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Modelling enhanced confinement in drift-wave turbulence

R. J. Hajjar, P. H. Diamond, A. Ashourvan, and G. R. Tynan
Mechanical and Aerospace Engineering Department, University of California, San Diego,
9500 Gilman Drive - La Jolla, California 92093, USA

(Received 3 January 2017; accepted 22 May 2017; published online 12 June 2017)

The results of modeling studies of an enhanced confinement in the drift wave turbulent plasma of

the CSDX linear device are presented. The mechanism of enhanced confinement is investigated

here using a reduced 1D, time-dependent model, which illustrates the exchange of enstrophy

between two disparate scale structures: the mesoscale flow and profile, and the turbulence intensity

fields. Mean density, mean vorticity, and turbulent potential enstrophy are the variables for this

model. Total potential enstrophy is conserved in this model. Vorticity mixing occurs on a scale

length related to an effective Rhines’ scale of turbulence, and shrinks as both density and vorticity

gradients steepen. Numerical results obtained from solution of the model agree well with the exper-

imental data from CSDX showing: (i) a steepening of the mean density profile, indicating a radial

transport barrier formation, (ii) the development of a radially sheared azimuthal flow velocity that

coincides with the density steepening and initiates a turbulence quench, and (iii) negative Reynolds

work values, indicating that fluctuations drive the shear flow. These observations as the magnitude

of the magnetic field B increases are recovered using purely diffusive expressions for the vorticity

and density fluxes. A new dimensionless turbulence parameter RDT-defined as the ratio of the inte-

grated potential enstrophy transfer from turbulence to the flow, to the integrated potential enstrophy

production due to relaxation of the density gradient is introduced as a turbulence collapse indicator

that detects when the enhanced confinement state is triggered. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4985323]

I. INTRODUCTION

Turbulent phenomena and their evolving properties in

fluids are topics of both classical and current significance. Of

particular interest are the spectral features and transport prop-

erties of turbulence in magnetized plasmas. Density and tem-

perature gradients, typically present near the edges of large

scale magnetically confined devices, generate fluctuations

that give rise to fully developed drift wave (DW) instabilities.

Such instabilities carry fluxes via cross-field transport and

limit the energy confinement time sE.1,2 Suppression of these

instabilities and reduction of the cross-field transport rates are

therefore essential requirements for achieving enhanced con-

finement, in ITER and future tokamaks.

One way the plasma itself mitigates cross-field transport

rates is via fluctuation driven zonal flows (ZFs). In laboratory

plasmas, zonal flows are strongly sheared E�B layers.

Generated via Reynolds stresses and particle transport, zonal

flows arise when low-frequency drift modes interact by mod-

ulational instability or via an inverse cascade, to form a large

scale anisotropic structure. The direct relation between

microscale drift waves and macroscale zonal flows has been

already well established both theoretically3 and experimen-

tally,4,5 so much so that the system is now referred to as“

drift wave-zonal flow turbulence” (see Ref. 6 for a detailed

review).

Interaction between separate components of the DW-ZF

turbulence is found to affect the turbulent transport dynam-

ics. Experimental studies in both linear and toroidal devices

show that the state of turbulence changes with the magnetic

field (CSDX),7,8 the filling gas pressure (LMDU),9 and the

radial electric field (KIWI).10 Shearing of the DW structures

leads to an energy transfer between low frequency fluctua-

tions and vortices with finite azimuthal mode numbers,

including m� 0 zonal flows. This coupling initiates a process

of depletion of the fluctuation energy, which may continue to

the point of the collapse of the turbulence intensity. When

sufficient heat source, torque, and fueling are available, a

thermally insulation layer supported by a strongly sheared

E�B flow is formed. A transport barrier is thus created and

an enhanced confinement regime occurs.11–13 The concept of

shear enhanced turbulence decorrelation was proposed

nearly three decades ago.14,15 Since then, several variations

on the theme of the predator-prey model describing the inter-

play between turbulent fluctuations and E�B sheared flows

have been suggested to explain the plasma evolution towards

an enhanced confinement state in fusion devices like TJ-II,16

NSTX,17 and EAST.18 Moreover, net inward fluxes would

often accompany this transition, as it was observed in various

toroidal19,20 and small scale linear devices.21–23

In CSDX, early observations showed a controlled transi-

tion from nonlinearly coupled eigenmodes to fully developed

broadband turbulence in the plasma, as the magnitude of B is

increased.24 Recent studies revealed the existence of an

enhanced regime at B¼ 1200 G, associated with a steepening

of the mean density profile, the development of a strong

velocity shearing and turbulent kinetic energy coupling to

the flow. An inward particle flux as well as a change in the

global and local turbulence features were also observed.25,26

We present a reduced 1D transport model that describes

the space-time evolution of turbulence and mean fields in the
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turbulent plasma conditions of CSDX. The model is formu-

lated in terms of potential vorticity dynamics, and conserves

total potential enstrophy.27 All evolution is expressed in

terms of the particle and vorticity fluxes. Flux nonlinearity

enters via a gradient dependent mixing length, and the vortic-

ity flux includes both a diffusive and a residual component.

The model recovers profile evolution in CSDX with increas-

ing B, without the need to include an explicit inward particle

pinch in the expression for the particle flux. This evolution

corresponds to: (i) steepening of the mean density profile as a

signature of a enhanced confinement (ii) the development of

a radially sheared azimuthal flow velocity that triggers the

transition to an improved energy confinement state, and (iii)

negative Reynolds work values indicating that energy is

transfered to flow as the system self-organizes. We mention

here that the Reynolds work sign convention used in Refs. 25

and 26 is opposite to the one adopted here; a positive

Reynolds work in Refs. 25 and 26 indicates a turbulence

decay and a zonal flow drive. The model can also be used to

study the effects of other factors on the dynamics of this

global transition. These factors include: presence of a thin

layer of neutrals around the plasma, variations of the plasma

ion fueling intensity S and of the macroscopic turbulent mix-

ing length l0 to be defined in Sec. III. The model is used to

investigate the relevant case of a plasma with a high colli-

sional Prandtl number: Pr ¼ �c/Dc.

The remainder of this paper is organized as follows:

Sec. II presents the model, with a discussion of the corre-

sponding physics and assumptions. This requires an explana-

tion of the expression for the mixing length lmix, and a

review of the physics behind the Rhines’ scale. Expressions

for the density, vorticity, and potential enstrophy fluxes and

coefficients are also presented in this section, along with the

three spatio-temporal equations of the model. Section III

reports on the numerical results obtained when varying the

magnitude of the magnetic field. A diffusive vorticity flux:

P¼ –vru, where the vorticity u¼r2U, is first used in

Section III. A residual stress Pres is then included in the vor-

ticity flux expression: P ¼ Pres – vru to assess its potential

role. A set of local and global validation metrics are then

presented in Section IV in order to verify that the model truly

describes the plasma evolution as it occurs in CSDX. Section

V explores the energy exchange between fluctuations and the

mean flow and studies time variations of two parameters; RT

already introduced in a previous work28 and a new parameter

RDT, derived from this model. Both parameters provide

quantitative and qualitative measurements of this exchange,

and serve as turbulence collapse indicators. Conclusions are

drawn in Sec. VI.

II. STRUCTURE OF THE 3-FIELD REDUCED MODEL

The proposed model investigates space and time varia-

tions of the following three fields: the mean density hni, the

mean vorticity hui ¼ hr2Ui, and the turbulent potential ens-

trophy e ¼ hð~n�~uÞ2
2
i. It is derived from the collisional

Hasegawa-Wakatani equations29,30

ð@t �rU� ẑ:rÞr2U ¼ �c1r2
kðU� nÞ þ c2r4U; (1a)

ð@t �rU� ẑ:rÞðnþ ln n0Þ ¼ �c1r2
kðU� nÞ: (1b)

Here, c1 ¼ Te=e2n0gxci and c2 ¼ l=q2
s xci. l and g are the

ion viscosity and plasma resistivity, n0 is the average plasma

density, and n and U are the normalized fluctuating density

and potential. CSDX plasma being collisional, a modified

Hasegawa-Wakatani model can be used to describe turbulent

transport in this device. In addition, LIF measurements in

CSDX show that the axial flow is well within the subsonic

limit.31 Thus, the radial gradient of the parallel velocity

reported as contributing to an inward particle flux in Ref. 32

does not contribute to such a flux here, as a parallel shear

flow instability simply cannot be triggered.33 This fact is

taken into account while formulating the model. Our reduced

model relies on two related points: conservation of the total

potential enstrophy PE (mean and turbulent) up to dissipa-

tion and external forcing, and inhomogeneous potential vor-

ticity (PV) mixing via vorticity diffusion. This mixing

occurs on a scale lmix that is an interpolation between an

excitation scale l0 and the Rhines’ scale of turbulence lRh.

Dynamic dependence of lmix on lRh results from the interac-

tion between the mean fields and the turbulence structures,

and allows the model to capture the internal energy exchange

during this interaction. The Rhines’ scale is inversely propor-

tional to the potential vorticity gradient rq¼rn – ru;

hence, lmix has also an inverse dependence onrq and shrinks

as ru and rn steepen. The model uses purely diffusive

expressions for the turbulent field fluxes without an explicit

pinch velocity contribution to the particle flux. In fact, local

expressions for the fluxes of n, u, and e as derived using the

quasi-linear theory are:34 Cn ¼ �Dnrn; Ce ¼ �Dere, and

P ¼ Pres – vru. A discussion of the diffusion coefficients

and the residual vorticity stress is referred to Subsecs. II A

and II B.

A full derivation of the model is available in Ref. 27.

We mention here only the relevant equations

@tu ¼ �@xPþ lcr2u; (2a)

@tn ¼ �@xCn þ Dcr2n; (2b)

@te ¼ �@xCe þ P� e3=2 � ðCn �PÞð@xn� @xuÞ; (2c)

for mean density n and mean vorticity fields u, as well as for

fluctuating potential enstrophy e ¼ ð~n=n0 � q2
sr2e~U=TeÞ2=

2. Here, the fields are expanded into a mean and a fluctuating

part: n ¼ hni þ dn; vE ¼ hviŷ þ dv; u ¼ hui þ du ¼ @xhvi
þdu. Fluxes of turbulent vorticity, density, and potential

enstrophy fluxes are: P ¼ hdvxdui; Cn ¼ hdvxdni and Ce

¼ hdvxdq2i, respectively. Turbulent enstrophy is related

to the fluctuating potential vorticity dq ¼ dn� du via:

e ¼ hdq2i=2. lc and Dc are plasma collisional viscosity and

diffusivity, n and U are normalized to n0 and Te/e, space

and times scales are normalized to qs ¼
ffiffiffiffiffiffiffiffiffiffi
miTe

p
=eB and

1/xci¼mic/eB.

The first terms of the RHS of Eqs. (2a)–(2c) represent a

turbulent diffusive flux or spreading of the corresponding

field. In Eq. (2c), P represents the enstrophy production due

to an external stirring, and replaces explicit linear instability
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which is not treated in this model. Note that in this model

formulation, the forcing serves only to initialize a back-

ground turbulence level. It does not represent the turbulence

drive in the steady state. Drive is due to rn relaxation, i.e.,

Cnrn term in Eq. (2c). The turbulence and transport results

are insensitive to the initializing forcing, and we write it as:

P ¼
ffiffi
e
p
ðu2

0 � eÞ. This form of P reflects generation of enstro-

phy via external stirring. Other forms of P / e are equally

valid and generate similar results. Enstrophy dissipation, pro-

portional to e3=2, is a direct outcome of the forward enstro-

phy cascade associated with nonlinear dissipation of e at

smaller scales. The last term of Eq. (2c) is a direct coupling

between the vorticity and density fluctuations, and is inter-

preted as an internal production of potential enstrophy. As

PV mixing occurs, mean PE values are converted into turbu-

lent ones and vice versa, while total PE is conserved.

Equations (2a)–(2c) constitute a closed system that can be

solved numerically once expressions for the field fluxes are

known. Since the model is diffusive, expressions for the dif-

fusion coefficients and the corresponding mixing length are

thus needed.

Although CSDX is a cylindrical plasma, the previous

equations are written in a 1D form. This results from taking

the axial and azimuthal average of the density, vorticity, and

enstrophy fields in order to obtain the corresponding mean

quantities: hnðrÞi; huðrÞi ¼ hr2Ui and heðrÞi.

A. The mixing length

Central to the formulation of a Fickian flux is the use of

a mixing length lmix. In this model, lmix is an interpolation

between the external excitation dimension l0 and the Rhines’

scale of turbulence lRh.35 The dimension l0 is known from

experiment, and thus, an investigation of lmix requires a study

of the physics behind the Rhines’ scale. In 3D turbulence,

vortex stretching leads to enstrophy production that drives

the fluid energy to smaller scales until it is removed from the

system by viscous dissipation. However, in quasi 2D turbu-

lence, vortex stretching is by definition inhibited and other

nonlinear processes, such as vortex merging, play the promi-

nent role. In the 2D case, energy undergoes an inverse
energy cascade towards larger scales, which explains the

emergence of large scale jets from small scale turbulent

structures. As eddies become bigger, their size increases and

their overturning slows, which makes their dynamics much

more wave-like. The Rhines’ scale lRh can be interpreted as a

transition length scale between a turbulence dominated

regime and wave-like dynamics,35 and is obtained by balanc-

ing the turbulence characteristic rate, i.e., the eddy turnover

rate, with the wave frequency. In a DW system, an estimate

of the eddy turnover rate is: 1=sc � dv=lRh �
ffiffi
e
p

, while the

drift wave frequency is: x � �kyvDe=ð1þ k2
?q

2
s Þ � lRhrq,

where vDe is the electron diamagnetic drift velocity.

Balancing these two scales then gives: lRh �
ffiffi
e
p
=rq

¼
ffiffi
e
p
=rðn� uÞ.

In our model, l0 and lRh are the two significant length

scales of the system. When l0� lRh, the vorticity gradient is

weak, and the natural estimate of the mixing length is simply

the external dimension: lmix � l0. This prescription however

is not accurate in the case of a strong vorticity gradient,

where rq can no longer be neglected. In this case, when the

Rhines’ scale is much smaller than the stirring dimension

(lRh� l0), coupling between different scales is stimulated. A

reasonable estimate of the mixing length is then obtained by

balancing the mean kinetic energy dissipation rate and the

mean PV gradient frequency.36 The Rhines’ scale is then the

governing spatial structure for turbulence mixing in these

cases of steep PV gradients, generating lmix � lRh. In between

these two limiting cases, one should include the effect of

finite drift-Rossby frequency in lmix. This is achieved by

writing lmix as an interpolation between l0 and lRh,

l2
mix ¼

l2
0

1þ l0=lRhð Þ2
¼ l2

0

1þ l20 @x n� uð Þð Þ2=e
: (3)

B. Expressions for the turbulent fluxes

Expressions for the turbulent density and vorticity fluxes

were previously derived using quasi-linear theory.34 In the

near adiabatic regime in which parallel diffusion timescale

is the smallest characteristic time scale of the system, and

in the absence of any shear, the drift wave frequency is x? ¼
xr

m ¼ vdkm=ð1þ k2
?Þ where k2

? ¼ �r2
?U=U. Expressions

for the fluxes and the diffusion coefficients are

Cn ¼ �Dn@xhni; (4a)

P ¼ ðv� DnÞ@xhni � v@2
x hvi ¼ Pres � v@xhui; (4b)

Dn ¼
X

m

k2
?

1þ k2
?

k2
m

an
hd/2

mi; (4c)

v ¼
X

m

jcmj
jV0 � xm=kmj2

hd/2
mi: (4d)

Here, the dimensionless electron drift velocity is vdðxÞ ¼
�d ln n0ðxÞ=dx ¼ vrn and the plasma flow velocity is

V0 ¼ hvi. The mode number is m¼ (m,n,l) with m, n, and

l being the azimuthal, axial, and radial mode numbers,

respectively. xm ¼ xr
m þ ijcmj is the mode eigenfrequency,

km and kk are the azimuthal and parallel wave numbers, and

an ¼ gk2
k is the parallel diffusion rate.

The residual stress Pres in Eq. (4b) originates from a

decomposition of the Reynolds stress into diffusive and non-

diffusive components, and appears when the off-diagonal

terms of the poloidal Reynolds stress do not vanish. This

results as a consequence of a symmetry breaking mechanism

in hkrkhi where h…i is a spectral average.37,38 Physically,

Pres converts parts of the diving particle flux to an azimuthal

flow. Pres is responsible for generation of plasma flows

through the density gradient, even in the absence of any mag-

netic shear.39 Using quasi-linear theory, the residual stress

Pres¼Cn/n – vvd.34 In the adiabatic regime, the first term in

the expression of Pres is negligible with respect to the second

one, simply because it is proportional to 1/an and an� 1. One

can thus label it as the non-adiabatic term. When no flow is

present, or when the flow velocity V0 is constant, the vorticity

flux reduces to Pres. Writing Ce ¼ �De@xe and plugging in
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the model equations, we obtain the final form for the three

field equations,

@tn ¼ @x Dn@xn½ � þ Dc@
2
x n; (5a)

@tu ¼ @x v@xu½ � þ lc@
2
x u� @x Pres½ �; (5b)

@te ¼ @x De@xe½ � þPresð@xn� @xuÞ � ðv@xu� Dn@xnÞ
� ð@xn� @xuÞ � e3=2 þ

ffiffi
e
p
ðu2

0 � eÞ: (5c)

Equations (5a)–(5c) are rearranged and integrated to giveðL

0

@t eþ n� uð Þ2

2

� �
dx ¼

ðL

0

P� e3=2 � @xCe

�
� Cn �Pð Þ @xn� @xuð Þ
þ n� uð Þ @tn� @tuð Þ

�
dx

¼
ðL

0

P� e3=2ð Þdx (6)

after neglecting the terms proportional to Dc and lc. This

shows that the system conserves total PE up to forcing and

dissipation, as a result of enstrophy exchange between mean

fields and fluctuations. The internal turbulent PE production

term is canceled by the corresponding loss term in the evolu-

tion equation for the mean PE as a part of this enstrophy

exchange. In view of the total PE conservation elucidated

above, we go back to Eq. (3) to emphasize how crucial the

expression for lmix is in closing the feedback loop between

the PV gradient and the corresponding diffusion coefficient:

as rq¼rn – ru steepens, the mean potential enstrophy
ðn�uÞ2

2
increases, causing a drop in turbulent potential enstro-

phy e as a result of total PE conservation. When e decreases,

the mixing length and thus the corresponding PV diffusion

coefficient shrink, leading to a further increase in the PV gra-

dient. Hence, a closed feedback loop is generated.

C. Viscosity and diffusion coefficients

In the near adiabatic regime, the timescale ordering is:

gj2
k � x� V00. Using jk2

mhd/2
mij ¼ jhdv2

mij � l2mixe, the par-

ticle diffusion coefficient Dn is

Dn ¼ el2
mix=a; (7)

where the resistive parallel diffusion rate a ¼ ð1þ k2
?Þ

an=k2
?. From dimensional analysis, a is proportional to

ffiffi
e
p

and the particle diffusion coefficient is: Dn ¼ l2
mix

ffiffi
e
p

.

As for the vorticity diffusion coefficient, v is not domi-

nated by a large resistive parallel diffusion rate. Unlike the

expression for Dn, the denominator of Eq. (4d) represents the

competition between the flow shear V00 and the wave fre-

quency x. In the absence of shear, instabilities are density

gradient driven collisional DWs that are damped by viscous

dissipation. Their growth rate is then that of a drift wave:

jcDW j ¼ ðx2
m=anÞðk2

?=ð1þ k2
?ÞÞ ¼ x2

m=a, reduced by the dis-

sipation rate jclj. The vorticity diffusion coefficient is then

v¼
X

m

jcDW j� jclj
� �

jk2
mhd/2

mij
x2

m

¼
X

m

x2
m

a
jk2

mhd/2
mij

x2
m

� el2
mix

a
:

When a flow shear V00 is present, the vorticity diffusion coef-

ficient v is reduced, as the net turbulence correlation time

decreases. When incorporating the shear effect into the

turbulence correlation time, 1/a becomes: 1=a ’ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk?dvÞ2 þ ðV00Þ

2
q

’ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ q2

p
, reflecting enstrophy gen-

eration and presence of flow shear, respectively. The vortic-

ity diffusion coefficient v then becomes

v ¼ el2mix=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ q2

p
¼ l2

mixe=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cuu2

p
: (8)

Here, a coefficient cu reflecting the strength of the shear flow

has been added to the expression of v. We will show later on

that the numerical solutions for this model are insensitive to

the parameter cu. In a stationary regime,
ffiffi
e
p

> q and the vor-

ticity coefficient v ¼
ffiffi
e
p

l2mix found previously40 is recovered.

In a strong shear regime where q >
ffiffi
e
p

, the vorticity coeffi-

cient is v ¼ el2
mix=jqj. Finally, we use the following expres-

sion for De: De ¼ l2
mixe=a. We mention here that the model

includes three different time scales: the wave frequency and

growth rate inverse time scales x�1
m and jcj�1

appearing in

the spectral sums of the diffusion coefficients expressions,

the correlation or eddy turnover time e�1=2 appearing in the

enstrophy equation, and a diffusive time scale which charac-

terizes the evolution of the mean field quantities as a result

of turbulent fluxes evolution. While the first two are fast

time scales, the last one is a slow (diffusive) one.

III. MODEL PREDICTIONS OF PLASMA PROFILES

In order to compare the model predictions to the experi-

mental results obtained from CSDX, we present in this section

the density and vorticity profiles numerically predicted by the

model for different B values. Two forms of vorticity fluxes

are considered. First, a diffusive vorticity form: P¼ –@xu.

Then, a residual stress Pres is added to the vorticity flux. The

two cases are then compared to evaluate any potential role of

Pres. Before proceeding, we lay out the experimental parame-

ters of CSDX cylindrical magnetized helicon plasma: the

plasma column has a total length L¼ 2.8 m and a radius

a¼ 10 cm. Argon plasma with the following characteristics is

produced: ne ¼ 1013cm�3; Te ¼ 4eV, and Ti¼ 0.3 – 0.7 eV.

The magnitude of the magnetic field B ranges between 800

and 1300 G, giving x�1
ci � 30 ls and qs ¼ Cs=xci � 1 cm

where Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the plasma sound speed. Argon neu-

trals are radially injected at a constant flow rate of 25 sccm,

and the corresponding neutral gas pressure Pgas¼ 3.2 mTorr

is equivalent to a neutral density nn ¼ 1014cm�3.25,26 Plasma

neutral ionization rate at Te¼ 5 eV is S ¼ nennhrionvei
¼ 1017cm�3s�1, where hrionvei ¼ 10�10cm3=s is the ioniza-

tion rate coefficient at 5 eV. These values will be used in our

calculations, in order to benchmark our model predictions to

the experimental results (see Fig. 1).

A. Diffusive vorticity flux: P52v›x u

1. Model equations

For a shear strength parameter cu¼ 0 and a ¼
ffiffi
e
p

,

the diffusion coefficients are equal: Dn ¼ v ¼ De ¼ l2
mixe

1=2

and Pres¼ 0. The vorticity flux is then: P¼ –v@xu.
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Equations (5a)–(5c) are rescaled using: x 	 Lx; e 	 u2
0e; n 	

Lu0n; u 	 Lu0u; t 	 L2t=u0; lc 	 u0lc and Dc 	 u0Dc,

@tn ¼ @x
l20e

3=2@xn

eþ l2
0 @x n� uð Þð Þ2

þ Dc@xn

" #
þ S; (9a)

@tu ¼ @x
l2
0e

3=2@xu

eþ l20 @x n� uð Þð Þ2
þ lc@xu

" #
; (9b)

@te ¼ @x
l20e

3=2@xe

eþ l2
0 @x n� uð Þð Þ2

@e
@x

" #

þ L2 l2
0e

3=2 @x n� uð Þð Þ2

eþ l2
0 @x n� uð Þð Þ2

� 2e3=2 þ
ffiffi
e
p

" #
: (9c)

Here, L is the total plasma column length and S (normalized

to n0¼ 1013 cm�3) is the external fueling source for ion den-

sity. The latter represents the combination of continuous

neutral injection and the ionization energy provided by

the external source of heat, i.e., CSDX external antenna.

Parameters of Eqs. (9a)–(9c) are rescaled to their dimensional

form to express the B dependence: t	 t/xci and u 	
r2ðTeU=eÞ= q2

s . In addition, length	 length�qs. As a matter

of fact, we report the following scale for turbulence in CSDX.

Here, we use normalized density fluctuations ~n=n0 to calculate
�kr

B(G) 800 900 1000 1200 1300

qs (cm) 1.40 1.24 1.12 0.93 0.86

L�1
n ðcm�1Þ 0.53 0.55 0.6 0.62 0.5

�krðcm�1Þ 0.33 0.33 0.37 0.32 0.34

1=½2:3q0:6
s L0:3

n � 0.29 0.32 0.34 0.39 0.37

Thus

l0 ¼ �k
�1

r ¼ 2:3q0:6
s L0:3

n � qs

as Ln and qs are of the same order before the transition

occurs. Similarly, the Rhines’ scale lRh � qs, as it involves a

radial derivative proportional in turn to qs. We mention here

that these results are clearly affected by the low values of

q*¼qs/a in CSDX. Further studies at lower q* are clearly

needed. The potential enstrophy e ¼ ðn� q2
sr2
?UÞ

2=2 ¼
ðn� q2

s k2
?UÞ

2=2 ¼ ðn� ðqs=lmixÞ2UÞ2=2 does not depend

explicitly on B, as both n and qsk? ¼ qs=lmix are explicitly

B-independent. With both the perpendicular ion diffusivity

Dc and viscosity lc proportional to 1/B2, we obtain the fol-

lowing B-dependent equations:

xci@tn ¼ @x
e3=2l2

0@xn

eþ l2
0 @x n� u=q2

s

� �� �2
þ Dc@xn

" #
þ S; (10a)

xci@tu ¼ @x
e3=2l2

0@xu

eþ l20 @x n� u=q2
s

� �� �2
þ lc@xu

" #
; (10b)

xci@te¼ @x
e3=2l2

0@xe

eþ l2
0 @x n� u=q2

s

� �� �2

" #

þ L2 l2
0e

3=2 @x n� u=q2
s

� �� �2

eþ l2
0 @x n� u=q2

s

� �� �2
� 2e3=2þ

ffiffi
e
p

2
4

3
5: (10c)

2. Numerical techniques and model calculation

A finite difference method with a fixed space step size

and adaptive time step sizes is used. The boundary condi-

tions used here are: njx¼1 ¼ ujx¼1 ¼ @xnjx¼0 ¼ @xejx¼0

¼ @xejx¼1 ¼ @xujx¼0 ¼ 0. Note that Neumann boundary con-

ditions are imposed on e at both ends of the domain to pre-

vent energy inflow/outflow from or to the system. As a trial

case, we use the following initial profiles: nðx; 0Þ ¼ ð1� xÞ
exp ½�ax2 þ b�; uðx; 0Þ ¼ cx2 þ dx3 and eðx; 0Þ ¼ ðnðx; 0Þ

FIG. 1. Experimental plasma profiles

at different magnetic field values.

Reprinted with permission from Phys.

Plasmas 22, 050704 (2015). Copyright

2015 AIP Publishing LLC.25
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�uðx; 0ÞÞ2=2 with a¼ –5, b¼ 0.125, c¼ 1, and d¼ –1. The

initial density profile corresponds to a fitting of CSDX exper-

imental data at B¼ 800 G. Initial vorticity and enstrophy pro-

files are arbitrary. Collisional Prandtl number Pr¼lc/Dc

¼ 650� 1 and a normalized mode scale length l0¼ 1/5

are used. We write the ion density source S(x) as a

shifted Gaussian: SðxÞ ¼ Sð1� xÞ exp ½�ðx� x0Þ2=e�, where

x0¼ 0.7, e¼ 0.05, and S is the source amplitude. This form

of density source is justified by the fact that radially injected

neutrals become ionized at a normalized radial position

x0¼ 0.7, as revealed by the decreasing (increasing) radial

profile measurements of neutrals (ions). These radial varia-

tions are insensitive to any change in the axial location of the

probe along the magnetic field axis. As for the amplitude S,

the ionization rate corresponding to the conditions of CSDX

experiments implies a normalized value of S¼ 104.

In addition to calculating the plasma profiles at different B
values to relate to CSDX experiments, we perform a scan of

the external ion density fueling source and calculate the pro-

files at different S values. The latter corresponds to a change in

the heating power of CSDX. Unless stated otherwise, we will

use the following code colors throughout the paper:

Bblue<Bred<Bgreen<Bblack. Figure 2 shows radial variations

of the density profiles for an increasing magnetic field B and

two ion source amplitudes S¼ 10 and S¼ 104. The latter corre-

sponds to a CSDX experiment. Similar to experimental results,

a steepening trend in the mean density profiles is observed in

both cases, as B increases. This steepening is clearly noticeable

in the range 0.2< x< 0.5 for the S¼ 104 case.

A closer look at the S¼ 104 density profiles shows that a

density peak initially observed at the injection location

x0¼ 0.7 appears to shift inward as B increases. Moreover,

the peaking of density profiles close to the center as B
increases suggests the existence of an inward flux. This begs

then the following questions: what is this apparent inward par-

ticle flux due to? Does it develop as a response to an increas-

ing B? Is it inherent to the dynamics? To answer these

questions, we investigate variations of the radial particle flux

as a function of an increasing B. Figure 3 shows reduction in

the particle transport, i.e., a reduction in Cn, as B is increased,

for an ion density source S¼ 104. This occurs as a result of

the decrease of the diffusion coefficient Dn ¼ l2
mixe

1=2 with B
(see Fig. 4). The calculated profiles in Fig. 3 also imply an

inward Cn for 0< x< 0.5. Experimentally, the apparent

inward particle flux was reported to increase in response to an

increasing B. This feature however does not appear in the

model. We emphasize here though that for a helicon plasma

source, the RF input power into the source varies with B. This

leads to a variation in the amplitude of the ion density source

S. Typically, one would manually adjust this power in order to

keep the ion density source constant. However, this step was

not implemented in CSDX experiments. One might therefore

indirectly relate a change in B to a corresponding change in

the particle flux profiles via variations of the density source S.

This option is not considered here, as S magnitude is kept con-

stant throughout the simulations.

Examining Fig. 5(a), the particle flux corresponding to

S¼ 10 is always outward (positive). This suggests that the

experimental apparent inward flux is rather the result of the

increasing amplitude of the off-axis density source S, and not

a direct consequence of an increasing magnetic field B. We

test this conjecture by holding B constant and increasing S.

We find that Cn starts to go negative in the device core for

increasing S values, at constant B, as shown in Fig. 5(b).

Here, Sblue¼ 10, Sred¼ 30, Sgreen¼ 50, and Sblack¼ 104.

Moreover, at sufficiently long times, the calculated particle

flux saturates, and Cn profiles are positive and show no indi-

cation of inward flux (Fig. 6). We conclude then that the

FIG. 2. Density profiles for S¼ 10 and S¼ 104 for increasing B.

FIG. 3. Fluxes for S¼ 104 for increasing B.

FIG. 4. Diffusion coefficient for increasing B.
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experimentally reported apparent inward flux appears to be a

consequence of a change in the source amplitude and

its position. Thus, we recover the apparent inward flux

semi-qualitatively, using a diffusive model for Cn¼ –@xn (no

particle pinch Vpinch, i.e., no off-diagonal term in Cn). It is

essential to note here that experiments corresponding to dif-

ferent heating powers have been performed in CSDX. Data

collected from these experiments show a dependence of both

the direction and the amplitude of the particle flux Cn on the

input heating power. Further investigation of these data is of

crucial importance to fully understand the nature of this

apparent inward flux.

In order to determine if the model captures the DW-ZF

interactions in CSDX, we examine variations of the shear

flow and of the Reynolds work with B. Figure 7(a) shows the

existence of an azimuthal velocity shear layer in the radial

direction that gradually becomes stronger as B increases.

This shear does not depend on the ion source intensity S. The

Reynolds force �@xh ~Vx
~Vyi applied by turbulence on the

flow increases in absolute value with B [Fig. 7(b)]. Variation

rates of the Reynolds work PRe done by the turbulence on

the flow, i.e., the net shear flow production rates, also

increase in absolute value [Fig. 7(c)]. This indicates an

enhanced turbulence suppression as B increases. We note

that the same values are obtained either by direct numerical

computations or by multiplication of the Reynolds force by

the absolute values of the azimuthal velocity. In summary,

FIG. 6. Purely outward particle flux at sufficiently long time.

FIG. 5. Particle flux at S¼ 10 for increasing B and particle flux at constant B
and increasing S : Sblue < Sred < Sgreen < Sblack.

FIG. 7. Velocity shear, Reynolds Force, and Reynolds work for increasing B at S¼ 104.
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steepening of the density profiles, amplification of the azi-

muthal velocity shear, and negative Reynolds work values are

all indications of turbulence reduction that intensifies, as B
increases. As B rises, Reynolds force increases and reinforces

the plasma flow. At the same time, the corresponding cross-

field ion turbulence scale length qs decreases, allowing for

more energy transfer from the microscopic scales to the meso-

scopic ones. These observations were reported experimentally

in Refs. 41–43, when applying cross-bispectral analysis to

density and potential fluctuations data retrieved from CSDX.

B. Vorticity Flux with Residual Stress: P5Pres2v›x u

Next we study the system dynamics when a residual

Pres ¼ ðv� DnÞ@xn is included in the vorticity flux expres-

sion. The 3-fields equations become

@tn ¼ @x Dn@xn½ � þ Dc@
2
x nþ SðxÞ; (11a)

@tu ¼ @x ðDn � vÞ@xn½ � þ @x v@xu½ � þ lc@
2
x u; (11b)

@te¼ @x De@xe½ � þPresð@xn� @xuÞ � ðv@xu�Dn@xnÞ
� ð@xn� @xuÞ � e3=2þ

ffiffi
e
p
ðu2

0� eÞ: (11c)

Here, we use the following diffusion coefficients: Dn ¼
l2
mixe=a; De ¼ l2mixe

1=2 and v ¼ l2
mixe=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cuu2
p

. Using the

same scaling factors as before in addition to: a 	 u0a and cu 	
cu/L

2, we obtain the following B-dependent equations:

xci@tn ¼ @x
l2
0e

2@xn

eþ l20 @x n� u=q2
s

� �� �2

1

a
þ Dc@xn

" #
þ S; (12a)

xci@tu ¼ q2
s@x

l2
0e

2

eþ l20 @x n� u=q2
s

� �� �2

"

� 1

a
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ cu u=q2
s

� �2
q

0
@

1
A@xn

2
4

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ cu u=q2

s

� �2
q þ lc

0
@

1
A@xu

3
5
3
5; (12b)

xci@te ¼ @x
l20e

3=2@xe

eþ l2
0 @x n� u=q2

s

� �� �2

" #

þ L2 l20e
2qs

eþ l20 @x n� u=q2
s

� �� �2Þ

"

� � 1

a
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ cu u=q2
s

� �2
q

0
@

1
A� @n �

@xu

q2
s

� �

� l2
0e

2

eþ l20 @x n� u=q2
s

� �� �2

� � @x

a
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ cu u=q2
s

� �2
q @xu

q2
s

0
@

1
A

� @xn� @xu

q2
s

� �
� 2e3=2 þ

ffiffi
e
p �

: (12c)

We show here numerical results that correspond to both

Dirichlet and Neumann vorticity boundary conditions at

x¼ 1. Starting with a Dirichlet condition ujx¼1 ¼ 0, for an

arbitrary case a ¼ 3 and cu¼ 6 trial case, numerical results

are similar to those obtained when no residual stress is

included in the expression of P. The steepening of the den-

sity profiles, the sheared azimuthal velocity layer, and the

negative Reynolds work values in the three left figures of

Fig. 8 are all consistent with a global transition that occurs in

the plasma as B increases. Variation of the shearing coeffi-

cient cu, which reflects a change in the strength of the flow

shear, does not seem to affect qualitatively the numerical

results (right three figures of Fig. 8); the results are simply

insensitive to a change in cu. Therefore we conclude that,

while Pres is needed to account for intrinsic rotation in toka-

maks and axial flow generation in linear devices,39 a state of

enhanced confinement can be recovered using a simple diffu-

sive form of the vorticity flux, without the need to include a

residual stress in the expression for P.

The scenario of a plasma column surrounded by a layer

of fixed neutrals next to the walls corresponds to a Neumann

vorticity boundary condition: @u
@x jx¼1 ¼ 0. Viscous effects are

negligible in this case. We mention here though that the

usual experimental case corresponds to a Dirichlet boundary

condition. Steepening of the density profiles and negative

Reynolds work values are recovered as a sign of turbulence

suppression, as B increases. The velocity shear, although pre-

sent and prominent at the density steepening location, is B
independent (top three figures of Fig. 9). Higher magnetic

field values are required for this B-dependence to appear.

The Reynolds work becomes then positive (bottom three fig-

ures of Fig. 9). The latter suggests turbulence production by

the flow at high B values, i.e., an instability that might be

triggered by the vorticity gradient at high B instead of being

suppressed by the velocity shear.

A change in the mode scale length from l0¼qs/5 to

l0¼ 10�3qs leads to the same previously mentioned trends of

turbulence suppression as indicated by density profile steep-

ening, negative Reynolds work values, and a B dependent

sheared azimuthal velocity (see Fig. 10).

More interesting is the relevant case of a higher Prandtl

number Pr ¼ lc/Dc¼ 65000. In this case, momentum diffu-

sivity dominates the behavior of the plasma characterized by

a low diffusion coefficient Dc. Figure 11 shows time evolu-

tion of the plasma profiles at consecutive times t1 and t2. The

plasma density builds up at the injection location and the

inward flux develops as a result of density localized concen-

tration, regardless of the magnitude of B. Evidence of a tur-

bulence suppression such as negative Reynolds work rates

and sheared azimuthal velocity is also recovered.

IV. VALIDATION METRICS FOR MODEL COMPARISON
WITH EXPERIMENT

Going beyond the simple qualitative comparisons

between numerical and experimental profiles, we propose

here a set of quantitative metrics which aim to test whether

the adopted model equations are indeed capable of explain-

ing the experimental observations. Quoting Oberkampf and
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Trucano (2002),“ an important issue concerns how compari-

sons of computational results and experimental data could

be quantified” (p.216).44 A set of validation metrics is there-

fore needed to check the consistency of the model with the

experimental data.45 We start first by checking the relative

variation of the inverse density gradient scale length 1=Ln ¼
jrlnnj and recover a value close the experimental one

obtained from profiles of Fig. 2 in Ref. 26,

D 1=Lnð Þ
Lni

¼
1=Lnf

� 1=Lni

1=Lni

¼
0:70 numerically

0:55 experimemtally:

(

Here, 1=Lni
(1=Lnf

) is the inverse gradient scale length of the

initial (final) density profile, i.e., before (after) the plasma

transition occurs. Similarly, we calculate the corresponding

relative variation of the inverse gradient scale length of the

velocity profiles and find

D 1=Lvð Þ
Lvi

¼
1=Lvf

� 1=Lvi

1=Lvi

¼
0:73 numerically

0:57 experimentally:

(

While the previous validation metrics constitute local assess-

ment quantities, we also propose two global validation met-

rics. Figure 12 is a plot of the radially integrated Reynolds

work, PRe�tot ¼
Ð 1

0
PRedr which denotes the total work done

by turbulence on the flow over the plasma cross section as a

function of the density gradient. 1/Ln and PRe–tot are propor-

tional to each other; as B increases, density profiles steepen,

the ion gradient scale length Ln shrinks and the total

Reynolds work rate increases, indicating a transfer of energy

from fluctuations to flow.

Further validation of turbulence suppression is obtained

by examining the particle loss rate 1/sturb–loss, due to turbu-

lent radial transport. This rate is expected to drop as B
increases. Integration of the particle flux along r gives values

of the loss rates: 1=sturb�loss /
Ð r

0
rCndr. Data reported in

Table I show a declining trend as B increases. This suggests

a change in the global particle balance, i.e., a change in the

nature of the turbulence in the system.

V. WHAT IS THE CRITERION FOR TURBULENCE
SUPPRESSION?

A conceptual question in modeling drift wave-zonal

flow turbulence is the prediction of when transport barriers

are triggered. A variety of proposals are on record. Most are

equivalent to a comparison of linear growth rate to E�B
shearing rate (i.e., jcLj vs. jcE�Bj). The relevance of this type

of criterion to fully developed turbulence is, at best, unclear.

A somewhat non-trivial criterion,28 is RT> 1 where

RT ¼
h~vx~vyi0vE�B

jceff jh~v2
?i

(13)

is the local ratio of the Reynolds power density, to the effec-

tive increase in turbulent kinetic energy. Here, jceff jðrn;
rT;VZFÞ is the turbulence effective growth rate. The idea

here is that when RT>RTcrit (usually RTcrit
� 1), the energy

transfer to the shear flow exceeds the effective increase in

FIG. 8. Profiles with Pres and Dirichlet

boundary conditions for cu¼ 6 and

cu¼ 600.
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turbulent kinetic energy, suggesting a collapse of the kh 6¼ 0

portion of the turbulence spectrum, i.e., the part which

causes transport. For the model under study here, the

instantaneous potential enstrophy growth rate is jceff j ¼
ð1=eÞ:ð@e=@tÞ and h~v2

?i ¼ el2
mix ¼ l20e

2=ðeþ ðl0rðn� uÞÞ2Þ.
Figure 13 shows variations of RT with B for this system.

Here, RT values are calculated at the density steepening

location and at the turbulent energy saturation time. The pro-

portionality between B and RT is recovered as anticipated, since

an increase in B triggers the formation of transport barriers.

While the RT>RTcrit criterion is attractive for its

extreme simplicity, it suffers from the facts that: i) jceff j is

ill-defined, and difficult to calculate, ii) contributions from

energy other than the kinetic are ignored. Thus, we propose

FIG. 9. Profiles with Pres and

Neumann boundary conditions for

increasing B.

FIG. 10. Profiles for l0¼ 10�3qs and

increasing B.

062106-10 Hajjar et al. Phys. Plasmas 24, 062106 (2017)



here an alternate criterion, RDT 
 RDTcrit
, where the global

parameter RDT¼ srelax/stransfer. Here, 1=srelax ¼ �
Ð

dxCn

rn=n0, where Cn ¼ h~vx ~n=n0i is the normalized particle flux,

1/srelax is the rate of relaxation of the free energy source,

which is rn in this model. Of course, rn relaxes by exciting

drift wave turbulence, so 1/srelax is effectively the turbulent

enstrophy production rate and would have a connection to

the energy input rate, jceff j, used in the RT criterion.

Logically then, that should be compared to the rate of trans-

fer of enstrophy to the mean flow vorticity profile. This may

be thought of a turbulent enstrophy destruction rate, and is

closely related to the Reynolds work which appears in RT.

We have then: 1=stransfer ¼ �
Ð

dxh~vx ~uiru where u ¼ q2
sr2
?

ðeU=TeÞ. Integrating by parts gives: 1=stransfer ¼
Ð

dx@x

h~vx ~uiu so,

RDT ¼

ð
@xh~vx ~uiudx

�
ð

Cnrn=n0dx
(14)

RDT is manifestly dimensionless and the integrals are calcu-

lated along the radius. Noting the Taylor identity and the fact

that u � r?ðr?UÞ � r?Vy, the correspondence of the

numerator of RDT to that of RT is evident. Finally, given that

the potential vorticity is conserved on fluid particle trajecto-

ries, it is not difficult to see the correspondence between

fluctuating entropy (��
Ð

dvðdf Þ2=hf i) and fluctuating ens-

trophy. Thus, RDT may be thought of as the ratio of fluctua-

tion entropy destruction via coupling to the mean flow, to

fluctuating entropy production via relaxation of rn. Both

numerator and denominator reflect flux-gradient interaction

and both emerge naturally from the formulation of the

model, i.e., from expanding the production term Pprod ¼
ðCn �PÞ:ðrn�ruÞ ¼ Cnrn þPru �Prn� Cnru in

Eq. (2c). Neglecting the last two cross terms in Pprod, the

numerator and denominator of RDT simply represent the

product of P and ru, and Cn and rn, respectively. Thus,

RDT exceeding unity may be thought of as the simplification

of the more general criterion that
Ð

Pprod passes through zero,

i.e.,
Ð

Pprod > 0!
Ð

Pprod < 0, as the indicator of turbulence

collapses. Figure 14 shows variations of RDT with B at the

same time and location as for RT. The close relation between

RDT and B can also be interpreted in terms of enstrophy

exchange of fluctuations to flow, as B increases. However,

FIG. 11. Profiles for Pr¼ 65000 and

increasing B. Solid and dashed plots

correspond to data at t1 and t2,

respectively.

FIG. 12. PRe–tot as function of 1/Ln for increasing B.

TABLE I. Particle loss rate 1/s for increasing B.

1/sloss (� 10�2) S ¼ 10 S ¼ 50 S ¼ 104

Bblue 1.4 3 1.1

Bred 1.2 2.6 0.5

Bblack 0.9 1.8 0.2 FIG. 13. RT time variations at x¼ 0.1, 0.6, and 0.8 (Blue, Green, and

Brown) for S¼ 40.
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the RDT > RDTcrit
criterion has a broader and more solid theo-

retical foundation than RT > RTcrit
, and easily may be gener-

alized (to more complex models) by expanding the

consideration of potential enstrophy balance. When either

RDT or RT exceeds unity, the turbulence levels will drop and

a barrier is likely to be formed. We do not have a proof of

either though - particularly given the ambiguity in just

exactly what a barrier is.

VI. DISCUSSION AND CONCLUSIONS

Features of a CSDX improved confinement are repro-

duced here using a 1D time-dependent reduced model. The

model recovers the profile evolution in CSDX with an

increasing B, and includes both a slow and a fast time scale:

the former corresponding to the time evolution of the mean

fields, and the later corresponding to turbulence production

and fast dissipation. Potential enstrophy is conserved up to

dissipation and initial forcing. Inhomogeneous PV mixing is

a central feature here, and occurs on a mixing length that is

inversely proportional to the PV gradient. The use of a mix-

ing length that shrinks as rn and ru steepen closes the posi-

tive feedback loop on PV. The model novelty relies in the

fact that it reduces the profile evolution to only two fluxes: a

vorticity and a density flux.

Numerical solutions agree with the experimental find-

ings, and show: a steepening of the density profile, a rein-

forced E�B sheared layer, an increased Reynolds work, and

a reduction in the turbulence and particle transport, as B
increases. Numerical solutions also show that the steepening

of rn is recovered without the use of an off-diagonal term

nVpinch in the expression of the particle flux Cn. The experi-

mentally apparent inward flux is simply of diffusive nature

at high B. Moreover, the model predicts qualitatively similar

results, with or without the inclusion a residual stress Pres in

the vorticity flux expression P. We conclude then the fol-

lowing: both density and vorticity fluxes have purely diffu-

sive forms: Cn¼ –@xn and P¼ –@xu, where u is the vorticity.

The inward pinch Vpinch and residual stress Pres necessary to

drive axial flows in linear devices are not required to recover

the experimental results. As a matter of fact, the validation

metrics presented above show a consistent level of agree-

ment between computation and experiment, using purely dif-

fusive expressions for Cn and P.

The only experimental feature not recovered is the

apparent inward particle flux. The apparent inward flux,

experimentally believed to be related to increasing B, is a

direct consequence of the amplitude and location of the ion

source. Additional investigation of the influence the fueling

intensity might have on the particle flux is crucial to deter-

mine the nature of this inward flux.

The energy parameter RDT, defined in Eq. (14), emerges

as a better global turbulence collapse indicator to be used in

the future. It rests on a broader and more solid theoretical

foundation than RT, and can be obtained both in computa-

tions and experiments. In addition, RDT includes the basic

physics behind RT, but transcends it. Finally, modeling of the

parallel flow dynamics is planned for future work. This will

be pursued by adding an equation for vk to the model.
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