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ORIGINAL RESEARCH

Cardiac MRI is a powerful, noninvasive modality used 
for the diagnosis and management of a wide variety of 

cardiovascular diseases and is the clinical reference stan-
dard for quantification of cardiac volumetry and function 
(1–4). Postprocessing and analysis of cardiac MR im-
ages can be challenging because it requires considerable 
time and expertise. To obtain volumetric measurements, 
physicians must manually draw contours outlining the 
endocardium and epicardium for 10 to 15 short-axis 
slices (3,5,6). Even experienced physicians may require 
20 to 30 minutes per examination to perform these tasks 
(7). In addition, heterogeneity in the approach to ven-
tricular segmentation can lead to interreader variability 
(6,8–10). In light of these considerations, several groups 
have sought to reduce the time burden of manual quan-
tification and decrease subjectivity (11) by using machine 
learning approaches (12–14). Traditional machine learn-
ing algorithms have emphasized specific features, such as 
edge detection or probabilistic atlases to reduce process-
ing times, but are prone to artifact and have limited gen-
eralizability (11,15–17). New machine learning and deep 
learning (DL) algorithms are showing promise for auto-
mating or supporting technical tasks, such as selection of 

imaging planes and myocardial inversion time (18), to 
aid radiologists in image assessment.

DL applications are being developed to overcome the 
limitations of traditional machine learning for cardiac seg-
mentation and volumetry (9,19–22). Multiple groups have 
used DL approaches to compete in machine learning chal-
lenges and have achieved excellent performance (9,23,24). 
However, because most common training sets are limited 
in scope and may not reflect the range of pathologies seen 
in clinical practice (25–28), the performance of these algo-
rithms in a clinical setting requires further investigation.

In this study, we aimed to test the hypothesis that 
a DL–based algorithm is capable of biventricular seg-
mentation and volumetry on clinical cardiac MRI data. 
We evaluated a two-dimensional U-Net convolutional 
neural network on data from 200 clinical cardiac MRI 
examinations by comparing its performance with mea-
surements made by experienced physicians in the course 
of clinical practice. We then explored the similarity of 
segmentations to identify areas that could benefit from 
further improvement and continued physician supervi-
sion. We found that the DL algorithm tested was able to 
segment the right and left ventricles, suggesting that this 
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Purpose: To evaluate the performance of a deep learning (DL) algorithm for clinical measurement of right and left ventricular volume 
and function across cardiac MR images obtained for a range of clinical indications and pathologies.

Materials and Methods: A retrospective, Health Insurance Portability and Accountability Act–compliant study was conducted using the 
first 200 noncongenital clinical cardiac MRI examinations from June 2015 to June 2017 for which volumetry was available. Images 
were analyzed using commercially available software for automated DL-based and manual contouring of biventricular volumes. Fully 
automated measurements were compared using Pearson correlations, relative volume errors, and Bland-Altman analyses. Manual, auto-
mated, and expert revised contours for 50 MR images were examined by comparing regional Dice coefficients at the base, midventricle, 
and apex to further analyze the contour quality.

Results: Fully automated and manual left ventricular volumes were strongly correlated for end-systolic volume (ESV: Pearson r = 0.99, 
P , .001), end-diastolic volume (EDV: r = 0.97, P < .001), and ejection fraction (EF: r = 0.94, P , .001). Right ventricular measure-
ments were also correlated for ESV (r = 0.93, P , .001), EDV (r = 0.92, P , .001), and EF (r = 0.73, P , .001). Visual inspection of 
segmentation quality showed most errors (73%) occurred at the cardiac base. Mean Dice coefficients between manual, automated, and 
expert revised contours ranged from 0.92 to 0.95, with greatest variance at the base and apex.

Conclusion: Fully automated ventricular segmentation by the tested algorithm provides contours and ventricular volumes that could be 
used to aid expert segmentation, but can benefit from expert supervision, particularly to resolve errors at the basal and apical slices.

Supplemental material is available for this article.
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Measurements were obtained by manually tracing the left ven-
tricular (LV) epicardium and endocardium and right ventricu-
lar (RV) endocardium borders for 10–15 slices through the 
cardiac short axis at end systole (ES) and end diastole (ED). 
DL analysis was performed retrospectively on the same images 
using a commercially available and Food and Drug Adminis-
tration–cleared two-dimensional U-Net–based convolutional 
neural network (Cardio DL 2.3; Arterys, San Francisco, Calif ) 
(19). The study presented here represents an independent test 
of this algorithm because the Cardio DL 2.3 algorithm was not 
trained with any data from our institution.

The original clinical segmentations were available for 50 of 
the studies performed between June 2015 and May 2016 as a 
result of technical limitations in data available for export. To ex-
amine contour quality in more granular detail, a subanalysis was 
performed on these cases. In-house software was developed in 
Python for extraction of contour coordinates from their original 
saved files, and one case was removed for misregistration. Three 
sets of contours were compared in this analysis, including (a) 
the original manual contours performed at the time of clinical 
examination by a radiologist, (b) fully automated contours from 
DL obtained retrospectively, and (c) an additional set of expert 
revised contours in which DL contours were edited by a board-
certified cardiothoracic radiologist with 10 years of experience 
(A,H.) using Cardio DL 2.3. A minimum of 18 months elapsed 
between clinical quantification and the blinded secondary analy-
sis. To minimize potential conflicts of interest, coauthors with 
financial interest in either software product were not involved 
in case selection or data analysis, and no direct compensation 
or software was provided to any author for his or her work on 
this study.

application could be used to streamline image interpretation by 
a practicing radiologist.

Materials and Methods

Study Design
With Health Insurance Portability and Accountability Act com-
pliance and institutional review board waiver of informed con-
sent, cardiac MRI examinations were identified that were per-
formed at our institution between June 2015 and June 2017. 
The first 200 examinations were retrospectively identified in 
which cardiac volumes were available as part of the original clini-
cal examination. Patients with complex congenital heart disease 
were not included. No other exclusions were made based on 
clinical study purpose or nature of pathology, with clinical in-
dications listed in Table 1. The average patient age was 55 years 
(range, 18–88 years); 59% were men and 41% were women.

MRI Parameters
The examinations were performed for a range of clinical indi-
cations with a single Signa HDxt 1.5-T scanner (GE Medical 
Systems, Wis). Imaging protocols included a cine cardiac-gated 
steady-state free-precession short-axis stack for cardiac volum-
etry, performed as part of the clinical examination. Imaging 
parameters included an average echo time of 1.8 msec, average 
repetition time of 4.1 msec, and average temporal resolution of 
57 msec, with flip angles at 55° and slice thicknesses at 8 mm. 
Examination indications varied and included new onset heart 
failure, myocardial viability, hypertrophic cardiomyopathy, and 
congenital disease (see Table 1 for study indications drawn from 
the clinical record).

Image Analysis
Manual measurements of biventricular volume were indepen-
dently performed at the time of clinical examinations by one 
of five board-certified radiologists (including A.H.) in our in-
stitution’s cardiothoracic imaging division using Cvi42 v5.3.8 
(Circle Cardiovascular Imaging, Calgary, Alberta, Canada). 

Abbreviations
DL = deep learning, EDV = end-diastolic volume, ED = end dias-
tole, EF = ejection fraction, ES = end systole, ESV = end-systolic 
volume, LV = left ventricular, RV = right ventricular

Summary
Performance of a deep learning–based automated ventricular segmen-
tation algorithm is similar to expert segmentation and may provide 
streamlined interpretation of cardiac MR images.

Key Points
 n The tested algorithm is capable of segmenting right and left ven-

tricular contours that are strongly correlated with fully manual 
measurements by radiologists, which may help streamline quanti-
tative interpretation.

 n Algorithm performance is optimal at the midventricular slices but 
requires greater supervision for the right ventricle, cardiac base and 
apex, and end-systolic phases.

Table 1: Study Indications Obtained from the Clinical 
Record

Parameter Value 

Patient demographics
No. of men 118 (59.0)
No. of women 82 (41.0)
Average age (y) 55 (18–88)*

Study indications
Cardiomyopathy (including hypertrophic) 44 (22.0)
Arrhythmia or syncope 25 (12.5)
Evaluation of mass, thrombus, or abnormal 

echo
23 (11.5)

Myocardial viability 23 (11.5)
Heart failure 22 (11.0)
Myocarditis or sarcoid 16 (8.0)
Evaluation for a procedure 9 (4.5)
Congenital 5 (2.5)
Other 33 (16.5)

Note.—Unless otherwise indicated, data are numbers of pa-
tients with percentages in parentheses. A total of 200 patients 
were included within this study.
* Age range is in parentheses.

http://radiology-ai.rsna.org
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with fully automated or expert revised contours. For the 
comparison between expert revised and automated measures, 
the expert revised measures were considered the benchmark. 
This analysis included ED and ES contours for both the LV 
and RV and was composed of 1283 images. Subanalysis of 
volumetric correlations, relative volume error, and bias were 
reported. The Dice coefficient was used to assess contour 
similarity for LV endocardium, LV epicardium, and RV en-
docardium for each image slice. An overall Dice coefficient 
for each ventricle was computed with slices weighted by their 
contribution to the total ventricular volume. This was per-
formed to normalize relatively small areas, such as the cardiac 
apex. In addition, regional Dice was computed as an average 
across multiple slices. Each region (apical, midapical, mid, 
midbasal, and basal) comprised approximately 20% of the 
length of the cardiac long axis.

Statistical Analysis
All statistical analysis was performed using a type I error rate 
(a) of .05 using R 3.4.2 (R Foundation for Statistical Com-
puting, Vienna, Austria) with the packages ggplot2 (29), 
psych (30), and BlandAltmanLeh (31). Correlations were pre-
sented with a Pearson r statistic, relative volume error was cal-
culated ([predicted volume – ground truth volume]/ground 

Comparative Analyses
Manual measurements of RV and LV volume were considered 
“ground truth” and formed the basis for comparison. Com-
parisons were made for end-diastolic volume (EDV) and end-
systolic volume (ESV), as well as ejection fractions (EFs). ES 
was visually determined as the phase with the smallest midven-
tricular size, often correlating with the phase just before valve 
opening. Statistical analysis included Pearson correlation, rela-
tive volume error, and bias (shown in Bland-Altman plots). In 
addition to quantitative comparisons, we performed a visual 
comparison of contours for each of the 200 cases at both ED 
and ES and tabulated errant inclusion or exclusion of apical 
or basal slices, nonanatomic shapes, and nonanatomic loca-
tion of contours. The location (base, mid, or apex) and the 
cardiac phase (ES or ED) of these errors were also noted. It was 
possible for an errant contour to be counted as multiple error 
types. For example, a contour placed beyond the basal extent 
of a ventricle and shaped discordantly with natural contours 
would be tabulated as both an errant contour inclusion and a 
nonanatomically shaped contour.

For the quantitative subanalysis of segmentation quality, 
three methods of ventricular contouring were compared: (a) 
manual, (b) fully automated, and (c) expert revised. Manual 
measures were considered the benchmark for comparison 

Table 2: Volumetry Comparisons across Groups

Volume Correlation (r) Mean Difference (mL or %) 2 SD Relative Volume Error (%)

Volumes Measured as Part of the Clinical Examination Compared with Fully Automated (All Cases)
LV EDV 0.97 24.3 31.1 13.6
LV ESV 0.99 10.9 25.5 29.9
LV EF 0.94 1.7% 11.2 3.1
RV EDV 0.92 19.6 45.4 10.6
RV ESV 0.93 1.4 32.6 5.2
RV EF 0.73 8.0% 19.1 14.1

Manual Compared with Expert Revised Subanalysis
LV EDV 0.98 15 27.1 28.2
LV ESV 0.97 11.7 28.9 212.8
RV EDV 0.96 1.4 32 20.4
RV ESV 0.9 20.9 28.6 3.8
Overall average 0.97 7.1 32.4 24.7

Manual Compared with Automated Subanalysis
LV EDV 0.97 29.8 33.1 216.9
LV ESV 0.97 11.7 28.8 211
RV EDV 0.95 17.2 39.9 29.8
RV ESV 0.89 24.9 29 12.3
Overall average 0.96 14.4 41.4 27.3

Expert Revised Compared with Automated Subanalysis
LV EDV 0.98 14.9 24 29.4
LV ESV 0.97 20.2 26.7 4.4
RV EDV 0.97 16.8 31.5 210.3
RV ESV 0.91 23 27.1 7.1
Overall average 0.97 7.2 32.6 22.1

Note.—All significance values for correlations are P , .001. EDV = end-diastolic volume, EF = ejection fraction, ESV = end-systolic vol-
ume, LV = left ventricle, RV = right ventricle, SD = standard deviation.
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EDV of r = 0.92 (P , .001), and EF of r = 0.73 (P , .001). 
(Table 2 further details mean differences, relative errors, and 2 
standard deviation limits of agreement.) The biases and standard 
deviations are shown in Bland-Altman plots in Figure 2.

Subanalysis of the manual, automated, and expert revised 
contours showed strong correlation (Table 2). Across both ven-
tricles and phases of the cardiac cycle, manual and expert revised 
measurements had an overall correlation of r = 0.97 with a mean 
difference of 7.1 mL (a mean relative volume error of −4.7%) 
and 2 standard deviation limits of agreement at 632.4 mL. DL-
derived automated contours agreed with both manual and expert 
revised contours. When compared with expert revised contours, 
there was an overall correlation of r = 0.97 with mean difference 
of 7.2 mL (a mean relative volume error of −2.1%) and 2 stan-
dard deviation limits of agreement at 632.6 mL. When com-
pared with manual contours, there was an overall correlation of r 
= 0.96 with mean difference of 14.4 mL (a mean relative volume 
error of −7.3%) and 2 standard deviation limits of agreement at 
641.4 mL. Bland-Altman plots highlight these comparisons in 
Figure 3 (LV) and Figure 4 (RV).

Qualitative Comparison of Contours
Automated contours were visually inspected at both ES and 
ED for errant inclusion or exclusion of apical or basal slices, 

truth volume), Dice coefficients were given as the quotient 
of similarity between 0 and 1, and Bland-Altman plots indi-
cated average bias and 2 standard deviations as noted.

Results

Contour Generation and Evaluation of Global Measurements
For the primary analysis of performance on all 200 routine car-
diac MRI examinations, we observed that the DL-based algo-
rithm generated cardiac contours for most clinical cases. Fully 
automated contours were generated for 197 (98.5%) for the 
LV endocardium, 196 (98%) for the LV epicardium, and 160 
(80%) for the RV endocardium. Contours that were not gener-
ated were not included in the analysis.

Automated LV volumetric measurements showed strong corre-
lation with manual measurements at ESV of r = 0.99 (P , .001), 
EDV of r = 0.97 (P , .001), and EF of r = 0.94 (P , .001). (Table 
2 further details mean differences, relative errors, and 2 standard 
deviation limits of agreement.) The biases and standard deviations 
are also shown in Bland-Altman plots in Figure 1. The average 
difference between the ED mass and ES mass was 1.6 g (mean 
relative error of 1.5%, and 2 standard deviations at 630 g).

Automated RV volumetric measurements also showed corre-
lation with manual measurements at ESV of r = 0.93 (P , .001), 

Figure 1: Comparison between manual and automated measurements for left ventricular (LV) function. A, Bland-Altman plots compare manual and automated end-
systolic volume (ESV), B, end-diastolic volume (EDV), and, C, ejection fraction (EF) in milliliters and percentages, respectively. Dashed lines indicate average difference and 2 
standard deviation limits of agreement. In the LV, the automated metrics were lower for ESV, EDV, and EF.

Figure 2: Comparison between manual and automated differences for right ventricular (RV) function. A, Bland-Altman plots compare manual and automated end-systolic 
volume (ESV), B, end-diastolic volume (EDV), and C, ejection fraction (EF) in milliliters and percentages, respectively. Dashed lines indicate average difference and 2 standard 
deviation limits of agreement. In the RV, automated measures were, on average, higher than manual for ESV and lower for EDV and EF.

http://radiology-ai.rsna.org
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Figure 3: Subanalysis comparing manual, automated, and expert revised measures for left ventricular (LV) end-systolic volume (ESV) and end-diastolic volume (EDV). 
Dashed lines indicate mean bias and 2 standard deviations range. Overall, manual volumes were larger than automated or expert revised. Expert revised and automated 
measures were similar at ESV, whereas at EDV the expert revised measures were larger.

Figure 4: Subanalysis comparing manual, automated, and expert revised measures for right ventricular (RV) end-systolic volume (ESV) and end-diastolic volume (EDV). 
Dashed lines indicate mean bias and 2 standard deviations range. Manual and expert revised measurements tended to be slightly smaller for the ESV, and manual and expert 
revised measurements tended to be larger than automated EDVs. Across all groups ESV measurements were the most similar, possibly owing to the inherently larger nature of 
the EDV and greater variability of basal slice locations at this timepoint.

http://radiology-ai.rsna.org
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nonanatomic shapes, and nonanatomic locations of contours. 
Individual classes of errors were counted, allowing for multiple 
error types simultaneously in a single contour. In 33 of 200 
(16.5%) cases, no visually apparent errors were identified. A 
total of 344 contour errors were classified (Fig 5), and of these, 
22 of 344 (6.4%) did not fit one of the classifications and were 
denoted as “other errors.” Errors were distributed evenly be-
tween the right side of the heart (151 of 344 [43.9%]) and 
left side of the heart (171 of 344 [49.7%]). When comparing 
location, 251 of 344 (73.0%) were at the cardiac basal slices, 
whereas 71 of 344 (20.6%) were at the cardiac apex. A greater 
proportion of the errors occurred at ES (204 of 344 [59.3%]) 
compared with ED (118 of 244 [34.3%]). The individual re-
gions with the greatest proportion of errors were the RV base 
at ES (90 of 344 [26.2% of total]) and the LV base at ES (73 of 
244 [21.2% of total]). Examples of errant contours are shown 
in Figure E1 (supplement).

Quantitative Comparison of Contours
The Dice metric compares similarity between two contour 
areas with a range between 0 (indicating no overlap) and 1 
(indicating perfect overlap). When comparing the manual 
with expert revised segmentations, the weighted average Dice 
coefficient for all contours at both phases of the cardiac cycle 
was 0.94. Comparison between manual and automated seg-
mentations had an overall weighted average Dice coefficient 
of 0.92, and expert revised segmentations compared with au-

tomated segmentations had an overall weighted average Dice 
coefficient of 0.95. When comparing the interaction between 
contour and region for the manual, automated, and expert 
revised Dice metrics, a two-way analysis of variance was not 
significant for LV endocardium, LV epicardium, or RV endo-
cardium at ED (P = .23, P = .95, and P = .61, respectively), or 
ES (P = .76, P = .71, P = .92, respectively), indicating that the 
Dice is not significantly different between these groups. The 
average Dice between these groups for each cardiac region 
and phase of the cardiac cycle is shown in Table 3 and Figure 
6, with examples of manual, expert revised, and automated 
contours shown in Figure E2 (supplement). In aggregate, 
Dice metrics were similar across systole and diastole. When 
examined by contour, the LV epicardium had the most con-
sistently high Dice values, and the RV endocardium showed 
the most variability in contours with larger Dice variation 
and lower average scores across group comparisons. Consis-
tently high Dice values were calculated in the midventricular 
segments, indicating highly congruent contours in these re-
gions among all groups. The region with the greatest varia-
tion across both systole and diastole was the cardiac apex. Of 
note, while the apical region was defined as 20% of cardiac 
length on the short-axis images, it accounted for an average 
of 8.2% of overall cardiac volume in diastole and 3.1% of 
overall cardiac volume in systole. Therefore, while the apex 
had the largest amount of contour variability, the impact on 
overall volume calculation was relatively small.

Figure 5: Distribution of automated contour errors. Overall errors for both ventricles are shown in, A, and shown by ventricle in, B, and C. Differ-
ences from manual contours were classified as errant inclusion or exclusion of apical or basal slices, or generation of a nonanatomic shape or location 
of contours. Differences outside the previous criteria were classified as “other.” A, Chart shows the location (apex or base, and left ventricle [LV] or right 
ventricle [RV]), and cardiac phase (end systole [ES] or end diastole [ED]) of differences as a percentage of total. The largest proportion was seen at 
the cardiac base (dark gray slices), an area with variation in contours even among experts. Although the RV ES base had the largest percentage of 
differences, the LV base (including both endocardium and epicardium) had the largest number of differences overall.

http://radiology-ai.rsna.org
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Discussion
In this study, we showed that a DL algorithm can perform both 
RV and LV volumetry on cardiac MRI data from most patients 
in clinical practice. There was strong correlation between volu-
metric measurements obtained by fully manual and fully auto-
mated approaches. Remarkably, the differences between man-
ual and automated cardiac volumetry were within the range 
seen between expert readers (5). Suinesiaputra et al previously 
compared cardiac MRI measurements from readers at multiple 
institutions from MRI examinations with a variety of patholo-
gies and image quality and noted an error range from −32.9 to 
41.2 mL relative to the consensus for LV ESV (5). In our study, 
we observed that between manual and automated contours, 
limits of agreement for LV ESV fell within this range. These 
results suggest that incorporation of fully automated contours 
into the diagnostic workflow may help to reduce the variability 
typically seen between readers.

When we explored the overlap of individual segmenta-
tions on a regional basis, the DL algorithm performed bet-
ter in the midventricular slices than at the base and apex. The 
basal and apical segments have also been shown to have the 
most variability when segmentations were attempted by other 
algorithms and generated the greatest variability between ex-
pert readers (21,32). For example, multiple prior studies have 
reported high interobserver contour variation at the cardiac 
base (5,33–35). Bonnemains et al examined reader variability 
through the RV short axis and found the basal RV accounted 

for 70%–80% of total variability among expert readers (36). 
The authors proposed that the imaging plane may make it dif-
ficult to agree on the extent of the RV because the position of 
the valves adds uncertainty to the volume (36). The difficulty 
that expert readers and DL algorithms have with this area may 
therefore be, in part, the result of ambiguity of right side of the 
heart boundaries on the basal images themselves.

The DL algorithm tested in our study performed well com-
pared with other recent machine learning–based RV segmenta-
tion methods. For example, an algorithm proposed by Avendi et 
al showed similarly strong correlation with ground truth mea-
surements (0.99 for end systolic and 0.98 for end diastolic) and 
had a Dice area similarity coefficient of 0.82 (9). Although the 
RV volumes in that study had a stronger correlation, Dice coef-
ficients were lower. This finding may be related to the scope and 
variability of the image dataset and quality of the ground truth 
segmentations near the tricuspid valve (9,23,24). Further studies 
are needed to investigate the performance of different candidate 
algorithms on common clinical datasets, such as those that orga-
nizations like the American College of Radiology are developing 
in shared repositories for imaging data.

There were several limitations to the current study. It is pos-
sible that a wider range of ground truth segmentations from 
multiple readers could alter the performance metrics, and it 
is clear from prior studies that there can be disagreement on 
proper segmentation of the basal and apical slices between ex-
pert readers. The ground truth segmentations for this study were 

Table 3: Dice Correlations across Groups

Contour Phase Average Dice Apical Mid-Apical Mid Mid-Basal Basal
Manual and Expert Revised Segmentations

LV endocardium ESV 0.91 0.79 0.87 0.92 0.92 0.89
EDV 0.91 0.86 0.92 0.93 0.92 0.88

LV epicardium ESV 0.95 0.93 0.95 0.96 0.96 0.95
EDV 0.95 0.94 0.96 0.96 0.95 0.93

RV endocardium ESV 0.86 0.77 0.81 0.87 0.9 0.8
EDV 0.88 0.79 0.86 0.9 0.9 0.84

Manual and Automated Segmentations
LV endocardium ESV 0.91 0.81 0.87 0.92 0.92 0.88

EDV 0.92 0.88 0.93 0.94 0.94 0.88
LV epicardium ESV 0.95 0.91 0.94 0.96 0.95 0.94

EDV 0.94 0.92 0.95 0.95 0.95 0.9
RV endocardium ESV 0.85 0.81 0.7 0.84 0.9 0.76

EDV 0.88 0.74 0.82 0.87 0.91 0.85
Expert Revised and Automated Segmentations

LV endocardium ESV 0.95 0.85 0.94 0.96 0.95 0.92
EDV 0.95 0.92 0.97 0.97 0.96 0.89

LV epicardium ESV 0.95 0.91 0.96 0.96 0.95 0.95
EDV 0.96 0.95 0.97 0.96 0.97 0.92

RV endocardium ESV 0.9 0.9 0.77 0.88 0.92 0.83
EDV 0.92 0.86 0.91 0.92 0.94 0.89

Note.—The overall weighted averages for manual and expert revised segmentations, manual and automated segmentations, and expert 
revised and automated segmentations were 0.94, 0.92, and 0.95, respectively. EDV = end-diastolic volume, ESV = end-systolic volume, LV 
= left ventricle, RV = right ventricle.
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taken from measurements performed in the context of clinical 
practice. We acknowledge that variance may occur between the 
different clinical readers; however, comparison of algorithm 
performance with a clinical endpoint was chosen to reflect the 
expected use scenario. Second, the initial version of the DL al-
gorithm displayed a contour based on an internal confidence 
threshold, which prevented it from generating contours for all 
cases. This may not necessarily represent a fundamental limita-
tion of convolutional neural networks, but rather a design deci-
sion for clinical usability. Because algorithm contours below this 
threshold were not available for study inclusion, the algorithm 
performance on RV segmentation of all cases is likely lower on 
average than found here. Future work could be directed toward 
optimizing this confidence threshold. Third, the indications, 
populations, and equipment used for patients referred for car-
diac MRI may vary between institutions. In particular, the per-
formance of the algorithm studied here may not be as robust 
with cases of complex congenital heart disease, or real-time cases 
which were not present in the population analyzed. Future di-
rections could include testing on patients with congenital heart 
defects and gathering additional studies for subanalyses of pa-
tients with specific pathologies, in addition to examining the 
performance on real-time cases. In addition, we recognize the 
limitation of using cases from a single MRI scanner. This study 
represents an independent test of the algorithm because none of 
its training data came from our institution. However, to further 
assess algorithm performance and generalizability, future testing 
should be performed using equipment from multiple MRI ven-
dors and multiple sequences.

Cardiac MRI is a model system for the study of clinical imple-
mentation of DL algorithms, particularly because quantitative 
volumetric measurements are a routine part of clinical practice. 

DL algorithms have the potential to increase accessibility of car-
diac MRI by decreasing the time necessary to obtain volumetric 
measurements. Implementation of DL algorithms in practice 
may ultimately benefit clinical practice by allowing physicians to 
focus on higher order tasks in patient management rather than 
manual cardiac contouring. In this study, we showed that a DL–
based algorithm can segment the RV and LV in a manner similar 
to that of expert readers. We believe that the combination of 
DL automation and specialist oversight can enhance patient care 
by streamlining quantitative interpretation, particularly as these 
algorithms continue to improve.
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