMR analyses.

The electrolysis experiments performed without CTAB yielded a maximum partial current

density for CO2RR products (iCO2RR) of 11 mA cm–2 (Fig. 3). Formate was the only CO2RR product

formed during the experiment, and the FEH2 values were >87% at applied current densities of 100, 200,

300, and 400 mA cm–2 (Fig S6a). The addition of 3 mM CTAB to the electrolyte increased the iCO2RR

from 11 to 162 mA cm–2 (at an applied current density of 400 mA cm–2). Importantly, the FECH4
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increased from 0 to 27% with the addition of 3 mM CTAB (Fig. 3b and Fig. S7). Formate was the

dominant CO2RR product observed at current densities <200 mA cm–2 (Fig. S6b) and cathode potentials

> –2 V vs. Ag/AgCl/KCl saturated (Fig. S4b). The cell potentials were >6 V for current densities >300

mA cm–2, largely because of the high overpotential associated with water dissociation within the

membrane (Fig. S8).29 CTAB is known to suppress HER and enhance formate formation30,31 but these

studies in H-cells did not yield methane. The iCH4 of 120 ± 10 mA cm–2 that we report here is

significantly higher than all other reports which add CTAB to the electrolyte.23–26,32–34

Figure 2: (a) Measured partial current densities for all CO2 reduction reaction (CO2RR) products (i.e.,
methane, formate, and carbon monoxide) and the hydrogen evolution reaction (HER) as a
function of [CTAB] at an applied current density of 400 mA cm–2. (b) Faradaic efficiencies for
methane (FECH4) measured during electrolysis for bicarbonate solutions doped with CTAB at
current densities ranging from 100–400 mA cm–2. Trend lines are provided for each current
density as a visual guide.

X-ray diffraction (Fig. S2) and in situ Raman spectroscopy (Fig. S9; see Supporting Information

for details)19 were used to investigate the effect of CTAB on the copper oxidation state. The XRD

analysis confirmed the presence of Cu (200), Cu(220), and Cu(111) facets as well as CuO(002) in the

etched electrode sample before electrolysis (Fig. S2). The CuO peak in the XRD spectra was not

observed after the electrolysis experiments performed with CTAB, but it was detected after electrolysis

when CTAB was not used (Fig. S2). The in situ Raman spectroscopy also showed a peak that
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corresponds to copper oxide at 530 cm-1 for the experiments performed without CTAB at the same

current densities (Fig. S9).35 Importantly, this copper oxide peak was not observed for the experiments

performed with CTAB. These results imply that CTAB reduces the oxide coverage on the copper

electrode during electrolysis.

Previous studies point to the hydrophobic alkyl groups of CTAB in the catalyst

microenvironment increasing the ratio of CO2-to-water near the catalyst surface.36,37 To confirm this to

be the case in our reactor, we ran similar experiments with dodecyltrimethylammonium bromide

(DTAB), a quaternary ammonium surfactant with a 12-carbon alkyl chain (the alkyl chains of CTAB

contain 16 carbon atoms; Fig. S10). The DTAB-doped solution yielded a lower iCO2RR (89 ± 5 mA cm–2)

than the CTAB-doped solution (162 ± 10 mA cm–2), yet both surfactants yielded a similar distribution of

CO2RR products (Fig. S10). Indeed, methane made up 50% of CO2RR products for both CTAB and

DTAB at the peak iCO2RR (Fig S11). Given that the shorter alkyl chain of DTAB makes the hydrophobic

domain smaller than that of CTAB, and there exist different rate limiting steps for methane, formate, and

carbon monoxide syntheses, these results are consistent with CTAB increasing the molar ratio of

CO2-to-water at the catalyst surface relative to DTAB.38

We developed and applied a 1D finite-element model for the cathode compartment of a

bicarbonate electrochemical reactor to investigate the link between pH and methane formation (Fig. 3).

The model consists of two homogeneous porous domains: the copper catalyst layer, and the cation

exchange layer of the bipolar membrane. The governing equations for mass, charge, and fluid transport

were solved simultaneously to predict the product distribution during bicarbonate electrolysis. Cathodic

transfer coefficients and rate orders for pH and CO2 from previous studies were used (Table S1).39 These

parameters did not account for the use of CTAB or a porous foam electrode,39 we therefore fit the

exchange current densities (i.e., the pre-exponential factors in the CO2RR kinetic expressions) to the

experimental data. The intrinsic kinetic factors (e.g., cathodic transfer coefficients, pH and CO2
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dependences) were not modified. The modeled FECH4 increased and the FEHCOO– decreased with

increasing current density (Fig. 3b). Multi-carbon products have rate limiting steps that are explicitly

independent on pH,16,22 yet none were predicted by the model. The modeled trends in methane and

formate formation generally agree with the experiments (Fig. S6b and S7).

Figure 3: (a) Schematic diagram of the gas, liquid, and solid phases within the membrane (cation
exchange layer) and copper catalyst layer domains of the bicarbonate electrochemical reactor. (b)
Modeled faradaic efficiency (FE) values for formate, methane, and carbon monoxide as a
function of current density. (c) Modeled pH profiles in the membrane and catalyst layer of the
bicarbonate electrochemical reactor for current densities ranging from 10 to 400 mA cm–2. (d)
Spatial variation in faradaic efficiencies for methane and formate within the modeled catalyst
layer domain at a current density of 400 mA cm–2.
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The modeled pH in the catalyst layer increased with increasing current density to a maximum

value of ~11 at 400 mA cm-2 (Fig. 3c). This modeled pH is at least 2 pH units lower than previously

reported values for electrochemical CO2 reactors (e.g., 13 at 200 mA cm–2)17 because the H+ flux from

the BPM neutralizes (bi)carbonates and hydroxides at the membrane|catalyst layer interface.40 This

mitigation of cathode alkalinity enables our bicarbonate electrochemical reactor to produce methane at

current densities that yield multi-carbon products in other electrochemical CO2 reactors (Fig. 3b).41

The H+ flux from the BPM affects the concentration of CO2 in the catalyst layer, and, in turn, the

spatial distribution of formate and methane formation (Fig. 3d). Formate production is second-order in

[CO2],42 and thus formate is favored at the membrane|catalyst layer interface, where the highest

concentrations of CO2 are found (Fig. S12). Methane formation rate has an approximately first-order

dependence on [CO2].42 This reaction order implies that methane is favored in the bulk of the catalyst

layer where there is a lower [CO2] (Fig. S12). Consequently, the maximum modeled FECH4 was observed

within the first 5% of the depth of the catalyst layer (Fig. 3d), where the [CO2] and formate formation

rates drop off.

Methane formation is also promoted at the catalyst layer|flow plate interface. The bulk pH 8.5

solution and moderate [CO2] of 8 mM provide favorable conditions for methane formation. These results

suggest that thinner cathodes that enable faster mass transport would reduce catalyst loading without

sacrificing methane formation rates. The use of an ionomer could improve the methane formation rates

by managing the local pH22 and enhancing the diffusion of CO2 to the catalyst surface.43 Collectively, the

model results corroborates our experiments and shows how a moderately alkaline pH (<12) at the

cathode enables electrochemical methane synthesis at high rates.

We calculated the overall energy required to capture and convert CO2 into a pure stream of

methane using the bicarbonate electrochemical reactor (Table S2).24 For this analysis, we considered the

energy required to capture CO2 using potassium hydroxide to form reactive carbon solutions,5 to convert
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the reactive carbon solution into methane using our electrochemical reactor, and to separate unreacted

CO2 from the methane product stream. This analysis shows that 20,000 kJ is required to produce 1 mole

of CH4. This value is high for the unoptimized bicarbonate-to-CH4 reactor (electrolysis efficiency = 4%),

yet it is still less than the 21,000 kJ required for the pathway involving a more efficient electrochemical

reactor fed with gaseous CO2 (electrolysis efficiency = 16%). The pathway with the bicarbonate

electrochemical reactor is more energy efficient because the thermal CO2 desorption step (>175 kJ mol-1

CO2)44 is bypassed, and because the methane yield is >5-fold higher.

While even a low-efficiency bicarbonate electrolyzer fares well when the energy required to

capture and generate high purity CO2 is considered, there remain many ways to improve the efficiency

of this electrolyzer by increasing the FECH4 and reducing the cell voltage. The FECH4 could be improved

by, for example, using a thinner electrode,41 by positioning an insulating porous material between the

membrane and cathode to manage H+ transport,28 controlling the CO2-to-water ratio at the catalyst

surface.45 The cell voltage could be reduced by replacing the BPM with a cationic exchange membrane,

or by using alternative reactions at the anode.46

We will note that the carbon single-pass conversion (i.e., the moles of CO2RR product formed

per mole of carbon fed to the cell) for liquid bicarbonate (0.1%) is much lower than for gaseous CO2

(1.5%). However, this metric is not as important for a liquid-fed reactor. For electrochemical reactors fed

with CO2 gas, the single-pass conversion is directly correlated to the cost of separating methane from

unreacted CO2 in the product stream.4 For electrochemical reactors fed with bicarbonate, the single-pass

carbon conversion does not directly correlate with the cost of product separation because the insoluble

methane product separates passively from the liquid bicarbonate feed.47 Only unreacted CO2 in the

gaseous product stream of the reactor must be separated for a bicarbonate electrochemical reactor. It is

for this reason that the methane yield (which quantifies the unreacted CO2 that must be separated to
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produce pure methane) is a more appropriate measure of downstream separation costs for a

bicarbonate-fed reactor.

Electrochemical CO2 reactors use purified CO2 gas to achieve high methane formation rates. This

use of gaseous CO2 as a feedstock not only requires energy-intensive steps (i.e., thermal CO2 desorption)

for upstream carbon capture, but also downstream product purification. Here we demonstrate for the first

time the electrochemical conversion of bicarbonate-based reactive carbon solutions into methane as a

means of bypassing thermal CO2 desorption. We used a cationic surfactant (CTAB) that adsorbed to the

copper catalyst layer during electrolysis to enable methane formation at partial current densities of 120 ±

10 mA cm–2 and state-of-the-art methane yields of 34 ± 7%. The 1D continuum model of the cathode

compartment showed that the H+ from the BPM in the bicarbonate electrochemical reactor counteracted

hydroxide generation at the cathode surface to promote the formation of methane over multi-carbon

products. This study demonstrates the possibility of efficient electrochemical CO2 capture and methane

synthesis using a bicarbonate electrochemical reactor.
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