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INTRODUCTION 
ue to the recent explosion of interest in studying the electromagnetic behavior of  
large (truncated) periodic structures such as phased arrays, frequency-selective 

surfaces, and metamaterials, there has been a renewed interest in efficiently modeling 
such structures.  Since straightforward numerical analyses of large, finite structures (i.e., 
explicitly meshing and computing interactions between all mesh elements of the entire 
structure) involve significant memory storage and computation times, much effort is 
currently being expended on developing techniques that minimize the high demand on 
computer resources.  
One such technique that belongs to the class of fast solvers for large periodic structures is 
the GIFFT algorithm (Green’s function interpolation and FFT), which is first discussed in 
[1].   This method is a modification of the adaptive integral method (AIM) [2], a 
technique based on the projection of subdomain basis functions onto a rectangular grid.  
Like the methods presented in [3]-[4], the GIFFT algorithm is an extension of the AIM 
method in that it uses basis-function projections onto a rectangular grid through Lagrange 
interpolating polynomials. The use of a rectangular grid results in a matrix-vector product 
that is convolutional in form and can thus be evaluated using FFTs.  Although our 
method differs from [3]-[6] in various respects, the primary differences between the AIM 
approach [2] and the GIFFT method [1] is the latter’s use of interpolation to represent the 
Green’s function (GF) and its specialization to periodic structures by taking into account 
the reusability properties of matrices that arise from interactions between identical cell 
elements.  
The present work extends the GIFFT algorithm to allow for a complete numerical 
analysis of a periodic structure excited by dipole source, as shown in Fig 1. Although 
GIFFT [1] was originally developed to handle strictly periodic structures, the technique 
has now been extended to efficiently handle a small number of distinct element types. 
Thus, in addition to reducing the computational burden associated with large periodic 
structures, GIFFT now permits modeling these structures with source and defect 
elements. Relaxing the restriction to strictly identical periodic elements is, of course, 
useful for practical applications where, for example, a dipole excitation may be of interest 
or, as is often the case for metamaterials, defective elements are introduced in the 
structure’s fabrication process. The main extensions of the GIFFT method compared to 
[1] are the following:   

1) Both periodic “background” and “source” or “defect” elements are now separately 
defined in translatable unit cells so that, in the algorithm, mutual electromagnetic 
interactions can be computed.   

2) The near-interaction block matrix must allow for the possibility of “background-to-
source” or “background-to-defect” cell interactions.   
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3) Matrices representing projections of both “background and source” or “background 
and defect” subdomain bases onto the interpolation polynomials must be defined and 
appropriately selected in forming the matrix-vector product.   
It is important to note that, although here we consider a metamaterial layer with a dipole-
antenna excitation, as per the extended GIFFT algorithm, “defect” elements could be 
considered as well. 

 
Fig. 1.  (a) Typical geometry of the problems analyzed. A dipole antenna is placed over a 

periodic artificial material of finite size. A metamaterial structure is formed using two layers of 
capacitively-loaded split ring resonators (SRRs).  The grid where the GF is evaluated in the y-z 
plane is represented in (b). 

THE GIFFT METHOD 

A. Background:  The GIFFT Method for Periodic Stuctures  
In [1] the GIFFT method is applied to periodic structures (arrays, in particular) with 
polygonal boundaries. Only one element of the array is meshed and provided as input, 
while all other array elements are accounted for by taking advantage of the reusability 
properties of periodic structures comprising identical elements.   
The GIFFT method begins by setting out a regular grid of Green’s function interpolation 
points across the entire array.  The points are typically chosen so there are four to six 
points per half-wavelength array cell (Fig. 1(b)). The points are used as equi-spaced 
interpolation nodes for Lagrange interpolating polynomials that approximate the Green’s 
function as    

,

( ) ( ) ( )L L′ ′

′

′ ′− ≅ ∑ i i -i i

i i

G r r r G r  

where ′i, i  are double indices representing interpolation point locations overlaying the 
observation and source cells, respectively.  The Green’s function is sampled once for 
each unique value of the difference index - ′i i representing separation between source and 
observation interpolation points.  It can be seen from the above that the Green’s function 
approximation is of convolutional form, and a matrix-vector product involving it may 
utilize an FFT.  After the Green’s function is sampled, the basis functions are projected 
onto the interpolating polynomials. A correction is performed for neighboring elements 
by accounting for the interaction of a periodic cell with its neighbors via an accurate 
numerical integration.  An iterative solver is then used that employs the FFT to perform 
the discrete convolution associated with the computation of matrix/vector products.   

B. Modeling Sources 
The GIFFT method requires that only distinct cell geometries be meshed and provided as 
input to the electromagnetic solver code. For very large structures this has the advantage 
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of condensing the input data and reduces the chance of introducing mesh errors for 
complex structures. Thus, to model a dipole source over a finite metamaterial layer, we 
provide GIFFT the geometry for two distinct structures.  The first consists of the mesh 
geometry for unit cells making up the “background” metamaterial layer.  For the structure 
shown Fig. 1, the “background” unit cell can be taken as two split-ring resonators SRRs 
oriented along the z-direction.  The second geometry description is that of the unit cell 
containing a single dipole plus two SRR elements (the “source” element).   For the GIFFT 
technique, only the explicit meshing of these two distinct unit cells is required, with a 
replication of these “mother” cells automatically occurring in the computational part of 
the algorithm.  (For the structure shown in Fig. 1, we have one “source” element and 
twenty-four “background” elements).   It is significant to note that, for this 
implementation, the GF sampling grid has to be large enough to include both 
“background” and “source” elements (independently of their location) to form a large 
brick volume (only the y-z plane is shown in Fig. 1(b)) where the FFT algorithm is then 
applied. 

ANALYSIS OF A DIPOLE OVER A HIGH IMPEDANCE SURFACE 

A finite-sized periodic material made of a two-layer array of capacitively-loaded split-
ring resonators (SRR) is studied here with a short strip dipole placed above the 
metamaterial, at a height h above the top of the upper SRR, as shown in Fig. 1.   The flat 
strip dipole is placed in the x-y plane (zero thickness along z) and is of width W =  0.4 
mm in the x-direction and length L =  2.4 mm along the y-direction. It is fed by a delta-
gap voltage generator at its center and meshed with three basis functions along its length. 
The metamaterial layer has the dimensions  given by W = 4.06, L = 2.54, T = 0.457, U = 
1.65, S = 1.245, G1 = 1.02, G2 = 0.508 (all in mm), as shown in Fig. 2. As mentioned 
previously, throughout this study the basic unit cell (considered the “background” unit 
cell in the finite analysis) consists of two SRRs with the capacitive gaps facing the z-
direction. A similar SRR-based metamaterial block, of both infinite and finite extent, has 
been studied by Erentok et al. in [5] and shown to provide an artificial-magnetic-
conductor performance, with agreement between experiment and simulations being 
demonstrated.  While in [5] these SRR elements were embedded in a duroid substrate of 

2.2rε = , for a preliminary application of the GIFFT method an air substrate is here 
considered since it permits use of the FFT in all three dimensions. The periodicity along 
the x- and y-directions of the metamaterial layer are taken to be a = 1.57 mm and b = W 
+ G1= 5.08 mm, respectively. 

An analysis of memory requirements for the standard MoM method for the problem of 
a metamaterial layer comprising (9×7 periodic elements), with 52 degrees-of-freedom 
per element, shows that a Toeplitz storage format for the MoM impedance matrix 
requires 60.77 10× entries.  In principle GIFFT requires the storage of only 84  GF 
samples per cell when we choose a 3 7 7× ×  points-per-cell interpolation scheme, so that 
a total of only 42.4 10×  GF samples are stored. In practice, the memory requirement is 
slightly higher because of the zero padding to the nearest power of 2 needed to apply the 
FTT.  Figure 3(a) shows how the size of the SRR substrate affects the input impedance of 
the short dipole located at a height h = 2.5mm. Two cases have been considered: a small 
metamaterial substrate made of ( 7 3×  periodic elements) and a large one made of 
(33 11× periodic elements).  For the large substrate case we have also considered the 
dipole height h = 2 mm. The trends of the real parts of the input impedance are not 
changed by the size, though the exact values do vary. The radiation patterns are shown in 
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Fig. 3(b) for the small ( 7 3×  periodic elements) and large ( 33 11× ) substrate cases, with 
the dipole located at h = 2.5 mm at a frequency f = 13.73 GHz. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  SRR geometry and periodic arrangement for the metamaterial layer of interest. 
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Fig. 3.  Input Resistance for a short dipole located h=2.5 mm above a metamaterial substrate 

made of 7×3 and 33×11 cells (two SRRs in each cell). Also, the input impedance for a dipole 
with h= 2 mm is shown. (b) Radiation pattern of a dipole at a height h=2.5 mm, for the small 
(7×3 cells) and the large (33×11 cells) metamaterial substrate, at frequency  f = 13.73 GHz.  

REFERENCES 

[1] B.J. Fasenfest, F. Capolino, D.R. Wilton, and D.R. Jackson, N. Champagne, “A fast MoM 
solution for large arrays: Green’s function interpolation with FFT”, IEEE Antennas and 
Wireless Propagation Letters, Vol. 3, pp. 161-164, 2004. 

[2] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for 
solving large scale electromagnetic Scattering and Radiation Problems," Radio Science, v. 
31, pp. 1225-1251, 1996. 

[3] S. M. Seo, J.F. Lee, “A fast IE-FFT algorithm for solving PEC scattering problems,” IEEE 
Trans. on Magnetics, Vol 41, N.5, pp. 1476 – 1479, May 2005. 

[4] A. Mori, F. De Vita, A. Freni, “A modification of the canonical grid series expansion in 
order to increase the efficiency of the SMCG method”, IEEE Geoscience and Remote 
Sensing Letters, Vol. 2, N. 1, pp. 87-89 Jan. 2005. 

[5] A. Erentok, P.L. Luljak, and R.W. Ziolkowski, “Characterization of a volumetric 
metamaterial realization of an artificial magnetic conductor for antenna applications”, IEEE 
Trans. Antennas and Propagat, Vol. 53, No. 1, pp. 160-172, January 2005.   

z

y 

G1

T 
L 

G2 T 

S 

W

(a). (b). 

4594




