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Evolution of granular materials under isochoric cyclic simple shearing
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By means of 3D particle dynamics simulations, we analyze the microstructure of granular materials subjected
to isochoric (constant volume) cyclic shearing, which drives the system towards a liquefaction state characterized
by loops of jamming-unjamming transition with periodic loss of strength and irreversible accumulation of shear
strain. We first show that the macroscopic response obtained by these simulations agrees well with the most
salient features of the well-known cyclic behavior of granular materials both before and after liquefaction. Then
we investigate the evolution of particle connectivity, force transmission, and anisotropies of contact and force
networks. The onset of liquefaction is marked by partial collapse of the force-bearing network with rapid drop
of the coordination number and nonrattler fraction of particles, and significant broadening of the contact force
probability density function, which begins in the preliquefaction period. We find that the jamming transition
in each cycle occurs for a critical value of the coordination number that can be interpreted as the percolation
threshold of the contact network and appears to be independent of the initial mean stress, void ratio, and
cyclic shear amplitude. We show that upon unjamming in each cycle an isotropic loss of contacts occurs and
is followed by the development of high contact anisotropy and a large proportion of particles with only two
or three contacts. The higher mobility of the particles also involves a lower degree of frustration of particle
rotations and thus lower friction mobilization and tangential force anisotropy. These findings are relevant to both
undrained cyclic deformations of saturated soils and rheology of dense non-Brownian suspensions where volume
change is coupled with pore liquid drainage conditions.
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I. INTRODUCTION

Granular materials are known to exhibit both solid-like and
fluid-like behaviors depending on the history of deformations
and stresses to which they are exposed, their interactions
with a pore-filling fluid, and loading conditions [1,2]. In soil
mechanics, the transition from solid-like to fluid-like state
is of paramount importance as it may lead to catastrophic
loss of soil strength, large irreversible strains, and significant
damage to civil engineering structures. For example, sudden
disturbance of loose granular soil by an earthquake leads to its
compaction. The compaction is, however, inhibited if the soil
is saturated by water that due to a low soil permeability can
not be quickly drained, leading thereby to load transfer from
interparticle force chains to the pore water. This phenomenon,
known as “soil liquefaction,” is the origin of many landslides
in coastal and mountainous areas [3–5]. Such undrained con-
ditions occur in granular soils with low permeability (silty
sands or gravels containing finer sediments) when subjected
to shaking or cyclic deformations. Quicksands behave in a
similar fashion.
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The rheology of soils under cyclic loading both before and
after liquefaction has been extensively explored and modeled
in recent decades (e.g., Refs. [6–9]). The issue is whether the
soil keeps the memory of the conditions (such as initial pres-
sure p0, shear stress cycle amplitude, solid fraction, etc.) that
led to its first liquefaction and how much it can deform when
subjected to a new loading path. Motivated by macroscopic
observations from laboratory experiments, continuum-based
elastoplasticity models have also been developed and ap-
plied to liquefaction-related applications (e.g., Refs. [10–13]).
Nevertheless, the physical particle-scale mechanisms gov-
erning the long-time evolution of the microstructure that
underlies transition to the liquefaction state and its further
mobility after the initial liquefaction remains to a large extent
unexplored.

The transition of granular materials from a stable solid-like
state to a flow state has been at the focus of many studies
in physics, often described as a jamming-unjamming transi-
tion [14–17]. Most of the time, however, this term refers to
a transition arising from monotonic increase or decrease of
shear stress or shear strain. The case of soil liquefaction pro-
vides a more complex example of such a transition occurring
in response to cyclic loading. Note, however, that, although
soil liquefaction arises from load transfer between soil and
water, this phenomenon does not need a saturated granular
material or dynamic conditions, but can occur in a dry granu-
lar material under isochoric (constant volume) and quasistatic
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loading conditions. For this reason, isochoric cyclic shearing
has often been used as a proxy for the undrained cyclic de-
formation of liquid-saturated granular materials subjected to
isobaric (constant total stress) conditions [18–20]. At constant
volume, when the solid fraction � is not too low, a monotonic
increase of the shear stress τ will entail a gradual increase
of the mean stress p proportionally to τ after a small shear
deformation because of hindered dilatancy. By contrast, if
monotonic shearing is replaced by cyclic shearing of small
shear stress or shear strain amplitude for the same solid frac-
tion, p will gradually decrease, and after several cycles will
suddenly drop to a much lower value by loss of stability and
unjamming of the particles. Under continued shear cycling,
the jamming-unjamming process will be repeated in each
cycle with irreversible shear strain accumulation.

An in-depth investigation of the long-time evolution of
granular microstructure under cyclic shearing is currently
only possible by discrete element method (DEM) simulations
based on the integration of the equations of motion for all
particles by accounting for frictional contact interactions be-
tween particles [21]. The application of DEM to carry out
isochoric tests leading to liquefaction dates back to Ref. [22],
who successfully verified the possibility of reproducing cyclic
liquefaction by simulations. Later simulations have also con-
vincingly shown that DEM simulations in three dimensions
capture well all the macroscopic features of cyclic shear-
ing and transition to cyclic liquefaction at constant volume
[23–25]. An important parameter of cyclic shearing is the
potential for liquefaction or “liquefaction resistance” [26],
which is measured by the number of cycles NIL required to
reach the first liquefaction cycle (initial liquefaction). Both
experiments and simulations show that NIL declines (lower
liquefaction resistance) for higher amplitude of cyclic strain
due to the larger rearrangements of the granular fabric, and
hence stronger loss of contacts, in each cycle [23,27,28]. A
similar trend is observed when cyclic shear stress is imposed
instead of cyclic shear strain, although the rearrangements
prior to liquefaction may be small in this case [19].

Simulations have also been used to show that the lique-
faction transition is a consequence of mechanical instability
at the so-called “phase transformation” state where the be-
havior switches from contraction to dilation during isochoric
monotonic shearing [25]. Hindered dilation (due to constant
volume) leads to jamming and rebuilding of the contact net-
work, whereas hindered contraction leads to an unstable stress
state and unjamming of the particles. The coordination num-
ber appears thus as a natural descriptor of this transition. It
has been suggested that instability occurs when the coordina-
tion number drops below its isostatic value [20,25]. But all
the reported simulations show that the coordination number
never vanishes. This observation contradicts, however, the full
vanishing of the mean stress often assumed for liquefaction
since the mean stress is proportional to the mean force, and
therefore zero mean force would imply also the vanishing of
the coordination number!

Several authors have also investigated the contact net-
work anisotropy and force anisotropy during cyclic shear-
ing [24,25,27]. The contact network anisotropy (or fabric
anisotropy) may increase dramatically in liquefaction state,
reflecting the lower values of the coordination number and

unstable particle arrangements. The simulations show that
the normal force anisotropy prevails in the liquefaction state
as compared to the fabric anisotropy and tangential force
anisotropy. However, these features have never been analyzed
during shear cycles before and after liquefaction and discussed
in connection with the coordination number. In fact, a full
analysis of the fabric evolution during cyclic shearing requires
its representation in the space of coordination number vs.
fabric anisotropy [29]. Besides fabric and force anisotropies,
it has also been suggested that, given the sparse nature of the
contact network in the liquefaction state, the fabric parameters
should account for the neighborhood of the particles rather
than their contacts [30,31].

In this paper, we analyze both the long time and short time
(within a cycle) evolution of the contact and force networks by
means of extensive long-time DEM simulations of 3D pack-
ings composed of spherical particles under isochoric cyclic
simple shearing. For the long time behavior, we would like
to better understand how the particles’ connectivity evolves
with shear stress, mean stress, and shear strain. Besides the
coordination number, we study the connectivity diagram de-
fined as the proportions Pc of particles with exactly c contacts,
and the proportion of nonrattler particles, i.e., particles that
belong to the force-bearing network. We are also interested
in the jamming-unjamming transition within each shear cycle
before and after liquefaction transition, and how the fragile
system rebuilds into a stable network. As we shall see, the
coordination number is a key parameter for this transition,
although not in terms of mechanical stability but as a per-
colation threshold prompting transition to the jammed state
and sustaining the shear stress. We also consider the contact
force PDFs, which have not been analyzed in the past, to
evidence the signature of cyclic shearing and transition to
the liquefaction state. As we shall see, the force distributions
are increasingly more inhomogeneous while keeping their
common exponential shape for forces above the mean force.
The statistical distributions of local variables such as friction
mobilization at characteristic states will provide new insights
into the process of transition to the liquefaction state. Finally,
we analyze the role of the fabric and force anisotropies in
relation to the particle connectivity and development of shear
stress during jamming transition in each cycle.

In the following, in Sec. II the DEM contact model, sam-
ple preparation and simulation procedures are described. In
Sec. III the macroscopic response is presented in terms of
stress path and stress-strain loop for a representative sim-
ulation. The evolution of granular microstructure in this
simulation is explored in terms of particle connectivity, force
transmission, and fabric and force anisotropies in Sec. IV.
In Sec. V the effects of the initial and loading conditions
on the evolution of particle connectivity and anisotropies are
investigated. Finally, we summarize the findings and sketch
potential perspectives for this work.

II. NUMERICAL PROCEDURE

A. Contact model

An in-house 3D particle dynamics DEM numerical plat-
form, named GRFlow3D [32], was used in this work. The
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granular assembly was simulated using spheres interacting via
soft contact laws. The contact interactions between spheres
consist of normal collision, tangential sliding, rolling and
torsion, and the key quantity is the elastic deflection between
particles, δ[ ], from which the corresponding force f̂[ ] can be
calculated using a linear spring-dashpot model:

f̂[ ] = −k[ ]δ[ ] − c[ ]δ̇[ ], (1)

where k[ ] is the spring stiffness, and c[ ] is the viscous dashpot
coefficient. The subscript placeholders can be for n (normal
contact), t (tangential sliding), r (rolling), or o (torsion). Given
the radii of two particles, ai, a j and their positions, ri, r j , the
normal contact deflection δn along the normal direction is the
overlap between the two particles, given by

δn = ‖ri − r j‖ − ai − a j . (2)

The interparticle forces and torques exist only when
δn < 0. To exclude the nonrealistic attractive force due to vis-
cous damping at incipient separation between two particles,
the normal force fn is represented by a ramp function R( f̂n)
where R(x) = x if x > 0 and R(x) = 0 if x � 0. The tangential
force ft is equal to f̂t if | f̂t | < μt fn and as sgn( f̂t )μt fn if | f̂t | >

μt fn. Calculating the rolling and torsional forces (torques) is
analogous to the tangential force. Unlike the normal deflec-
tion δn, the other three elastic deflections cannot be directly
calculated, but should be cumulated by integration over time
from the moment two particles come to contact, as explained
in detail in Refs. [21,33].

Once all the forces and torques on a particle are obtained,
the translational and rotational accelerations can be calculated
using Newton’s second law of motion. These accelerations, to-
gether with the particle velocities at the beginning of each time
step are then used to update the velocities and positions of all
particles. We used a velocity-Verlet time-stepping scheme in
our simulations.

B. Sample preparation and shearing protocols

The simulations of isochoric simple shearing involve two
steps: (1) preparing particle assemblies via isotropic compres-
sion condition and (2) applying cyclic simple shear mode
to these assemblies under isochoric condition. The con-
structed samples consist of spheres with low polydispersity,
i.e., dmax/dmin = 2 where dmin = 1.0 mm and dmax refer to
the minimum and maximum particle diameters, respectively.
Between dmin and dmax, the particle size follows a uniform dis-
tribution of particle volumes, so that the number of particles
belonging to a class of diameter d is proportional to d−3. One
can refer to Refs. [34,35] for details of generating the particle
size distribution. Once the particles are generated, they are
placed randomly on a 3D sparse lattice to avoid the overlap.
This 3D lattice is contained in a rectangular cell whose top
and bottom sides are rigid walls, and the four lateral sides are
periodic boundaries. This setting is denoted as a biperiodic
simulation cell.

The samples are compressed isotropically by moving the
six sides of the cell. During the compression process, the
gravity is set to zero to avoid stress gradients. The six sides
of the cell follow a translational move. The tangential friction
coefficient μt is tuned to achieve a given value of void ratio

e, defined as the ratio of the total pore volume to the solid
volume. One has e = 1/� + 1, where � is the solid fraction.
Many of the laboratory procedures for sample preparation at
different densities can not be precisely simulated; therefore,
we adopted a simple computational procedure, modified from
Refs. [19,36], to prepare samples comparable with the labo-
ratory ones. The procedure consists of four substeps, which
we describe here by taking the case of constructing a medium
dense sample with the target mean stress p0 = 100 kPa: (1)
with μt = 0.20, densifying the sparse sample by moving the
six sides at a constant velocity until the void ratio e reaches
1.0; (2) setting velocities of particles and the six sides to zero,
and using a servo-control algorithm to compress the sample
isotropically with the target p = 10 kPa where μt remains
0.2; (3) increasing the target p to half of p0, i.e., 50 kPa, and
continuing compression of the sample with μt = 0.20; (4)
modifying μt to 0.5 used for further compressing the sam-
ple with the target p = p0 = 100 kPa and subsequent cyclic
shearing. Readers can refer to Refs. [37,38] for the detail of
servo-control algorithm. The first three substeps generate an
initially dense packing by controlling the tangential friction
coefficient and increasing the confinement. The last step is
necessary to obtain a smooth distribution of ft/(μt fn) be-
tween 0 and 1, as usually a different value of μt is used in the
step of cyclic shearing. We conducted other simulations on
samples with different numbers of spheres ranging between
2197 and 10 648. We did not see much difference in the
macroscopic response under isochoric cyclic shearing. Hence,
samples with 8000 spheres were used in this study, falling into
a range similar to those presented in Refs. [19,20]. Figure 1(a)
displays one of the samples prepared by the above procedure.

In the step of isochoric cyclic simple shearing, the sample
volume is maintained constant by fixing four lateral sides
and the bottom wall and keeping the sample height constant.
Cyclic simple shearing is undertaken by moving the top wall
horizontally at a constant velocity vx. To reduce possible slip-
page between the walls and the sample, one layer of particles
is glued to the top and bottom walls, respectively, as indicated
by gray spheres in Fig. 1(b). The shear direction is reversed
each time the shear stress τ extracted from the calculated
stress tensor, as explained below, reaches a target amplitude
τ amp. This corresponds to the so called “uniform amplitude
cyclic simple shear test” [19]. In soil mechanics, a dimen-
sionless quantity named “cyclic stress ratio” (CSR) is used
to quantify the cyclic shearing intensity, defined by the ratio

CSR = τ amp

p0
, (3)

where p0 is the initial mean stress. Table I summarizes the
simulated isochoric cyclic simple shear tests. T1, T2, and T3
are configured by varying the initial void ratio e of samples,
T2, T4, and T5 are different in the initial mean stress p0, while
T2, T6, and T7 are conducted for different values of CSR. In
this study, we consider simulations of samples with a void ra-
tio between 0.629 and 0.670. Very dense systems get jammed
under shearing at constant volume, and very loose samples can
easily become fluid-like even without the shear stress reaching
the targeted value of CSR. To expand the ranges of void ratio
in cyclic shearing, lower values of CSR should be used.
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(a)

(b)

FIG. 1. Illustration of particle arrangements and boundary con-
ditions for a sample composed of 8000 particles: (a) at the end of
sample preparation; (b) during constant height cyclic shearing. The
gray particles are glued to the top and bottom walls of the simulation
cell.

To choose the shear rate, we consider the inertial num-
ber I = γ̇ d

√
ρ/p, where γ̇ = |vx|/h is the shear strain rate

with h the sample height, ρ the density of particles, and d
the mean particle diameter. The shear is nearly quasistatic if
I � 1 [39], and typically the threshold is chosen as 10−3. In
isochoric cyclic shearing, I varies due to the change of p. After
liquefaction transition, p degrades cyclically to vanishingly
small values due to unjamming, and hence I may increase
beyond 10−3 whatever its value before unjamming. For a
range of velocities vx of the top wall between 0.005 m/s and

TABLE I. Simulated cyclic simple shear tests.

ID e(−) p0 (kPa) CSR (−)

T1 0.629 100 0.25
T2 0.647 100 0.25
T3 0.670 100 0.25
T4 0.647 200 0.25
T5 0.647 600 0.25
T6 0.647 100 0.20
T7 0.647 100 0.30

TABLE II. DEM parameters.

Description Value

Density, ρ 2650 kg/m3

Normal stiffness, kn 106 N/m
Normal viscosity, cn 1.15 kg/s
Tangential stiffness, kt 0.8kn

Tangential viscosity, ct 0.2cn

Tangential friction coefficient, μt 0.5a

Rolling stiffness, kr 0.1kn

Rolling viscosity, cr 0.05cn

Rolling friction coefficient, μr 0.1
Torsion stiffness, ko 0.1kn

Torsion viscosity, co 0.05cn

Torsion friction coefficient, μo 0.1

aCyclic shearing step.

0.01 m/s, we found that the macroscopic response even in
the liquefaction state does not change noticeably during the
whole shearing process, and I remains below 10−3 for jammed
states and below 0.025 for unjammed states. Therefore, in all
the simulations reported in this paper, we set vx = 0.01 m/s,
corresponding to a shear rate γ̇ ≈ 0.38 s−1 and consistent with
Ref. [20]. For this choice, the simulations are faster, and at
the same time shearing is quasistatic during jammed states.
The higher values of I at unjamming arise from unstable
deformation, which in our simulations is an intrinsic feature
of cyclic liquefaction only and not influenced by the loading
rate.

The simulation parameters are given in Table II. One can
introduce the stiffness number κ such that the average normal
deflection δn satisfies δn/d ∝ κ−1 [21]. For the linear contact
law in the normal direction, κ = kn/(pd ). In this study kn is
chosen as 106 N/m to guarantee δn ∼ 10−3d in each contact,
i.e., the particles can be considered as nearly undeformable
[35]. Then cn is determined to attain a value of 0.15 for the
normal coefficient of restitution based on Ref. [40]. μt =
0.5 is a common value of the friction coefficient [25,41,42].
The values for other microscopic material parameters can be
obtained from their relations to kn, cn or μt suggested by
Luding [33] and listed in Table II. The rolling and torsion
stiffnesses and their friction coefficients were set to a small
nonzero value (0.1) as a simple way to enhance dissipation
while sliding friction with its higher coefficient (0.5) remains
the main effect. Rolling friction has a stabilizing effect on
the simulations, it allows for higher normal force anisotropy
and more pronounced force chains, features that are generally
induced by aspherical particle shape [21].

III. MACROSCOPIC RESPONSE

At the sample scale, stresses and strains in the cyclic shear-
ing phase are analyzed to monitor mean stress degradation and
shear strain development. The stress tensor σ of the granular
assembly can be expressed as a function of the microscopic
interactions between particles over a selected volume V :

σ = 1

V

∑
c∈Nc

lc ⊗ f c, (4)
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FIG. 2. Macroscopic response of isochoric cyclic simple shear test T2 in Table I: (a) stress path; (b) stress-strain curve; (c) normalized
mean stress evolution; (d) shear strain development.

where lc is the branch vector connecting the centers of two
particles for interior contact or connecting the particle center
and the contact point for exterior contacts, f c is the contact
force, ⊗ denotes the dyadic tensor product, and the summa-
tion runs over all the contacts Nc in the selected volume V .
The superscript c in lc and f c will be dropped in the sequel
for simplicity. In simple shear test, the shear stress τ and
mean stress p can be obtained from stress tensor, i.e., τ = τzx

and p = (σxx + σyy + σzz )/3. We will consider the normalized
pressure p/p0, which is 1 in the initial state, but declines as a
result of cyclic shearing. Note that in the soil mechanics liter-
ature the quantity ru = 1 − p/p0, called “excess pore pressure
ratio”, is often used to monitor cyclic shearing in the presence
of a saturating liquid [19,22,43,44].

The shear strain γ is defined by

γ = xw(t )

h
, (5)

where xw is the cumulative horizontal displacement of the top
wall:

xw(t ) =
∫ t

0
vx dt . (6)

Note that the shear rate γ̇ is constant and changes its sign
only when the shear stress τ reaches the target amplitude τ amp.
For this reason, the time interval T/2 between two successive

shear reversals varies in different cycles of shearing. Let T (N )
be the period of cycle N and tN its initial time. Since the
shear rate is constant, we define a “fractional cycle number”
by interpolation between two successive cycles:

N ′ = N + t − tN
T (N )

, (7)

where t is the current time. The value of N ′ coincides with N
at t = tN , and increases by one unit at t = tN + T . To avoid
confusion, we continue below to use N but in the sense of
fractional cycles as defined by N ′.

Figure 2 presents the typical macroscopic behavior for
simulation T2 of Table I, described in terms of stress path
and stress-strain curve, as well as the normalized mean stress
evolution and shear strain development as functions of the
number of cycles. The simulation starts from τ = 0, p = p0 =
100 kPa, and γ = 0, corresponding to point A0 of Fig. 2(a)
and the origin of Fig. 2(b). As cyclic shearing continues,
the path in the stress space (p, τ ) (stress path) oscillates and
moves leftwards (decreasing mean stress), indicating an irre-
versible evolution of the granular microstructure. The “initial
liquefaction” occurs when p drops to a residual value close to
zero for the first time. The number of cycles required to reach
this transition is denoted by NIL shown in Fig. 2. The term
“liquefaction” should be understood here as a loss of stability
or load-bearing capacity (both the mean and shear stresses),
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Snapshot of normal forces in the sheared sample for characteristic state: (a) A0; (b) A1; (c) B1; (d) C1; (e) C2; (f) C2′ . Line thickness
is proportional to the normal force at each contact. Color code represents the mobilized friction index Im (see text) in the range between 0 and
1. The same camera view as Fig. 1 is used here.

and therefore a transition from a solid-like state to a liquid-like
state, by analogy with a liquid-saturated load-bearing granular
bed where liquefaction occurs by transient load transfer from
the contact network to the liquid with the development of
excess pore pressure.

Thus, the cyclic shearing process can be divided into pre-
and postliquefaction periods, as shown in Fig. 2. Before tran-
sition, the shear strain remains negligibly small, as observed
in Fig. 2(b). After transition, the stress path gets trapped and
oscillates along a butterfly-shaped loop, and shear strain of
increasing amplitude develops. The shear strain continues to
accumulate in the postliquefaction period and the stress path
takes a banana shape. It is important to underline here the
cyclic nature of liquefaction in the postliquefaction period.
Indeed, during each cycle the shear stress builds up again
and the mean stress increases to its highest value until a new
strain reversal happens and leads the system to a new lique-
faction state. This means that the granular material is dense
enough to rebuild partially a force network to sustain shear
stresses despite its fragile microstructure prone to collapse by
small-amplitude shear stress reversal. In our simulations, the
mean stress does not fully vanish, but drops slightly below
p/p0 � 0.01. Lower mean stresses are reached at larger void
ratios [45].

The features briefly described above are in excellent
agreement with well-documented experimental and numerical
observations. We will focus below on the particle-level mech-

anisms of liquefaction. Three loading cycles, including cycle
A and cycle B in the preliquefaction period, and cycle C in
the postliquefaction period, are highlighted in Fig. 2. These
cycles are selected to zoom on the detailed evolution of the
microstructure in the following. In each cycle, at least four
characteristic states are singled out: subscript 0 refers to the
first time τ � 0, thus distinguishing loading from unloading,
subscript 1 refers to the instant where τ = τ amp, subscript 2
refers to the first time τ < 0 (reversed shear), and subscript 3
refers to the instant τ = −τ amp. In cycle C, two more states
are selected, i.e., C0′ and C2′ , both referring to the exit from
the liquefaction state.

Figure 3 presents several snapshots of normal force chains
at different states of simulation T2 given in Fig. 2. The forces
are represented by bars along the branch vectors joining par-
ticle centers with their thickness proportional to the intensity
of the normal force. The same figure also shows the friction
mobilization index Im at each contact defined by

Im = | ft |
μt fn

. (8)

It varies between 0 and 1 and is displayed in color code.
The value Im = 1 corresponds to sliding or fully mobi-
lized friction. Visual inspection reveals several features. First,
the initially isotropic force network (A0) becomes slightly
anisotropic at shear stress reaching its maximum amplitude
(A1) and even more anisotropic along loading cycles (B1
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and C1). Well-connected strong force chains tend to span the
system along the first principal stress direction (i.e., com-
pressive direction). Then, upon unloading to liquefaction state
(C2), large force transmission networks are replaced by fragile
scattered small force chains [20,46], where normal contact
forces drop to much smaller values, and the friction is prone
to be mobilized at a large number of contacts, corresponding
to an unjammed state [15,46]. Whether the current system is
isotropic cannot be inferred from Fig. 3(e). While the sample
evolves in the liquefaction state until the exit (C2′), large
deformation accumulates and the collapsed force transmission
network is rebuilt. In Fig. 3(f), one can notice that the network
nearly percolates along the diagonal from bottom left corner
to top right corner (contrary to C1) in the xz shear plane [see
Fig. 1(b)] although the intensity of normal forces is still small.
The force network will be further analyzed in the following
sections.

IV. GRANULAR MICROSTRUCTURE

In this section, we investigate the evolution of the granular
microstructure for the simulation T2 in Table I in terms of
particle connectivity, force transmission, and fabric and force
anisotropies.

A. Particle connectivity

The lowest-order scalar quantity describing the contact
network is the coordination number zg, defined as the aver-
age number of contacts per particle [47]. The coordination
number can also approximate the level of static redundancy
in the system, i.e., the difference between the total number
of constraints and the total number of degrees of freedom.
Each contact provides six constraints in an ideal system with
infinite tangential, rolling, and torsion friction coefficients.
Given six degrees of freedom (dynamic variables) per particle,
the critical coordination number, defining the isostatic state
with equal numbers of degrees of freedom and constraints, is
ziso = 2. This is an extremely low value for our system. It will
increase if the rolling and twisting interactions are removed.
In general, positive and large values of static redundancy
zg − ziso reflect a stable quasistatic behavior, whereas negative
values mean unstable and dynamic states. In all cases, there is
always a subset of particles with no contacts (floaters) and a
subset of contacts bearing no force. Hence, for the definition
of the coordination number we consider only the nonfloaters
and force-bearing contacts:

zg = 2Nc

Np − N0
p

, (9)

where Np is the total number of particles, N0
p is the num-

ber of floaters, and Nc is the number of force-bearing
contacts.

Figure 4(a) displays the evolution of zg with the number
of cycles N , where the time histories are colored according to
the value of p/p0. The initial liquefaction (IL) corresponding
to p/p0 � 0.01 is marked by a small black circle. We see that
zg decreases on average from its initial value zg � 4.76 with
small oscillations during the preliquefaction period and drops
below 4.0 while the system tends to its initial liquefaction
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FIG. 4. Evolution of (a) coordination number zg and (b) non-
rattler fraction fNR for simulation T2. The horizontal dashed line
zg � 3.6 refers to the inflection point of zg.

state. After this transition, zg stays below 4.0 and fluctuates
significantly down to values as low as 1.5 with a negative static
redundancy, implying that there are not enough constraints to
hold the system stable. One can also notice that zg increases
with p/p0, implying a monotonic relationship between zg and
p [48,49]. Hence, the coordination number is fully correlated
with the evolution of the macroscopic stress and strain pa-
rameters during cyclic shearing. Moreover, its lowest nonzero
value is consistent with the existence of a residual mean stress.
The horizontal dashed line for zg = 3.6 in the inset window
corresponds to the inflection point of zg nearly at mid-distance
between two successive cycles. Below this point, zg increases
along with the buildup of the contact network at constant mean
stress. Above this value zg further increases with p and τ

(see below). For this reason, the coordination number zg � 3.6
may be considered as the percolation threshold of the particles
allowing for force transmission across the system through the
contact network and thus transition from fluid-like state to
solid-like state.

Another scalar descriptor complementing the coordination
number is the “nonrattler fraction” defined by [15]

fNR = Np − N0
p − N1

p

Np
, (10)
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FIG. 5. Detailed evolutions of zg and fNR, together with those of the shear stress τ , normalized mean stress p/p0 and shear strain γ , for
simulation T2 during three selected cycles: (a) cycle A; (b) cycle B; (c) cycle C.

which represents the proportion of particles with at least two
contacts, i.e., excluding particles with zero contact (N0

p ) or
one contact (N1

p ). Figure 4(b) shows the evolution of fNR.
We see that around 15% of the particles at the initial state
do not contribute to the sample’s contact network. During the
preliquefaction period, fNR gradually declines to 70% at ini-
tial liquefaction. In the postliquefaction period, fNR oscillates
significantly and drops below 40% transiently when p/p0

approaches 0, but it does not vanish. It should be noted that
the largest values of fNR are achieved as a result of reloading,
but before p/p0 begins to increase, implying that fNR and p
do not follow a monotonic relationship.

The above-mentioned features can be observed in Fig. 5,
which displays detailed evolution of zg and fNR in cycles A,
B, and C as previously shown in Fig. 2. It is remarkable that
in cycle A zg and fNR oscillate with p/p0 decreasing mono-
tonically whereas in cycle B they oscillate together with p/p0

but in opposite phase. Then, in cycle C of the postliquefaction
period, the variations of zg and fNR are directly related to p/p0

except in the liquefaction state (p/p0 � 0.01), as mentioned
previously; zg achieves its local maximum when τ = ±τ amp

while the peak of fNR occurs in the liquefaction state. The
horizontal dashed line in the subplot of zg and N shows that the
value zg = 3.6 prompts the system to exit from the liquefac-
tion state, and in this respect it represents the critical value for
jamming transition as a percolation threshold of the contact
network.

To understand the relationship between p and zg,
let us consider the following relation derived from

Eq. (4):

p ∝ zg
Np − N0

p

Np
〈l · f 〉 = zg

Np − N0
p

Np
〈l fn〉, (11)

where 〈l · f 〉 refers to the average over all contacts. For the
spherical particles used in this study, l = ln with l being
branch vector length, and thus l · f = l fn with fn being the
contact normal force. In the preliquefaction cycle, the non-
floater fraction (Np − N0

p )/Np can be regarded as constant
given Figs. 6(a) and 6(b) so that the variation of p is controlled
by zg and 〈l fn〉. Hence, the initial out-sync between p/p0

and zg is compensated by 〈l fn〉, which can be easily affected
by cyclic shearing. This compensation becomes less and less
significant as the system approaches the initial liquefaction. In
the postliquefaction period, fn becomes negligibly small when
the system falls into the liquefaction state, thus explaining
why the significant changes of zg do not affect p noticeably.
Outside the liquefaction state, zg increases mildly, and the
increase of p should be mainly attributed to the evolution
of 〈l fn〉.

To get a more detailed insight into the evolution of the
contact network, let us consider the connectivity of particles
Pc, defined as the proportion of particles with exactly c con-
tacts. This distribution is shown in Fig. 6 at the characteristic
states of the three selected cycles. Note that P0 represents the
proportion of floating particles. In the preliquefaction cycles,
the distribution {Pc} is nearly unchanged during shear cycle
with very small values of P1 and P2, a peak at c = 4, and a

032904-8



EVOLUTION OF GRANULAR MATERIALS UNDER … PHYSICAL REVIEW E 103, 032904 (2021)

0 4 8 12 16

c

0.0

0.2

0.4

0.6

0.8

P c

A0

A1

A2

A3

(a)

0 4 8 12 16

c

0.0

0.2

0.4

0.6

0.8

P c

B0

B1

B2

B3

(b)

0 4 8 12 16

c

0.0

0.2

0.4

0.6

0.8

P c

C0

C0

C1

C2

C2

C3

(c)

FIG. 6. Connectivity diagram expressing the fractions Pc of particles with exactly c contacts for simulation T2 at the characteristic states
of (a) cycle A; (b) cycle B; (c) cycle C.

long tail for c > 4. In cycle C of the postliquefaction period,
the states C0 and C2 exhibit a high proportion of particles with
c < 4, implying a fragile contact network. This fragile net-
work disappears only when the system exits the liquefaction
state as shown by {Pc} at C0′ and C2′ . Given large shear strain
development between C0 and C0′ or C2 and C2′ , one can infer
that sample deformation rebuilds the fragile network resulting
from unloading (compare C1 and C2) although p does not
increase markedly. The system stays stable at C1 or C3 while
C0 or C2 represents the state with the weakest contact network
in the postliquefaction cycle.

For the temporal evolution of Pc, we plot in Fig. 7 Pc

for c = 0, 1, . . . , 9 at τ = τ amp and τ � 0 (transitioning from
unloading to loading) as a function of N . τ � 0 refers to C2

in the postliquefaction period. At τ = τ amp, we observe that
the proportion of floaters (P0) takes the place of P5 to become
the second most dominant value after a few cycles while P4

does not change noticeably. At τ � 0, near initial liquefac-
tion (N � 14), a significant change occurs in the connectivity
diagram: the system tends to have more proportions of par-
ticles with contacts below 3. In the postliquefaction period,
the values of P0, P1 and P2 first increase, implying that the
system gets weaker, and explaining the increasing shear strain
amplitude, and then tends to a steady state. Furthermore, in
the postliquefaction period, the distribution {Pc} is continuous
between floaters (P0) and the nonfloaters, and the peak at
c = 4 has disappeared. This means that {Pc} does not anymore
reflect a balanced contact network but a dynamic one in which
dynamic events such as binary collisions (P1) and unstable
chains (P2) of particles prevail.

B. Force transmission and friction mobilization

The force network of a granular system is defined by the
spatial distribution of contact forces f . A local coordinate
system (n, t ) is attached to each contact point, where n is
the unit vector perpendicular to the contact plane and t is an
orthonormal unit vector in the contact plane oriented along the
tangential contact force. Thus, we have f = fnn + ft t , with fn

and ft representing the magnitudes of normal and tangental
contact forces, respectively. The inhomogeneity of contact
forces in granular media can be characterized by the probabil-
ity density function (PDF) of normal contact forces Pn [50,51],
which is generally characterized by two major features: (1) the

PDF is roughly a decreasing exponential function for forces
above the mean, and (2) in the range of weak forces below the
mean the PDF does not decline to zero with force. These two
features have been observed in confined packings [50,52] or
sheared granular media reaching steady flow regime [53–55]
where the system preserves a statistically stable force dis-
tribution. For the granular assembly under isochoric cyclic
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FIG. 7. Evolution of proportion Pc of particles with c contacts at
characteristic states of (a) τ = τ amp and (b) τ � 0 transitioning from
unloading to loading (or C2 in postliquefaction period) for simulation
T2.
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FIG. 8. Probability density functions Pn of normal forces fn normalized by the mean normal force in log-linear [(a), (b), (c)], and log-log
scales [(d), (e), (f)] for simulation T2 at characteristic states of cycle A [(a), (d)]; cycle B [(b), (e)]; cycle C [(c), (f)]. Note that plots for cycle
C share the legend, and the vertical dash-doted, dashed, and dotted lines there refer to 〈 fn〉 at C0′ or C2′ , C0 or C2, and C1 or C3, respectively.

shearing, the network goes through collapsing and jamming
stages, and therefore we expect strong variations of Pn.

Figure 8 displays the PDF of normal contact forces in log-
linear and log-log scales at the characteristic states depicted in
Fig. 2. In the preliquefaction cycles, the forces are normalized
by the mean normal contact force 〈 fn〉 at each state given
the tiny variations of 〈 fn〉 in a cycle. In the postliquefaction
cycles, 〈 fn〉 changes significantly. For example, 〈 fn〉 � 0.16 N
at C1 and 0.03 N at C2′ , as shown by the vertical dashed lines
in Figs. 8(c) and 8(f). Thus, to see the variations of force
PDF in the postliquefaction period, it is more suitable not to
normalize fn any more, as depicted in Figs. 8(c) and 8(f). We
see that Pn is well fitted by a decreasing exponential function
keβ(1− fn/〈 fn〉) for fn � 〈 fn〉 where k and β are two parameters
[56] representing the value of Pn at fn = 〈 fn〉 and the slope of
the log-linear plots in Fig. 8, respectively. We find β � 1.55
in cycle A, 1.25 in cycle B, and 1.00 in cycle C at C1 and
C3. This means that the force network is increasingly more
inhomogeneous as it evolves from cycle A to cycle B and
then cycle C. Upon entering the liquefaction state (C0 or C2),
the system has a slightly larger proportion of strong forces
than C1 or C3 as shown in Figs. 8(c) and 8(f). However, the
proportion of strong forces becomes smaller than C1 or C3

when the system leaves the liquefaction state and jamming
transition occurs (C0′ and C2′ ).

The distribution of tangential contact forces in the system
can be analyzed in a similar way [50,51]. In addition, one
can also link each tangential contact force to the friction
mobilization, as given by the friction mobilization index Im =
| ft |/(μt fn) [51,55,57]. This index ranges between 0 and 1, the

latter indicating sliding or mobilized contact. Generally, the
proportion of mobilized contacts is expected to increase with
shear stress [41]. This is confirmed in Fig. 9 by comparing
states of subscript 0 or 2 with those with subscripts 1 or 3 in
preliquefaction cycles.

We also observe a right shift of the distribution of Im, indi-
cating a larger proportion of contacts getting close to sliding.
In the postliquefaction period, a large proportion of mobilized
contacts is generated at C0 and C2: the probability density
near Im = 1.0 increases from 0.6 to 14.7. With shear strain
developing in the liquefaction state from C0 to C0′ or C2 to C2′ ,
the proportion of mobilized contacts drops to around 0.3, and
the system regains larger number of contacts far from sliding.
It should be noted that the distribution of Im at τ = ±τ amp

is nearly the same for the cycles A, B, and C, implying a
close relation between friction mobilization and the stress
state τ amp.

C. Fabric and force anisotropies

By analyzing the distribution of directional data in the
system, a list of higher-order tensorial quantities such as fabric
and force tensors can be introduced [58]. These directional
data include contact normals n, mean branch vectors 〈l〉(n),
mean normal and tangential forces denoted by 〈 fn〉(n) and
〈 f t 〉(n), to name a few. Given the low polydispersity of sam-
ples in this study, the fabric anisotropy due to 〈l〉(n) is nearly
negligible and will not be analyzed here.

Let us consider S(n), the set of contact normal vectors
pointing in the direction n = (θ, ϕ) as shown in Fig. 10, where
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FIG. 9. Probability density functions of friction mobilization index for simulation T2 at characteristic states of (a) cycle A; (b) cycle B;
(c) cycle C.

θ is the angle of contact normal vector projected on the shear
plane, i.e., xz plane in Fig. 10, and ϕ the azimuthal angle.
The PDF of contact normals, and the average normal and
tangential forces are expressed as functions of the orientation
n [55,59]:

P(n) = Nc(n)

Nc
, (12)

〈 fn〉(n) = 1

Nc(n)

∑
c∈S(n)

fn, (13)

〈 f t 〉(n) = 1

Nc(n)

∑
c∈S(n)

f t , (14)

where Nc(n) is the number of contacts pointing in the direction
n within a small solid angle δ� around n.

Given the invariance of simple shear loading along the y
axis, we expect that the distributions do not depend on the az-
imuthal angle, and hence we consider only the projections of
contact orientations on the shear plane. Thus, contact normal n
is replaced by the vector n′ on the shear plane with orientation
angle θ as shown in Fig. 10 and the unit vector t representing
the direction of corresponding tangential force is replaced by

x

y

z

nnn

nnn

�
�

FIG. 10. Normal contact orientation given the azimuthal angle ϕ

and the angle θ defined by the projection of the contact direction on
the shear plane of xz. The double-headed arrow represents the cyclic
shear direction.

the vector t ′ on the shear plane with orientation angle θ + 90◦,
perpendicular to n′.

Figure 11 displays the polar representation of the functions
P(n), 〈 fn〉(n) and 〈 f t 〉(n) in shear plane as a function of θ at
the characteristic states. We observe an obviously anisotropic
behavior when the shear stress reaches the peak: for Pn(θ ) and
〈 fn〉(θ ), the major principal components occur in the direction
θ � 135◦; for 〈 ft 〉(θ ) it occurs at θ � 90◦, and the other peak
at θ � 45◦ corresponds to the minor principal component
where 〈 ft 〉(θ ) < 0. The directions for the peaks of 〈 fn〉(θ ) and
〈 ft 〉(θ ) can be approximated by the directions of planes with
major principal stress and maximum shear stress, respectively.
By drawing a Mohr circle, one can see that the angle between
these two directions is 45◦, which is verified in Figs. 11(b)
and 11(c). Comparing the anisotropies of A1, B1, and C1, one
can notice an increasing trend for Pn(θ ), a shrinking trend for
〈 fn〉(θ ) due to the decrease of p, and a decreasing trend for
〈 ft 〉(θ ), as elucidated quantitatively below. When the shear
stress vanishes (A0) in the preliquefaction period, the system
tends to be isotropic, but it becomes anisotropic in the postliq-
uefaction period except for 〈 ft 〉(θ ) (consistent with low values
of friction mobilization Im as discussed previously). From C2

to C2′ , one observes that the fabric anisotropy is regained prior
to the force anisotropies, as generally observed during shear
reversal [29].

To account for the lowest-order anisotropy of P(n), a
second-order fabric tensor can be defined as [60,61]

φc = 1

Nc

∑
c∈Nc

nc ⊗ nc, (15)

from which the fabric anisotropy tensor ac can be defined by

ac = 15
2

(
φc − 1

3 I
)
, (16)

where I is the second-order identity tensor. One can refer to
Ref. [58] for details of derivation. In the same way, force ten-
sors characterizing the second-order anisotropy of 〈 fn〉(n) and
〈 f t 〉(n) are defined by the following weighted fabric tensors:

φn = 1

Nc

∑
k∈Nc

f k
n nk ⊗ nk

1 + ac : (nk ⊗ nk )
, (17)

φt = 1

Nc

∑
k∈Nc

f k
t ⊗ nk

1 + ac : (nk ⊗ nk )
. (18)
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FIG. 11. Polar representation of the functions (a) Pn(θ ), (b) 〈 fn〉(θ ) and (c) 〈 ft 〉(θ ) at selected characteristic states for simulation T2.

Hence, the force anisotropy tensors are given by [23,62]

an = 15

2

[
φn

tr(φn)
− 1

3
I
]
, (19)

at = 15

3

φt

tr(φn)
, (20)

where tr(·) is the trace operator. Eq. (18) implies that
tr(φt ) = 0 given the normality of n and t .

We use the deviatoric invariants of the anisotropy tensors
to quantify the anisotropies of the contact network, normal
forces, and tangential forces [41]:

a[ ] = sgn(S[ ] )

√
3

2
a[ ] : a[ ], (21)

where the subscript [ ] stands from c, n, or t , corresponding to
the three aforementioned anisotropies, respectively. S[ ] is the
normalized first joint invariant between two tensors defined by

S[ ] = a[ ] : s√
a[ ] : a[ ]

√
s : s

, (22)

where s = σ − pI and the deviatoric stress q = √
(3/2)s : s.

Generally S[ ] quantifies the level of proportionality between
two tensors, with S[ ] = 1.0 corresponding to the proportional-
ity of two tensors. As these anisotropy tensors are affected by
s, S[ ] can be regarded as characterizing the relative orientation
of the principal axes (PA) of a[ ] with respect to that of s, i.e.,
the level of coaxiality.

The fabric and force anisotropies are the origins of shear
strength in granular materials [62,63] as s/p can be well ap-
proximated by a linear combination of the anisotropy tensors:

σ ′

p
� 2

5

(
ac + an + 3

2
at

)
. (23)

At τ = ±τ amp, these anisotropy tensors become nearly pro-
portional to s. Thus Eq. (23) can be further simplified to

q

p
� 2

5

(
ac + an + 3

2
at

)
. (24)

Equation (24) holds quite well for our data in Fig. 12 in
which the evolutions of fabric and force anisotropies at τ =

±τ amp are shown along with the contributing weight of each
anisotropy to q/p. It should be noted that these anisotropies
are normalized by (2/5)ac + (2/5)an + (3/5)at . We see that
ac and an present an increasing trend while at decreases
slowly in the preliquefaction period. All the anisotropies
tend to level off after several cycles in the postliquefac-
tion period, where the normal force anisotropy and contact
anisotropy govern the shear force-transmitting network, and
friction mobilization or tangential force anisotropy play a
marginal role. This is consistent with dense inertial granular
flows, where it was shown that the contact anisotropy in-
creases with the inertial number [64]. In this sense, the larger
values of the inertial number in the postliquefaction period
(although strongly varying during each cycle) may explain the
larger level of q/p and the marginal role of tangential force
anisotropy.

The contact network anisotropy ac provides the geometri-
cal support of the stress anisotropy. Its contribution reflects
the larger number of contacts oriented along the compression
direction (principal direction of the strain-rate tensor) com-
pared with that along the extension direction. This means
that there are more contacts to support the forces along
the major principal stress direction than the minor principal
stress direction. In a dense system, the buildup of the contact
anisotropy implies the loss of contacts along the extension
direction. This is consistent with the increase in the num-
ber of particles with fewer than 4 contacts, as observed in
Fig. 6. The normal force anisotropy an means that stronger
force chains are formed along the major principal stress di-
rection as compared to the minor principal direction. This,
in turn, implies an increase in the number of weak forces,
as observed in the PDF of normal forces in Fig. 8. The
tangential force anisotropy at represents the largest friction
mobilization occurring in the shear plane. Indeed, the polar
diagram of the average tangential force in Fig. 11(c) can
be approximated by a truncated Fourier expansion 〈 ft 〉(θ ) =
at 〈 fn〉 sin 2(θ − π/4). Hence, the friction mobilization index
Im = 〈 ft 〉/(μt 〈 fn〉) = at/μt is proportional to the tangential
force anisotropy θ = 0 or π/2. In the postliquefaction period,
not only the anisotropies but also the force distributions, fric-
tion mobilization distribution, and connectivity function are
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FIG. 12. (a) Evolutions of the contact and force anisotropies at τ = ±τ amp for simulation T2 and deviatoric stress ratio q/p both measured
from the simulation data and expressed as a function of the anisotropies as in Eq. (24). (b) Contributing weights of fabric and force anisotropies
to the deviatoric stress ratio q/p: all normalized by (2/5)ac + (2/5)an + (3/5)at .

nearly stable, as shown in Fig. 13 at τ = ±τ amp in the last few
cycles of the simulation.

Figure 14 displays the evolutions of S[ ] and anisotropies
in the selected three cycles, along with the measured values
of q/p and τ/p according to Eq. (4) and predicted val-
ues suggested by Eqs. (24) and (23), respectively. From the
quick adjustment of Sn and St , one can realize that the force
anisotropies are easily affected by cyclic shearing while the
fabric anisotropy needs more time for the gain of new contacts
along a new direction when the shear direction is revered.
In the liquefaction state of Fig. 14(c) (C0 to C0′ or C2 to
C2′), all the anisotropies present fluctuations, implying a state
with local instabilities. Then, ac starts to build up and grows
into a force-bearing network. This evolution is marked by the
increase of ac and decrease of at . Hence, a distinctive feature
of the rejammed states (from C0′ to C1 or from C2′ to C3) in
the postliquefaction period is that the normal force anisotropy
prevails and the contact anisotropy is above the tangential
force anisotropy. In the preliquefaction state the tangential
force anisotropy is mostly above the contact anisotropy, which
has generally a low value.

It is noteworthy to remark that, although q and p have
small values in the liquefaction state of cycle C, their ratio
q/p has reasonable values with variations between 0 (upon
shear reversal) and 0.8 after the percolation of the contact
network (C0′). The latter is above the maximum values of q/p
reached in cycles A and B, and reflects the fact that the states
reached at jamming in the postliquefaction period are different
from the preliquefaction states even though in both cases the
granular material is shear-jammed. This is obviously related to
the higher contact and force anisotropies that can be reached
in the postliquefaction state. In the preliquefaction period, the
predicted quantities from Eqs. (24) and (23) agree well with
the measured values, despite a slight loss of accuracy upon
unloading for the predicted q/p due to noncoaxiality between
the stress tensor and anisotropy tensors during transient rever-
sal. This inaccuracy is also present in the liquefaction state of
the postliquefaction period where q, p and τ have quite small
values [29].

Figure 15 presents the fabric anisotropy ac versus the co-
ordination number zg during the cyclic shearing process. The
evolution of the system in the fabric space (zg, ac) portrays the
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FIG. 13. Snapshots of (a) particle connectivity diagram, probability density functions of (b) normal forces and (c) mobilized friction index
when shear stress reaches its maximum amplitude in the last three cycles of simulation T2.
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FIG. 14. Evolutions of S[ ] and anisotropies, along with comparisons between calculated q/p and τ/p and their predicted values by Eqs. (24)
and (23) for simulation T2: (a) cycle A; (b) cycle B; (c) cycle C.

reorganizations of the contact network in response to external
loading [65]. The negative values of ac correspond to the
states where Sc is negative, i.e., the principal directions of
the stress tensor and fabric anisotropy tensor make an angle
larger than π/4. The instances of shear stress change of sign,
i.e., the states with subscripts 0 and 2 in each cycle, are
marked by the diamond symbols. The instances of peak shear
stress, i.e., the states with subscripts 1 and 3 in each cycle,

FIG. 15. Fabric anisotropy ac versus coordination number zg dur-
ing the cyclic shearing for simulation T2. The colors represent the
stress level according to the color scale. The highlighted path is a
full shear cycle in the postliquefaction period.

are marked by triangles. The states from C0 to C2 of cycle C
are interconnected to reveal the fabric evolution path in the
postliquefaction period, with characteristic states highlighted.

On the right side of the fabric diagram beyond zg > 3.6 in
the preliquefaction period, the evolution of the system starts
from ac � 0 and high value of zg (where τ � 0), and follows
a path towards the left (lower values of zg) via oscillations
between ac = 0 and a maximum value of ac that increases
gradually with the number of cycles. The upper limit of ac

defines a decreasing function of zg, which was termed “gain
saturation line” in Ref. [65] since for large values of zg no
more contacts can be gained along the direction of contrac-
tion. The steric exclusions restrict the number of contacts that
can be gained, and thus the value of the fabric anisotropy.
A simple model predicts that the maximum value of fabric
anisotropy varies as 1/zg in agreement with our data points
in Fig. 15. Interestingly, the largest value of fabric anisotropy
occurs around zg � 3.6 with ac � 0.9, where the initial lique-
faction occurs.

In the postliquefaction period, both zg and ac vary sig-
nificantly and follow long paths exemplified by that from
C0 to C0′ . In particular, we observe a plateau along which
ac is nearly constant while zg either increases or declines.
This means that along this plateau, the contacts are lost or
gained isotropically. We see that after the system gets out of
liquefaction state, ac does not change noticeably from C0′ to
C1 despite the increase of the applied shear stress τ . Upon
unloading from C1 to C2, zg drops significantly while ac does
not change noticeably. At low values of zg, a larger anisotropy
is reached by loss of contacts along the direction of extension.
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FIG. 16. Effects of (a) initial void ratio e, (b) initial mean stress p0 and (c) cyclic stress ratio (CSR) on the evolution of coordination
number zg.

But the anisotropy is limited by “loss saturation.” Indeed, the
particles’ relative stability impedes the loss of all contacts
along the direction of extension. However, due to the shear
deformation of the sample, the contact network is rebuilt by
first isotropic and then anisotropic gain of contacts with steady
increase of both zg and ac. The largest value of ac achieved
along this path is above 1 in the unjammed state, in agreement
with Ref. [24], and 0.75 in the jammed state. This anisotropy
occurs for zg � 4. Along this path of rejamming, we observe
also frequent changes of the sign of ac due to the rotations of
its direction with respect to that of the stress tensor. As the
contact network can not easily change its orientation, these
rotations arise from the rotations of the stress tensor with
weak shear components (small values of both p and τ ). We
see that in the postliquefaction period the anisotropy almost
never vanishes whereas in the preliquefaction period, declines
to a value close to zero after each shear reversal.

V. EFFECTS OF INITIAL AND LOADING CONDITIONS

This section extends our study to the other simulations
listed in Table I to explore the effects of initial and loading
conditions on the evolution of microstructure. Simulations
T1, T2, and T3 are used to analyze the effect of the initial
void ratio e0. Simulations T2, T4, and T5 are used to analyze
the effect of the initial mean stress p0. Simulations T6, T2,
and T7 are used to analyze the effect of CSR defined by
Eq. (3).

Figure 16 displays the evolution of zg for all the simulations
listed in Table I. We normalize the number of cycles N by
NIL, thus the vertical line N/NIL = 1 distinguishes the preliq-
uefaction period from the postliquefaction period. In the inset
window of each figure, the x axis is replaced by (N − NIL) to
zoom into the details near the initial liquefaction. We see that
the evolution of the coordination number in all simulations is
quite similar to that of T2. Recall that, as observed in Fig. 4(a),
zg stays below 4.0 in the postliquefaction period, but this is not
the case for simulation T5 in Fig. 16(b) where the mean stress
corresponding to τ = ±τ amp in the postliquefaction period
is expected to be around six times that of simulation T2.
Given the monotonic relationship between zg and p [49,66]
indicated by Eq. (11), it is reasonable that zg evolves beyond
4.0 in the postliquefaction period for a simulation inducing
a high postliquefaction mean stress. Given the sudden drop

of zg upon unloading in each postliquefaction cycle, it is
difficult to find the value corresponding to transition to the
liquefaction state. As indicated by Fig. 16, zg stays above 3.6
in the preliquefaction period. Hence, the value zg = 3.6 seems
to control the transition to the liquefaction state independently
of e0, p0, and CSR. This is consistent with the interpretation
of 3.6 as the mechanical threshold for jamming or percolation
threshold for contact network. However, the lowest values of
zg reached after shear reversal seem to slightly depend on the
void ratio and cyclic stress ratio although a broader range
of the values of these parameters should be simulated for a
quantitative evaluation of these effects.

Figure 17 shows the evolution of the respective contribu-
tions of the fabric and force anisotropies to the deviatoric
stress ratio q/p at τ = ±τ amp for the simulations of Table I
except T2. The theoretical value of q/p calculated from the
anisotropies by Eq. (24) is shown, too. We see that the effect
of the initial and loading conditions on the evolution patterns
is not significant. In all cases, the contribution of at is larger
than that of ac in the preliquefaction period, but their roles
interchange during the postliquefaction period. The marginal
contribution of at in the postliquefaction period is consistent
with previous simulations [23]. The larger contribution of
ac in the postliquefaction period reflects the higher mobil-
ity and lower coordination number of the particles allowing
larger fabric anisotropy. The higher mobility also involves
a lower degree of frustration of particle rotations and thus
lower friction mobilization, which is at the origin of tangential
anisotropy.

Despite their similarity, one can observe some differences
in the first few loading cycles, but cyclic shearing reduces
these initial differences in the subsequent cycles. After a
sufficient number of cycles in the postliquefaction period,
the contribution of (2/5)ac statures at around 0.4, that of
(2/5)an saturates at around 0.5, and the rest is attributed to
(3/5)at . In the postliquefaction period, the stress path falls
into the banana shape, implying a constant deviatoric stress
ratio q/p during loading outside the liquefaction state [refer to
the period between C0′ and C1 in Fig. 14(c)]. The system can
quickly adjust itself to support the shear stress amplitude by
properly allocating each anisotropy weight. Figure 18 displays
the particle connectivity diagram, probability density func-
tions of normal forces and mobilized friction index at the last
time the shear stress reaches the maximum amplitude in each
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FIG. 17. Evolution of the respective contributions of anisotropies to the stress ratio q/p at τ = ±τ amp and the theoretical value of q/p
according to Eq. (24) for (a) T1, (b) T3, (c) T4, (d) T5, (e) T6, and (f) T7.

simulation. The effects of the initial and loading conditions on
these distributions are not significant.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated the highly nonlinear evolu-
tion of granular microstructure with isochoric cyclic simple
shearing by means of discrete-element numerical simulations
and for several different values of the initial mean stress, void
ratio, and cyclic stress ratio. The macroscopic behavior is
characterized by typical oscillations of shear stress and grad-

ual degradation of the mean stress until the system enters a
state of cyclic liquefaction or cyclic mobility. In the transition
to the liquefaction state, where the mean stress approaches
zero, the coordination number and the nonrattler fraction drop
significantly, and the force-bearing network collapses. Uncon-
ventional distributions of normal contact forces occur in this
state as compared to those in a stable packing.

In the liquefied state, large shear deformation is required
to rebuild the contact network and exit the liquefaction state
in each cycle, as characterized by the particle connectivity
and contact network anisotropy, providing the geometrical
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FIG. 18. (a) Particle connectivity diagram, probability density functions of (b) normal forces and (c) mobilized friction index when the
shear stress reaches its maximum amplitude in the last simulated cycle.

support for the subsequent shear. The relationship between
deviatoric stress ratio and the force and fabric anisotropies
was also verified, revealing a nearly constant contribution of
the normal force anisotropy, an increasing contribution of the
fabric anisotropy, and a decreasing contribution of the tangen-
tial force anisotropy or friction mobilization to the deviatoric
stress ratio as cyclic shearing proceeds. We also explored the
effects of the initial and loading conditions on the microstruc-
tural evolution. It was found that in all cases, the transition
to the liquefaction state is characterized by a critical value of
the coordination number (�3.6) that corresponds to the per-
colation threshold of the contact network. We also observed
a similar evolution of the fabric and force anisotropies, and
their saturation values in simulations with different initial and
loading conditions.

The hysteresis loops in the postliquefaction period can be
viewed as oscillations around an unstable state. Although the
coordination number can drop to low values (below the iso-
static value), the unjamming occurs at a coordination number
of 4, and subsequent jamming leads to a coordination number
of 3.6. Before this connectivity is reached, no pressure buildup
occurs. In this sense, the coordination number of 3.6 corre-
sponds to the mechanical percolation threshold of the contact
network. This value is well above the isostatic coordination
number, which is 2 in our simulations. It is also important to
remark that the jammed state in each postliquefaction cycle is
anisotropic with a fabric anisotropy �0.75.

We found that the contact network and mean stress never
vanished in our simulations. This is also the case in most
reported simulations in the literature, but assumed to be low
enough to be neglected. Although the mean stress in the
unjammed state is quite low, its nonzero value implies that
the phenomenology of cyclic liquefaction does not crucially
depend on the condition of strict vanishing of the mean stress.
Actually, in asymmetric cyclic loading the mean stress does
not vanish, but the mechanical behavior is quite similar to
symmetric cyclic shearing [19]. The full vanishing of the
mean stress and coordination number may occur for much
larger void ratio, but then the void ratio will be too high to al-
low for re-jamming of the particles at constant volume. Such a
limit should exist and merits a parametric investigation. How-
ever, what makes cyclic liquefaction important and interesting
is the fact that it occurs at low void ratio, and therefore the un-
jammed state with its vanishing mean stress and coordination

number is different from a dilute suspension in the sense that
it is still a dense system that has an anisotropic structure and
can easily jam under continued shearing. More generally, this
underlines that the stress-bearing capacity of granular materi-
als is crucially dependent on their microstructure rather than
the void ratio alone. As most continuum models of granular
materials use the void ratio as state variable, they can not
account for cyclic shearing unless proper internal variables
pertaining to the contact network and characteristic fabric
states are introduced. It is by no means obvious that the same
internal parameters can be used both before and after the onset
of liquefaction.

As we argued that the mechanical states of a granular
material under isochoric cyclic shearing are different from
those observed under stress-controlled conditions, the force
distributions provide a clear example in this respect. While the
force PDF is generally quite stable in stress-controlled shear-
ing and only marginally influenced by the development of
fabric anisotropy, we found that the force PDF is increasingly
more inhomogeneous as the liquefaction state is approached
(reflected in the broader exponential fall-off of the number of
forces above the mean force). This enhanced inhomogeneity
is consistent with the decrease of the coordination number
and larger fabric anisotropies reached by the system as cyclic
shearing proceeds. The increasing inhomogeneity of contact
forces implies an increasingly more pronounced role of force
chains. Such chains are propped by weaker forces [67]. How-
ever, as cyclic shearing continues and an increasing number
of particles with only three contacts appear, the number of
weak supporting forces declines and force chains become in-
creasingly more prone to collapse. This is a plausible scenario
for transition to the liquefaction state. As force snapshots in
Fig. 3 suggest, the initial liquefaction corresponds in this way
to the collapse of strong force chains. This collapse occurs
without significant loss of anisotropy, meaning that the resid-
ual microstructure after unjamming carries a signature of the
jammed state with a residual mean stress that can undergo
large shear strain before rejamming into a strong network.

This work can be expanded in several directions. Since the
liquefaction transition critical coordination number is quite
robust with respect to the initial and loading conditions, an
issue is how it depends on the sample’s inherent properties,
such as particle size distribution, particle shape [68], and
particle interaction parameters. For example, the effect of
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sliding friction coefficient and rolling friction on the liquefac-
tion resistance and transition merit a parametric investigation.
The microstructural analysis can also be enriched by a more
detailed analysis of the evolution of force correlations and
force fluctuations at transition to the liquefaction state [69,70].
The evolution of the pore space [30,71,72] may also be ana-
lyzed in this regard. Finally, the dependence of the residual
stress, critical coordination number, force PDF, and fabric

evolution can be investigated for a broader range of void
ratios.
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