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Abstract
Properties and Applications of Doped Ge Thermistors
by
Sabrina Marie Grannan
Doctor of Philosophy in Physics
University of California at Berkeley

Professor Paul L. Richards. Chair

In the first half of this thesis. we discuss the importance of doped semiconductors
for studies of disordered systems and review impurity conduction in the Ohmic limit. We
then review the previous theoretical and experimental studies of non-Ohmic impurity
conduction and discuss many contradictions between the existing studies. In particular, the
dependence of the non-Ohmic conductivity on impurity concentration and temperature has
not been established.

We describe three experimental studies of non-Ohmic impurity conduction in
neutron transmutation doped germanium samples which have an extremely homogeneous.
random impurity distribution. We find several new phenomena including a universal curve
‘which describes the non-Ohmic behavior of lightly doped Ge:Ga samples. and a dramatic
" change in the non-Ohmic conductivity as the impurity concentration nears the critical
concentration for a metal-insulator transition. We include a qualitative discussion of the
effects of stress.

The second half of this thesis is concerned with various applications of doped Ge
semiconductors. We present numerical methods for the global optimization of bolometric
infrared detectors which use current-biased semiconducting thermistors. We explicitly
include both the electric field dependence of the thermistor resistance and amplifier noise.

We present data from a novel low temperature particle detector which uses doped

Ge thermistors as calorimeters. This detector uses a quasiparticle trapping mechanism to



funnel athermal phonon energy from a large Ge absorber into a small doped Ge thermistor
via a superconducting Al film. |

We conclude with a description of an experiment which uses a doped Ge thermistor
as part of a conventional low temperature bolometer for far infrared studies of the novel
materials Scy@Cgs and Erp@Cgj. This is the first study of the far infrared properties of
metallofullerenes and may help in the determination of their structural and electronic
properties.

In the appendix we present measurements of the NJ132L JFET voltage noise as a
function of temperature, drain voltage, and current. We discuss the fabrication of small,
cooled JFET packages which can bolt to a helium cold plate and self-heat to a selected
operating temperature. and we present an ultra-low noise voltage preampiifier design for

room temperature operation.
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Chapter 1

Introduction

1.1  Motivation for studying non-Ohmic impurity conduction in doped
semiconductors

Traditional solid state physics is concerned with the properties of perfect crystalline
solids. However, much recent research has focused on the properties of disordered
systems which lack translational symmetry and exhibit many new properties. One of the
central issues in solid state physics has been the metal-insulator transition (MIT) in
disordered systems which corresponds to the transition from extended to localized states at
the Fermi level. The theoretical importance of doped semiconductors arises trom the fact
that they provide the simplest and best-defined system for studying conduction processes
between localized states and for exploring the properties of disordered systems and the
MIT. Doped semiconductors offer numerous opportunities of tuning tﬁrough the MIT by
(1) variation of the overlap between ir_npurity'wavefunctions through changing the impurity
concentration, by applying stress, or by applying a magnetic field, or by (2) varying the
random impurity potential through changing the compensation {Chroboczek. 1987].

Despite numerous theoretical and experimental studies of doped semiconductors
‘over the last few decades. many fundamental questions remain concerning the role of
electron-electron interactions, the nature of the metal-insulator transition. the variation of
impurity localization within the impurity band. and the structure of the impurity band.
Many techniques have been used to study the properties of doped semiconductors including
Knight shift. Raman. far-infrared reflectance. Hall effect. and transport at various
pressures. magnetic fields. temperatures, impurity concentrations, and compensations
[Kamimura and Aoki. 1989: Mott. 1993]). However, although studies of non-Ohmic

effects in doped semiconductors are known to provide a probe of impurity localization and -



mobility, both experimental and theoretical investigations of non-Ohmic behavior have been
small in number.

Those few investigations which have been performed on the dependence of the
impurity conductivity on an applied electric field have provided surprising and conflicting
results on the effects of varying the electric field, the temperature, and the impurity
concentration. For example, in low electric fields the theoretically predicted “"Ohmic
regime" is frequently not observed, or is observed at fields several orders of magnitude
lower than predicted. Some authors have found that the non-Ohmic behavior becomes
stronger with increasing impurity concentration. while others have found the opposite
tendency. The dependence of the non-Ohmic conductivity on temperature has not yet been
established. |

The existing theories of non-Ohmic behavior in moderate electric fields have been
developed assuming a lightly doped semiconductor. They predict a phonon-assisted non-
Ohmic impurity conducuvity of the form o(F,T) = 6(0,T) x exp(eFL/kT) where F is the
applied electric field and L is a length factor related to the hop length R. As yet no theory
has been developed which includes fhe effects of electron-electron interactions between
impurities. the variation of localization throughout the impurity band. and the influence of
(he applied electric field on the impurity wavefunctions. All of these effects may become
important as the impurity concentration increases and nears the critical concentration for a
metal-insulator transition. The few experimemél studies of non-Ohmic behavior in
modera'tely and heavily doped semiconductors {Gang et al.. 1989: Matveev and
Lonchakov. 1993: Rosenbaum ez al., 1980} have typically analyzed the moderate field data
according to the expréssion developed for a iightly doped semiconductor. rather than used
the data to test whether this expression remains valid.

It is plausible that at higher impurity concémrations for which carriers are no longer
localized at individual impurities, a different electric field dependence should apply because

Anderson localization cannot be assumed throughout the impurity band and L can no longer
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be uniquely defined. The electric field may influence the impurity wavefunctions. leading
to new behaviors. Non-Ohmic conductivity studies at higher impurity concentrations can
conceivably provide an exciting probe of impurity localization. the position of the mobility

edge in the impurity band. and the metal-insulator transition.

1.2 Outline of thesis

The outline for the rest of this thesis is as follows.

The remainder of Chapter | contains a brief outline of the general theory of impurity
states in doped semiconductors. the structure of the impurity band. and impurity
conduction in the Ohmic limit of small applied electric fields. We discuss the Mott-
Hubbard model of localization of impurity states through electron-electron interactions, as
well as the Anderson model of disorder-driven localization.

Chapter 2 contains a review of the previous experimental and theoretical work on |
non-Ohmic impurity conduction in doped semiconductors. We distinguish between (1) |
non-Ohmic conduction by impurities excited into the conduction band. v?hich 1s well
described by the Poole-Frénkcl effect ahd impact ionization breakdown: and (2) non-Ohmic
conduction in the impurity band. which remains poorly understood. We include a
discussion of contact effects and hot electron effects which can also lead to significant non-
Ohmic behavior.

In Chapter 3. we describe three experiments on non-Ohmic impurity conduction in
both p-type and n-type Ge samples. The samples are extremely uniformly and randomly
doped by the neutron transmutation doping process. in which ultra-pure germanium
crystals are exposed to a thermal neutron source and impurities are created through the
decay of germanium isotopes. [n Experiment |, we study the non-Ohmic conductivity of
lightly and moderately doped Ge:Ga with a compensation K = 0.32. In Experiment 2. we

study the non-Ohmic conductivity of moderately and heavily doped



70Ge:Ga with a compensation K < 0.01. In Experiment 3. we study the non-Ohmic
conductivity of moderately doped 74Ge:As with a compensation K < 0.01.

We show that the non-Ohmic hopping conductivity data for the lightly doped Ge:Ga
samples in Experiment | can be collapsed onto a single universal curve. The length
parameter L deduced from the universal curve does not depend on the impurity
concentration N. As the‘impurity concentration nears the critical concentration N, for a
metal-insulator transition. we show that the non-Ohmic hopping conductivity of the
samples in both Experiment | and Experiment 2 changes dramatically. We find the
counter-intuitive result that the conductivity begins to depend more strongly on applied
clectric field in the weak field regime than in the moderate field regime as the impurity
concentration increases. In Experiment 3. we perform the first study of the non-Ohmic
behavior in the conduction regime intermediate between €5 conduction and hopping
conduction. We find the unexpected result that the dependence of the conductivity G on
applied electric field F is {n [6(F,T)/0(0.T)] « F!-5. This dependence has not been
previously reported or predicted. The field dependence exponent 1.5 has been determined
with a probable érror of 2%. and.the temperature dependence of the non-Ohmic
conductivity is much stronger than seen in any other material to date. These results. though
surprising, do not conflict with available theories WH_ich assume hopping conduction in a
lightly doped semiconductor.

The qualitative effects of stress on the non-Ohmic hopping conductivity are
discussed in Chapter 4. We present data showing that stress can either enhance or
suppress the magnitude and temperz.nure dependence of the hopping length parameter L.
depending on the orientation of the applied stress relative to the measurement axis. The
effects of stress have typically been ignored in the published literature. Our new result
cxplains some of the contradictory experiments in the literature on the dependence of the

non-Ohmic hopping conduction on impurity concentration and temperature.




We turn our attention from the non-Ohmic properties of doped semiconductors to
their practical applications in Chapter 5. One important application of doped
semiconductors at low temperatures is their use as very sensitive resistance thermometers.
or thermistors. Doped semiconductor thermistors are widely used in the development of
bolometers and heterodyne mixers for far infrared spectroscopy and astronomy, the
development of dark matter detectors, and as all-purpose thermometers at temperatures
below 4 K. In this chapter we present numerical methods for the global optimization of
bolometric infrared dete;tors which use current-biased semiconducting thermistors. We
extend the analysis of Griffin and Holland [1989] to explicitly include both the electric field

_dependence of the thermistor resistance and amplifier noise. We include a number of
- examples illustrating the uses of this program.
| In Chapter 6. we déscribe the use of doped Ge thermistors as calorimeters in a
novel low temperature particle detector, the Superconducting Large Area Phonon Sensor
(SLAPS). This device uses a quasiparticle trapping mechanism to funnel athermal phonon
energy from an large Ge absorber into a small doped Ge thermistor via a superconducting
Al film. We show that by using a quésiparticle trapping mechanism, we can dramatically
increase the sensitivity of a calorimetric detector to athermal phon;:>ns. The observed pulse
shapes contain information on the position of a particle int_eracﬁon in the large absorber for
. unprecedented interaction distances of up to 0.6 cm from the thermistor.

Chapter 7 contains a description of an experiment which uses a doped Ge
thermistor as part of a conventional low temperature bolometer for far infrared studies of
novel materials. We present measurements of the far infrared transmittance of Scy@Cggq
and Ery@Cgj at 1.5 K between 30 cm-! and 200 cm-i. This is thé first study of the far
infrared properties of metallofullerenes and may help in the determination of their structural
~ and electronic properties.

Many applications of doped Ge thermistors require an extremely low noise in the

readout electronics. We discuss the minimization of JFET noise in Appendix A. In



Section A.l we describe voltage noise measurements and noise minimizatiop of the
NJ132L JFET at low frequencies (50 - 400 Hz) as a function of JFET temperature. drain
voltage, and current. In Section A.2. we describe the fabrication of small, cooled JFET
packages'which can bolt to a helium cold plate and self-heat to a selected operating
temperature. In Section A.3. we present an ultra-low noise voltage preamplifier design for
room temperature operation which uses the NJ903L JFET. In addition, we describe how
to convert a commercial diode into a calibrated thermometer for use between 77 K and 300
K in Section A 4.

Instructions for using the numerical optimization program described in Chapter 5
are presented in Appendix B. along with the constants and partial derivatives used in one of

the minimization routines.

1.3 Impﬁrities in semiconductors

-In studying doped semiconductors, we begin with a description of the shallow
impurity states of an isolated donor in silicon and germanium. Both of these Groﬁp v
elements have a diamond crystal stfucture, in which (ns)z(np)-’- valence electrons form
covalent bonds between sp? hybridized orbitals [Kamimura and Aoki. 1989). When an
atom from a Group V element such as As is doped into a Group IV crystal such as Ge as
shown in Figure 1.1. four of the As valence electrons will form sp3 bonds with the Ge
atoms in the crystal. The fifth extra electron is weakly bound to the As nucleus by an
attractive Coulomb potential. As a result. a hydrogen-like shallow impurity state with
quantum number Is is formed. The energy of the donor electron lies just below the
conduction band edge as shown in Figure 1.2. At finite temperatures the s electron in the
impurity state can be thermailly excited into the conduction band with an energy €. These
impurities are called "donors™ because they donate an electron to the conduction band.

Similarly. atoms from a Group III element doped into a Group IV crystal will accept a
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Fig. 1.1 Atoms from Group V elements such as As doped into a Group IV
semiconductor crystal such as Ge will form a hydrogen-like impurity state with a weakly

bound electron.

weakly bound extra electron from the crystal. creating a "hole" in the valence band. Group
III impurities imbedded in Group IV crystals are therefore known as "acceptors”. In the
discussion that follows we consider the specific case of a donor impurity state: however the
cohclusions are equally applicable to acceptor states.

The binding energy of a donor impurity state can be approximated by the binding

energy for a hydrogen atom imbedded in a homogeneous medium,

Ep=136ev|ms L.
L Me 2 (1.1

where x is the dielectric constant x and m* is the electron mass corresponding to the
effective mass of the conduction band minimum. The effective Bohr radius of the impurity

state 1s

- i Kme |
a=05Ai m*}. (12
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Fig. 1.2 One dimensional band diagram of a Ge semiconductor doped with As and Ga. .

Since Ge and Si have anisotropic conduction band minima. m* is not uniquely defined.
The dispersion relation around the conduction band minimum is described by an elliptic

relation

E(K) = Eo + —12— (k2 + ky2) + 2 k2,
8m2m, T 8nm (1.3)

where my is the effective mass in the transverse direction and m; is the effective mass in the
longimdinal direction. The effective mass m* of the conduction bzind extremum 1s
approximated by |

m* = (mym 2)1/3. (L4
For Ge.x = 16 and m* = 0.2m,. Figure 1.2 shows the shallow energy levels of As donor
atoms and Ga donor atoms in Ge. estimated using Equation 1.1. The Bohr radius « of the
impurity states is = 40 A.

As the impurity concentration N increases. the energy levels of the randomly
located impurity sites form an impurity band as shown in Figure 1.3. For sufficiently large
values of N. the impurity wavefunctions overlap and the average radius of the impurity
wavefunctions increases from a to C 2 ¢. For the remainder of this thesis we will use C to
refer to the localization radius of the impurity wavefunctions. At the critical impurity
concentration N such that N¢-1/3a = 0.25. { become infinite and the sample undergoes a

metal-insulator transition.
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Fig.1.3 As the impurity concentration increases. the doped semiconductor undergoes a
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Fig. 1.4 In a semiconductor crystal containing both donors and acceptors, each acceptor
will capture an electron from a donor until all the acceptor levels are filled or all the donor
levels are depleted. This process is known as compensation.

1.3.1 Compensation
When a s‘emiconductor is doped with both acceptor and donor species with
concentrations N4 and Np, each acceptor will capture an electron from a donor following
the minimum energy principle until all the acceptor levels are filled or all the donor levels
are depleted. This process is known as compensation and is illustrated in Figure 1.4. The
concentration of uncompensated impuﬁties is given by INa - Npl. If Np > N4 then the
donors are referred to as the majority dopant and the acceptors are referred to as the
minority dopant. The compensation ratio K of a semiconductor is defined as
K = Nmin/Nmaj- : (1.5)

K always hvas a value between O (uncompensated) and 1 (fully compensated).

1.4 Structure of the impurity band

The detailed structure of the impurity band. notably the position of the Fermi level pt
and the density of states g(E), is a function of the méjority impurity concentration Nmaj and
the degree of compensation K. For a lightly doped semiconductor with a random

distribution of impurities. p and g(E) will be completely determined by Np,j and K. In
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geﬁeral the band structure cannot be soived for analyticélly. However. in the limiting cases
of low and high compensation the Fermi level can be calculated. As we will explain. the
density of states has two peaks corresponding to the typical energies of occupied and
_unoccupied majority dopant sites. The density of states function falls to zero at the Fermi
energy due to long-range Coulomb interactions between impurities. The following
discussion of the impurity band structure is adapted from Efros and Shklovskii [1972],

Efros and Shklovskii [1975], and Shklovskii and Efros [1984].

1.4.1 The Fermi energy

Consider a semiconductor with a donor concentration Np and an acceptor
concentration Na < Np. At low temperatures each acceptor captures an electron from a
donor and becomes negatively charged. Thus as T approaches zero there are Np - Ny
neutral donors. Na positively charged donors. and N4 negatively charged acceptors. Let
us define our zero of energy as the energy of an isolated donor. Then the energy at donor
site 1 is determined by Coulomb interactions with the charged impurities:

acc don
E=2 1. Tl
L iti-g| o T

(1.6)
For a neutral donor the electron occupation ny is 1: for a compensated donor ng is 0. At T
equal to zero the set of occupation numbers {ng} is that for which the total electrostatic
energy is a minimum: this is known as the ground state. The Fermi energy p is defined as
the energy below which all donor sites are filled and above which all donor sites are empty
in the grdund state. At nonzero temperatures the occupation probability P; of a donor site

in thermal equilibrium is given by:

P = L

ool

(1.7
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The position of the Fermi level relative to the isolated donor energy can be determined

analytically only in the limiting cases of weak and strong compensation K = Na/Np.

1.4.2 Fermi level in the limit of weék compensation

When K « | only a small fraction of donors are positively charged. In the ground
state these ionized donors are all located as close as possible to a negatively charged
acceptor. Since Na « Np, each acceptor can be treated as if it were immersed in a sea of
donors. The most probable binding energy of an ionized donor-acceptor pair is given by
the average energy required to move an electron from a remote site to the ionized donor
site. This energy is e2/KRp, where Rp = 3/4nNp-1/3 is the average separation between
ionized and neutral donors in the ground state.

Most acceptors will compensate exactly one donor (this is known as a I-complex).
However,-other configurations are possible in which an acceptor doesn't idnize any donors
(O-complex) or may ioniz¢ two donors (2-complex). The condition for a 0-complex is that
no donors exist within a sphere of radius ry = e%/kL from an acceptor site. The probability
of this is given by Po(it) = exp [-4mr,3Np/3]. Thus the number of O-complexes is given
by No(i) = NaPo(1t) = Naexp [-4meSNp/3x3p3].

Since the donor distribution is random. another possibility is that many donors are
situated close to an acceptor. Consider the configuration below in whi‘ch two ionized
donors are an equal distance r from an acceptor: |

D+ r A- r D+.

The donor binding energy in this case will be e2/xr - e2/2xr = e2/2xr. Therefore a 2-
complex 1s actually energetically more favorable than a 1-compiex for which the nearest
donor 1s located at a distance greater than 2r.

It can readily be shown [Shklovskii and Efros. 1984] that one acceptor cannot bind
more than two 1onized donors because the energy of an n-complex where n > 3 is always

repulsive. Thus the three possible acceptor configurations are O-, 1-, and 2- complexes.
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Charge neutrality requires that No(i) = No(u). This condition allows us to determine the
Fermi energy . A complicated integral based on the probability of finding a pair of donors
whose energies E; and E; exceed p when both are ionized leads to an expression for N»(u)

which is then set equal to Naexp [-4meONp/3x3u3]. 1. the limit of small K. we find that

_ 0.99e2Np"?
K ' (1.8)

u
The percentage of 0-complexes No(it)/N4 is approximately exp{-4n/3] = 1.3%. and the
number of two complexes is the same. Since 97.4% of acceptors form neutral I-
complexes. it is tempting to think that in a first approximation one need not consider othef
configurations. However. if every acceptor produced a |-complex. then in a random
impurity distribution sometimes the nearest ionized donor would be located far from its
acceptor. The binding energy E for this ionized donor is almost zero. but we know that in

the ground state u < E so if only I-complexes were possible, it would be = 0 for low

compensation semiconductors.

1.4.3 Position of the Fermi level for intermediate and strong compensation

At high compensation (1 - K « 1) the concentration of neutral donors is much less
than the concentration of ionized donors. This means that the Fermi level is located below
the isolated impurity level and that as K varies from O to 1. i varies from 0.99e2Np!/3/x
through zero to a negative value located deep in the forbidden gap. Electrons therefore only
occupy the states at the deepest energies. Each of these deep states is created by a pair of
donors. one occupied and one empty, located very close together. If the pair separation is
less than -e</x then the donor-pair is energeticaily favorable. A calculation of the
probability of finding such a donor pair and a consideration of long-range potentials gives

the Fermi energy
_Ce2N}/3
K(1-K)1/3 (1.9)
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where [Np/(1-K)]!/3 is related to the average separation between donor sites and C is a
numerical constant that depends on the details of the semiconductor.

vAthough the position of the Fermi level relative to the isolated impurity level cannot
be determined analytically for intermediate compensation, computer simulations minimizing
the energy of a random impurity distribution can be used to determine the dependence of u
on K for 0 < K < 1. The results of such simulations are in good agreement with theoretical
calculations in the limit of weak and strong compensation, and can be found in Shklovskii

and Efros [1984].

1.4.4 Density of states in the impurity band

Pollak [1978] first showed that the density of states g(E) always has two peaks.
The high energy peak is due to unoccupied donors which have formed complexes with
nearby acceptors. The imegral_fg(E)dE from p to = is equal to N4, the concentration of
compensating sites. The low energy peak is due to occupied donor levels; the integral
[g(E)dE from -eo to p gives Np - Na.

Most theories predict a dip inA the density of states at the Fermi ievel. Efros and
Shklovskii [1975] first showed that that density of states at the Fermi level must vanish if
long-range Coulomb interactions between impurity states are taken into account. or
equivalently if clectron screening is not effective on small length scales. The Couiomb gap
arises in the following way: since in the ground state the occupation numbers minimize the
total energy, any variation in occupation number leads to a positive energy increment AE.
Thus. if we transfer an electron from one donor (j) to another donor (i) starting from the
ground state configuration lhe,change in energy is given by AE=E; - E; - ez/lcrij > 0 (here
Ej and E; are measured relative to the Fermi level ). Since AE is positive. rjj > e2/x(E; -

Ej). As Ejand E; approach the Fermi level. E; - E; goes to zero and rjj tends toward
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infinity. The physical meaning of this is that states close to the Fermi level are located far
apart. It follows that g(E) near the Fermi level is proportional to (E - u)2. The Coulomb
gap in the density of states has a strong effect on the low temperature variable range

hopping conduction. as discussed in Section [.5.4.

1.4.5 The Upper Hubbard band and the D- state

In addition to the energy levels discussed above, an n-type semiconductor with a
donor concentration Np has Np additional energy levels corresponding to the electronic
- states of a negative donor ion known as the D~ ion. The existence of the D~ ion was first
suggested by Fritzsche [1958] and Lampert [1958] in analogy with the hydrogen ion H-
which is stable with a binding energy of 0.7 eV for the second electron. The D- states are
frequently described in terms of the Mott-Hubbard model. An extremely simplified model ‘_
of electron-electron interactions was first developed by Hubbard. In the Hubbard model
[Shklovskii and Efros, 1984: Mott, 1993], it is assumed that electrons repel each other only
when they are located on the same site. The intra-atomic interaction between two electrons
is measured by the Hubbard "U" and is defined as

U =f f E% Ig(x 12 hy(x9) d3x; d3x5 |
< (1.10)

where y is the wavefunction for one of the donor centers. This interaction produces an

energy gap between singly occupied and doubly occupied donor states.

1.5 Impurity conduction in doped semiconductors
1.5.1 Transitions between localized states in an aperiodic solid

We begin our discussion of impurity conduction in doped semiconductors with a
general comparison of transition rates between focalized states in an aperiodic solid with
transition rates between band states in a crystal [Pollak. 1987]. Transitions between

localized electron states in aperiodic solids are effected by phonons via a deformation
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potential. and the dominant processes are single-phonon absorption and emission.
Therefore, the "golden rule” can be used for evaluating transition rates. The localized states
are described by wavefunctions of the form

)l

¢a(r)=F(r)exr>[-mi—;—], (1.11)

where F(r) is a rapidly varying function on the atomic scale, r; is the position of the center
of the localized state 0;, and a is the localization radius. In comparison, band
wavefunctions have the form _

Ok (r) = f(r) exp [ik-r], (1.12)
where f(r) is a periodic function varying rapidly on the atomic scale, and k is the usual
wavevector. The perturbation Hamiltonian V to be used in the golden rule is

V = gp exp [ik"r], (1.13)
where g is the amplitude of the strain tensor due to the phonon with wavevector k' and p is
the deformation potential tensor. The rapidly varying functions F and f do not contribute to
the matrix elements < ¢; | V1¢;>, <ok Vigg >. The important part of the matrix element

for transitions between localized states is

I(r;-1) I (r;- 1)1
—z—IVexp[-—7—1]>. (1.14)

<exp|-
The square of this matrix element. needed for the golden ruie. is proportional to exp |-
2rij/a], where rjj =1 rj - rjI. The analogous matrix element squared for transitions between
band states isvunity, because conservation of crystal momentum requires thatk + k' + k" =
’

0.
The transition rate Wj; between localized states i and j compared with the transition
rate Wk~ between band states k and k" is therefore reduced by a factor exp [-2rij/a ] which
can be extremely small. The small transition rate between localized states will be further

discussed in Chapter 2. Section 2.3. Furthermore. the spread in Wj; is very large due to

the spread in rj;, which is typically several times larger than a.



The above discussion neglects consideration of the density of final states which is
proportional to the number of phonons present that can effect a transition between i and j
(or between k and k"). For transitions upward in energy the transition rate will be smaller
by an additional factor of = exp (-E;j/kT) where Ej; is the energy difference between the

states 1 and j. For transitions downward in energy, a factor of unity must be introduced.

1.5.2 Temperature Dependence of the Impurity Conductivity

Electrical conduction in doped semiconductors is stfongly dependent on
temperature. At high temperatures intrinsic conduction occurs, in which carriers are
thermally activated from the valence band into the conduction band. The intrinsic carrier
concentration decreases rapidly with temperature until it becomes less than the
concentration contributed by impurities. The conduction is then determined by the nature
and doping density of impuritie;s, and it is called extrinsic conduction.

As shown in Figure 1.6, impurity electrons be thermally excited into one of three
states. A donor electron can be thermally activated into the conduction band with an energy
€1, resulting in a positively charged donor site and a free electron. A donor electron can
also be thermally excited from the band of ground states (termed the D° band or the lower
Hubbard band) to the band of doubly occupied impurity centers (termed the D- band or the
upper Hubbard band) with an activation energy €3, resulting in two donor atoms one with a ‘
positive and one with a negative charge. Finally, in a compensated semiconductor a donor
electron can hop into a neighboring empty donor state with an energy €3. resulting in a
posttively charged donor site and a neutral donor site. This process is known as nearest
neighbor hopping conduction. These conduction processes are indicated in Figure 1.6.
which shows the impurity band structure of an n-tvpe semiconductor with a small number
of compensating acceptors. The impurity contribution to the electrical conductivity of a

semiconductor can theretore be written as



(1) kT ~¢€1: Activation into conduction band
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(2) kT ~ &5: Activation into upper Hubbard band

kT ~ €3: Hopping into empty donor state

Fig. 1.5 Donor electrons can be excited into one of three states.

EA

g Sttty > N D- states
----- TR ) ——— N Dvstates

s R—
| Np- NaD’states

D Np A- states

valence band

N

density of states g(E)

Fig 1.6 Stucture of the impurity band of an n-type semiconductor with a small number of

compensating acceptors.
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Fig. 1.7 An occupied impurity site i and an unoccupied impurity site j, separated by a

distance Rj; and by energy Ej;.

o(T) = o1exp(-€1/kT) + 62exp(-€2/kT) + o3exp(-€3/kT). - (1.15)
As the temperature of the doped semiconductor is lowered. the dominant conduction

mechanism ranges from &) conduction at high temperatures to €3 conduction at low

temperatures.

1.5.2.1 Variable range hopping conduction

As described in Section |.4.1. the transition rate between localized impurity states i
and j is given by

Wij = exp(-2rjj/a) exp(-E;j/kT) (1.16)

where Rjj is the spatial separation between sites and Ejj is their energy separation as shown
tn Figure 1.7.

The equation for the conductivity as a function of average hopping distance R.
average energy gap E. and temperature T is: | _

O = Ooexp(-2R/a)exp(-E/kT). (1.17)

The factor exp(-2R/a) may be understood as an exponential attenuation of the conductivity
for distant impurity states. while exp(-E/kT) is the Boltzmann factor corresponding to the
absorption and emission of phonons. When R is independent of temperature, this is just
the nearest neighbor hopping formula and E is the activation energy €3. At very low

temperatures the overlap integral between impurty states which is proportional to the factor
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Fig. 1.8 As the temperature decreases. it becomes energetically favorable for a hoppmz

electron to hop to a distant site which is closer in energy.

exp(-2R/a) becomes comparable to the Boltzmann factor exp(-E/kT). It then becomes
energetically favorable for an impurity electron to hop to a distant impurity site which is
close in energy as shown in Figure 1.8. The hopping length R then increases with
decreasing temperature, and the conduction mechanism is known as variable range hopping
(VRH). VRH conduction can be described by a conductivity of the form

o(T) = ceexp(-(Te/THM) (1.18)
~ where T, and n depend on the density of states (DOS) in the impurity band.

Mott’s theory of variable range hopping assumes a constant density of energy states

g(E) = Nq near the Fermi level and can be derived as follows [Shklovskii and Efros.

1984]. Consider the conductivity resulting from energy levels in a small band E,, around
the Fermi level: the concentration of states is given by N = 2NoE,. Since R ~ N-1/3_ the

conductivity can be written as

0 = Goexpl-(2NoEqga3) 13 - Eo/kT]. (1.19)



The minimum of & with respect to E, is when 1/3(gEa3) = (kT)¥4.  The energy band E,
is called the “optimal band,” and the conductivity of the system can be assumed to be
determined by E,. Since E, < T34, G is given by

6 = 6oexp((-To/T) /4] (1.20)
for some constant To. Therefore the temperature exponent in Equation 1.18 isn = 1/4 for a
constant density of states at the Fermi level. In Mott’s theory the optimum hopping length
R « 50-1/3 o« T-1/4.

Mott’s theory neglects Coulomb interactions between impurity sites. When
Coulomb interactions become imporiant [Shklovskii and Efros. 1984], then the density of
states g is no longer constant but varies with energy as E2 and is zero at the Fermi level.
This 1s referred to as a "Coulomb gap”, and the total number of states within energy E of
the Fermi level is N = [g(E)E =(cE)3 for some constant c. Therefore R = N-1/3 = {/cE.
The contribution to the conductivity from energy levels in a small band Eq around the
Fermi level can thus be written as

O = Oy exp(-1/cEoa - Ey/kT) (1.2

The maximum of the conductivity occurs when Eg = (kT)!1/2. Assuming that the
conductivity is determined by E,, we have

0 = Gaexp[(=To/T) /2] (1.22)

for some constant T,,. Therefore the temperature exponent in Equation 1.18 isn = 1/2 fora

constant density of states at the Fermi level. The optimum hopping length R = E;"! = T-1/2

for the case of variable range hopping in the presence of a Coulomb gap.

1.6 Anderson Localization

The electronic states in non-crystalline solids can be either localized or extended,
depending on the degree of disorder and the role of electron-electron interactions. This

contrasts with periodic solids. for which electronic states are compelled by symmetry to be
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Fig. 1.9 Localization in a random potential.

delocalized Bloch states. The electron-electron interaction gives rise to a splitting of the
impurity band. leading to localization of the impurity states as in the Mott-Hubbard model
discussed in Section 1.4.5. In the Mott-Hubbard model the filled and empty levels are
separated by a gap. Localization of the impurity electrons can also be caused by the
random potential at varying impurity sites, as in the theory of Anderson localization.
| Clasically, a particle moving in the potential V(x) shown in Figure 1.9 will be
delocalized -- that is. it can move through the entire x-space -- when it has an energy greater
than E,,. The mobility edge between localization and delocalization occurs at the particle
energy E = E,,. If the particle has an energy E; < E,, it will be localized over the region x,
< X < X2, or over the region x1 < x < x4. When quantum mechanical considerations are
included. the situation becomes more complicated. For example. tunneling can lead to
particle delocalization even for E < E,. An example of this type of delocalization is Bloch
states in a perfect crystal. The random potential can also lead to paftjcle localization for
energies greater than E,,. For example. any particle in a one-dimensional random potential
will be localized regardless of the degree of disorder. |
Anderson {1958] proposed the following model of electron localization. Suppose
that the impurities are located on sites of a regular lattice but have raridomly distributed
energy levels. In other words. we consider a system of periodically arranged potenual

wells of varying depth as shown in Figure 1.10.  The energy of an electron at site |
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relative to the center of the interval W is denoted by E;. We suppose that the energy
distribution is uniform over an interval W, leading to the distribution function

P(EY=1/W |El<W/2,

P(E)=0 [El > W/2.

The Hamiltonian of this system contains two terms [Shklovskii and Efros. 1984],
H= z Eja;" aj + Z I(m)ay" aj,m -
J j-m=0 , (1.23)

The first term represents the sum of electron energies on isolated sites and the second
represents the enérgy overlap integrals betweeen different sites. I(m) is called the energy
overlap integral. and contains a factor exp (-clxj-Xj+ml/§) where ¢ is a numerical
coetficient. x; is the location of site j, and C is the characteristic size of the electron
- wavefunction. Clearly, except for neighboring sites I(m) will be extremely smalil.

In order to formuilate the question of whether or not an electron state is localized. a.
mathematical definition of localization is required. Anderson used the following criterion.
Suppose that at time t = O the electron has a finite probability of being located at site i in a
system with infinitely large dimensions. In other words, hy(x;,t=0)I2 is finite where v is
the electron wavefunction. The electron state is said to be localized if in the limit t — oo,
the electron remains in approximatelv the same region of space so that hy(x;j.t=s0)I2 is finite.
If the electron state is not localized the initial wave packet spreads out over the system with
time. leading to ly(x;,t=s<)I2 = 0.

The Anderson model does not have an exact solution. but has been studied
extensively both theoretically and numerically. The critical parameter in the Anderson
model is the dimensionless ratio W/I where I is the energy overlap integral between
neighboring sites. Anderson’s result is that for sufficiently large values of W/I, all
impurity states are localized. As W/I decreases it reaches a critical value (W/I). for which
states at E = O begin to be delocalized. Further decrease in W/I causes the delocalization to

spread through the energy band as shown in Figure 1.11.

23



V(x) #
Inigiuininin]y!

—

Y
} -

Fig. 1.10 Potential wells in the Anderson model. adapted from Shklovskii and Efros
[1984].

Fig.1.11 Model of the density of states in the impurity band. The shaded areas indicate
regions over which the electron states are localized. When the density of states increases
above a critical value, the nearest neighbor energy overlap integral I correspondingly
increases and the dimensioniess ratio W/l in the Anderson model decreases below the

critical value for electron delocalization.

For a sufficiently large values of I correponding to an impurity concentration N,
states at the Fermi level will become delocalized. This transition from extended to localized
states at the Fermi level is known as the metal-insulator transition (MIT). and occurs at the

impurity concentration




N¢ = (1/4a)3 (1.24)
where a is the localization radius of an isolated impurity as discussed in Section 1.3.

Equation 1.24 has been experimentally verified in a wide variety of materials [Edwards and

Sienko. 1978].



Chapter 2

Theory of non-Ohmic impurity conduction in doped semiconductors

In this chapter we review the theoretical and experimental studies of non-Ohmic
impurity conduction in doped semiconductors. Non-Ohmic conduction can be considered
under three headings [Mott. 1971]:

(1) Bulk non-Ohmic conduction. independent of the conditions at the electrodes;

(2) Contact effects. such as space-charge limited currents. depending on the
conditions at the electrodes:

(3) Hot electron effects due to heating of the charge carriers.

The subject of this thesis is primarily non-Ohmic impurity conduction of the first type.
However. we will also discuss contact effects and hot electron effects at some length in

order to distinguish between the three types of behavior.

2.1 Bulk non-Ohmic impurity conduction )
Bulk non-Ohmic impurity conduction in doped semiconductors may be further
divided into two subcategories:
(1.1) Impurity charge carriers excited into extended states in the conduction band
(€} conduction):

(1.2) Impurity charge carriers making transitions between states in the impurity
band (g3 conduction and hopping conduction).

For impurity conduction of the first type, the non-Ohmic conductivity 1s well
understood and is described by the Poole-Frenkel effect [Frenkel, 1938: Hartke: 1968].
For sufficiently large electric fields impact ionization breakdown will occur [Reggiani and
Mitin. 1989: Parisi. 1991]. Non-Ohmic impurity conduction of the second type is more
complex and remains poorly understood. For the remainder of this thesis we use non-
Ohmic impurity conduction to refer to the second category. We will describe the many

contradictions that exist between different theories of non-Ohmic impurity conduction and
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‘between theory and experiment. The existing theories. developed for nearest neighbor
hopping and Mott variable range hopping, assume a lightly doped semiconductor for which
a constant localization radius can be assumed throughout the impurity band. No theory has
yet been developed which includes the effects of electron-electron interactions. the variation
of localization throughout the impurity band, and the influence of an applied electric field
on the impurity wavefunctions. These considerations become important as the impurity
concentration nears the critical concentration for a metal-insulator transition. As we will
show, studies of the influence of an applied electric field on the impurity band conduction
provide an important probe of the structure of the impurity band.

We provide a detailed summary of the theoretical and experimental studies that have
been done on non-Ohmic impurity band conduction. This is the first thorough review of
the field of non-Ohmic impurity conduction. We show that the dependence of the non-
Ohmic conductivity on the applied electric field, the temperature, and the impurity

concentration has not yet been well-established for low and moderate electric fields.

2.1.1 Poole Frenkel effect )

The Poole-Frenkel effect [Frenkel, 1938: Hartke: 1968] refers to the electric-field
induced increase in the concentration of conduction band electrons due to the reduction in
the ionization energy of a donor electron under an applied electric field as shown in Figure

2.1. The potential energy of an electron at a distance x from an impurity site in the

direction of an applied electric field F is

Vix)= - e _ eFx ,
K| x| (2.1)

where x is the dielectric constant of the bulk semiconductor. This function has its

maximum when e2/Kxmax- = eF. The potential energy at a distance xmax from the impurity
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Fig. 2.1 Potential energy of an electron (black dot) in the field of a positively charged
donor (top curve) and in the field of a positively charged donor with an applied electric field

F (bottom curve). Under an apphed electric field the ionization energy Eop, is reduced by
AE = 2e32F V2112

site is V = -2¢3/2F1/2/x1/2| Therefore the energy required to ionize an electron is lowered
by AE = 2e3/2F1/2/x1/2 and the £) conductivity increases with electric field as

(€ - BFW))

o1(F) = 651 exp (- T

(2.2)

where 8 = 2e3/2/x!/2,

2.1.2 Impact ionization breakdown

For sutficiently high electric fields. an impurity electron excited into the conduction
band can accelerate under an applied field up to the ionization energy of an occupied
impurity site. When this occurs the electron can excite other impurities into the conduction
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band through scattering processes. and the number of ionized impurities increases
dramatically. This process is known as impact ionization breakdown [Parisi. 1991}. The
impurity conductivity can rise by several orders of magnitude just above the critical electric
field Fg for which breakdown occurs. Fg increases linearly with impurity concentration N
because as the number of dopants increases. so does the rate at which conduction electrons
lose energy due to scattering. Therefore a conduction electron requires a correspondingly
larger electric field in order to gain sufficient energy to ionize other impurity electrons. The
breakdown field is insensitive to the lattice temperature at low temperatures because the
dominant scattering mechanism is impurity scattering rather than phonon scattering. At
sufficiently high temperatures all the impurity carriers are thermally ionized into the
conduction band and no breakdown occurs.

We believe that impact ionization processes are negligible for all of the data
discussed in this thesis. Impact ionization requires activation into extended states so that
the charge carriers can accelerate under an applied electric field. The non-Ohmic impurity
conduction studied in this wofk is by charge carriers tunneling between localized states in
the impurity band rather than by charge carriers excited into extended states in the
conduction band. Charge carriers in hppping conduction cannot accelerate freely under an
applied electric field and no impact ionization is expected to occur.

Even if we were studying the non-Ohmic behavior of electrons excited into the
conduction band, impact ionization processes would be insignifiéant for the range of
electric field strengths studied in this work. For example. breakdown in lightly doped
Ge:Ga with N = 1x10!3 ¢cm-3 occurs at an electric field Fg = 2.7 V/cm [Parisi, 1991].
Since ﬁll of the samples studied in this work have impurity concentrations greater than 1015
cm-3, Fg is expected to be at least several hundred V/cm for conduction band electrons.
This is an order of magnitude larger thax) the maximum electric field Fpax = 16 V/em

studied in this work.
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Fig. 2.2 Weak. moderate; and strong field regimes predicted by most theories of

hopping conduction in an applied electric field F.

2.1.3 Non-Ohmic conduction in the impurity band

We now turn our attention to the main subject of this thesis. the characterization of
impurity conduction in an applied ele‘ctric field. The existing theoretical studies assume a
lightly doped semiconductor for which the dominant conduction mechanism is hopping
between impurity states with a constant localization radius . It is useful to define a
characteristic length parameter L which is related to the optimum hop length R. L is
typically many times larger than . As shown in Figure 2.2, theoretical studies of non-
Ohmic impurity conduction distinguish between conduction in weak fields (F < kT/eL).
moderate fields (kT/eL < F < kT/e{), and strong fields (F > kT/e{). We will discuss each
of these regimes in tumn.

As we will show. there are many contradictions between the existing theoretical and
experimental studies of non-Ohmic impurity conduction in weak and moderate fields. In
particular. the dependence of L on temperature and impurity concentration remains poorly

understood. In Chapter 3 we show that the standard fitting function used to analyze the
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moderate field data can give misleading resuits. In Chapter 4 we show that some of the

experimental discrepancies can be attributed to sample stress.

2.1.3.1 Impurity conduction in weak electric fields

The dependence of the nearest neighbor hopping conductivity of a lightly doped
semiconductor on a weak electric field was first derived by Hill [1971]. A concise
derivation of Hill's result can be found in Mott an'd Davis [1979]. They assume tﬁat for
weak electric fields the percolation path is unaffected. This is equivalent to the assumption
that the hopping electrons move isotropically through the crystal and are as likely to hop
against the applied field as in the direction of the field. The hopping probabilities in the
direction of the applied field and against the field [+ and I'" are given by |

rf=vphexp[-%-_—wf(;”]

where vpp is a factor depending on-the phonon spectrum and depends weakly on

(2.3)

temperature. As discussed in Chapter 1, R is the optimum hop length and W is the typical
energy barrier encountered by hopping'electrons. The hopping current density j is defined
as j = NeR(T™* - '), where N is the concentration of hopping electrons. At temperature T.

N = 2g(Ep)kT where g(EF) is the density of states at the Fermi level. Thus j is given by

>

" j = 2eRKTg(Ep)Vph cxp[ _2R_W_ sinh( cﬂ) _
g

.kT KT (2.4)
The conductivity is then
. ' sinh ( e_RF_)
=71 —9a2R2 J2R_W VKT
c E 2e“R°g(EF)vph exp[ . T J ( RE .
kT (2.5
In the iimit F — 0, sinh(x)/x — | and & can be written in the familiar form
G =G, exp -3-%’— )
¢ N (2.6)

In'the limit eRF/KT << 1. we can use the approximation
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sinh e_kRT_E): | +l_(e_l’3_E_)2.
(e_R_F kT
k (2.7)

o))

Thus according to Hill's model. in very weak electric fields the conductivity will increase
with field and temperature as AG ~ F2/T2.

Apsley and Hughes [1974] have also proposed a theoretical model for isotropic
hopping conduction in weak electric fields. Using the formalism of averaging in four-
space for which three dimensions are spatial and the fourth dimension corresponds to

ehcrgy, they find that for n = /4 variable range hopping

. r
'; 2
o(F) = o(F=0) exp| AF__], :
T4 (2.8)

where A is a numerical factor related to the impurity localization radius C and the impurity
concentration N. For sufficiently small values of F, the conductivity will increase with
field and temperature as AG ~ F2/T 9/4. Therefore in the low field limit, both Hill's model
and the model of Apsley and Hughes predict that Ac ~ F2.

Several articles on non-Ohmic impurity conduction state that in weak fields the
conductivity is nearly independent of the applied field. without presenting a specific form
for the low field dependence of the conductivity. In weak fields the hopping conductivity
is expectcd to be 1sotropic. so that the additional energy eER gained by electrons hopping
against the applied field is baianced by the energy -eER lost by electrons hopping in the
direction of the field. This is the so-called *“ohmic regime” indicated in Figure 2.2 at field
strengths F < F. = kT/eLL and discussed in the theoretical models of Shklovskii [1976],
Pollak and Rieés [1976]. and van der Meer et al. [1982]. The length parameter L must be
determined from the moderate tield dependence of . for which theoretical models predict

o(F.T) = 6(0.T) expleFL/KT] as described in Section 2.1.3.2.
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Fig. 2.3 Electric field dependence of the conductivity of neutron transmutation doped
Ge:Ga with a net impurity concentration N = 3.3x10!6 cm-3 measured at temperatures

between 317 mK and 520 mK.

Experimental results on the electric field dependence of the conductivity in the weak
field regime disagree with each other and with theoretical predictions. The published data
of many authors [Aladashvili et al.. 1989: Grannan er al.. 1992: Kenny er al.. 1989:
Redfield. 1975: Timchenko et al.. 1981 Timqhenko et al., 1989) can be described by the
theoretical expression for the moderate field dependence of the conductivity at electric fields
many times lower than kT/eL. Figure 2.3 shows the electric field dependence of the
conductivity of neutron transmutation doped Ge:Ga with a net impurity concentration N =
3.3x10!6 cm-3 measured by Grannan et al. [1992]. In the limit F — O the conductivity is
very well described by n = |/2 variable range hopping. For the measured values of L ~
1000 A - 1500 A. theory predicts that the Ohmic regime should extend to F. ~ 2 V/cm.
Instead we observe a linear dependence of In G on the applied field at field strengths below

0.1 V/cm. Similar results were observed in a second Ge:Ga sample with N = 2.6x1016
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Fig. 2.4 Electric field dependence of the conductivity of a germanium bicrystal with a tilt
angle 8 = 8.5, adapted from the published data of Zavaritskaya et al. [1985]. The electric

field F for the 0.4 K curve (open circles) is in units of 10-2 V/cm: F for the 0.6 K curve
(solid circles) is in units of 10-} V/em: F for the 1.0 K curve (open triangles) is in units of
V/iem.

cm3. Theretore for these samples. F, is significantly smaller thah predicted by theoretical
models and is smaller than the lowest tield strength in our measurement. The linear
dependence of In ¢ on F extends to values of the conductivity 6(F) = 1.016onm where
Oohm 1$ the value of the conductivity in the Iimit F — 0. This result contradicts the results
of a computer simulation by Levin and Shklovskii [1984], in which the linear dependence
of In o on F begins at 6(F) = 1.30hm.

Evidence for an Ohmic regime can be found in the experimental study of
Zavaritskava er al. [1985]. They have measured the noﬁ-Ohmic behavior of a germanium
bicrystal with a tilt angle 8 = 8.5° over the temperature range 0.05 K< T < | K. Asin the
study by Grannan er al.. the conductivity in the limit F — 0 is very well described by n =

172 vaniable range hopping. Figure 2.4 is adapted from their published data and shows the
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Fig. 2.5 Electric field dependence of the resistance of 100 nm layers of ion implanted

Si:As. adapted from the published data of Gang er al. [1989]. The data over the entire
range of F are fit to the function R = (eFL/kT)/sinh(eFL/kT) (solid line). At field strengths

F > 120 V/cm the data are better described by an exponential dependence of the resistance

on applied field (dashed line).

observed field dependence of the conductivity. o(F) is not well described by the theoretical
models ot Hill and Pollak and Reiss. However. Zavaritskaya er al. observe a clear
distinction between Ohmic behavior at fields less than a critical field F. and moderate tield
behavior at F > F. |

Zavaﬁtskaya et al. do not analyze their data to determine the length parameter L at
each temperature. Using the values of L determined from the slope of In & vs. F at values
F > F,, we find that their observed values of F are ten to twenty times smaller than the
value F. = kT/eL predicted by theory. The length parameter L has a temperature
dependence L = (4820 + 270)T-3 A where the power exponent of the temperature, -3. is

determined to within 2%.
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The theoretical prediction of Hill that the weak field conductivity has a dependence
o(F) « sinh(eFL/kT)/(eFL/KT) has been observed in the experimental studies of Gang er al.
[1989], Nair and Mitra [1977], and Zhang [1992]. Figure 2.5 shows the measured electric
field dependence of the resistance of 100 nm layers of ion implanted Si:As, adapted from
the published data of Gang er al. As in the studies of Grannan er al. and Zavaritskaya et
al., the conduction mechanism in the limit F — 0 is n = 1/2 variable range hopping.
Although Gang er al. do not analyze the weak field dependence of their data, we find that
the data can be well described by Hill's prediction R « (eFL/kT)/sinh(eFL/kT) at fields
below ~ 150 V/cm. At field strengths F > 120 V/cm the data are better described by the
moderate field exponential dependence of the resistance on the applied field. as shown by
the dashed line.

To our knowledge the predic.tion of Apsley and Hughes that the hopping
conductivity in weak electric fields has a dependence In [6(F)/6(F=0)] F2 has not been

observed experimentally.

2.1.3.2 Negative differential cbnductance

Aladashvili er al. [1989] have developed a model for non-Ohmic hopping
conduction in the temperature range of saturation of the hopping conductivity. Over this
temperature range the concentration of hopping electrons is a cbnstant equal to the net
impurity concentration. They find that in lightly doped semiconductors with very low
compensation. the conductivity will decrease with increasing field before increasing
exponentially with the field. Tﬁis effect, known as negative differential conductance. has
also been theoretically s'tudied by Bottger anc_i Bryksin [1979. 1980] for saturated hopping
with a strong electron-phonon coupling. Negative differential conductance arises as
follows: the resistance across a doped semiconductor can be modelled by a random resistor
network between impurity sites. The most probaSle path that a hopping electron will

follow is the path of minimum resistance. Under a small applied electric field the electron
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(a) isotropic percolation (b) directed percolation

Fig.2.6 The resistance across a doped semiconductor can be modelled by a random
resistor network between impurity sites. The most probable path that a hopping electron
will follow is the path of minimum resistance. Under a small applied electric field (a), the
electron will hop isotropically. As the field is increased (b), the path of minimum
resistance changes and the electron will hop along a path directed against the applied field.

RS

Fig. 2.7 The random resistor network has "dead ends” from which the probability of
escaping 1s exponentially less than the probability of entering. For modest electric fields
the hopping electron can only exit the dead end by the energetically unfavorable proéess of
hopping in the direction of the applied field.

will hop isotropically, but as the field increases the path of minimum resistance changes
and the electron will hop along a path directed primarily against the appiied field. Therefore
the conductivity undergoes a continuous transition from “isotropic” to "directed”
percolation as shown in Figure 2.6. For saturated hopping conductivity in a semiconductof

with very low compensation, during this transition a significant number of the hopping
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electrons become captured by dead ends in the random resistor network as shown in Figure
2.7. When an electron leaves a dead end. it spends some time in a new dead end and so
on. This phenomenon leads to a drop in the conductivity as the electric field increases
because the trapped electrons do not contribute to the conductivity. As the electric field
increases further, the bottlenecks in the random resistor network disappear and the
conductivity rises exponentially with F. Negative differential conductance has been
confirmed experimentally by Aladashvili er al. [1989], Aleshin and Shlimak [1987],
Yakimov {1993}, and Zabrodskii and Shlimak [1977].

2.1.3.3 Impurity conduction in moderate electric fields

In moderate fields kT/eL < F < kT/e{ the conductivity is by directed percolation.
Hill [1971] and Pollak and Reiss [1976] predict a conductivity of the form

" G(F.T) = 6(0,T)exp(eFL/KT). @9

where L is a length parameter related to the optimurﬁ hop length R = ({2)(To/T)n ~ TN,
The factor exp(eFL/kT) can be thought of as a Boltzmann factor and eFL can be thought of
as the average energy gained by 5 hopping electron under an applied electric field.
According to Hill. L = CR where C = 0.75. However, Pollak and Reiss find that C =
(0.17. They predict a weaker dependence on field because their theoretical model includes
the effect of correlations between neighboring pairs of resistances via the energy of the
common site. Since L « R in both theoretical models. L is predicted to vary with
temperature as T-".

By considering the difference between "hard” and "soft" resistances in the

percolation path. Shklovskii [1976] predicted a different moderate field behavior
I

JET)=ao(T) F, exp(eg«) l+v

(2.10)
|

o eFL) 1+v
O(F.T) = exp (SF) 1+ . 2.11)
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where v = 0.9 is the critical exponent of the correlation radius L of the critical hopping
conduction subnetwork. Shklovskii's result arises from his consideration of the
exponential scatter in the resistances R;; ~ exp(;;) in the random resistor network which
can be used to model the doped semiconductor. The quantities (jj » 1 are governed by the
separations and energies of the impurity states. According to this model. in the limit F - 0
the conductivity is dominated by .resistances with values close to the percolation threshold
Cc =(T/T)". These key resistances are relatively far apart and are linked by highly
conducting chains of smaller resistances. creating an effective hopping conduction
subnetwork. The drop in the electrochemical potential, related to the current, is gbvemed
by the voltage drop across the distances between the key resistances in the subnetwork.
This length L = RV is much larger than the average hop length R and has a temperature
dependence L ~ T-(n+av), | |

In a later study by Levin and Shklovskii [1984], the field dependence of the
conductivity was described by Equation 2.9 with L = aR{., where o = 10-2. This model
may be distinguished from the theoretical models of Hill and Pollak and Reiss because the
length parameter L is predicted to vary with temperature as T~ rather than as T-". We can
therefore discriminate between various theories of non-Ohmic impurity conduction in
moderate tields by measuring the temperature dependence of L.

We note that the prediction of Apsley and Hughes that the electrical conductivity
varies with field as In[c(F)/o(F=0)] « F2/T2+n is usually discussed as a prediction for
moderate field behavior [Talamantes er al.. 1989]. However, due to their assumption of
isotropic percolation their theory properly belongs to the weak field regime. |

Although the models discussed above were developed for the case of n = 1/4
variable range hopping, corresponding to a constant density of states near the Fermi level.
it has been suggested that the derivations of Equations 2.9, 2.10. and 2.11 should not
depend on n [Aleshin and Shlimak. 1987]. Equation 2.9 has been experimentally observed
for both n = 1/4 conduction and for n = 1/2 conduction, supporting this claim.
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The exponential dependence of the conductivity on applied electric field has béen
observed in a large number of materials including amorphous Ge.xCuy films [Aleshin and
Shlimak. 1987], Ge bicrystals with a tilt angle 6 = 8.5° [Zavaritskaya et al., 1985], Ge:Ga
[Grannan er al.. 1992: Kenny et al., 1989], n-type ZnSe crystals [Timchenko e al., 1981,
1989], n-Si:P [Ionov er al.. 1987; Rosenbaum er al., 1980], n-Si and p-Si [Aladashvili ez
al., 1989], n-GaAs [Redfield, 1975], and Si:As thin films [Gang ez al., 1989]. However,
the dependence of L on temperature and impurity concentration has not been carefully
studied and remains poorly understood.

The temperature dependence of L can be described as a power law L ~ T-X as
discussed above. The following temperature exponents have been observed for n = 1/2
variable range hopping with a field dependence of the conductivity described by Equation
2.9. Aleshin and Shlimak [1987] observe the values x = 0.8 and x = 1.3. Kenny er al.
[1989] find that x > 0.5. lonov et al. observe a value x = 0.9 + 0.2. Grannan ez al. [1992]
observe the values x = 0.99+0.03 and x = 1.01+0.04. These experiments tend to support
the theoretical model of Levin and Shklovskii [1984], which predicts that x = | forn = 1/2
VRH. However, the dependences x =» -3 [Zavaritskaya et al., 1985], x = 0.5 [Timchenko
et al.. 1989], and x = 0 [Rosenbaum er al.. 1980] have also been observed. In a study of
the non-Ohmic behavior of ZnSe crystals. Timchenko er al. [1981] observe the value x =
0.5when F>20V/cmandx =0.8 when F <20 V/cm.

The dependence of L on the net impurity concentration is also controversial. Some
authors (Grannan et al.. 1992: Timchenko er al., 1981; Aleshin and Shlimak, 1987] find
that L decreases as N increases. This is expected because as the impurity concentration
increases. the average separation between impurity sites decreases. However. others
observe that L increases with increasing N [Kenny e al.. 1989; Zabrodskii and Shlimak.
1977]. In the study of Aladashvili er al. [1989], the length parameter L was found to be
nearly independent of impurity concentration over the range 3x10!7 cm-3 < N < 23x1017

cm-3. Gang et al. [1989] also observe that L is a weak function of N. Finally, Timchenko
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et al. [1989] observe widely different values of L as a function of impurity concentration.
but the dependence L(N) seems to be completely random and does not monotonically
increase or decrease.

In Chapters 3 and 4, we will discuss possible explanations for the cohﬂicting

observations of the dependence of L on temperature and impurity concentration.

2.1.3.4 Impurity conduction in strong electric fields

In strong electric fields F > kT/eC, theoretical models predict that the conduction
becomes “activationless,” meaning that the electrons participating in hops acquire the
energy necessary for executing a hop not from thermal activation but from the electric field.
In this case the conduciivity is independent of temperature and increases with increasing
electric field as

6(F) ~ exp(-Fo/F)N, ‘ (2.12)

where the power exponent N is equal to the power exponent n for the ohmic conductivity.
Equation 2.12 was first derived by Shklovskii [1973] for the case of n = 1/4 variable range
hopping and was derived by Rentzscﬁ et al. [1979] for an arbitrary value of n.

Following Rentzsche et al., we derive Equation 2.12 using an analysis similar to
that used in Chapter | to determine the exponent n for variable range hopping in the limit F
— 0. Assuming that the density of sfates near the Fermi level varies with energy as g(E) =

NolE!X, then variable range hopping takes place over a concentration of impurity states

X+1

) iEl
N~2f gXde = —2— Ex*1
0 (2.13)

The average hopping distance can be estimated by

R = N-1/3 - g-(x+1V/3 (2.19)

Since the hopping electrons gain energy from the electric field F rather than by thermal

activation. E = eFR. The hopping distance can therefore be rewritten as

41



R ~ F-(x+])/(x+4). ) (2.15)

Since the current j ~ exp(-R/C) we find that

. 1Y/(x+4)
/ "e"p['(%o”(x+ e, 2.16)°

Therefore the strong field exponent N is equal to the hopping exponent n = (x+1)/(x+4).

Activationless hopping conductivity has been observed experimentally, with most
authors finding that n = N over a wide range of temperatures in a variety of materials. In a
study of hopping between deep levels in Ge:Zn, Aleinikov er al. found that N = 1/4 when n
= 1/4. The relation N = 1/2 when n = 1/2 has been observed in amorphous Si<Mn> by
Dvurechenskii et al. [1988], in n-GaAs by Trefnblay et al. [1989], and in Ge bicrystals
with a tilt angle 6 = 8.5° by. Zavaritskaya er al. [1985]. Rentzsch et al. [1979] studied the
high field dependence of the conductivity of ZnSe films and found that forn=0.6 - 0.8. N
=0.6 - 0.8.

In two-dvimensional films with a constant density of states near the Fermi level, the
conductivity is described by n = 1/3 VRH. Thus n = 1/3 VRH in two dimensions is
analogous to n = /4 VRH in three dimensions. The relation n = N was also confirmed by
Faran and Ovadyahu [1988]., who studied the strong field behavior of polycrystalline
In2O3. films and observed that whenn = 1/4, N = 1/4 and when n = 1/3. N=1/3. Ina
later study, Shahar and Ovadyahu [1990] examined the strong field behavior of
polycrystalline InyO3. films as a functioq of film thickness. They found that under an
applied field the I-V curves showed an inflection point between the field dependence
exponent N = 1/3 and N = 1/4, which they attribute to a dimensional crossover induced by
the electric field.

An anomalous strong field behavior N = 1/4 when n = 1/2 was observed by
Aleshin and Shlimak [1987] in a study of amorphous Ge.4Cuy films. van der Heijden et

al. [1992] also observed the relation N = 1/4 when n 2 1/2 in ion-implanted Si:As. In both
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Fig. 2.8 As the impurity concentration increases. the doped semiconductor is modelled
by a network of nonlinear triodes rather than by a network of nonlinear resistors.

studies, the impurity concentration was near the critical concentration for a metal-insulator
transition. The observed field dependences are in conflict with the theoretical model and

impiy that a strong electric field is not equivalent to a high temperature as N approaches N..

2.1.3.5 Non-ohmic impurity conduction in moderately and heavily doped
semiconductors

The theories of non-Ohmic impurity conduction described above assu-me a ligﬁtly
doped semiconductor and neglect Coulomb interactions between impurities.‘ As the
impurity concentration increases and approaches the critfcal concentration for a metal
insulator transition. a constant localization radius can no longer be assumed throughout the
impurity band. The doped semiconductor must be theﬁ modelled by a network of nonlinear
triodes rather than a network of nonlinear resistors [Bottger and Bryksin. 1985} as shown
in Figure 2.8. In other works. the transition rate between impurity sites i and j depends
not only on the energy difference E; - E;, but also on the.lquamities E;j and E; relative to the

Fermi level E;. As N approaches N. the effects of electron-electron interactions, the
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variation of localization throughout the impurity band, and the influence of the applied
electric field on the impurity Wavéfqnctions may become important.

The few experimental studies of non-Ohmic behavior in moderate electric fields in
moderately and heavily doped »semiconductérs [Gang et al., 1989. Matveev and
Lonchakov. 1993; Rosenbaum et al., 1980] typically analyzed the data according to
Equation 2.9 which is derived for a lightly doped semiconductor. rather than used the data
to test whether this expression remains valid. It is plausible that at impurity concentrations
such that carriers are no longer localized at individual impurities, a different field
dependence should apply because Anderson localization cannot be assumed throughout the
impurity band and L may no longer be well-defined. Non-Ohmic conductivity studies at
higher impurity concentrations can conceivabl}; provide an exciting probe of impurity
localization. the position of the mobility edge in the impurity band. and the metal-insulator
transition. In Chapter 3 we explore the weak and moderate electric field dependence of &

as N approaches N¢.

2.1.3.6 Summary of non;Ohmic impurity conduction in doped
sémiconduétors

In summary. for sufficiently low electric fields E < kT/eL the hopping conductivity
in a lightly doped semiconductor is predicted to be nearly independent of the applied field.
In moderate electric fields, kT/eL < E < kT/e{ where { = 39 A for an isolated As impurity
in Ge. the theoretical models predict a conductivity of the form c(F,T) =
o(0,T)xexp(eFL/KT) where the factor eEL may be thought of as the energy gain due to the
electric field. Experimental studies of lightly doped semiconductors show that this form of
o(F.T) describes the moderate field data very well and can be used to study the temperature
dependence of the length parameter L. For nearest neighbor hopping conduction L is
constant. thus o varies with E and T as {n [o6(F,T)/6(0,T)] « FXT-!. For VRH conduction

with an exponent n, L « TP according to the models of Hill [1971] and Pollak and Reiss
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Reference Regime A(T) X
Apsley and Hughes [1974] weak fields Cy/T2+n 2

Hill [1971] moderate fields Co/T 1+n l
Pollak and Reiss [1976] moderate fields C3/T I+n |
Shklovskii [1976] moderate fields .  Cq/T !*+n+vn 1/(1+v)
Levin and Shklovskii [1984] moderate fields Cs/T 1+2n B
Shklovskii [1973] strong fields Cs -n
Rentzsch er al. [1979] strong fields Cs -n
Frenkel [1938] Poole-Frenkel Cy/T 12

Table 2.1 Theoretical predictions for the electric field dependence of the conductivity at
various electric field strengths. The parameters A and x are defined in Equation 2.17. C;
-C7 are numerical constants. The parameter n is the temperature exponent of the variable
range hopping conductivity and is typically 1/4 (constant density of states at the Fermi
level) or 1/2 (parabolic density of states at the Fermi level). The parameter v = 0.9 is the

critical exponent of the correlation radius L of the critical hopping conduction subnetwork
~ and is defined in Section 2.1.3.3.

[1976], and L « T-2n according to the model of Levin and Shklovskii [1984]. The
dependence of L on temperature and impurity concentration has not yet been established
~experimentally. In very high electric fields the transport becomes field-assisted rather than
phonon-assisted: this activationless regime has been studied experimentally and agreesvwell
with the theory. As yet no separatle model for non-Ohmic phonon-assisted impurity
conduction at higher doping concentrations has been developed.
We can define a generic fitting for the non-Ohmic impurity conductivity [Bottger
and Bryksin. 1985,
O'(F.Ti =o(0,T) exp| AF".} . (2.17)
When in G is plotted as a function of F. A is a measure of the slope and x is a measure of
the curvature. Table 2.1 summarizes the various theories of non-Ohmic impurity

conduction using Equation 2.17.
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2.2 Contact effects

Contact resistances between different materials arise from contact barriers. which in
turn arise from.space charges. Space charges are always present at interfaces between
materials of different conductivity. This may be seen from Poisson's relationship, since
the bulk electric fields differ and a spéce charge must reside wherever the field changes. In
that sense, there can be no such thing as an "Ohmic contact,” even between two different
metals. In practice, the revsistive consequence arising from such interfaces can be very
small.

Contact barriers can arise in two different ways: (a) through differences in the
thermionic work functions of the two contacting materials. and (b) through the action of
surface states. When a metal and a semiconductor are brought into contact. a barrier arises
known as the "Schotiky barrier.” The books of Henisch [1984] and Rhoderick [1978] are
useful general references on semiconductor contacts and metal-semiconductor contacts
from which we have drawn the following discussion of Schottky barriers and Ohmic

contacts.

2.2.1 The Schottky barrier

We begin with some preliminary definitions. The work function @, of a metal is
the amount of energy required to raise an electron from the Fermi level to a state of rest
outside the surface of the metal. As with a metal, the work function @s of a semiconductor
is the difference in energy between lhé Fermi level and the energy of an electron at rest
outside the surface. Another impontant surface parameter.of a semiconductor is the electron
affinity xs. This is the difference in energy between an electron at the bottom of the
conduction band and an electron at rest outside the surface. If the bands are flat (i.e. there
is no electric ficld inside the semiconductor), % and @ are related by

Os=%s +& (2.18)
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Fig. 2.9 Formation of a Schottky barrier between a metal and a semiconductor (a) not
yet in contact: (b) separated by a gap with an electrical contact so that the Fermi levels are in
coincidence: (c) separated by a narrow gap; and (d) in perfect contact. The plus signs
denote positively charged donor ions: the minus signS denote electron charge accumulation

at the surface of the metal. Other symbols are defined in Section 2.2.1.

where ¢ is the energy difference between the Fermi level and the bottom of the conduction

band.
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To see how a barrier is formed when a metal and a semiconductor are brought into
contact, we perform the following thought experiment. Suppose that the metal and
semiconductor are both electrically neutral and are separated from each other. The energy
band diagram is shown in Figure 2.9(a) for an n-type semiconductor with a work function
less than that of the metal. The assumption that s < ¢, is usually true: when @g > @p, for
an n-type semiconductor the contact is known as an Ohmic contact (see Section 2.2.2) and
the Schottky barrier does not form.

If the metal and semiconductor are connected electrically by a wire, electrons pass
from the semiconductor into the metal until electronic equilibrium is established and the
| Fermi levels of the two materials come into coincidence as shown in Figure 2.9(b).
Relative to the Fermi le\'fel in the semiconductor. the Fermi level in the metal must rise by
an amount equal to the difference between the two work functions on thermodynamic
grounds. The energies of electrons at rest outside the surfaces of the two solids are no
longer the same, and there is an electric field in the gap between the two materials. There
must be a negative charge on the surface of the metal balanced by a positive charge in the
semiconductor. The charge on the surface of the metal consists simply of extra conduction
electrons contained within the Thomas-Fermi screening distance (= 0.5 A). Since the
semiconductor is n-type. the positive charge will be provided by conduction electrons
receding from the surface leaving uncompensated positive donor ions in a region depleted
of electrolns. Because the donor concentration Np is many orders of magnitude less than
the electron concentration in a metal. the uncompensated donors are distributed over a
region with screening length A knewn as the depletion layer and the bands in the -
semiconductor are bent upwards.

When the two surfaces are allowed to approach each other as shown in Figure
2.9(c) the capacitance of the system increases at constant voltage. Accordingly, an
increasing negative charge 1s built up on the surface of the metal and an opposite positive

charge continues to build up on the surface of the semiconductor until the two materials are

48



finally brought into contact as shown in Figure 2.9(d). The final barrier height Eg relative
to the Fermi level is given by
Eg = @m - ¥s- (2.19)
Electrical conduction across the Shottky barrier can occur by thermionic emission.
thermionic-field emission. and field emission (tunneling). At sufficiently high temperatures
virtually all of the electrons have enough thermal energy to go over the top of the barrier:
this process is known as thermionic emission over the barrier. At lower temperatures.
electrons éan penetrate the barrier by a combination of quantum mechanical tunneling
through the barrier and thermal excitation over the barrier: this intermediate regime is
known as thermionic-field emission. At very low temperatures the dominant electron
current arises from the tunneling of electrons with ene‘rgies close to the Fermi energy. This
process is known as field emission.
It is useful to define a characteristic energy parameter Eq, (using the nomenclature
of Padovani and Stratton {1966]) which plays an important role in tunneling theory and is

defined as

£ _.h[Np)”2 |
©T4an|mel - (2.20)

where Np is the donor concentration. m”™ is the effective mass of electrons in the

semiconductor. and € is the dielectric constant in the semiconductor. The dominant
mechanism for electron conduction across the Schottky barrier has been discussed by Yu

{1970]. Yu finds that the contact resistance R is determined predominantly by the factors

exp (Eg/Eqo) for field emission (Eqo/kT » 1)
exp {Ep/Eqo coth( Eo/kT) } for thermionic field emission (E,o/KkT ~ 1)

exp (Eg/kT) for thermionic emission (Eoo/KT « 1).

- For lightly doped materials and/or at high temperatures the dominant conduction process is

thermionic emission. Therefore R. is independent of the donor concentration and varies
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Fig. 2.10 An Ohmic contact to a semiconductor is one for which the current-voltage
characteristic is determined by the resistivity of the semiconductor. rather than by the
characteristics of the contact. The contact resistances should be very small compared to the

resistance of the bulk semiconductor.

exponentially with the inverse temperature. For heavily doped materials and/or at low
temperatures. the dominant conduction process is field emission. In this case In R¢ is
proportional to Np!/2 and R is independent of temperature.

We have considered the case of a metal-n-iype-semiconductor contact for which the
work function of the metal is greater than the work function of the semiconductor. We
have shown that the resulting energy contour corresponds to a Schottky barrier. If instead
the work function of the metal is smaller than that of the n-type semiconductor. the
conduction and valence bands bend down at the interface. An electron accumulation layer
forms in the s_cmiconductor over a distance A, from the contact interface. This
accumulation laver is distinguished from the depletion layer discussed for the Schottky

barrier because 1t serves as an electron reservoir.

2.2.2 Ohmic contacts
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Semiconducting samples and devices require low resistance contacts to which
electrical connections can be made. Low resistance contacts on semiconductors are usually
(somewhat misleadingly) referred to as "Ohmic contacts.” An Ohmic contact to a
semiconductor is one for which the current-voitage characteristic is determined by the
resistivity of the semiconductor, rather than by the characteristics of the contact. It is not
essential that the current-voltage characteristic of the contact itself is linear. provided that its
resistance is very small compared to the resistance of the semi;onductor as shown in Figure
2.10. In principle, such contacts can be made by using a metal with a work function less
than the work function of an n-type semiconductor or greater than the work function of a p-
type semiconductor because the accumulation layer will serve as a charge carrier reservoir.
[n practice. however, there are very few metal-semiconductor combinations which satisfy.»‘
this condition. | |

The vast majority of Ohmic contacts are formed by placing a thin layer of very
heavily doped semiconductor between the metal and semiconductor regions as shown in
Figure 2.11. The boundary layer is doped with extra donors (n+) for an n-type
-semiconductor or with extra acceptbrs (p+) when dealing with a p-type material, and
simulates an accumulation layer. The depletion region is then so thin that field emission
takes place and the contact has a very low resistance. A number of recipes for producing

this type of Ohmic contact are given by Schwartz [1969]. )

2.2.3 Contact resistance for the samples studied in this work

We. assume throughout this thesis that the samples studied in this work do not have
any significant contact resistance compared to the resistance of the bulk semiconductor.
The tollowing theoretical and experimental arguments lead us to believe that the contact
resistances to our samples are negligible.

(1) Values of the characteristic energy parameter Eyo as a function of Np for

various semiconductors are listed in Rhoderick [1978]. For Ge with a donor concentration
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Fig. 2.11 Formation of a low resistance contact by additional doping. (a) Metal-
semiconductor-metal device with two Schottky barriers: (b) the same with an additional
boundary layer of heavily doped n-type semiconductor material between the metal-
semiconductor contacts. The additional doping thins the depletion layer and simulates an

accumnulation layer which serves as a free carrier reservoir.

of 4x1016 cm-3. typical of samples studied in this work, Eyo = 2.5 meV. Even if our
samples did not have a thin layer of very heavily doped semiconductor between the metal-
sample contact. at temperatures. T « 30 K for which Ey,o/kT » | field emission would
dominate the contact resistance. The samples studied in this work have ‘been doubly ion-
implanted to produce very low resistance metal/n+/n and metal/p+/p contacts. The
contacting procedﬁ-re 1s described in Section 3.2.3. These contacts are very heavily doped
with cross-sectional impurity concentrations of ~ 5x10!4 cm-2 over regions of ~ 2000 A.
Thus in the contact region the net impurity concentration is > 102! ¢cm3 and the energy

parameter E,o, will be correspondingly small [Rhoderick. 1978). For the samples
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Fig.2.12 Measured temperature dependence of the resistance of the two 74Ge:As samples
studied in this work at T > 5 K. As described in the text, the smallest measured sampie
resistance can be used to place an upper limit on the contact resistance R when R¢ is
determined by field emission across the contact barrier.

studied in this work we expect field emission (tunneling) to dominate tﬁe contact resistance
when T < 300 K. All measurements of the non-Ohmic behavior of the samples discussed
in this thesis were made at T < 1.8 K.

Since field emission produces a temperature-independent resistance, for the samples
studied in this work the contact resistance R is a constant at small electri; fields. The
temperature dependence of the sample resistance R; is therefore given by

Ry(T) = Re + Rp(T). (2.2D
where Ry, is the bulk resistance. The measured sample resistance Ry at any temperature

below 300 K can be used to place an upper bound on the contact resistance. -
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At temperatures between 4 K and 10 K. the samples studied in this work have
measured resistances < 10 £ as shown in Figure 2.12. We conclude that R <10Q.
Since measurements of the non-Ohmic conduction properties require sample resistances Ry
> 1 MQ in order to avoid sample heating, the contact resistance is at least five orders of
magnitude smaller than the studied resistances. From the above theoretical argument. we
conclude that contact resistances are completely negligible in this work.

(2) In addition. we performed a four-probe measurement of the sample resistance
for a 70Ge:Ga sample with N = 0.5 N, using the sample geometry shown in Figure
2.13(a). This geometry allows a direct measurement of Rc. Howéver. we were unable to
determine R. because it was less than our 1% measurement error over the measured
temperature range 0.6 K< T <'1.6 chorresponding to a range in resistance 10 kQ <R <
10 MQ. Making the assumption that the contact resistance is determined by field emission -
(tunneling) across the contact barrier and is temperature independent, we conclude that R <
100 Q2. Thus the experimentally determined contact resistance is at least four orders of
magnitude smaller than the sample resistances in our study of non-Ohmic impurity
conduction.

- All of the data presented in this thesis were measured using the sample geometry
shown in Figure 2.13(b). This geometry provides a uniform electric field across the
sample but does not allow a measurement of the contact resistance. Since the contacting
technique is identical for the two geometries shown in Figure 2.13, we believe that the
contaét resistances of the samples studied in this work are negligible. | |

(3) Under an applied electric field F. the resistance change is given by AR =
Ry(F=0) - Ry(F). For typical values of F studied in this work, AR is between 100 k€2 and
100 MQ. The maximum resistance drop across the contacts is AR < 10 Q by argument
(1) and AR < 100 by argument (2). Theretore. the effect of F on the contact resistance

must be completely negligible compared to the effect of F on the buik resistance.
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Fig.2.13 Diagram (a) shows the sample geometry used to perform a four-probe
measurement of the contact resistance. Diagram (b) shows the sample geometry used for
studies of non-Ohmic impurity conduction. The second geometry allows a uniform electric

field to be applied across the sample.

2.3 Hot electron effects

The resistance R of a doped semiconductor decreases with increasing el'ectric field
strength as discussed in Section 2.1. R also decreases with increasing electron
temperature. Under certain conditions. an electric field applied across a conducting material
can raise the electron temperature significﬁntly a.bove the phonon temperature. [t can
therefore be difficult to distinguish between non-Ohmic effects and "hot electron” effects.
We first review the general theory of hot electron effects. We then investigate the
consequences tor non-Ohmic conductivity in metals and doped semiconductors. To our
knowledge this is the first detailed discussion of the implications of hot electron effects for

conduction in doped semiconductors.

2.3.1 Definition of the hot electron regime

We can regard a conducting material as a thermodynamic system which is
composed of two subsystems. the electron and the phonon. which are coupied by the
clectron-phonon interaction [Wellstood er al.. 1988]. If we suppose that the conducting

material is connected to a thermal reservoir. the phonon subsystem itself can further
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Fig. 2.14 Thermal model for the theory of hot electron behavior. Electrical power P =
IV is applied to an electron system. which is coupled to a phonon system through a thermal
conductance Ge.ph. The phonons are connected to a thermal reservoir at temperature T, by

a thermal conductance Gpp.

subdivided into two parts: phonons in the conducting material and phonons in the thermal
reservoir (see Figure 2.14). When an electric field F is applied across a conducting
material with ‘free charge carriers. the velocity distribution of the carriers is modified
leading to an increase of their mean energy above the thermal equilibrium value. This

condition is usually called the "hot electron regime” because a Boltzmann-like distribution
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function with a characteristic electron temperature T, can be introduced to describe the

increase of the carrier mean energy:

_ E - EF]
(E)=exp|Tr ) (2.22)

where E is the electron energy relative to the Fermi energy EF.

When power P = IV is dissipated in the electron system. its temperature T rises
above that of the phonon system Tpp, which in turn is higher than the thermél reservoir
temperature T,. The power balance equation requires that

P =1V = Ge.pn (Te = Ton) = Gpn (Tpn = To), (2.23)

where Ge_pp Is the average thermal conductivity between the electron system and the
phonon system. and Gpp, 1s the average thermal conductivity between the phonon system.

and the thermal reservoir.

2.3.2 Hot electron effects in metals

At room temperature, the thermal resistance between the electrons and the phononsv
in a metal is extremely small, so that even when a large power is dissipated in the metal
only an immeasurably small temperature différence is generated. For example, a power .
dissipation of 50 W in a | mm3 volume of Cu at 300 K would produce an electron-phonon
temperature difference of approximately 50 nK [Wellstood et al.. 1994]. However. at
lemperatures below a few hundred millikelvin the thermal resistance between the electrons
and phonons is greatly increased. and it is possible to drive the electrons far out of thermal
equilibrium with the phonons [Roukes ez al.. 1985]. The theory of the hot electron effect
in metals has been summarized by Wellstood et al. [1994].

We present a simple derivation for the electron temperature in a metal. We obtain

. . N . . . . .
the same expression that is found with a more detailed derivation to within a small
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numerical factor. We assume that the electronic heat capacity per unit volume, C,, scales
linearly with temperature as
Ce=1YTe. (2.24)
The constant, ¥, is a characteristic of the metal [Kittel, 1986] and is given by
¥ = n2D(EF)k?/3Q, . | (2.25)
where D(EF) is the density of states at the Fermi level and 2 is the volume of the metal.
We also assume that the electron-phonon scattering rate T-! scales with temperature
[Ghantmaker, 1974] as
! =a" Te3. (2.26)

The constant o™ is a thermally averaged electron-phonon scattering rate given by

o = 485(3)n’ks> | 2Ef )2 ’
whve)ve ' 3 (2.27)
where ¢(n) is the Riemann zeta function. u is the mass density per unit volume of the
metal, v, is the velocity of sound. vvF is the Fermi velocity, and Ef is the Fermi energy.
Ghantmaker and Gasparov [1973] have confirmed the T3 dependence of the electron-
phonon scattering rate in pure samples' of Cu and Ag using the radio freqﬁency size effect.

Using the above expressions for C. and T-! we find that the thermal conductance

between the electron-phonon systems is

et = 55 = QT (2.28)

We can then obtain the following simple expression for the net rate at which an electron gas

in a metal transfers energy to the phonons:

Qyo”
P= j Get.ph dT =~ 2 (TS Tyi?)

(2.29)
This simple derivation gives the same result for P that is obtained by the more detailed

derivation of Wellstood et al. [1994] to within a constant factor of about 2.5.
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Arai [1983] demonstrated theoretically that an electron gas achieves a well-defined
temperature T, when 1t 1s electrically heated and that this temperature can be determined by
measuring the Nyquist voltage noise ep:

en = VAKTeR . (2.30)
Experimentally, hot electron effects in metals have been established by measuring white
voltage noise levels in thin films at millikelvin temperatures and comparing the value T,
deduced from the noise level with the value Tph measured independently [Roukes ez al..
1985: Wellstood er al.. 1989]. The excess noise in thin metal films at dilution refrigerator
temperatures is of practical interest. because hot elec-tron effects can substantially limit the
sensitivity that can be achieved by thiﬁ film dc Superconducting Quantum Interference
Devices (SQUIDS) [Wellstood er al.. 1994].

Under an applied electric field. the conductivity 6(T) of a metal can be written as
o(Te) where T, is a function of F. However, because the conductivity of a typical metal is
an extremely weak function of temperature. hot electron effects in most metallic conductors
do not lead to significant non-Ohmic behavior. An exception to this statement is electron
conduction in doped semiconductors 6n the metallic side of the metal-insulator transition.
The field dependent conductivity of a disordered metal [Anderson ez al.. 1979: McMillan.

1981: Osofsky et al.. 1988] can be described by a hot electron model as

o(F) = o(T) + AF!/3 |
c(T)=00+c|T”2, ‘ (2.31)

where A. G,, and G| are matenal-dependent constants.

2.3.3 Hot electron effects in semiconductors
2.3.3.1 Hot electron effects and £€; impurity conduction

vHovt electron effects ariising from free carriers in the conduction band are well
known in semiconductors (for a review. see Sze [1981]). In doped semiconductors. free

carrier impurity conduction occurs when electrons are thermally excited from localized
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impurity states to the conduction band (¢} conduction). Because the carrier concentration is

much smaller than in a metal, each electron receives proportionately much more energy for
a given input power and the electron temperature is correspondingly increased. In other
words, the small number of charge carriers leads to a small thermal conduction between the
electron-phonon system.
The conducfivity as a function of electric field F can be written as

6(F) = n(F)-e-n(F), (2.32)
where n(F) is the free carrier concentration as a function of electric field, u(F) = v4 (F)/F is
the carrier mobility, and vq (F) is the free carrier drift velocity. The effect of an electric
field on the £ conductivity is therefore two-fold. First, n(F) increases with increasing
electric field due to the reduction in the impurity potential caused by F. This is the Poole-
Frenkel effect as discussed in Section 2.1.1. Secondly, the mean free carrier velocity v4(F)
is determined by a Boltzmann-like distribution function with a characteristic temperature T,

rather than Tph.

2.3.3.2 Hot electron effects and hopping conduction

One of the unstated assumptions made in deriving the electric field dependence of
the hopping conductivity is that the electron-phonon coupling is sufficiently strong that we
need not distinguish between Tph, the phonon temperature. and Te, the electron
temperature. At very low temperatures (T < 50 mK) this assumption may no longer be
valid and some groups [Wang er al.. ] claim to have seen a hot electron effect for hopping
conduction in doped semiconductors similar to that seen in metals and in semiconductors
for conduction by free electrons in the conduction band. It is not obvious how to define an
electron temperature for localized electron states. since electron-electron interactions are
weak and each hop between localized states requires the .absorption or emission of a
phonon. In contrast. free electrons have a strong electron-electron interaction and can
accelerate under an applied electric field until emutting or scattering phononé.
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Because of thesé difficulties. as yet no theory of a hot electron effect for hopping
conduction between localized states near the Fermi level exists. However. Shklovskii et al.
[1990] have studied the properties of the intermediate conduction regime between hopping
conduction and band conductio‘n for an amorphous semiconductor. This intermediate
regime corresponds to hopping in the conduction band tail.

Transport properties of amorphous semiconductors. as opposed to doped
semiconductors. are dominated by the disorder-induced density of localized states in the
gap between the conduction and valence bands. The standard assumption about the density
of states is that it decays exponentially with energy (where energy is measured from thé

band edge into the gap, i.e.. deeper states have higher energies).

0 0 (2.33)
where N is the total concentration of states in the tail and € 1s a characteristic decay energy
much smaller than the Fermi energy Er. Under these assumptions, Shklovskii ez al. [1990]
find that at T = O a strong electric field F creates a Boltzmann-like distribution function with
an effective electron temperature T = eFa/2kg where a is the localization radius. Marianer
and Shklovskii [1992] studied the same problem numerically for T > 0 and found a
Boltzmann distribution function with an effective electron temperature described
phenomenoiogically b_vv |

TeX(T.F) = T2 + (0.67eFalkg)2. (2.34)
As shown in Figure 2.15. the exponential growth of .the density of states plays an
important role in the field dependence of the electron temperature because zis the electric

field increases a much higher density of shallower localized states is available for the

clectrons to hop 1nto.
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Fig. 2.15 Electron hop against the electric field for an amorphous semiconductor with an
exponential dropotf of localized electron states in the conduction band tail. Due to the
inclination of the conduction band a higher concentration of shallower localized states is
available for the electron. The filled area below Ef represents the occupied states in the
mobility gap. (Figure adapted from Marianer and Shklovskii [1992].)

In the limit of small electric fields eFa/kg « T. the numerical result of Marianer and .
Shklovskii can be written as Te = T (1 + BF2/T2) where B = 0.67ea/2kg. Therefore the

hopping conductivity as a function of electric field is

T (To\n ] I ni BZFZ‘!
o) = -( 0) — (_ [s) l_ !
o(F.T,) =0, exp[ —Te J}-~0’0 exp (-—T) [ n——2 J

(2.35)

For small fields the conductivity will increase with electric field and temperature as In

o(F.TVIn o(F=0.T) « F2/T2*n_ As discussed in Section 2.1.3.1. this is the same
functional dependence that Apsiey and Hughes [1974] derived for n = 1/4 VRH in the
weak field limit. In the limit of large electric fields eFa/kg » T. Equation 2.35 can be

written as T, = 0.67eFa/kg. In this limit the hopping conductivity varies with F as

o(F,T;) = 0o exp {- ( 5%';—:—;’% ) i ] = Op eXp (' (F_I;,)" ) ‘ (2.36)
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Thus the numerical result for hot electron hopping in the conduction band tail of an
amorphous semiconductor has exactly the same functional form as the theoretical result for
high field non-Ohmic impurity conduction in doped semiconductors (Section 2.1.3.4).

Despite this correspondence at high electric fields. the result of Marianer and
Shklovskii has an uncertéin relevance for hopping conduction in doped semiconductors in
small and moderate electric fields. The density of states near the Fermi level in a doped
semiconductor is assumed to be constant (Mott VRH) or parabolic (Shklovskii VRH),
which may lead to significantly different behavior than is found for an amorphous
semiconductor with an exponentially decaying density of states at the Fermi level.

By analogy with the hot electron effect in metals. we can estimate the magnitude of

a hot electron etfect for hopping conduction in doped semiconductors using Equation 2.28,

- QC
Gel-ph = == - (2.28)

where C. is the electronic heat capacity per unit voldme. € is the volume, and 7 is the
electron-phonon scattering rate. Unfortunately, the dependence of C. on temperature in
doped semiconductors is not yet well understood. For a lightly doped semiconductor with
a Coulomb gap in the density of states, the conductivity at very low temper_atu’res 1s
described by the Shklovskii variable range hopping formuia 6(T) = 6oexp[-(To/T)!/2] and
the specific heat is predicted to vary with temperature as [Shklovskii and Efros. 1984]

oc___.:r——’

[ In (%) ] " | (2.37)

where A is the width of the Coulomb gap. Thus C, has a sublinear dependenceon T as T

Ce

— 0. In a study of the specific heat of uncompensated Si:P below the metal insulator

transition. Lakner and Lohneysen [1989] found that above 1.5 K the samples were well

described by C. = YT + fT3. Below | K. strong deviations from this behavior were

observed with an upturn of C, towards a sublinear dependence. At the lowest temperatures
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Fig. 2.16 Temperature dependence of the resistance of 70Ge-1.65. The two fits are

described in the text.

Ce varied as T® where o was equal to 0.2 for the more heavily doped samples and
decreased below zero with decreasing impurity concentration. Some indications of such a
behavior were also found by Paalanen er a/l. [1988]. The sublinear temperature dependence
ot C, is attributed to exchange interactions between localized electrons.

The temperature dependence of the electron-phonon scattering rate 7! is not well
understood in doped semiconductors at low temperatures. As discussed in Chapter |. the
temperature dependence of T/ is equivalent to the temperature dependence of G, where ¢
= 00exp[-(To/T)]". Most theories of hopping conduction assume that ¢, is temperature
independent. However. in Figure 2.16 we show the resistance as a function of temperature
of one of the samples studied in this work in the n = 1/2 variable range hopping regime.
The sample is described in Chapter 3 and is labelled 70Ge:Ga-1.65. We have fit the R(T)

curve to two equations. For the first fit. we make the standard assumption that R, is
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temperature independent: R(T) = Roexp{-(To/T)}!/2. Using Fit |. we find that R =
8.92x10-4 exp (11.16/NT) (Q) with a linear correlation coefficient R = 0.99923. For the
second fit. we make the non-standard assumption that R, varies as T-3 (equivalent to the
assumption that G, varies as T 3): R(T) = AT-3 exp[-(Ty/T)]!/2. To our surprise. we found
that using Fit 2 the resistance can be very well described by R = 1.63x10°2 T-3 exp
(7.714~NT) (Q) with a linear correlation coefficient R = 0.99988. This second fit describes
the data as well or better than the standard fitting equation. We find similar results from the
other samplés described in this work. Therefore, we conclude that the electron-phonon
scattering time in doped semiconductors cannot be determined from the conductivity curves

in this experiment.

If we assume that the electron-phonon scattering rate T-! scales with temperature as

T3 in doped semiconductors as well as in metals then we find that

P= Eel-ph (Te(ﬂhl - TphaH)' ’ (2.38)
where o < 4 due to the sublinear dependence of Ce on T at low temperatures. If we instead

assume that the electron-phonon scattering rate is temperature-independent. equivalent to

the assumption that G, is independent of temperature, then we find that ot < 1.

2.3.3.3 Discrepancies in the existing hopping conduction data which are
analyzed using a hot electron model

| Some unexplained questions about the existing data which utilize a hot electron
theory for low temperature non-Ohmic impurity conduction in doped semiconductors are as

follows.

(1) The values observed for o are 2 4 when the data are parametrized by Equation

2.38 {Mack et al.. 1983: Wennberg er al., 1986: Wang et al.. 1990], contradicting our

expectation that o should be < 4 as discussed above. Wang er al. studied two éamples with

an identical geometry and identical impurity concentrations and found the surprising result .
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that o differed and was best fit by &t = 4.5 and a = 5, rather than having a single value. As
we will show in Chapter 4. the different values of & can most likely be explained by
sample stress.

(2) The thermal conductance deduced from assuming a hot electron model in planar
Ge thermometers does not scale with sample size {Mack er al.. 1983]. According to
Demoulin er al. [1993], the deduced electron-phonon coupling d’oes not depend on impurity
concentration N. This is a very unexpected resuit because Gej.ph should be proportional to
C. which is proportional to the density of states at the Fermi level, which in turn depends
strongly on N.

(3) The existing'experimems '[Wang er al.. 1990: van der Heijden er al.. 1992:
Zammit et al.. 1990: Dumoulin ez al., 1993} which postulate a hot electron effect have been
analyzed using Equation 2.38 and state that the data are not well described by Equation 2.9
for the moderate electric field dependence of the conductivity. To our knowledge, except
for the study of van der Heijden er al. [1991] no attempt has been made to compare hot
electron effects and the theoretical expression Equation 2.12 for the strong electric field
dependence of the conductivity. van der Heijden er al. found that their daia for the field
dependence of ion-implanted Si:As could be equally well described both by an electric-
field-assisted hopping model (Equation 2.12) and by a heating model (Equation 2.38) for
larger values of the electric field. We propose the following argument to explain this result.
If we replace the phonon temperature T in the .variable range hopping formula with an
electron temperature T, = T + eFL/k. we obtain the following formula for the hopping

conductivity:

R(T,) = _To_"
c)—R(,cxp’_r cFLl .
T+

(2.39)
This expression is physically plausible because the average energy gained by an electron in

applied field should be proportional to eFL. which is equivalent to a temperature increase
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eFL/k. In the weak field limit eFL/kKT << 1, Equation 2.39 reduces to the familiar

exponential dependence of the resistance on applied field:

w1 =5 (5 2L ]

(2.40)
In the strong field limit eFL/KT >> | Equation 2.39 reduces to the temperature independent

expression

R(Te)=Roexp{:g£Jn‘=Ro exp[%—}n )

(2.41)
which is identical in form to Equation 2.12 for the activationless hopping conduction in a
strong electric field. If this argument is correct, "hot electron effects” in doped
semiconductor are effectively accounted for by existing theories of non-Ohmic impurity
~ conduction.

(4) Anomalous time constants which have been seen are taken for evidence for a
thermal coupling time between the electron and phonon systems. However, long system
time constants which depend on both temperature and bias level may also be found in the
traditional electric field dependent hopping model through the transition rates Wj;, as
discussed in Chapter 1.

(5) The thermal conductivity G;l.ph between the electron and phonon systems has
been deduced from current-voltage curves. a method which will give misleading resuits if
both non-Ohmic effects and hot electron effects are present. The electron heat capacity has
been deduced from the system time constants using Ce = Gej.phTel-ph- The values of Ce
deduced from nominally identical samples differ by factors of more than ten {Wang et al..
1990].

The above problems indicate that the hot electron model as applied to non-Ohmic
impurity conduction needs to be modified. Existing theoretical predictions for hopping

conduction in a strong electric field effectively account for an increase in the electron

temperature T, = T + eFL/k.
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Chapter 3 |
Experimental studies of non-Ohmic impurity conduction in

neutron transmutation doped Germanium

3.1 Overview

In this chapter we describe three experimental studies of non-Ohmic impurity
conduction in neutron transmutation dopedl Ge. These experiments were designed to
answer some of the questions raised in Chapter 2 about the behavior of the non-Ohmic
conduction in weak and moderate electric fields over a range of impurity concentrations. In
Figure 3.1 we indicate the regions probed by the three experiments on a phase space
diagram of the electric field dependence of the conductivity. for various impurity
concentrations and electric field strengths. The first experimental study is of lightly and
moderately doped p-type Ge:Ga samples with a compénsation K = 0.32. As we will
show, the conductivity in the low-field limit is very well described by the Shkldvskii theory
of variable range hopping. Experiment | probes the region of the phase space over which
the conductivity is prédicted to vary'wifh electric field as ¢ ~ exp (eFL/kT). We attempt to
answer the following questions raised in Chapter 2 What is the weak field dependence of
the conductivity? How well are the data described by ¢ ~ exp (eFL/KT) in moderate fields?
What is the depéndence of L on impurity concentration and temperature?

The second experiment is of moderately and heavily doped p-type 0Ge:Ga samples
with a compensation K < 0.01. The conductivity in the low-field limit 1s very well
described by the Shklovskii theory of variable range hopping. In Experiment 2, we study-
the change in the field dependence of the conductivity as N nears the critical concentration
for a metal-insulator transition.

The third experiment is of moderately doped n-type 74Ge:As with a compensation

K < 0.01. The conductivity in the low-field limit is in a transition regime between €2

conduction and Mott variable range hopping conduction. Experiment 3 probes the
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Fig. 3.1 Phase space diagram of the electric field dependence of the conductivity for
various impurity concentrations and electric field strengths. The question mark indicates a
region of the phase space for which no theory of non-Ohmic behavior has been developed.

electric field dependence of the conductivity for donor electrons excited into extended states
in the impurity band rather than donor electrons hopping between localized states.
We will first describe the experimental procedure. and then discuss the results of

each experiment in detail.

3.2 Experimental procedure

Our study of non-Ohmic impurity conduction in doped Ge semiconductors requires
well-characterized. randomly doped Ge samples. In addition. the electrical contécts to the
samples must have a negligible resistance compared to the resistance of the bulk. In this
section we discuss how these sample requirements are satisfied. followed by a description

of our measurement technique.
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Fig. 3.2 In the melt doping process, the doped crystal is slowly pulled out of the meit

from an initial seed.

3.2.1 Semiconductor doping

Semiconductor doping is the process of introducing desired impurities into an ultra-
pure semiconductor sample. Bulk semiconductors can be doped during crysfal growth by
adding dopants to the melt. In gerrﬁanium melt doping the dopants are added to the
germanium melt in the form of a piece of heavily doped germanium called the "master
dopant alloy,"” and a crystal is then slowly pulled from the melt as shown in Figure 3.2.
Impurity striations -- local fluctuations in the impuri.ty concentration on the order of a few
percent -- occur 1n all melt-doped crystals because of temp_erziture gradients in the melt
which lead to rﬁélt convection and fluctuations 1n the crystal growth r#te. The growth rate
fluctuations lead to periodic changes in the effective segregation coefficient and to dopant
striations. At temperatures below 2 K. local impurity variation can lead to resistivity
fluctuations of more than an order of magnitude.

The experiments discussed in this thesis require samples with extremeiy uniform.
random dopant distributions and precisely known net-carrier concentrations and

compensation ratios. These properties are achieved by the method of neutron
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Fraction [sotope Reaction . 6. Uun dopant type

20.5% 70Ges 71Gess — 71Gasz; +K 3.25 11.2 days acceptor
274% 72Ge3y 73Gesp  stable 1.0

7.8%  73Ge3p; 74Gesp  stable . 15.0

36.5% 74Gess 5Gess — TSAs3z + B~ 0.52 82.8 min donor

7.8% 76Ge3; 77Gespy — 77As33+ P — 7’Sesq+ P~ 0.16 11.3 hrs  deep donor

Table 3.1 Reactions following neutron capture which take place in natural germanium to

produce dopant isotopes.

transmutation doping [Haller et al.. 1984: Haller er al.. 1985: Haller. 1994] which allows

an unrivaled doping uniformity and control over doping parameters.

3.2.2 Neutron transmutation doping »

Neutron transmutation doping, also referred to as NTD, takes place when
semiconductor crystals are irradiated with thermal neutrons at a nuclear reactor. Because
neutrons are electrically neutral, they reﬁdily penetrate the semiconductor and are captured
by the semiconductor nuclei at a rate R per unit volume given by

R = N16:0 _ - (3.D
where Nt is the number of target nuclei per unit volume and ¢ is the thermal neutron flux.
Each isotope of the semiconductor material has a characteristic capture cross section G
which vis a measure of the probability of interacti‘on between the nucleus and the neutron.
O, increases with decreasing neutron energy as

Oc = E-172, (3.2)
After neutron capture the nucleus is in an excited state and decays with a charactenstic half-
life until it reaches a stable isotopic state. The reactions following neutron capture which

occur in germanium to produce dopant isotopes are listed in Table 3.1. The gamma ray

71



Neutron beam

e
——— X 0o
D e

X o
—n
X o
>
74 74
Ge 74 Ge: 3Ge Ge:As
exposure to thermal neutron capture B- decay leads
neutrons leads to excited to As impurities
states of 75Ge

Fig. 3.3 Illustration of the neutron transmutation doping process for the germanium

isotope 74Ge.

spectrum has been measured to determine which isotopes have been produced. Figure 3.3
shows the neutron transmutation doping process for the germanium isotope 74Ge.
The NTD process produces a precisely randomly doped semiconductor sample for
- several reasons. First. the extent of the neutron field produced by a nuclear reactor is many
orders of magnitude larger than the typical semicondﬁctor sample and hence the neutron
flux across the semiconductor may be regarded as constant. Secondly, the small capture
cross sections of the semiconductor isotopes minimize “self-shadowing” so that the neutron
flux through the semiconductor may be regarded as constant. Finally, the various
sermiconductor isotopes are located at perfectly random positions throughout the crystal.
The compensation ratio K for NTD Ge with a natural isotopic composition is
KNTD Ge = Np/Na = {[As] + 2[Se]}/[Ga] = 0.322 (3.3)
Selenium is counted twice because it is a doubly charged donor and can compensate two

acceptors.



Although neutron transmutation doping of natural germanium produces samples
with a fixed compensation ratio. the NTD process can also be used to produce samples
with a controlled compensation by gontrolling the isotopic composition of the pure Ge
crystal [Itoh et al., 1993-A: Itoh et al., 199.3-B: Itoh. 1994]. For example, neutron
transmutation doping of a high-purity single crystal of 74Ge produces the n-type material
74Ge:As with a compensation K < 0.01, while neutron transmutation doping of a high-
purity single crystal of 70Ge produces the p-type material 70Ge:Ga with a compensation K
< 0.01. Mixtures of 74Ge:As and 70Ge:Ga can result in doped crystals with both a

precisely controlled impurity concentration and compensation.

3.2.3 Sample preparation

The basic steps in preparing NTD germanium for conductivity measurements are as
follows. Ultra-pure germanium crystals are first neutron transmutation doped to the
desired impurity concentrations, typically 1015 cm-3 to 10!7 cm-3. Doping accuracy can be
controlled to better than .l % by controlling the exposure time and the thermal neutron flux
0. Approximately a year after thermai neutron irradiation, .many times the longest half-life
in NTD Ge (11.2 days for the decay 7!Ge — 71Ga), the crystals are thermally annealed in
dry argon gas to heal radiation damage caused by fast neutrons. A slow annealing at
temperatures of ~ 400 °C is performed for the less heavily doped samples and a rapid
annealing at temperatures of up to ~ 700 °C is performed for the more heavily doped
samples. After annealing, the crystals are cut into small ~ 300 wum thick wafers which are
then etched in a 3:1 HNO3:HF solution for approximately 1 minute to remove surface
damage. The etch is quenched with methanol. The surfaces appear shiny and damage free.

In order to produce ohmic metal/n+/n or metal/p+/p contacts to the doped Ge
of the wafer with phosphorus ions (n-type Ge) or boron ions (p-type Ge). The double ion

implantion produces a metallic region in the Ge approximately 2000 A deep. The top 500
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A of Ge is removed by etching the samples for ~ 30 s in a 5% NaOC! solution in order to
reach the depth of maximum P or B concentration. A 200 A layer of Pd and a 4000 A layer
of Au are then argon sputtered onto the wafers. The) Pd is used asa sticking layer because
" the Au will not otherwise wet the surface. The samples are then annealed at 250 °C in dry
argon gas for an hour. The annealing helps to activate the implanted bhosphorus or boron
ions and also relieves stress in the samples caused by the metallization process.

The wafers are finally cut into chips ~ 300 pm per side. which are etched in a 9:1
HNO3:HF solution for 40 seconds and quenched in methanol. Etching should leave the
chips shiny and damage-free. removing any surface electronic states which could otherwise
provide a parallel conduction path across the chip and contribute to the electronic
conduction at low temperatures. After etching. the cross sectional area of the chips shrinks
from ~ (300 um)? to ~ (275 um)2. The gold plating is not affected by the etching solution
and the sample thickness remains ~ 300 pum.

AThe last step in sample preparation is to attach 25 um diameter Au wires to the metal
contacts by wedge bonding. Au was chosen for the wire material because it has a high
thermal conductivity x relative to other metals and we wanted to minimize the electrical self-
heating of the chips. The wire diameter 25 pum was chosen becau-se it is a convenient size
to work with and because for larger wire diameters the thermal boundary resistance
(Kapitza resistance) will dominate the thermal resistance of the wire. The Au wires were
connected to the Au contact pads by the wedge bonding technique because. unlike other
bonding techniques which use materials such as silver epoxy or indium solder. Au wedge

bonding does not significantly stress the samples. It is important that the samples be
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Measurement circuit:

Vbias T=130K
0V e =2nV/VHz
bias
£ NJ132L
N
Sam/pl‘e' ! 0 D.V.M.}— £V,
heat-sunk to — I i

Ino measured to

temp. reg. stage 1 pt. in 104

AT/T =0.01%

unstressed because stress can significantly affect their non-Ohmic conduction properties as

discussed in Chapter 4.

3.2.4 Measurement technique

The samples were thermally attached through the wire leads to a temperature
regulated stage with AT/T ~ 0.1%. The stage was cooled with an adiabatic demagnetization
refrigerator for temperatures below 0.3 K and with a 3He refrigerator for temperatures
above 0.3 K. Electrical resistances were measured to an accuracy of a few parts in 104
using a dc bias voltage switched between +V and -V (to eliminate the effects of thermal
emfs) applied across the series combination of a load resistor at 1.5 K and the sample. The
voltage drop across each sample was measured through a junction field-effect transistor

operating in source follower mode.
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Fig. 3.5 Measured low field resistance at 1.2 K of a 70Ge:Ga sample from Experiment 2
with an impurity concentration N = 0.16 N.. The relative error in the resistance
measurement is on the order of a part in 10%. The overall slope is due to the dependence of

the resistance on the applied field.
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Fig. 3.6 Phase space diagram showing the impurity concentrations and compensations of the
natGe:Ga samples studied in Experiment | (open squares), the 79Ge:Ga samples studied in
Experiment 2 (solid triangles), and the 7#Ge:As samples studied in Experiment 3 (open circles).
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3.3 Experimental resuits

The three studies of non-Ohmié impurity conduction discussed in this work cover a
range of impurity concentrations and compensations. as shown in Figure 3.6. In
Experiment 1, we study nine ".a‘Ge:Ga samples with a conﬁpensation of 0.32 covering a
range of impurity concentrations 0.03 < N/N, < 0.50. We have assumed that the critical
concentration N fo-r a metal-insulator transition in "2!Ge:Ga is N ~ Ix1017 ¢cm-3, as
discussed in Section 3.3.1. In Experiment 2, we study four 70Ge:Ga samples with very
low éompension K < 0.01 covering a range of impurity concentrations 0.16 < N/N¢ <
0.77. We have used the value N. = 1.89x10!7 cm-3 measured in 70Ge:Ga by Itoh et al.
(1994]. Finally, in Experiment 3 we study two 74Ge:As samples with very low
compension K < 0.01 with impurity concentrations 0.17N. and 0.5IN.. We have
assumed the value N¢ = 3.5 x 1017 cm-3 [Edwards and Sienko, 1978].

As we will show, the non-Ohmic hopping conductivity for the lightly doped
samples in Experiment | can be collapsed onto a single universal curve. As the impurity
concentration nears N, We find the counter-intuitive result that the non-Ohmic conductivity
of the samples in Experiments | and 2 begins to depend more strongly on the applied field
in the weak field regime than in the moderate field regime. This result has not been
previously reported and is not predicted by any existing theory. In Experiment 3. we find
that when the conduction mechanism is intermediate between €3 conduction and hopping
conduction, the non-Ohmic conductivity is e‘xtremely well described by lﬁ [6(F)/0(0)] «
F!.5. These results. though surpfising, do not conflict with previou.s theories which

assume a lightly doped semiconductor.

3.3.1 Experiment 1
NTD natGe:Ga is produced by Eugene Haller and his group for a range of doping
concentrations labeled NTD | through NTD 25. The numbers 1 through 25 indicate

chronological order (the order in which each material was developed) rather than increasing
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Sample N (1016 _cm-3) N/N. 0o (Q em)1 T, (K) _

NTD 2 0.307 0.031 0.0074 122

NTD 3 0.461 0.046 0.01 126
NTD 4 0.692 - 0069 04 104

NTD 5 1.54 0.15 2 87.0
NTD 10 1.89 0.19 4.5 77.2
NTD 14 2.70 0.27 5.3 49.1
NTD 11 3.38 0.34 1.0 39.6
NTD 6 3.85 0.39 16.7 36.6
NTD 17 4.99 0.50 5.6 21.2

Table 3.2 Parameters describing the NTD "3'Ge:Ga samples studied in this work. N is
the net impurity concentration. The parameters Go and T, are defined in Equation 3.4. We
have assumed that the critical concentration N¢ is approximately 1x1017 cm-3 as discussed

in the text.

or decreasing doping density. Table 3.2 lists the basic parameters of the NTD "aGe:Ga
samples studied in this work. The dependence of the conductivity on temperature in the
weak field limit is shown in Figure 3.7. The o(T) curves are extremely well described by
the equation for variable range hopping with a Coulomb gap in the density of states (see
Section 1.5.2.1), |
o(T) = 6o exp(-To/T)1/2. (34
The dependence of T, on impurity concentration has not been t_heoretically or
expertmentally established for doped semiconductors with an intermediate value of the
compensation. In the limit K « I, T, is predicted to vary with impurity concentration as
To=To" (1- N/No)P - (3.5)
where T," and B are constants [Shklovskii and Efros. 1984]. Theories of the metal-
insulator transition. confirmed by experimental studies, predict that | < < 2. However,
when we use Equation 3.5 to fit the measured dependence T, (N) in f3lGe:Ga with K =
0.32. we find that the best fit values are T,* = 137 K. N¢ = (1.26%.05)x10!7 cm-3, and

= 3.8%2 as plotted in Figure 3.8. This result is surprising for two reasons: the best fit
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Fig. 3.7 Measured temperature dependence of the conductivity of the NTD M3lGe:Ga
samples studied in Experiment |. The impurity concentration of each sample is labelled
next to each curve in units of 1016 cm-3.

value of N is smaller in compensated Ge:Ga than the value N¢ = 1.89x10!7 cm-
measured in uncompensated Ge:Ga although theory predicts it must be larger [Shklovskii
and Efros. 1984], and the best fit value of B is significantly larger than predicted by
theories for uncompensated semiconductors. If we require that 8 = 2, we find that N¢ is
(0.79£.03)x10!7 cm3. Visual inspection of Figure 3.8 shows that T, intercepts zero at a
critical concentration N ~ 1x1017 cm-3. Therefore in this work we assume the value N ~
Ix10!7 cm-3.

We measured the electric ficld dependence of the resistance of the samples over a
range of temperature limited‘ at higher temperatures by the need to avoid Joule heating and

at lower temperatures by measurement technology (we were unable to measure resistances
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Fig. 3.8 Measured dependence of the variable range hopping parameter T, on impurity \
concentration N for the NTD nalGe:Ga samples studied in Experiment 1. ‘
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Fig. 3.9 Electric field dependence of the resistance of a lightly doped "3Ge:Ga sample
with an impurity concentration N = 0.046N.. Curves were measured at temperatures

between 0.5 K and 0.9 K. with successive curves separated by 0.05 K.
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> 2 GQ). The range of field strengths measured in each sample was determined by similar
considerations. Figure 3.9 shows the measured electric field dependence of the resistance
of a lightly doped "'Ge:Ga sample with an impurity'concentrau’on N = 0.046N.. The data
were measured over a range in resistance 10 MQ < R < I GS2. corresponding to a range in
temperature 0.5 K < T < 0.9 K. Similar data sets were measured for the other eight
samples. At each temperature the data were fit to the theoretical prediction for non-Ohmic
hopping conduction in a moderate electric field (Equation 2.9),
In R(F) = In R(F=0) - eFL/T. (3.6)
as described in Section 2.1.3.3. .
The natural log of the resistance appears to be very well described by a linear
. dependence on electric field at each temperature. confirming the validity of Equation 3.6.
Figure 3.10 confirms that a linear dependence provides a much better fit than the weak fiveld
predictions for the electric field dependence of the resistance of Hill [1971] or Apsley and
Hughes [1974]. The three fitting functions shown in Figure 3.10 are: Fit [, the theoretical
prediction for moderate field behavjor O(F) < exp (AF) (Equation 3.6); Fit 2, Hill's
prediction o(F) = sinh (AF)/(AF) (Equation 2.5); and Fit 3, Apsley and Hughes’ prediction
o(F) < exp (AF?) (Equation 2.8). However. we will show that the use of Equation 3.6 to
fit the data in Figure 3.9 can give misleading results for the dependence of L on temperature
and impurity concentration. We then propose a new method of plotting the electric field
dependence of the resistance. We show that the data from the six most lightly doped
samples. covering a range in impurity concentration 0.031 < N/N. < 0.27 and a range in

temperature 0.15 K < T < 1.0 K. can be collapsed onto a singie curve.

3.3.1.1 Motivation for a new method of analyzing the non-Ohmic impurity
conductivity

We can use Equation 3.6 to determine a length parameter L for each curve in Figure

3.9. Figure 3.11 shows the values of L determined for F < 10 V/cm and F > 10 V/cm.
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Fig. 3.10 Electric field dependence of the resistance of "2Ge:Ga with an impurity
concentration N = 0.046N.. The three fits are described in the text.
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Fig. 3.11 Decpendence of the hop length parameter L on temperature measured for F < 10

V/cm (solid circles) and F > 10 V/cm (open circles).
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We find the surprising result that although the data appear to be well described by a single
linear fit over the entire range of field strengths, L has a varying dependenée on electric
field and temperature. We can parametrize the temperature dependence of L by

L=L,TX (3.7)
as discussed in Section 2.1.3.3. We observe the values L, = 446 + 8 Aandx =028+
0.04 when we fit the data for F > 10 V/cm. However, we find that L, = 341 + 10 A and x
= 0.81 + 0.06 when we fit the data for F < 10 V/cm. Timchenko et al. [1989] also
observed different values of x depending on the range of field strengths. In a study of the
non;Ohmiq: behavior of ZnSe crystals. they found x = 0.5 when F > 20 V/cm and x = 0.8
when F < 20 V/em. The dependence of x on field strength can help to explain thé many
conﬂictinglresults in the published literature with O < x < 1.3 forn = 1/2 VRH.

The fact that the measured value of L depends on the range of field strengths used at
each temperature also affects the observed dependence of L on impurity concentration. As
discussed in Section 2.1.3.3, different authors have found that L increases with N.
decreases with N, or has a random dependence on N. This can be explained by the
following example. Suppose that L is measured for 0 V/cm < F < 10 V/cm in one sample
and for 10 V/cm < F < 20 V/cm in a second sample. We al;o suppose that L has no
dependence on impurity concentration. [f the data are similar to the data in Figure 3.11.
then when the field dependence is measured at T = (.8 K the length parameter L will. appear
lﬁrger for the second sample. However. when the field dependence is measured at T = 0.5
K then L will appear smaller for the second sample.

Theretfore any conclusions drawn about the dependence of L on impurity
concentration can be ﬁisleading unless the dependence of L oﬁ field strength is also taken
into account. This is shbwn graphically in Figure 3.12. We have plotted the measured
length parameter L as a function of temperature for three lightly doped "3'Ge:Ga samples.
At each temperature L. was determined using the entire range of field strengths. but no

cffort was made to ensure that a consistent range of F was used for the different samples.
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Fig. 3.12 Measured dependence of the hop length parameter L on temperature for three
lightly doped "3'Ge:Ga samples. The impurity concentrations are indicated next to each

curve in units of 1015 cm-3.

If we consider the data at T > | K. we find that the most lightly doped sample has a smaller
value of L than the more heavily doped samples. The opposite conclusion will be drawn if

we consider thedataat T < 0.8 K.

3.3.1.2 Universal curve describing the field dependence of the
conductivity in lightlv doped "3tGe:Ga

In order to account for an electric field dependence of the length parameter L. rather
than plotting In © as a function of F we examine the derivative of In 6. Using Equations
3.6 and 3.7 we can write

£FLo (3.8)

In o(F) = In 6(F=0) + .
le-«-x
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Fig. 3.13 Electric field dependence of the conductivity of six "atGe:Ga samples. plotted
using a new method. We have taken the derivative of In ¢ with respect to FxT-!-5 at each
data point and used Equation 3.9 to determine the parameter L,. The data collapse onto a
single curve covering an order of magnitude in temperature, an order of magnitude in

impurity concentration. and three orders of magnitude in conductivity for each sample.

After differentiating In ¢ with respect to F/T!+x we find that

d(Iln o) - ¢lo _ (3.9)
d (F,—I-|+x) k

Lo, is theretore a length parameter determined by taking the slope at each value of the field.

and providés more information than the length parameter L which is determined by fitting

the entire data set to a straight line. According to the theories of Hill [1971] and Pollak and

Reiss {1976], the value of x in Equation 3.9 is 0.5 for n = 1/2 variable range hopping.

Using the measured electric field dependence of the conductivity of the six "3Ge:Ga

samples with impurity concentrations between 0.031 N and 0.27 N¢, we have taken the
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derivative of In ¢ with respect to FXT-!-3 at each point and used Equation 3.9 to determine
the parameter L,. The data collapse onto a single universal curve as shown in Figure 3.13.
This curve contains data from samples with impurity concentrations ranging between 0.031
N¢ and 0.27 N¢ measured at temperatures between 0.15 K and 1.0 K. Remarkably, we
have been able to condense more than fifty measured curves for the electric field
dependence of the conductivity covering almost an order of magnitude in impurity
concentration. almost an order of magnitude in temperature, and three orders of magnitude
in conductivity onto a single curve.

The following conclusions can be drawn from the shape of this curve.

(1) Although the conductivity is well described by Equation 2.9 for non-Ohmic
impurity conduction in a moderate electric field. the parameter L = Lo/ T0-5 where L, is a
constant should be replaced by the field dependent length parameter L = Lo(F)/ TOS.

(2) The parameter x in Equation 3.7 is equal to 0.5.

(3) The hop length is independent of impurity concentration. This may be due to
two competing effects: the averagelseparation between sites decreases as the impurity
concentration leading to a smaller value of L, and the overlap between wavefunctions
increases leading to a larger value of L. These two effects appear to balance each other so
that the net effect of increasing the impurity concentration is to ieave L unchanged.

(4) The data show an immediate onset of non-Ohmic impurity conduction in weak
electric fields. In other words. there is no region for which Ly, = 0. The data for field
strengths FxT-!5 < 10 Vem-1K-!-5 cannot be described by the weak field models of Hill
[1971] or Apsley and Hughes [1974].

(5) The data for field strengths FXT-1-5 > 10 Vem-1K-!-5 are well described by
Equation 2.9 using L, = 450A x K0-5. However, L,, decreases weakly with increasing
field strength for values of FxT-!-5 greater than 20 Vem-!K-15. When FxT-!5 =60 Vem-

IK-1.5, L, = 350A x KO0-5.
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Fig. 3.14 Measured dependence of the parameter L, on FxT-!-5 in natGe:Ga with an
impurity concentration N = 0.34N.. The data were measured over the temperature range

- 0.12 K <T <0.225 K. As the impurity concentration nears N, the data are no longer
described by the universal curve shown in Figure 3.13.
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Fig. 3.15 Measured dependence of the parameter L, on FxT-!-5 in MGe:Ga with an

impurity concentration N = 0.50N.. The data were measured over the temperature range
0073 K<T<0.129 K.
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Sample N_(1016_cm-3) N/N. Go(Q em)! T (K) _

70Ge-3.3 | 3.02 0.16 2.94 365
70Ge-2.98  8.00 0.42 135 _ 248
70Ge-1.90  9.36 0.50 526 201
70Ge-1.65 14.5 0.77 - 1670 100

Table 3.3 Parameters describing the NTD 70Ge:Ga samples studied in this work. N is
the net impurity concentration. The parameters 6, and T, are defined in Equation 3.4. The

critical concentration N¢ is 1.89x10!7 cm-3.

As the impurity concentration increases above 0.27N§ and nears the critical concentration
for a metal-insulator transition. the non-Ohmic impurity conductivity can no longer be -
collapsed onto a single curve. Figures 3.14 and 3.15 show the measured dependence of L,
on FxT-1-5 for the impurity concentrations N = 0.34 N and 0.50 N¢. L, is a measure of
the stréngth of the non-Ohmic behavior. As the impurity concentration increases, we
observe the surprising result that L, does not decrease in weak electric fields. The data do
. not show an Ohmic regime (L, = 0) or a weaker field dependence of the conductivity in
small fields. Instead the conductivity begins to depend more strongly on the applied field
in weak electric fields. This result is not predicted by any theory of non-Ohmic impurity
conduction. We note that for field strength > 10 Vcmr! K-1-3, the parameter L., approaches
the value 450 AKO-5 that it has for the more lightly doped samples. We will present a

possible explanation for this surprising behavior after describing similar results from

Experiment 2.

3.3.2 Experiment 2
We have also measured the electric field dependence of the conductivity of four
uncompensated 7Ge:Ga samples with impurity concentrations between 0.16N. and

0.77Nc. As in Experiment 1. the conductivity in the weak field limit is extremely well
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Fig. 3.16 Temperature dependence of the resistance of a '°Ge:Ga sample. The data are.
extremely well described by Equation 3.4 over more than six orders of magnitude in

resistance.

described by Equation 3.4 forn = 1/2 variable range hopping. A typical measurement of
the temperature dependence of the resistance is shown in Figure :’,.16. The resistance can
be described by Equation 3.4 over more than six orders of magnitude in resistance. The
parameters describing the NTD 70Ge:Ga samples are summarized in Table 3.3,

Figures 3.17, 3.18. 3.19. and 3.20 show the measured electric field dependence of
the resistance of the four 70Ge:Ga samples. The impurity concentrations are indicated in
the top right corner of each figure. The data have been plotted in the same fashion as the
data in Experiment I. We have computed the derivative of In o with respect to FxT-!-5 at
cach data point and used Equation 3.9 to determine the parameter L,,. We then plot L, as a
function of FxT-!-5.° We again observe that L,, depends strongly on F. and that as the
impurity concentration increases the conductivity begins to depend more strongly on the

applied field in weak electric fields. The non-Ohmic behavior of the most lightly doped
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Fig. 3.17 Electric field dependence of the conductivity of 70Ge:Ga with an impurity
concentration N = 0.15N..
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Fig. 3.18 Electric ficld dependence of the conductivity of 70Ge:Ga with an impurity
concentration N = ().40N..
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Fig. 3.19 Electric field dependence of the conductivity of 70Ge:Ga with an impurity
concentration N = 0.50N,..
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Fig. 3.20 Electric field dependence of the conductivity of 70Ge:Ga with an impurity
concentration N = 0.77Ne.
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sample with an impurity concentration N = 0.14 N can be collapsed onto a curve similar in
shape to the universal curve observed in Experiment 1.

We note that the parameter L, is approximately 225 AxK9-5 for all four samples
when FXT-1-5 is greater than 8 Vem-1K-!'5. This result is similar to that of Experiment 1.
for which L, is approximately 450 AxK0-5 when FxT-!5 is greater than 10 Vcm-!K-1-5.

- The non-Ohmic impurity conduction in the most heavily doped sample with an
impurity concentration N = 0.77 N cari be described by a single curve which is inverted in
shape from the universal curve observed in lightly doped "3tGe:Ga. The data in this curve
were measured over a range of temperature 0.17 K < T < 0.50 K and a range of resistance
10 kQ <R < | GQ. The dependence of the conductivity on electric field is proportional to
L, and is more than twice as strong in weak fields as in moderate fields for this gample.

Although no theory has been developed for non-Ohmic impurity conduction in
moderately and heavily doped sei‘niconductors. we propose a possible explanation for this

unexpected behavior based on the effect of an electric field on the impurity wavefunctions.

3.3.3 Effect of an electric field on the impuri‘ty wavefunctions
3.3.3.1 Wannier-Stark localization in a regular crystal lattice

Before describing the effect ot an applied field on an electron state in a disordered
lattice. we review the case of a regular crystal lattice in order to distinguish between the two
behaviors. The dynamics of an electron in a regular crystal lattice subjected to a uniform.
static electric field is one of the classic topics in solid state physics [Holthaus et al.. 1995].
Wannier [1960] proposed that at very low temperatures. a conduction electron moving in
an ideal lattice free from scattering by impurities. imperfections. and lattice vibrations will
become localized under the application of an electric field F. An infinite set of localized
eigenstates equally spaced in energy will be created. known as the Wannier-Stark ladder.
The separation between the energy levels is AE = eFa. where a is the lattice spacing. An

electron at a given energy level becomes localized over a radius & defined by
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é = W/eF, ' (3]0)
where W is the width of the original energy band. This localization mechanism is much

weaker than the disorder-driven Anderson localization which occurs in disordered systems.

3.3.3.2 Disordered systems

Although theoretical models of non-Ohmic impurity conduction neglect the effect of
an applied electric field on the impurity wavefunctions, an electric field may strongly
influence the electron localization in disordered systems. The theory of Anderson
localization in an electric iield has been a controversial issue for many years. The model
which has been studied is that of electroiis propagating in a random potential. When an
electric -field is applied. the electrons gain kinetic energy by accelerating against the
direction of the field.

According to Avltshuler etal. [ 198'1], a static electric field shouid not directly affect .
the electron wavefunction because it preserves time reversal symmetry. However.
Altshuler neglected the decrease in scz_mering probability with increasing electron energy.
Bryksin et al. [1994] found that for a one-dimensional disordered system. power-law
localization emerges at small but finite electric fields. At some critical value of the field a
mobility edge appears. above which the electrons are delocalized. Another study by
Kirkpatrick [1986] concliuded that ail twci- and three- dimensional electronic states are
delocalized in a finite electric field. Jayannavar [1989] also found a field-induced
delocalization in three-dimensional disordered systems with a mobility edge which shifts
further into the localized regime with increasing electric field.

The above studies do not apply to all localized impurity states found in doped
semiconductors. because strongly localized impurity electrons are not free to gain kinetic

energy under an applied electric field. We propose a model for the effect of an electnc field
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Fig. 3.21 Anderson localization in an applied electric field.

Fig. 3.22 Proposed model for the effect of an electric field on the impurity
wavefunctions. (a) F=0:(b) F> 0.

on the impurity wavefunctions which we apply to the anomalous non-Ohmic impurity
conduction observed in "'Ge:Ga and 79Ge:Ga as N approaches N.. Instead of the field-
induced delocalization found for electrons moving in a random potential. we propose a

field-induced localization of extended impurity states.

3.3.3.3 Proposed model of Anderson localization in an electric field
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~ Whereas Wannier-Stark localization arises from a static electric field applied across
a perfect crystal lattice. Anderson localization is the result of random disorder in the energy
levels of sites on a regularly spaced lattice as discussed in Section 1.6. We consider a static
electric field F applied across a lattice with randomly disordered energy levels with a spread
in energy given by W. The effect of F is to locally increase W over a region x by an
amount eFx as shown in Figure 3.21. Anderson's result is that impurity states will be
localized for sufficiently large values of W/I where I is the energy overlap integral between
neighboring. sites. Therefore, we propose that the effect of F on the impurity
wavefunctions is to increase W and thus to induce localization.

Figure 3.22 shows the effect of an electric field on the impurity wavetunctions in
this model. As the field increases. the localization radi;ls of the impurity wévefunctions
decreases and hopping electrons can no longer move as fréely under an applied electric
field. "In other words, when F is small the hopping electrons can accelerate and gain energy
from the field over the distance of their localization radius. However, as F increases the
electrons become strongly localized and gain less energy from the field. The center-to-
center distance between hops decreﬁses as F increases, leading to a decrease in the

parameter L,,.

3.3.4 Experiment 3

Our final study of non-Ohmic impurity conduction in doped semiconductors was
performed on two uncompensated 7#Ge:As samples with impurity concentrations N =
0.17N¢ and N> = 0.5IN., where N¢ = 3.5 x 10!7 cm-3 is the critical concentration for a
metal insulator transition in Ge:As. The temperature dependence of the conductivity in the
weak field limit is shown in Figure 3.23. Because the conductivity was not described by
the well-understood n=1/2 variable range hopping mechanism as in Experiment | and 2.
we performed a careful analysis of the o(T) for temperatures 1.15 K< T < 10.4 K in

Sample 1 and for temperatures 0.5 K < T < 10.4 K in Sample 2. These temperature ranges.
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Fig. 3.23 Measured temperature dependence of the conductivity as a function of
temperature of two 74Ge:As samples for an electric field strength F ~ 0.05 V/cm indicating
the various conduction regimes discussed in the text. In the regions marked with a
question mark. the conductivity is in transition between ép_ conduction and n = {/4 VRH

conduction. The structure of the impurity band is not well understood over this region.

correspond to a range in conductivity of approximately 1010 Q-lem ! < Q < 10-! Q-lem-i.
We determined the best fit to o(T) « exp[-(A/kT)"] over several temperature ranges in each
sample in order to identify the various conduction regimes. The resﬁlts of this analysis are
summarized in Table 3.4. At higher temperatures the dominant conduction mechanism in
both samples is € activated conduction. At temperatures T <4 K the activation energies of
both samples were characteristic of €5 conduction. At the lowest temperatures studied in

Sample 2. T < 0.73 K. we found that Mott n = 1/4 VRH conduction predominated. These
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Sample T(K) n DCM A (meV) Go (U lem D

! 25-39 1032006 e(n=1) 2.02£0.02 0.0101
I 8.1-104 098+0.1 gl (n=1) 8.25+0.06 183
2 05-0.73 026%£0.1 VRH (n = 1/4) (1.63£0.0)x104  6.09
2 15-37 097%£007 e2(n=1) 1.65£0.02 0.0436
2 6.1-9.8 098x007 ¢€1(n=10D 5.15£0.03 94.4

Table 3.4 Measured conductivity parameters of the two 74Ge:As samples studied in

Experiment 3. The best fit parameters are for the function 6(T) = ooxexp[-(A/KT)"} over

temperature ranges where a dominant conduction mechanism (DCM) can be identified.

Over the temperature ranges not represented here. the conductivity is in transition and
cannot be described by constant values of n and A.

In R ()

F(V/icm)

Fig. 3.24 Measured electric field dependence of the resistance of 74Ge:As Sample 2.
The curves were measured at the following temperatures. from top to bottom: 0.5 K. 0.6
K.08K. 10K, I. K.1.2K. .36 K. 1.4 K. and 1.5 K.
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Fig. 3.25 Data from Fig. 3.24 replotted in a different form. The results for the 74Ge:As
samples are different from those for the samples in Experiments | and 2.

results are in extremely good agreement with the recent experimental results of Gershenzon
et al. [1991] for moderately doped p-type and n-tvpe Si with very low compensation.

The electric field dependence of the conductivity of Sample 2 is shown in Figure
3.24. The f iele dependence ot Sample 2 was measured over the temperature range 0.5 K <
T < 1.5 K. Similar curves were measured in Sample 1. We have taken the derivative of In
o with respect to FxT-!-5 at each data point and used Equation 3.9 to determine the
parameter L,. Figure 3.25 shows the data from Figure 3.24 replotted in the form L, as a
function of FXT-!-5. The non-Ohmic conductivity behaves quite differently than the non-
Ohmic conductivity in Experiments |"and 2. At temperatures below 0.73 K the data are
described by a single curve. but at higt.]er temperatures the electric field dependence is

weaker and varies strongly with temperature.
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Fig. 3.26 Measured electric field dependence of the conducuvnty for 74Ge:As Sample |
at various temperatures between 1.25 K and 1.74 K.

Because the electric field dependence of the conductivity was not well described by
either the theory of non-Ohmic hopping conduction in moderate fields discussed in Section
2.1.3.3 or by the universal curve observed in Experiments | and 2. we searched for a new
fitting function tor the data. At each temperature we fit o F.T) using the following general
function typical of phonon-assisted non-Ohmic impurity transport described in Section
2.1.3.6: |

o(F.T) = 6(0,T) x exp(AFX), A (3.1
where ¢(0,T), A. and x are fitting parameters. We describe the resuits of using Equation

3.11 to fit the field dependence of the conductivity in Samples | and 2.

3.34.1 74Ge:As, Sample 1: N = 0.17 N

We measured 6(F.T) in Sample 1 for field strengths 2 Vem-! < F < 16 Vem-! and

temperatures 1.15 K < T < 1.74 K as shown in Figure 3.26. Over this temperature range
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Fig. 3.27 Temperature dependence of the parameter x from Equation 3.11. (1) Sample
I, denoted by circles: (2) Sample 2. denoted by squares. Error bars of + 2¢ have been

included for each data point.

the conduction mechanism was intermediate between €7 conduction and variable range
hopping conduction. The average best fit exponent x to Equation 3.11 over this
lemperature rungé was 1.53 £ 0.03. The measured values of x at each temperature are .
plotted in Figure 3.27.

The exponent x = 1.5 has not been previously reported. However. it provides an
extraordinarily good fit to the data.' Figure 3.28 shows the field dependence of In ©
measured in Sample | at 1.39 K plotted as a function of F!-5. The data are extremely well
fit by a straight line. In Figure 3.29 the ciata from Figure 3.28 have been differentiated to
obtain the dependence of the parameter x on electric field. The data are fit by the exponent

x = 1.5 over the entire range of fields.
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Fig. 3.28 Measured dependence of In ¢ on F!-5. The data are extremely well described

by a straight line over the entire range of electric fields.
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Fig. 3.29 Exponent x from Equation 3.11 as a function of electric field. The data are

described by x = 1.54 over the entire range of fields.
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Fig. 3.30 Temperature dependence of the parameter A from Equation |. The error in
each value of A is estimated to be ~ 1%. (1) Sample 1, x = 1.5: (2) Sample 2, x = |; (3)
Sampie 2. x = L.5.

We determined the temperature dependence of the non-Ohmic impurity conduction
in Sample | by setting x = 1.5 in Equation 3.11 and fitting the data to o(F.T) =
o(0,T)xexp(AF!-5) at each temperature. We found that A(T) was extreme.ly well described
by the power law dependence A(T) = CT-3:66 £ 0.09 with C = 0.080 (cm/V)3/2. The
temperature dependence of A is plotted in Figure 3.30, Curve 1. This temperature
dependence is much stronger than seen in any previous study of non-Ohmic impurity

conduction.

3.3.4.2 74Ge:As, Sample 2: N = 0.51 N
We used the same procedure to determine the best fit values of x and A in Sample

2. At the lowest températures measured. 0.5 K < T < 0.73 K. the conductivity in the weak
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field limit was described by n = 1/4 variable range hopping conduction. Over this
temperature range the average best fit exponent x to Equation 3.11 was 1.03 £0.03. Thus
when the conductivity proceeds by variable range hopping. the non-Ohmic behavior is very
well described by the standard theory for moderate electric fields, o(F) < exp(eFL/kT).
The measured values of x at each temperature are plotted in Figure 3.27 as Curve 2.

We determined the temperature dependence of the non-Ohmuc impurity conduction
in Sample 2 by setting x = 1.0 in Equation 3.11 and fitting the data to o(F.T) =
o(0,T)xexp(AF) at each temperature. The temperature dependence of A is plotted in Figure
3.30 as Curve 2. We found that A(T) = CT-156 = 9-06 with C = 0.69 cm/V. The
theoretical model of Levin and Shklovskii {1984] discussed in Section 2.1.3.3 predicts a
field dependence .O'(F.T) = 6(0.T)exp(CFT-!'5), where C is of order unity in units of
cm/V. Our measurements for temperatures 0.5 K < T < 0.73 K are therefore in cbmplete
agreement with this prediction within the limit's of our error. Due to our inability to
measure resistances greater than 2 GQ. we were unable to determine whether Sample |
also showed a transition to n = 1/4 VRH with a different electric field dependence of the
conductivity at temperatures less than i.lS K. |

As the temperature of Sample 2 was increased from 0.75 K to 1.5 K. the
conduction mechanism was in transition between n = 1/4 variable range hopping
vconduction and g7 conduction. Over the temperature rarige 0.73 K< T < 1.35 K. the best
fit exponent x to Equation 3.11 increased monotonically from 1.06 to 1.48. Over the
temperature range 1.35 K < T < |.5 K. the average value of x was 1.49 +0.01 as shown
in Figure 3.27. Curve 2. Within a small margin of error this is identical to the value of x =
1.5 observed in Sample 1.

We determined the temperature dependence of the non-Ohmic impurity conduction
in Sample 2 over the temperature range 1.35 K < T < 1.5 K by setting x = 1.5 in Equation
3.11 and fitting the data to o(F.T) = o(0,T)xexp(AF!-3) at each temperature. The

temperature dependence of A is plotted in Figure 3.30, Curve 3. We found that A(T) =
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Fig. 3.31 Field dependence of the conductivity of Ge:Sb with an impurity concentration
N = 0.67N. adapted from the published data of Matveev ez al. [1993]. The data are very
well described by the exponent x = 1.5 in Equation 3.11.

CT-08120.14 with C = 0.78 (cm’/V)32 (Figure 4. Curve 3). A(T) could also be descfibed
by the exponential temperature dependence A(T) = C x exp(-4.78T) where C = 63.7
(cm/V)32. This exceptionally strong temperature dependence is much stronger than seen in
any previous study of non-Ohmic impurity conduction and is stronger than observed in
Sample 1.

Although the field dependence o(F) « exp(AF3/2) has not been previously reported
in the literature. Matveev er al. [1993] did réccntly measure the non-Ohmic hopping
conductivity in a Ge:Sb sample doped with an impurity concentration 0.67N¢ = [ x 107

cm-3. Thus their sample is more heavily doped relative to the MIT than Sample 2 in our
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study. The dominant conduction mechanism in the ohmic limit was determined to be
activation into extended states in the impurity band with a constant activation energy 0.4
meV over the temperature range 2.5 K < T < 12 K. Their study was unusual because they
were examining the non-Ohmic depéndence of the activated conduction into extended states
rather than variable range hopping conduction between focalized states.

Matveev et al. measured o(F)at T=42Kand T=11 Kfor53 Vem'l < F < 120
Vem-l, and assumed the exponent x = | in Equation 3.11. However, when we determined
the best fit value of x using their published data we found that x = 1.50 £ 0.03 at 4.2 K and
x=1.53+0.07 at 11 K. This is in complete agreement with the value x = 1.49 £ 0.01 that
we find in Sample 2 for 1.35 K < T < .50 K within the limits set by experimental error.
When we assuhed the fitting function o(F.T) = exp(AF3/2), we found that the data of
Matveev et al. was well described by A = 5.46 x 10-3 (cm/V)32 at T=4.2 K and A = 3.11
x 10-3 (cm/V)32 at T = 11 K. These values indicate a significantly weaker temperature
dependence A(T) than that observed by us in Sample 2. -

Although no theory has been developed for non-Ohmic impurity conduction when
the conduction mechanism is not hopping between localized states, our model of electric
field-induced localization of impurity sites (Section 3.3.3.3) suggests a possible
explanation for the observed dependence o(F.T) « exp(AF3/2). We propose that AF3/2 =
¢FL/KT. In other words, we assume that the field dependence of tr;e conductivity has an
activated form. where eFL is the activation energy. With this assumption we find that the
length parameter L has an electric field dependence

L = (AkT/e)VF. (3.12)
Figure 3.32 shows the dependence of L on eiectric field at 1.4 K for the 74Ge:As samples.
determined using Equation 3.12.

From the temperature dependence of the conductivity in the weak field limit. we

know that when we observe the field dependence G(F.T) « exp(AF32) the conductivity is

in transition between variable range hopping and €7 conduction. Since the impurity states
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Fig. 3.32 Dependence of the length parameter L on electric field when the conduction is
described by 6(F.T) e« exp(AF3/2), calculated using Equation 3.12.

............................................

(a) F=0 (byF>0

Fig. 3.33 Proposed model for the effect of an electric field on non-Ohmic impurity
conduction into extended states in the impurityv band. When F = 0, the average hop
distance 1s O because electrons can make direct transitions in energy. However, due to
electric field-induced localization of the extended states. under an applied field the electrons

must hop some distance L which is proportional to VF.
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are localized for variable range hopping and extended for €3 conduction. we can assume
that in the transition region the impurity states are either weakly localized or extendea on the
verge of becoming localized. If our model of electric field-induced localization of the
impurity wavefunctions is correct. then the weakly localized states or marginally extended
states will shrink under the application of an electric field as shown in Figﬁre 3.33. Iﬁ the
Anderson model the spread i-n énérgy W over a distance C is W ~ eF. Therefore { ~ |/F.
In variable range hopping conduction with Coulomb interactions between impurities, the
hop length R is proportional to (€2/x{)!/2. Since { ~ I/F, we find thai R ~ F1/2 and hence
that eFL « eFR « F3/2. From this argument we obtain the observed field dependence & o
e‘xp(AF)3/2.

In conclusion. we found that ¢ varied with applied electric field F and temperature
T as In [6(F,T)/6(0.T)] & F1-5xT-3.7 iﬁ Sample 1 and as in [6(E,T)/6(0.T)] = F1.5xT-68 in
Samplie 2. This well-defined new field dependence and the very strong temperature
dependence are quite different from the well-known behavior of lightly doped
semiconductors. These results, though surprising, do not conflict with previous theories
which aSsume hopping between localized impurity states in a lightly doped semiconductor.
Further study of this new, well-defined non-Ohmic behavior in moderately doped
semiconductors may help to increase our understanding of the impurity band structure, the
dependence of the impurity localization on an applied electric field. and the metal-insulator

transition.
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Chapter 4

Effect of stress on non-Ohmic impurity conduction

In this chapter we review the effects of stress on the impurity states in doped
semiconductors. We pre'sent qualitative results on the effects of stress on non-Ohmic
impurity conduction in neutron transmutation doped germanium. We show that stress can
either enhance or suppress the magnitude and temperature dependence of the hopping
length parameter L, depending on the orientation of the applied stress relative to the

measurement axis.

4.1 Effect of stress on impurity states

Shallow donors and acceptors in doped semiconductors are hydrogen-like centers
whose energies and wavefunctions are determined by the dielectric constant x and the
effective mass tensor m* of the semiconductor host ma;erial, as described in Chapter 1.
The hopping probability Pj; between an occupied impurity site (i) and a neighboring
unoccupied impurity site (j) separated by a distance rj; is proportional to the overlap ihlegral

between the impurity wavefunctions y; and yj;:
Pij.« exp (ﬂ) .
g (4.1)
Here { is the radius of the impurity wavefunction envelope. Under uniaxial stress, the
impurity wavefunction becomes anisotropic. Rather than having a circular exponential
dropoff with a single radius C, the impurity wavefunction envelope has an elliptical
exponential dropoff with two radii {; and {;. Figure 4.1 shows the elliptical surfaces of
constant wavefunction about randomly located donors in a semiconductor crystal. A
uniaxial stress is assumed to be applied along the z-axis. The wavefunction falls off more
rapidly in the direction of stress. Therefore the hopping probability in the x and y

directions is greater than the hopping probability in the z direction. This means that in
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Fig. 4.1 The ellipses represent surfaces of constant wavefunction amplitude constructed
about randomly located impurity sites. The z-axis points in the direction of compression; in
this direction the wave function falls off faster. The arrows indicate electron hopping
paths, which determine the resistances along the z- and x-y-axes. The dashed line shows a
"head-on" path along the z-axis which corresponds to a much higher resistance.

order to move along the z-axis, an electron will most likely "tack” at an angle 0 to the z-
axis. The degree of tacking increases with increasing stress. In sections 4.1.1 and 4.1.2,
we explain the origin of the elliptical dropoff of the impurity wavefunction with uniaxial

stress in germanium. A general review of the effects of deformation on impurity states in

doped semiconductors can be found in the textbook by Bir and Pikus [1974].

4.1.1 Effect of uniaxial stress on acceptor ground state in p-type
germanium

The effects of uniaxial stress on impurity conduction in p-type Ge were first studied
by Pollak [1965]. Pollak measured the nearest neighbor hopping resistivity p of p-type Ge
as a function of uniaxial stress x applied along the <100> direction. The function p(y) was
found to be non-monotonic; that is, as ¥ increased, p first increased by a factor of 2-5 and
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then decreased by several orders of magnitude. The extent of the increase and decrease
were found to depend on the temperature T and the impurity concentration N. Pollak's
results were confirmed by subsequent measurements in p-type Si [Staunton and Pollak,
1967].

These results can be explained by examining the effect of stress on the valence band
structure. Germanium and silicon crystallize in the diamond structure with the top of the
valence band at the I" point of the Brillouin zone. The valence band states near k = 0 are
six-feld degenerate in the absence of the spin-orbit interaction. When spin-orbit coupling is
taken into account, the valence band splits into two bands, which are four-fold and two-
fold degenerate. The four-fold degenerate band consists of the heavy hole and light hole
mass bands which are degenerate at I". The two-fold degenerate band is shifted down b'y
the amount A, which is the energy of the spin-orbit interaction. In germanium, A = 0.29
eV which is much larger than the binding energies Ey, ~ .01 €V of shallow acceptors in Ge.
The influence of the split-off band on the acceptor states can therefore be neglected.

When compressional stress is applied along the {111} axis it lifts the degeneracy ef
the valence band at I" and splits the acceptor ground state. Chroboczek [1980] carried out
the first detailed study of the behavior of acceptor wave functions at intermediate stress.
Subsequent calculations [Chroboczek et al., 1981; Buczko and Chroboczek, 1984] account
. for the observed behavior of p(x). The initial increase in p by a factor of 2-5 which occurs
under the application of uniaxial stress can be -attributed to the decrease in wavefunction
overlap caused by the shrinkage of the acceptor wavefunctions in the direction of the
applied stress. The strong decrease in p which occurs for larger values of stress is a result

of the x-induced decrease in the acceptor binding energies.

4.1.2 Effect of uniaxial stress on donor ground state in n-type germanium
In germanium there are four conduction band valleys corresponding to the minima

inthe {111} and equiValent directions. When a uniaxial stress is applied along the {111}
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direction, the energy of the valley with its ellipsoidal axis along {111} is lowered while the
other three valleys are shifted to higher energies. If we denote the band minimum of the ith
valley by Tj;, then |

Ty=-3T; T)=T3=T4=T, (4.2)
where T is an energy shift proportional tc; the stress [Kamimura and Aoki. 1989]. At
pressures of order 109 dyne/cm? this splitting becomes so large that the electron ground
state of the donor atoms are no longer associated with all four valley ellipsoids as they are
in the absence of pressﬁre, but with one ellipsoid only\[Shklovskii and Efros, 1984].

In contrast to unstressed germanium, where the electricalvconductivity is a sbalar
quantity, germanium stressed along the {111} axis loses its cubic symmetry and becdfnes a
uniaxial crystal [Shklovskii and Efros. 1984]). In this case the resistivity tensor has two
independent components, pzz and pxx = Pyy. As in the case of p-type Ge, under the
application of stress p; initially increases due to the decrease in wavefunction overlap

along the z-direction.

4.2 Effect of stress on non-Ohmic hopping conduction

For the measurements described in Chapter 3, we took great care to ensure that the
samples were unstressed by usirig Au wedge-bonded contacts to the samples. However.
the effects of stress are generally ignored in the published literature on non-Ohmic impurity
conduction. For example, Wang er al. [1991] studied two samples with an identical
geometry and identical impurity concentrations. The samples differed in that one was glued
to a substrate and the other was unstressed. Although the non-Ohmic impurity conduction
differed significantly in the two samples, stress was not mentioned as a contributing factor. .

We intentionally stressed several samples using silver epoxy, 907 epoxy, and

immersion in a bead of GE varnish. We present the following qualitative argument to
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Fig. 4.2 The effect of stress in the direction parallel to the applied field is to shrink the
wavefunctions in the direction of the field, reducing the magnitude of the field dependence
of the conductivity. Anexample of this type of stress is a wire contact made to the sample

with silver epoxy.

Fig. 4.3 The effect of stress in a direction perpendicular to the applied field is to enhance
the hopping conductivity in the direction of the field, increasing the magnitude of the field
dependence of the conductivity. An example of this type of stress is a 907 epoxy glue
bond between the side of the sample and a substrate.
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Fig. 4.4 The effect of stress in the direction parallél to the applied field is to reduce the
dependence of the conductivity on the applied field, while the effect of stress in a direction
perpendicular to the field is to enhance the dependence of G on F.

explain the observed dependence of the non-Ohmic conductivity of our samples on stress.
As shown in Figure 4.2, the effect of stress in the direction parallel to the applied field is to
shrink the wavefunctions in the direction of the field. Therefore stress parallel to F should
reduce the magnitude of the field dependence of the conductivity. An example of this type
of stress is a wire contact made to a sample with silver epoxy. As shown in Figure 4.3, the
effect of stress in the direction perpendicular to the applied field is to enhance the hopping
conductivity in the direction of the field. Therefore §tress perpendicular to F will increase
the magnitude of the field dependence of the conductivity. An example of this type of
stress is a 907 epoxy glue bond between the side of the sample and a substrate.

"Figure 4.4 shows .the measured field conductivity parameter Lo as a function of
FxT-!-5 for two nominally identical samples. As expected, the sample with a 907 epoxy
bond causing stress in a direction perpendicular to F has a greatly enhanced conductivity

relative to the sample with a silver epoxy bond causing stress in the direction parallel to F.
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Chapter 5
Numerical optimization of bolometric infrared detectors
including optical loading, amplifier noise, and electrical

nonlinearities”

One of the most important applications of doped Ge semiconductors is their use as
temperature sensitive resistors for bolometric detectors. In this chapter we present
numerical methods for the globa‘] optimization of bolometric infrared detectors which use
current-biased semiconducting thermistors. We extend the analysis of Griffin and Holland
to explicitly include both the electric field dependence of the thermistor resistance and
amplifier noise. These methods allow the user to design and evaluate an optimized
bolometer once such parameters as .the optical loading, the heat sink temperature, and the
materials for the thermal link and the thermistor have been chosen. Measured parameters
which describe the electrical nonlinearities in neutron transmutation doped germanium are
presented. The consequences for bolometer optimization of including these effects are

illustrated.

5.1 Introduction

Typical a.pplications for bolometric detectors include infrared astronomy and
laboratory infrared spectroscopy. The optical loading differs by many orders of magnitude
in these applications. Thus, the optimization of infrared bolometer performance is a matter
of great practical importance. One frequently used figure of merit is the optical noise
equivalent power (NEP), defined as the incident signal power required to obtain an output
signal equal .to the rms noise in a | Hz bandwidth. The ratio of the output voltage to the

input power is called the voltage responsivity S. The theory of bolometer responsivity,

*The numerical optimization program is made available at http://physics7.berkeley.edu/bolometer.html.
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noise, and optimization has been discussed by several authors [Low, 1961; Mather, 1984-
A; Moseley etal., 1984] and has recently been reviewed by Richards [1994]. Mather has
given a complete analysis which includes the effect of electrical nonlinearities in the
thermistor material on bolometer responsivity [1982] and nonequilibrium effects on thermal
noise [1984-B]. The responsivity and NEP of a bolometric detector are degraded by
electrical nonlinearities as well as by optical loading, thermal noise, Johnson noise in the
thermistor, and noise in the read-out electronics. |

In this chapter we extend the discussion by Griffin and Holland [1988] of the
effects of radiant power loading on bolometer performance to éxplicitly include the effects
of amplifier noise and electrical nonlinearities. We assume throughout that the bolometer
uses a current-biased semiconducting thefrnistor and is operated in the dc limit. Due to the
increased complexity of the equations describing the bolometer responsivity and NEP, as
well as the large number of parameters reqﬁired to describe the system. a numerical
solution is required.

We have developed a numerical optimization routine to be used as a tool for
bolometer design. The user must first select an optical system (including detector area)
which maximizes the signal power and minimizes the background optical power Q on the
bolometer. Once this has been done, the goal is to design a bolometer whose inherent
noise is less than or close to the background photon noise. Decisions must also be made
about the heat sink temperature T, which may be practically achieved, the thermistor
material, and the material for the thermal link. Depending on the type of bolometer chosen,
the required speed of response can influence these choices. Our program can then be used
to determine the global optimum values for the thérmistor resistance R, the thermal
conductance G linking the bolometer to the heat sink, and the ratio ¢ of the bolometer
temperature T to the heat sink temperature T,. This determination of the optimum value for

¢ is equivalent to a determination of the optimum bias current I.
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Fig. 5.1 Schematic illustration of bolometer operation.

As we will show, our program can be easily used to compare the effect of usin'g
different thermistor materia.ls; heat sink temperatures, or materials for the thermal link on
the performance of a bolometric detector. It can also be used to optimize a bolometer for an
application which requires a speciﬁc time constant. We first review the theory of bolometer
responsivity and NEP, and then describe the numerical optimization routine and discuss the

implications for bolometer design.

5.2 Bolometer Model

The principle of operation of a bolometric detector is illustrated in Figure 5.1. We
consider a bolometric detector consisting of a radiation absorber attached to a temperature
sensitive resistor at temperature T coupled to a heat sink at temperature T, by a thermal
conductance G. The thermistor is current biased with a constant current I which generates

the measured voltage V. Any change in optical loading Q gives rise to a change in the
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thermistor resistance R and consequently in V. We assume that the thermistor resistance R

varies with applied voltage and temperature as:

_A_)n - eVLJ'

RV = R"e"p[ T/ ~dkT

(5.1)

As we discussed in Chapters | and 2, this is a generic fitting function which
describes a large number of semiconducting materials at low temperatures for which the
dominant conduction mechanism is hopping between localized sites [Hill, 1971; Pollak and
Riess, 1976]. The exponential variation of thermistor resistance with applied voltage has
Been observed in a number of materials including Ge:Ga [Grannan et al., 1992], n-GaAs
[Redfield, 1975], Si:As [Gang et al., 1989], and Si:P [Rosenbaum et al., 1980] and over a
range of temperatures 0.05 K< T < 10 K. The paraméter R, in Equation 5.1 is eqﬁal to
pod/A where p, depends on the thermistor material and impurity concentration, d is the
distance between contact electrodes, and A is the cross-sectional area. The parameter A
also depends on the thermistor material and impurity concentration. The parameter n vis
observed to be 1 when the dominant conduction mechanism is nearest neighbor hopping
and is typically observed to be 1/4 or l/2 when variable range hopping conduction
dominates [Shklovskii and Efros, 1984]. L is related to the average hopping distance
betWeen impurity sites. The temperature dependence of L can be described by two

parameters L, and m,

=L
\ LD = 1o (5.2)

The temperature exponent m is typically observed to be 0, 1/4, 1/2, or 1 depending on the
material and the dominant conduction mechanism. Thus a typical thermistor material can be
fully characterized by the above six parameters Ry, A, n, d, Lo, and m. In order to
simplify the expressions for responsivity and NEP we also define a parameter B which is
equal to eLo/kp, where e and kg are the electronic charge and Boltzmann's constant. As
shown in Chapter 3, the widely used neutron transmutation doped Ge thermistors produced

by Haller [Haller et al., 1985; Haller er al., 1994] are well described by n = 172, L, =450
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AKO5, and m = 1/2 over a range of impurity concentrations 3x1015 cm'3 < N < 5.6x1016
cm3.
Following Mather [1984-A], we assume that the differential thermal conductance

Ggq has a power law dependence on temperature and can be written as

Ga = GoTP = GoToPoP, | (5.3)
where ¢ = T/T,. The power exponent B ranges between 1 for a metallic thermal link to the
bolometer and 3 for an insulating or superconducting thermal link (see Appendix in
Richards, 1994). This fofrp for Gq differs from the form assumed by Griffin and Holland.
They assume that the thermal conductivity integral JG4 dT can be expressed as a power law,
leading to a non-power law dependence of Gg. Our expressions for the power balance
equation for the bolometer, the bolometer responsivity, and the bolometer NEP therefore
differ slightly from those derived in Griffin and Holland. Under steady state conditions,

the power balance equation for the bolometer is

T B+1 p+1 _
I’R+Q= f Gqy(t)dt = Solo™ (@ 2
T, B+1) 5.4

The power balance equation can be solved for the bias current I,

B+1
\/Mwﬁ”-l)-cz
(B+D)

YR ' 59

I=

We can therefore rewrite the thermistor resistance as

R = Ro-exp{-(—é—)n}e xp;|

i 1
16T, i " (5.6)

After computing the derivative 0R/dT, keeping in mind that we assume a constant bias

current I, we find that the temperature coefficient of resistance of the thermistor material o

can be written as
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We note that this definition of « is not universal. Some authors [Mather, 1984-A] use the
difnensionless pardmeter a = =(T/R)(dR/dT). When electrical nonlinearities are neglected,
B =0 and a is given by the first term in the numerator. When electrical nonlinearities are
included, B > 0 and the absolute value of a is decreased. Mather [1984-B] neglects the
second term in the denominator; however this term must be included for a current-biased

thermistor [Silver et al., 1989].

5.3 Bolometer Responsivity and NEP
The bolometer responsivity S is defined as the change in thermistor voltage

produced by a change in optical loading,

I(a_R_)
oV oT,
5
JT (5.8)
Using Q = GoToP+1(9B+1 - 1)(B+1)-! - I2R, we can write
g=-_=alR

G4- IR | (5.9)

After substituting for I, we find that S can be expressed as
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This expression for the responsivity is valid regardless of the form assumed for R(V,T).
The decrease in responsivity due to electrical nonlinearities in the thermistor material comes
about entirely from the decreased magnitude of c.

The current-biased bolometer is subject to many sourées of noise including thermal
.noise due to the flow of heat from the bolometer to the heat sink, Johnson noise in the
thermistor, amplifier noise from the readout electronics, and photon noise from the incident
radiation. When referred to the detector input, these noise sources contribute to the noise
equi\.falent power as NEPT, NEP;, NEPy, and NEPp;, respectively. The photon noise
contribution NEPpy, is assumed to be minimized by careful optical design. Throughout this
discussion we use NEP to refer only to the bolometer NEP without including the photon

noise contribution,

NEP2 = NEP3 + NEP? + NEP3 (5.11)
The three terms can be minimized by an appropriate choice of Ry, Go, and ¢. The separate

contributions to the bolometer noise can be summarized as follows:

2B+3
NEPZ = 4kT B+2GO(B+ 1 ) (¢ 1)
1

+1

2+3/ |6 (5.12)
NEP = 4kT,0R
S2 (5.13)
NEPA2 = eq2 + ip?R2
S2 (5.14)
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where e, and i, are the amplifier voltage noise and current noise, respectively. The thermal
noise contribution to the NEP accounts for the fact that there is a temperature gradient

between the bolometer and the heat sink:

T _
[tx(t)] 2 dt

To

T
K(T)j K(t) dt

To (5.15)

NEPT? = 4kgGy(T)-

where x is the thermal conductivity of the thermal link material.
For purposes of comparison it is useful to compute the absorbed power photon
noise NEPph in the shot noise limit [Richards, 1994],

r\usth?:L2 f Pyhvdv = 2hvQ. |
n ' (5.16)
In the above expression Py represents the power absorbed in the detector at optical
frequency v, h is Planck’s constant, and 1 is the bolometer absorptivity.
For a sufficiently large responsivity S the thermal noise contribution NEPT will
always dominate the bolometer noise. Values of S larger than needed to meet this condition
are not generally useful. For smaller values of S, the bolometer resistance must be

carefully selected in order to avoid excessive amplifier noise and to minimize degradation of

the bolometer performance from electrical nonlinearities as discussed below.

5.4 Numerical Optimization Program

We have developed a program which allows the user to select one of two distinct
optimization routines to minimize the NEP of an infrared bolometer. Two distinct routines
were used both as a consistency check and to allow easy generalization of this program to
include other types of thermistor materials. As expected, both routines converge to the

same optimum values for Ro, Go, and ¢. There is no significant difference in the computer
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time required to run either routine: both find the minimum NEP within seconds on a
SPARC-II workstation. The first optimization routine uses a variable metric method called
the Davidon-Fletcher-Powell (DFP) algorithm [Press et al., 1990] to minimize the NEP.
The DFP algorithm requires derivative calculations to locate the optimum values of R, Go,
and ¢. The second optimization routine uses the downhill simplex method [Press er al.,
1990] which requires only function evaluations, not derivatives. The downhill simplex
method is thus simpler to use than the DFP algorithm but somewhat less efficient.

The optimization routine asks the user to enter each of the quantities Ry, Gy, and ¢
either as a variable to be optimized or as a user-specified parameter. When the goal is to
optimize the performance of a bolometer that has already been built, Ry and G, must be
specified and the only adjustable parameter is ¢. When the thermistor geometry can be
varied by adjustment of the dimensional ratio d/A the parameter R, = p,d/A can be treated
as a variable; otherwise Ry must be specified. The optimization program also requires the
user to specify the following eleven parameters in a file: the fhermistor parameters pPo, A,
n, d, Lo, and m, the exponent  which gives the temperature dependence of the thermal
conductance. the optical loading Q, the base temperature T, the amplifier voltage noise ey,
and the amplifier current noise i,. The routine proceeds by selecting values for Ro, Go,
and ¢ and finding the value of R which satisfies Equation 5.6. A separate equation-solving
routine is used at this step since no analytic solution for Equation 5.6 exists. The program
then calculates a, S, and NEP and adjusts Ry, Go, and ¢ in the direction of minimization of
the NEP until each parameter is stable to three digits.

In addition to using two distinct optimization routines, we performed an additional
consistency check by comparing the results of our optimization routine with those of
Griffin and Holland [1988]. As discussed above, Griffin and Holland assume that that the
thermal conductivity integral G4 dT. rather than the differential thermal conductivity Gy,
- can be expressed as a power law. When our program is modified to account for this

assumption, we find that when we set L, =0, m =0, e5 =0, and i, = 0 (equivalent to the
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‘éssumption of no electrical nonlinearities or amplifier noise) and use the specified
parameters for their 100 mK bolometer, our program generates the same minimum NEP
and is completely consistent with their results.

Although we have assumed a specific form for R(V,T), the program can be
adjusted in a straightforward mannef to in.clude thermistors with other temperaturé and
voltage dependences. This can be accomplished by appropriately modifying the

temperature coefficient of resistance a of the thermistor and by using the downhill simplex

method so that no partial derivatives are required.

5.5 Implications for bolometer design
When electrical nonlinearities are included, the temperature coefficient of resistance

o of the thermistor can be written as:

a=a* + xYRYVG, - z
1 +yWRVGq -2z (5.17)

where o = -nAM(¢T,)"*! and x, y, and z depend on L, m, ¢, To, and Q. If electrical
nonlinearities are neglected (Lo, =0, m = 0), & = a™ which depends only on the
thermometric material, the bolometer temperature, and the heat sink temperature. In this
case, o is‘independent of R, and S varies as YR. Thus NEPt and NEPj are independent of
R, and NEP, is minimized at the optimum thermistor resistance Ropy = ep/in. Since o is
negative and xR1/2(G,-z)!/2 and yR1/2(Gy-z)!/2 are positive, the absolute value of o and
hence the bolometer responsivity S are reduced when electrical nonlinearities are included.
The primary effect on bolometer design of including electrical nonlinearities is that the
optimum values of the thermistor resistance and the thermal conductance parameter G, are
smaller when electrical nonlinearities are neglected. This occurs because large values of R
and G, cause a significant reduction in o through the terms xR!/2(G,-2)1/2 and yR/2(G,-

z)!/2. We note that bolometers with higher background optical loading Q have a
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correspondingly larger value of G,. Thus more heavily loaded bolometers have more
reduction in sensitivity due to electrical nonlinearities.

We will now illustrate the use of our numerical optimization program as a tool for
bolometer design using the parameters of a conventional composite bolometer used for the
Millimeter Wave Anisotropy Experiment (MAX) [Tanaka et al., 1995; Clapp er al., 1994,
Devlin et al., 1994]. MAX is a balloon-born millimeter wave instrument which has
successfully measured anisbtrépy in the cosmic microwave background on half degree
angular scales. The backgrouhd optical ioading Q comes from the residual atmosphere and
the ambient 200 K optics. The MAX bolometers are coupled to a heat sink with T, = 85
mK, which is cooled with an adiabatic demagnetization refrigerator. In order to show
significant effects of electrical nonlinearities the example we have chosen is a bolometer
with a relatively large optical loading: We will discuss the selection of a thermistor
material, selection of the material for the thermal link, and the effect of including electrical
nonlinearities for bolometer optimization. The results of this discussion can be readily
generalized to include other bolometer applications. In all of the following examples we
characterize the amplifier noise with e, = 3 nV/VHz and in = 10-16 A/NHz. Unless
otherwise specified, we have assumed a thermal link with B = 2 (typical of a number of
commonly used materials including silicon nitride membranes and graphite fibers), a
background optical power Q =40 pW, and a heat sink temperature T, = 85 mK.

The MAX bolometers use neutron transmuiation doped germanium (NTD Ge)
produced by Haller [Haller er al., 1985; Haller et al; 1994] as the thermistor material.
Neutron transmutation doping provides an extremely homogeneously and randomly doped
thermistor with a precisely controlled impurity concentration. In order to reduce their heat
capacity the thermistors are cuf into small 240 um cubes. Therefore, in the discussion that
follows R, is considered to be a user-specified parameter equal to pod/A where d/A = (240

um)-! rather than an optimized parameter.
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Material N (1016 cm3) Po (Qcm) A (K) n m L, (A Km)

NTD-6 3.85 0.28 36.0 0.5 05 450

NTD-17 4.99 0.18 21.2 0.5 05 450

NTD-19 5.63 0.13 16.0 0.5 05 450

Table 5.1 Impurity concentration N and measured thermistor parameters for three

neutron transmutation doped germanium materials.
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Fig. 5.2 Measurements of the electrical nonlinearities in neutron transmutation doped
germanium. The curves are very well fit by a straight line, in agreement with Equation 5.1.
Similar curves have been measured for a wide range of temperatures, from which we
* deduce a length parameter L = 450/T0-5 A for all three samples. The curves represent
NTD-19 at T = 96 mK (open triangles), NTD-6 at T = 101 mK (open circles), and NTD-17
at T = 113 mK (closed circles). |
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In this work we do not discuss the optimization of the thermistor dimensions. In
practice, the thermistor dimensions are selected by balancing the following considerations.
In order to minimize the heat capacity all thermistor dimensions should be made as small as
possible. In order to minimize the bolometer NEP when the effects of electrical
nonlinearities are negligible, the ratio d/A should be that which produces a thermistor
resistance Ry = pod/A = en/in. In order to minimize microphonic noise and heating, the
thermistor resistance should typicaily be less than 10 MQ, which produces an upper limit
on the ratio d/A. When electrical nonlinearities are importam,_ the optimum distance
between the contact electrodes d is large in order to minimize the electric field across the
thermistor. When electrical nonlinearities are neglected the bolometer NEP is independent
of d and depends only on the ratio d/A. Finally, fabrication considerations place practical
limits on the thermistor dimensions that can be achieved.

For a heat sink temperature of 85 mK, we will examine the minimum NEP that can
be achieved from three different thermistor materials known as NTD-6, NTD-17, and
NTD-19. The impurity concentrations and measured thermistor parameters for each
material are listed in Table 5.1. Figure 5.2 shows the measured linear dependence of the
log of the thermistor resistance on applied voltage [24]. The influence of Joule heating on
the thermistor resistance is negligible for the three curves. All three materials are very well
described by Equation 5.1 with the thermistor parameters L, = 450 AK0-5 and m = 0.5.

Figure 5.3 shows the optimized bolometer NEP as a function of heat sink
temperature T, for NTD-19, NTD-17, and NTD-6 including electrical nonlinearities. As
the temperature is lowered, the NEP for each thermistor makes a transition from being
amplifier voltage noise limited at small thermistor resistances to being amplifier current
noise limited at large thermistor resistances. We note that at 120 mK NTD-6 provides the
same NEP of 6x10-17 W/VHz that NTD-17 provides at 82 mK and NTD-19 provides at 60
mK. The explanation is that thermistor materials which provide an appropriate thermistor

resistance at lower temperatures have to be more heavily doped in order to prevent charge
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Fig. 5.3 Optimized NEP as a function of heat sink temperature T, for NTD-19 (open
triangles), NTD-17 (closed circles), and NTD-6 (open circles). We assume that Q = 40
pW, B =2, en = 3 nVAHz, ip = 10-16 A/NHz, and that the thermistors are 240 um cubes.

For each value of T,, we determine the values of G, and ¢ which lead to a minimum value
of NEP.

carriers from freezing out. A heavily doped material such as NTD-19 will have a smaller
value of A and thus a smaller responsivity than a more lightly doped material such as NTD-
6 at the same temperature. Practical considerations, however, 'limit the use of more lightly
doped materials. Microphonic noise, which is not explicitly included in the optimization.
may be large for the optimized NTD-6 bolometer which has a resistance of 10 MQ.

Time constant and materials considerations can also reduce the operating
temperature chosen for a given application. The optimization program assumes that an
arbitrarily small value of G, can be selected at each heat sink temperature to produce the

minimum NEP. However, there may be limits to the range of values of G, which can be
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Material R Go o NEP NEPr NEP; NEPs. NEP,;

NTD-19 0.616 1.76 - 1.35 9.19 4.04 4.73 7.17 0.15
(0.958) (2.41) (1.29) (7590 (4.31) (4.19) (5.22) (0.17)
NTD-17 1.99 0917 1.55 6.24 3.80 4.33 341  0.23
(4.00) (1.31) (1.43) (5.16) (3.92) (3.57) (2.06) (0.28)
NTD-6 10.0 0.254 2.19 5.29 4.05 4.28 1.27 0.42
(67) (0.557) (1.75) (4.25) (3.79) (3.06) (0.39) (0.88)

Table 5.2 Optimized parameters G, and ¢ for NTD-19, NTD-17, and NTD-6 for a heat
sink temperature of 85 mK and parameters given in Section V. For each material,
underneath the values obtained by a theory including electrical nonlinearities we have
indicated with a parenthesis the values obtained by a theory which neglects electrical
nonlinearities. R is given in units of MQ, G, in units of 10-7 W/K3, and all NEP's in units
of 1017 W/VHz. NEP4 ¢ and NEP§, ; indicate contributions to the bolometer NEP from
voltage noise and current noise in the readout electronics.

realistically achieved leading to significantly higher noise. Throughout this thesis we have
assumed that the bolometer is operated in the dc limit. This assumption is equivalent to the
requirement that the bolometer response time 1 given by
Te = C/Ge = C/(G - I2Ra), - (5.18)
1s fést compared to the characteristic frequencies being studied. Here C is the bolometer
heat capacity and G, is the effective thermal conductance to the bolometer [Richards.
1994]. The optimization routine can easily be used to study the performance which can be
achieved for a given t.. The user must compute the heat capacity of the bolometer at the
estiﬁated operating temperature T ~ 1.5T, and determine the resulting minimum value of G
which will provide a sufficiently fast response from Equation 5.18. The parameter G,
must then be specified by the user rather than optimized. This procedure can then be
successively iterated for the new estim.ated operating temperature. |
After optimizing over the parameters G, and ¢ for each material, we find that NTD-

19, NTD-17, and NTD-6 have a minimum NEP at T, = 85 mK of 9.2x10-17, 6.2x10-17,
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Fig. 5.4 Variation of NEP with ¢ for a thermal link material with B = 1 (solid line), B =
2 (small dashed line), and B = 3 (large dashed line). For each value of B, G, was fixed at
the globally optimum value. The heat sink temperature, optical loading, and other
parameters are listed in Appendix B as the configuration file "NTD17".

and 5.3x10-17 W/VHz, respectively. These values of the NEP are 21, 21, and 25% higher
than predicted by a theory which neglects electrical nonlinearities. Table 5.2 summarizes
the various contributions to the NEP for the above cases and also lists the optimized values
of G, and ¢ along with the corresponding thermistor resistance R.

In addition to the quantities listed in Table 5.2, our numerical optimization program
calculates the detector responsivity S, the bias current I which will produce the optimum o,
and the average thermal conductance G. When R, is an optimized rather than a user- .
specified parémeter, the program will calculate the thermistor cross-sectional area which
leads to a minimum NEP. The program can also be used to generate tables listing eithér S,

NEP, or I as a function of G, or ¢.
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Fig. 5.5 Variation of bolometer NEP with the background optical power Q. The two
curves represent the minimum NEP that can be achieved when G, and ¢ are optimized at
each point (closed circles) and when G is fixed at the value which produces the minimum’
NEP for Q = 40 pW (open circles). The heat sink temperature and other bolometer
parameters are listed in Appendix B as the configuration file "NTD17".

We now demonstrate the use of this program in selAecting a thermal link material for
an 85 mK bolometer made with NTD-17 including electrical nonlinearities. As discussed
in Section II, materials used for the thermal link can be differentiated by their temperature
exponent of the thermal conductance, 8, which typically falls between 1 and 3. Figure 5.4
shows the variation of NEP with ¢ for B =1, B =2, and p = 3. For each value of B, G,
was fixed at the globally optimum value. The minimum bolometer NEPs that can be
achieved with B= 1. B =2, and B = 3 are 5.5x10-17, 6.2x10-17, and 7.0x10-!7 WA/Hz.
Thus if a metallic rather than an insulating thermal link material is used, the NEP can be
decreased by 21%. A further benefit from using B = 1 rather than f = 3 is that if the
thermistor is overbiased by as little as 15% (¢ = 1.15X0opy), the NEP will be increased by

27% for f = 1 but by 41% for B = 3.
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Fig. 5.6 Variation of responsivity S with the bias parameter ¢. The heat sink
temperature, optical loading, and other parameters are listed in Appendix B as the
configuration file "NTD17". The two curves were calculated assuming no electrical
nonlinearities (open circles) and using the measured values L, = 450 A-K05 and m = 0.5
(solid circles). For each curve, G, was fixed at the globally optimum value.

- One se'rious concern of bolometer designers is that the background optical power Q
may not be known with certainty when the material for the thermal link is selected. Figure
5.5 illustrates the consequences of underestimating or overestimating Q for a fixed value of
Gy, assuming a bolometer with B = 2 and the thermistor material NTD-17 including
electrical nonlinearities. The two curves represent the minimum NEP that can be achieved
when G, and ¢ are optimized at each point (closed circles) and when Gy is fixed at the
value which produces the minimum NEP for Q = 40 pW (open cifcles). When Gq is
optimized for Q = 40 pW, the minimum NEP is within 25% of its giobally minimum value
over the range 13 pW < Q < 120 pW. Thus when the background optical power is within a

factor of three of its estimated value, the minimum bolometer NEP is not strongly affected
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Fig. 5.7 Variation of NEP with thermal conductance parameter G,. At each value of
Gy, the NEP was calculated for the corresponding optimum value of the bias parameter 6.

The heat sink temperature, optical loading, and other parameters are the same as in Figure
5.6. The two curves were calculated assuming no electrical nonlinearities (open circles)
and using the measured values L, = 450 A-K0-5 and m = 0.5 (solid circles).

as l«;ng as the bias parameter ¢ can be adjusted. However, when Q is an order of
magnitude smaller (larger) than its estimated value of 40 pW and G, is fixed at the value
which produces the minimum NEP for Q = 40 pW, the NEP increases by 164% (127%)
é.bove its globally minimum value. When both G, and ¢ are optimized at each value of Q,
the globally minimum NEP is well described by NEPpin (Q) = (6.95£.05)x Q0.6 10-18
W/VHz over the range 2 pW < Q < 400 pW.

As a final example, we will discuss the effect of including electrical nonlinearities
on the optimization of a relatively high background MAX bolometer with Q = 40 pW,
assuming § = 2 and the thermistor material NTD-17. Figure 5.6 shows the variation of

responsivity S with bias parameter . When electrical nonlinearities are included (solid
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circles), the responsivity that can be achieved at the optirﬁum value of ¢ is 39% smaller than
calculated when these effects are neglected (open circles). For each curve, G, was fixed at
the globally optimum value listed in Table 5.2. The responsivity S is equal to zero at the
value Grin which saisfies Equation 5.5 with I = 0.

Figure 5.7 shows the variation of the bolometer NEP with the thermal conductance
parameter G, when electrical nonlinearities are included (solid circles) and neglected (open
circles). At each value of G, the NEP is calculated for the corresponding optimum value
of ¢ (not shown). For small values of G, the NEPI‘is very nearly the same for the two
cases. However, at higher G,, the much stronger reduction in responsivity with increasing
G, when electrical nonlinearities are included leads to a strong increase in NEP with G,
For example, when Gy is an order of magnitude above its globally optimum value the NEP
increases by 150% when electrical nonlinearities are included, and only by 83% when they
are neglected. Thus the advice given by Griffin and Holland that "Gg can be .rhade-
considerably greater than the theoretical optimum value resulting in a faster speed of
response for the detector with very little decrease in sensitivity" is no longer valid when

electrical nonlinearities are included.

5.6 Conclusion

In conclusion, we have demonstrated the use of our numerical optimization routine
as a valuable tool for bolometer design. Specifically, we have investigated the effects of
using different thermistor materials, materials for the thermal link, and including electrical
nonlinearities on the design of a relatively high background bolometer used in the
Millimeter Anisotropy Experiment. We found the general result that when electrical
nonlinearities are included, the bolometer resistance and the thermal conductance between
the bolometer and the heat sink should be made smaller than if these effects were not

present. The program can be easily used to investigate the influence of many other
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parameters including the heat sink temperature, thermistor size, noise in the readout

electronics, and a time constant requirement on thermistor design.

134




‘Chapter 6
Collection of athermal phonons into doped Ge thermistors using

quasiparticle trapping

In this chapter, we describe a novel application of doped Ge thermistors used as
calorimeters in a low temperature particle detector. This detector, the Superconducting
Large Area Phonon Sensor (SLAPS), uses a quasiparticle trapping mechanism to funnel
athermal phonon er;ergy from an 80 mg Ge absorber into a 1.6 mg doped Gé thermistor via
a superconducting Al film. We report on pulse height spectra obtained at 320 mK by
scanning a 24! Am alpha source along the device, and show that up to 20% of the energy
deposited in the Ge absorber by a 5.5 MeV alpha particle interaction can be collected into a
thermistor with fifty times less volume via quasiparticle trapping. We show that the pulse
shapes obtained with this device can be used to determine the position of an alpha particle
interaction in the Ge absorber for interaction distances of up to 6 mm from a quasiparticle
trap. To our knowledge, this is the first low temperature calorimetric particle detector

which allows a determination of the particle interaction distance.

6.1 Introduction

Small thermometers operating at cryogenic temperatures have been used to detect
small amounts of energy deposited in a target material by single particle interactions [Booth
and Salmon, 1992]. Sllch detectors are potentially useful for broad-band X-ray
spectroscopy, the search for dark matter candidates; and in the determination of neutrino
properties, as they provide high energy resolution, the ability to detect low energy nuclear
recoils, and flexibility in the choice of target materials. However, these thermometers are
typically. poorly coupled to high energy phonons in the target which, before they
thermalize, carry information about the location and nature of the initial eQent. One way to

greatly increase the sensitivity of such a thermometer to athermal phonons is to couple it to
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Fig. 6.1 Schematic diagram of the SLAPS device showing top and side views (not to
scale). The two thermistors studied in this experiment are each denoted by X, and the axis
scanned by the 241 Am source is indicated by the dashed line.

the target via a thin film superconductor. The superconducting film readily absorbs
athermal phonons. which create quasiparticles that quickly diffuse through the film and can

be concentrated through the quasiparticle trapping mechanism (see Section II).
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Quasiparticle trapping is a recently developed technique which has been used to
significantly improve the performance of particle detectors that measure the quasiparticle
current through superconducting tunnel junctions (STJs). Such detectors have been of two
types, with quasiparticles diffusing into thehtrapping region of the junction from a thin strip
of superconducting film [Kraus er al., 1989] deposited on top of an absorber (quasiparticle
diffusion over distances of ~ 0.5 mm), and directly from superconductors used as the
absorber material [Booth, 1987; Goldie et al., 1990; Mears er al., 1993]. However, to our
knowledge the quasiparticle trapping technique has never been used in conjunction with a
calorimetric detector or to study quasiparticle diffusion in thin films over distances of ~ |
cm.

To study the feasibility of using quasiparticle trapping to collect athermal phonons over
distances of up to 10 mm, we have built the Superconducting Large Area Phonon Sensor
(SLAPS). As shown in Figure 6.1, the SLAPS device consists of four symmetrically-
located c/ioped Ge thermistors (1 mm2 x 300 wm) attached with epoxy to the edge of a Ge
absorber (10 mm x S5Smm x 300 um). The Gé absorber was thermally heat-sunk to a 320
mK temperature- regulated stage through a thin layer of vacuum grease. Electrical contacts
were made on opposing faces of each thermistor by boron implantation followed by
thermal annealing and evaporation of 200 A of Pd and 4000 A of Au. An 8000 A thick Al
film was sputtered onto the top surface of the composite device, covering the Ge substrate
and three of the four thermistors. These three therrﬁistors were used to study the
quasiparticle trapping mechanism, while the fourth uncovered thermistor is sensitive only

to thermal phonons and was used for comparison and device calibration.

6.2 Principles of Operation
When an incident particle interacts in the Ge substrate, it produces high energy
phonons which propagate to the surface of the crystal. Phonons which strike the

superconducting Al film and have energies greater than the Al gap energy Eg = 2A = 350

137



Energy quasiparticles diffuse through
" Al film and may get trapped

in A/Au region with lower gap phonons emitted
from trapping

[ ] cause temperature
1 rise in thermistor
I AT

doped Ge
i , -8 ' thermistor
I B

A Al

phonons with energy
greater than 2A Al can
break Cooper pairs

Fig. 6.2 The SLAPS device funnels athermal phonon energy from a large volume Ge
absorber into a small volume doped Ge thermistor by employing a quasiparticle trapping

mechanism.

ueV can break Cooper pairs, creating quasiparticles which diffuse through the Al film as
shown in Figure 6.2. If the quasiparticles have a sufficiently long mean free path and
lifetime, they will diffuse to the ends of the detector where the thermistors are attached.
Due to the proximity effect fhe Al/Au/thermistor region has an energy gap several times
smaller than the gap in the AI/Ge region. Quasiparticles moving into the smaller gap regilon
scatter to lower energies by phonon emission and are then “trapped” because they have
insufficient energy to return to the Al film. This process of phonon emission heats the

attached thermistor and produces a voltage pulse as the thermistor resistance drops.

6.3 NTD Ge Thermistors
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Fig. 6.3 Temperature dependence of the resistance of the thermistor with an Al/Au gp
trap (open circles) and the thermistor without a gp trap (solid diamonds).

The thermistor material used in the SLAPS device is neutron transmutation doped
(NTD) germanium [Haller et al., 1985; Beeman and Haller, 1994, Haller et al., 1994] with
a net impurity concentration of 2.6 X 1016 cm-3. The neutron transmutation process is
described in detail in Chapter 3. This material is known as NTD-14 and was chosen for its
low noise and high electrical responsivity at 3He temperatures. As described in Chapter 1,
low temperature electrical conduction in NTD Ge proceeds by variable range hopping
[Shklovskii and Efros, 1984] in which holes tunnel between impurity sites rather than enter
the valence band. The electrical resis.tivity varies extremely rapidly with temperature. and is
well described by p = poexp(To/T)1/2. NTD-14 is well described by p, = 0.26 Q-cm and
To =51 K. The temperature dependence of the resistances of the two thermistors studied
in this work are plotted in Figure 6.3. At 360 mK the thermistor resistance R is

approximately 120 kQ and the voltage noise e, = V4KTR is 1.4 nV/VHz. Since this is less
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than the 7 nV/Hz noise of our read-out electronics, our experimental results are not
thermistor noise limited.

The maximum voltage drop across a thermistor after an energy input E is
approximately AV = [(dR/dT)E/Cy, where Cy, is the heat capacity of the thermistor and I is
the bias current [Mather, 1982]. Since the thermistor is connected to the surrounding
environment at base temperature Ty by a link of thermal conductance Gy, over time the

signal will decay with time constant Ty, = Cip/Gyp:

=1dR._E =t
Ot

For the thermistors in this éxperiment, biased to 360 mK above a base temperathre of 320
mK, the optimum bias current I is 0.5 pA, Cy, is approximately 7x10-!1 J/K (see Section
VI), dR/dT is approximately -2x10% Q/K, and AV/E = -2.3x10-9 V/eV. Thus when a
thermistor absorbs a 60 keV y-ray its initial temperature rise is ~ 140 pK and the voltage

drop is ~ 140 puV.

6.4 Aluminum Film Properties

The criteria we used to select aluminum as the superconducting film material on the
SLAPS device were: (1) we required a high purity film with minimal defects in order to
minimize quasiparticle energy losses through processes other than phonon scattering, (2)
the lifetime for nonequilibrium quasiparticles created in the film, 1qp, had to be long so that
quasiparticles could diffuse over large distances. and (3) T, had to be several times greater
than the operating temperature (320 mK) for a small population of thermally excited
quasiparticles in the film. Aluminum. with a measured T of 1.24 K in our 8000 A Al film.
is a material which has been well studied and is known to have a long quasiparticle
lifetime!!-12, Furthermore, techniqtj'es exist for making very high quality Al films with

long electron mean free paths.
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Sample __ Thickness (A) R A (A) Method Deposition Rate (A/s)

DH1 2250 6.50 968.5 sputtered 2
DH2 2275 5.53 824 " 134
DH3 1700 5.19 773 " 114
DH4 2115 3.61 538 ! 11
DH5 2030 3.63 541 " 7
DH6 2000 2.72 405 2
DH7 2000 2.73 407 2
DH8 2055 8.22 1225 2
DH9 950 7.10 1058 2
DHI10 2290 12.0 1790 222
DHI11 1390 9.41 1402 200
Balzers 2500 4.19 624 ?
Grython 8000 42 6258 " -2
SL1 14000 9.40 1400 " 4
SL2 9724 9.9 1475 4
SL3 2167 4.7 700 4
SL4 2197 4.5 671 15
SLS 11400 28.8 4291 e-beam 572
SLé6 11000 19.2 2861 " 548
SL7 2800 18.1 2697 560
SL8 2700 12.3 1833 532
SFU 2000 5.35 797 ?

Table 6.1 Low temperature mean free path deduced from the residual resistance ratio for
a number of aluminum films with different deposition conditions. The two samples with
- the longest mean free paths are indicated in boldface.

Before building the SLAPS device, we produc:ed the series of Al films listed in
Table 6.1 using a variety of deposition conditions in order to determine the conditio‘ns
which lead to a large mean free path A. The Al film in the SLAPS device must have a largé
rﬁean free path at low temperatures so that the quasiparticles can travel over large distances
and become trapped in the thermistor before recombining. A was determined by measuring
the residual resistance ratio R = R3go/R4 2 between 300 K and 4.2 K. R can be related to
the low temperature mean free path in aluminum using the equation Aq) = Vp-T42 =
m™-vg/(n-e2-pq2) = R-m"-ve/(n-€2-p300), where n is the concentration. m* the effective
mass. e the charge, and vg the Fermi velocity of the conduction electrons in aluminum.

The low temperature mean free path is therefore A = (149 AYx R, using the values p3gp =
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2.74 x 106 Q-cm, m*/n-e2 = 1.965 x 10-6 Q-cm-s, and vg = 2.74 x 10-6 cmy/s [Kittel.
1986].

The Al film with the longest mean free path listed in Table 6.1 was produced in a
UHY deposition chamber called "Grython" by dc-magnetron sputtering. Using the same

chamber, we sputtered an 8000 A film onto the SLAPS device and onto a reference

substrate. The reference substrate had a residual resistance ratio R of 27. As the
temperature was lowered below 4.2 K, R remained constant indicating that A had reached
its maximum value. Therefore, we believe that the mean free path A of the Al film used in
the SLAPS device is = 4000 A. The quasiparticle diffusion length L in three dimensions

[Reif, 1965] is related to A by L = (2vpA1qp/3)!/2, where vg is the Fermi velocity. As

discussed in Section VI. we assume that the quasiparticle lifetime tqp has the same order of

magnitude as our signal risetimes (40 ps). Using this formula to obtain a rough estimate of

the diffusion length L in our thin film. with vFv= 2x108 cmy/s, A = 4000 A, and Tgp ~ 40 us

L~4/%vaqp ~ 5 mm.

we find:

6.5 Experimental Procedure

To study the quasiparticle trapping mechanism and quasiparticle diffusion length,
we mounted the SLAPS detector on a temperature-regulated stage thermally linked to a 3He
refrigerator. Electrical contacts were made to each thermistor by attaching two copper
wires 5 mm long and 25 pm in diameter to the metallized thermistor contacts with a small
amount of conductive epoxy. Resistances were measured using a dc bias voltage applied
across the series combination of a 10 MQ metal-film resistor at 1.6 K and the thermistor.
The voltage drop across the thermistor was read through a cooled junction field-effect
transistor (JFET) operating in source follower mode. We measured the resistance vs.

temperature curves of the thermistors, shown in Figure 6.3, and measured the
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Fig. 6.4 Temperature dependence of the thermal conductivity of the epoxy bond
connecting the germanium absorber to the thermistor with an Al/Au qp trap (open circles)

and the thermistor without a gp trap (solid diamonds).

thermal conductivities Gy, and time constants Ty, of the epoxy bonds linking the lherrﬁistors
to the germanium substrate at 220 mK < T < 370 mK. The temperature dependence of G,
for the two thermistors is plotted in Figure 6.4. We saw no significant difference between
the values of Gy, and T, measured in the thermistor covéred with an 8000 A Al film
compared to the values measured in the thermistor with no Al film. We therefore conclude
that the Al film does not significantly contribute to the thermal link between the thermistor
with a quasiparticle trap' and the Ge absorber.

After characterizing the thermistors we installed a lead-collimated 0.7 uC 241Am
alpha source (spot size = lmm) above the SLAPS device. An alpha particle striking the
device deposits 0.4% of its energy (22 keV) into the 8000 A Al film and travels an

additional 20 um into the 300 um thick Ge substrate, depositing the remainder of its energy
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Fig. 6.5 Pulse height spectrum of y-rays produced by the 24! Am source obtained with
the thermistor without an Al/Au quasiparticl:e trap. The spectrum clearly shows y-ray
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Fig. 6.6 Linearity of the thermistor response determined from the pulse height spectrum

shown in Figure 6.5.
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in the form of athermal phonons which travel through the Ge substrate. We scanned the
device with the alpha source along a lihe parallel to the 1 cm long axis and centered on two
NTD Ge thermistors, one with an Al/Au trap and one without. Successive source positions
were separated by 1/2 mm, thus we were able to study the pulse height spectrum observed
in the two thermistors for 20 different sourc;e positions.

In addition to emitting alpha particles at the nearly identical energies 5.443 MeV
(12.8%) and 5.486 MeV (85.2%), the 241 Am source emits a number of gamma-rays which
were used to calibrate the detector. The five primary gamma-rays emitted by the 24! Am
have energies of 13.93 keV (13.0%), 17.61 keV (20.2%), 21.00 keV (5.2%), 26.34 keV
‘(2.4%), and 59.54 keV (35.7%). Figure 6.5 shows the pulse height spectrum observed in
the thermistor without an Al/Au trap for the 24! Am source located directly above the |
thermistor. The energy peaks at bins 195, 245, 365, and 835 correspond to the 13.93,
17.61, 26.34, and 59.54 keV y-rays produced by the 2V‘“Am source. A thin 250 pm sheet
of copper shimstock was inserted between the source and the thermistor in order to remove
the high energy alpha particles while allowing most of the gamma-rays to strike the
thermistor. The linearity of the thermistor response determined from the pulse height
spectrum of Figure 6.5 is shown in Figure 6.6. The thermistor response is extremely
linear (dashed line), and is best fit by the equation E (keV) = 0.0713 £ 0.0002 * Bin

Number.

6.6 System Time Constants

The voltage pulses observed in each thermistor are characterized by four major time
constants: the response time of the readout electronics Te|, the characteristic time for
quasiparticles to deposit athermal phonon energy into the thermistor Ty, the time constant
T;h of the thermal link connecting the thermistor to the Ge substrate, and the time constant
TGe Of the thermal link between the Ge substrate and the 320 mK stage. The magnitudes of

these time constants are related to each other by Tej « Tath < Tth < TGe- This is the optimum
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ordering for the following reasons: t.j should be at least an order of magnitude smaller
than the other system time constants so that the JFET output voltage can rapidly track
voltage changes across the thermistor. The quasiparticle sensing time Ta, must be shorter
than the thermistor time constant Ty in order for the additional phonon sighal produced in
the thermistor by quasiparticle trapping to produce a significant temperature rise before the
thermistor reaches thermal equilibrium with the germanium absorber. (This requirement
significantly constrains the design of future devices utiliiing a quasiparticle trapping
mechanism). Similarly Ty, should be several times shorter than TG, so that the thermistor
can respond to temperature changes in the absorber before the system returns to
equilibrium.

We have measured these time constants in the SLAPS device by exponentially
fitting the rise and fall times of the various pulses observed at different 24! Am source
positions (see Section VII) and find that 1| ¥4.2 Us, Tath = 40 Us, Th = 90 ps, and TGge =
300 us. The value for T¢] is consistent with a thermistor resistance of 120 k2 and a
capacitance of 35 pF from the JFET input to ground, and agrees with the value ¢ ~ 4 s
we measured by biasing the thermistors with an rac square wave. The characteristic time
Tath for athermal phonon sensing in the thermistor is a complicated function of the athermal
phonon lifetime in the Ge substrate, the quasiparticle lifetime in the Al film, the trapping
time for quasiparticles in the Al/Au/thermistor region, and the relaxation time for the hot
electrons in the Au film. We have calculated that these characteristic times are considerably
faster than our electronic response time of 4.2 s except for the quasiparticle lifetime in the
Al film, which we calculated to be ~ 25 ps at T = 320 mK using th‘e theoretical
approximation of Kaplan [1976] assuming a superconductor with impurities and a near-
equilibrium distribution of phonons and quasiparticles. It is also close to the quasiparticle
lifetime Tqp ~ 35 s measured by Gray [1971] in a much thinner (300 A) Al film at the same
value of A/KT = 6.4. We conclude that Ty, is primarily determined by the quasiparticle

lifetime Tqp and by the spread in diffusion times to the trap. The thermistor time constant
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Tih agrees with the value of 90 £ 10 us measured electrically, and combined with our
measurement of Gy, = (8 £ 1)x10-7 W/K gives a total thermistor heat capacity Cy, of 7x10-

IT /K.

6.7 Pulse height spectra
| Two types of signals were observed in each thermistor when the 24! Am source was
positioned over the germanium absorber, each signal having a characteristic pulse shape
and height: (1) 60 keV vy-rays directly striking the thermistor. and (2) 5.5 MeV alpha
particles depositing energy into the Ge substrate at a distance from the thermistor edge
ranging from O mm to 10 mm. The y-ray event rate was apprdximately 1 sec-! and the
alpha particle event rate was approximately 2 sec-!. The y-ray pulses were observed at all
positions of the 241 Am source because the lead collimator was designed to stop stray alpha
particles while not fully attenuating the y—fays. The y-ray peak in each pulse height
spectrum was used to calibrate the thermistor signal produced by alpha particles interacting
in the germanium absorber and to determine the thermistor energy resolution (6 keV
FWHM for a 60 keV energy input at 360 mK). For all source positions, the y-ray pulses
had an electronics limited rise time of about 4.2 us and a decay time constant of 90 us equal
to Th. As expected, we observed no significant difference in the pulse height and shape
produced by y-rays striking either thermisior.
| The héight and shape of the voltage pulses produced by 5.5 MeV alpha particles
depositing energy in the germanium absorber showed a strong position dependence in the
thermistor/’with an Al/Au quasiparticle trap and were nearly position independent in the
thermistor with no aluminum film. For all source positions further than 5 mm from the
thermistor edge the pulse height spectra of the two thermistors were essentially identical: in
both thermistors the 5.5 MeV peak center had a pulse height 2.2 times greater than the
pulse height of the 60 keV (direct hit in the thermistor) peak center. Assuming that the
germanium heat capacity per unit volume is comparable to that of the doped germanium
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Fig. 6.7 Superimposed pulse height spectra obtained with quasiparticle trapping
thermistor for collimated alpha source located at 6 mm, 4 mm, and 2.5 mm from the

thermistor edge.

thermistors. we expect a pulse height ratio of around two because an alpha particle
interacting in the Ge absorber deposits ninety times more energy in a volume fifty times
greater than that of a 60 keV y-ray interacting in a thermistor. These pulses from alpha
particles absorbed far from the thermistor showed an exponential rise with time constant 1,
of 90 s in both thermistors as the thermistors reached equilibrium with the Ge absorber,
and then an exponential decay with time constant TG, of 300 ps. |

As the 24! Am source position was moved to the thermistor edge, the thermistor with
no aluminum film showed a small increase in pulse height above the 60 keV peak from 2.2
to 2.65 (see Figure 6.7). We attribute this 20% rise in energy detected in the thérmistor to a

small number of athermal phonons absorbed in the epoxy joint heating the thermistor above
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Fig. 6.8 Ratio of athermal to thermal phonon energy detected in each thermistor for
vanous alpha source positions (measured relative to the respective thermistor edges).

the equilibrium temperature of the Ge absorber. The time constants of the thermal rise and
fall of the thermistor with no aluminum film were the same for all source positions to within
the aécuracy of our fit.

In contrast, the thermistor with an Al/Au quasiparticle trap began to show an
increase in mean pulse height over the 60 keV peak at a source distance of 5 mm (see
Figure 6.7), indicating athermal phonon collection into the thermistor. As the 2¢!Am
source was moved to the thermistor edge the mean pulse height of the 5.5 MeV peak rose
dramatically to a value 20 times greater than the 60 keV peak, corresponding to a total
energy input into the thermistor of 1.2 MeV. In other words, the use of a quasiparticle
trapping mechanism allowed us to collect 20% of the energy deposited initially in the 80 mg

Ge absorber into the 1.6 mg thermistor. At a source distance of 5 mm the athermal phonon

149



energy deposited in the thermistor by quasiparticle trapping, determined by the mean pulse
height, was 14% of the energy deposited by thermal phonons; at 2 mm the same ratio was
100%, and at the thermistor edge this ratio was 820% (see Figure 6.8). We note that the
nonlinearity of the quasiparticle trapping efficiency vs. source distance produced
increasingly non-Gaussian peaks in the pulse height spectra as the alpha source was moved
toward the thermistor edge, as shown in Figure 6.7. The peak maximum, or mode, was
therefore not equal to the mean pulse height.

As the 241 Am source was moved toward the thermistor with an Al/Au quasiparticle
trap both the rise and fall times of the thermal pulse decreased. which is another indication
that quasiparticle trapping into the Al/Au/thermistor region was dominating the energy
input. At the thermistor edge the signal rise time Ta, was 40 ys. The initial decay time of
this signal was 90 Ws (Typ), reflecting that the thermistor had heated significantly above the
Ge absorber temperature. A second time constant of 300 Us (TGe) Was needed to fit the tail
of this signal. indicating that the thermistor-absorber system had reached equilibrium.
Thus as the alpha source was moved toward the thermistor edge, the signal rise time
decreased from 90 us to 40 ps and the signal decay time decreased from a single time
constant of 300 s to two decay time constants of 90 s and 300 ps.

An additional study of the SLAPS device was performed two years after the
original experiment discussed above. Due to improvements in our computer software and
our understanding of the device performance, we were able to carefully measure the
dependence of the signal rise time on alpha source position. Due to degradation over time
of the epoxy bond linking the thermistors to the Ge absorber, the performance of the
SLAPS device was superior to the performance discussed above. The weaker thermal link
between the thermistor with a gp trap and the Ge absorber meant that athermal energy was
collected into the thermistor by gp trapping over longer time periods. As shown in Figure
6.9, the signal rise time gives position information for interaction distances of more than 6

mm from the quasiparticle trap. The signal rise time increases by more than a factor of 13
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Fig. 6.9 Ratio of the signal rise time for an alpha particle interaction at distance d from
the thermistor with a qp trap to the pulse rise time for an alpha particle interaction at a
distance of 0 mm from the gp trap. The strong position dependence of the signal rise time

is not observed in the thermistor without a gp trap.

when the alpha particle interaction in the Ge absorber occurs at a distance of 6 mm from the
qp trap compared to a distance of 0 mm from the qp trap. We note that the position
sensitivity of the SLAPS deQice is related to but not equal to the quasiparticle diffusion
length. Athermal phonons produced by an interaction in the Ge will excite quasiparticles
throughout the Al film, with the highest quasiparticle density just above the interaction
position. Thus the range of interaction distances for which the thermistor signal is
enhanced by quasiparticle trapping is a function of device geometry, athermal phonon

lifetime. and the spread of quasiparticle diffusion times into the trap.

6.8 Conclusion
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In conclusion, we have demonstrated with the SLAPS device that the quasiparticle
trapping mechanism can be used to dramatically increase the sensitivity of a calorimetric
detector to athermal phonons. The performance of this device could be improved by
optimizing the film thickness and the ratio of film volume to trap volume, by using a
superconducting film with a larger value of vp-A-Tqp, and by operating at lower
temperatures to reduce the quasiparticle energy loss from inelastic phonon scattering.
Rather than relying on a random diffusion process to send quasiparticles into the trapping
region a film could be devised with a decreasing energy gap gradient around the traps,
thereby more efficiently funneling quasiparticles into the trapping regions. Finally, the
position and energy resolution could be improved by separating the quasiparticle traps by
distances on the order of the diffusion length and comparing pulse heights observed in

neighboring traps to obtain curves of constant energy and position [Kraus, 1989].
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Chapter 7 |
Far infrared transmittance of Sc2@C84 and Er2@ C§2

One of the most important applications of doped Ge semiconductors is their use as
temperature sensitive resistors for calorimetric and bolometric detectors, as described in
Chapter 5. In Chapter 6 we described a novel low temperature particle detector which uses
doped Ge thermistors as calorimeters. In this chapter, we describe an experiment which
uses a doped Ge thermistor as part of a conventional low temperature bolometer for far
infrared studies of novel materials. We have measured the far infrared transmittance of
Scy@Cg4 and Erp@Cgs at 1.5 K between 30 cm-! and 200 cm-!. Both materials are
obsérved to have a large primary absorption feature centered at 95 cm-! with a width of
approximately 50 cm-!l, as well as a number of secondary absorption features which are
different in the two materials. This is the first study of the far infrared properties of
metailofullerenes and may help in the determination of the structural and electronic

properties of these materials.

7.1 Introduction

The recently discovered encapsulation of a metal atom or atoms inside fullerene
cages [Kroto er al., 1985: Johnson et al.. 1992; Bethune er al., 1993] has excited
considerable interest because these materials may have novel properties and applications.
However, due to the extreme difficulty in producing purified samples in quantities greater
than a few hundred micrograms, characterization of these metallofullerenes has been
hampered. Many theoretical questions remain concerning the formation, structure, and
electronic properties of these materials [Bethune ez al., 1993].

Theoretical calculations [Laasonen et al., 1992; Joslin et al., 1993; Nagase et al.,
1993; van Cleef er al., 1993; Kobayashi et al., 1995] of the minimum energy

configurations for La@Cg;, Lay@Cgp, Li@Cgp, and Na@Cgg have predicted that a metal
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atom encapsulated in a fullerene cage typically donates electrons to the cage and assumes a
noncentral position. Charge transfer has been confirmed by ESR studies in several
materials [Shinohara et al., 1992; Bandow et al., 1993] and by XPS measurements
[Weaver er al.. 1992]. In atheoretical investigation of the properties of Sc; @Cgy4, Nagase
and Kobayashi [1994] calculated that each Sc atom donates two electrons to the Cg4 cage,
and that these four extra electrons are distributed almost uniformly on the cage surface.
The two Sc atoms are strongly bound at opposite ends of the Cg4 cage with a separation of
~4 A. This distance is considerably larger than the Sc-Sc separation in the Sc dimer, 2.7 A
[Harris and Jones, 1979], and hence the atoms are expected to interact independently with
the cage. The Sc bonding to the fullerene cage was found to be primarily electrostatic and
due to polarization.

Movements of the charged metal atom or atoms trapped inside the cagé are expected
to have large dipole derivatives and produce very strong far infrared transitions, yielding
spectra which are extremely sensitive to the size of the cage, the mass and charge of the
encapsulated metal atom or atoms, and the potential inside the cage [van Cleef e al., 1993].
. Thus, a measurement of the far infrared properties of these species may provide an
excellent diagnostic of the properties of endohedral carbon cage molecules.

In this chaptér we demonstrate two experimental techniques for studying the far
infrared transmittance of metallofullerenes which are optimized for the study of very small
sample quantities. The first technique involves placing the metallofullerene sample in the
middle of a 1.2 mm thick parafilm pellet. which is then cooled to 1.5 K-and studied using
qurier transform spectroscopy between 30 cm-! and 340 cm-!. Using this technique, we
have measured the transmittance spectrum of Scy; @Cgq and are able to observe absorption
features at the level of one and a half percent. This method allows complete sample
recovery. The second technique we have developed is to sublime the metallofullerene
sample onto a I mm z-cut crystal quartz substrate. which is then cooled to approximately

1.5 K and studied using Fourier transform spectroscopy between 20 cm-! and 200 cm-1.
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Using this technique we have measured the transmittance spectrum of Er;@Cg; and are
able to observe absorption features at the level of one percent. These two techniques are
useful for-studying the far infrared transmittance of any material available in powder form.
The parafilm technique is easier and allows the transmiftance to be measured at higher
frequencies; however, the sublimation technique should be used when a uniform film is

required.

7.2 Sample preparation

The Scp@Cg4 and Ery@Cgo sampllés studied in this work were produced by arc-
vaporization in helium of cored carbon electrodes packed with a mixture of graphite and
metal or metal-oxide [Beyers er al., 1994]. Production efficiency was increased by
reversing the arc polarity and "back-burning" the carbide-rich cathode deposit. Fullerene
molecules were extracted from the carbon soot with CS7, and the separation of Sco@Cgy
and Er, @Cg; was accomplished using two-stage high performance liquid chromatography
(HPLC) [Stevenson er al., 1994-A; Stevenson et al., 1994-B]. Following HPLC, the
samples were analyzed using laser desorption/laser ionization mass spectroscopy [Meijer et
al., 1990] and were found to consist of at least 98% of the desired metallofullerene species.

In order to measure the far infrared transmittance of Sco @Cgy, we placed the
material in the middle of a parafilm pellet as outlined below. We first deposited
approximately 500 pg of Sco @Cgq dissolved in CS; into an 0.3 cm diameter indent on a
120 mm thick parafilm substrate and allowed the solvent to slowly evaporate. This was
done in a nitrogen atmosphere to avoid condensation of water onto the substrate. This
created a Sco @Cg4 disk which measured 0.3 cm in diameter and 40 = 10 um in thickness.
We then baked the sample in a 60 °C oven for 1/2 hr. to remove any residual solvent. The
parafilm substrate was surrounded by additional parafilm layers and gently compressed
between two glass microscope slides. The composite structure was heated to just above the

parafilm melting temperature (< 100 °C) on a hot plate to produce a solid 1.2 mm thick
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pai'afilm pellet. We used the same technique to create a parafilm pellet containing a C¢g
disk measuring 0.3 cm in diameter and 200 £ 20 um in thickness which we used to
confirm the reliability of the measurement technique. In addition we produced three pure
parafilm pellets to use as references.

To prepare the Erp@Cg) sample, we heated approximately 700 pug of the material to
500 °C in a vacuum and sublimed it onto a 1 mm thick z-cut crystal quartz substrate to form
a disk approximately 0.4 cm in diameter and 40 £ !0 um in thickness. For comparison,
we used the same technique to evaporate a Cgg disk of the same dimensions onto another
crystal quartz substrate. In addition we used two crystal quartz substrates as references.
All crystal quartz substrates were cut from neighboring spots on a large piece of z-cut
crystal quartz in order to minimize the differences in thickness and hence the ratio of their
Fabry-Perot interference fringes. The crystal quartz and parafilm substrates were chosen to
be I mm thick and 1.2 mm thick, res_pectively, so that the separation between Fabry-Perot

fringes was less than 3 cmm-l.

7.3 Experimental Téchnique

The far infrared transmittance of the samples at 1.5 K was measured with a
composite bolometer in conjunction with a Michelson interferometer. using Fourier
Transform Spectroscopy [Miller, 1993]. A schematic of the experiment is shown in Figure
7.1. Infrared radiation prodﬁced by a mercury arc lamp and chopped at 43 Hz passes
through a light pipe, both warm and cold filters, and a cold sample wheel before entering a '
1.5 K bolometer can. The bolometer uses neutron transmutation doped Ge (NTD Ge) as

the thermometric material [Haller ez al., 1984]. The interferometer was operated in a step-
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Fig. 7.1 Schematic of the experiment. The Michelson Interferometer is used as a Fourier
Transform Spectrometer. Chopped infrared radiation passes through a light pipe, both
warm and cold filters, and a sample wheel before entering a 1.5 K bolometer can. The

bolometer response is measured as a function of mirror position.

and-integrate mode rather than in a continuous scan mode to improve the noise
performance. To measure spectra over an extended frequency region we used several
different combinations of beamspiitters and warm filters. The warm filter was selected to
remove all radiation at frequencies above the range of study, thus avoiding aliasing effects.
The cold 0.001" thick black polyethylene filter was chosen to minimize bolometer loading
from unchopped radiation. »
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The bolometer used in our measurement was not globally optimized (see Chapter
5), because the accuracy of our meésuremems of the transmittance of Scy@Cgy4 and
Er,@Cg, was limited by our ability to match the sample and reference substrates rather
than by bolometér noise. The selection of the thermistor resistance was driven by our
choice to operate at pumped liquid helium temperatures and by the availability of a
laboratory standard, low noise room temperature amplifier. We used the Princeton Applied
Research PAR-113 preamplifier with an input voltage noise of 7 nV/VHz and a current
noise of ~ 10-15 A/VHz. We chose to use the thermistor material NTD Ge #4. which has
an impedance at 1.5 K of approximately 500 k2. This impedance corresponds to a voltage
noise ep = 6.3 nV/VHz, comparable to the noise of the preamplifier. The bolometers were
exposed to a maximum background optical loading Q of approximately | uW for a 1/8 mil
mylar beam-splitter used in combination with a 700 cm-! cutoff lowpass filter [Miller.
1993]. The thermal link between the bolometer and the 1.5 K can was provided by four
12.5 um diameter brass wires with a combined thexmai conductivity G = 5 uW/K.

We determined the transmittance spectrum of the fullerene samples by computing
the ratio of the bolometer response when the fullerene sample and substrate were in the
light pa'th to the bolometer response when the bare substrate was in the light path. We also
examined the ratio of the bolometer responses when two nominally identical substrates
were in the light path. The difference between this ratio and unity determined the degreé to
which our data were contaminated by systematic noise, drifts, -and small differences in
- substrate thickness or composition. For each position of the sample wheel, we obtained a
large number of spectra and averaged them in order to minimize the effects of bolometer

noise and slow drifts in the bolometer temperature.
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Fig. 7.2 Transmittance at 1.5 K of a 1.2 mm thick parafilm pellet (Curve 1) and a | mm
thick z-cut crystal quartz substate (Curve 2) between 30 cm-! and 400 cm-!.

7.4 Experimental Results

Due to the very small quantities of sample available, the accuracy of our
measurements of the transmittance of Scy@Cg4 and Ery@Cg; was limited by our ability to
match the sample and reference substrates as discussed above. We will first discuss
measurements on Scy; @Cgy4 embedded in a 1.2 mm thick parafilm pellet. The transmittance
of a reference pellet at 1.5 K is shown in Figure 7.2, Curve 1. Parafilm has a sharp
absorption feature at 77 cm-! and two broad absorption features at 255 cm-! and 340 cm-!.
In addition. the Fabry Perot interference fringes in the transmittance spectrum of a 1.2 mm
thick parafilm peliet are separated by Af = (2nt)"! = 2.7 cm-! where n = 1.56. Thé ratio of

the spectra of two parafilm reference pellets is shown in Figure 7.3, Curve 0. This curve
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Fig. 7.3 Transmittance of Sc; @ Cgy, determined by taking the ratio of the Scy@Cgy-
containing parafilm pellet with: parafilm reference #1 (Curve 1); parafilm reference #1 with
a different filtering scheme (Curve 2); parafilm reference #2 (Curve 3); and parafilm
reference #3 (Curve 4). The curve labelled "0" shows the ratio of parafilm reference #2 to
parafilm reference #1. To facilitate comparison, Curves 2, 3, and 4 have been offset from

Curve 1 by -0.1, -0.2, and -0.3 respectively.

has a number of features les‘s than 0.01 in height and less than 5 cm*! in width which are
due to the differences in the Fabry Perot interference fringes of the two samples. The
broad 3% absorption feature at 260 cm-! arises from the broad parafilm absorption feature
at 255 cm-!. These features, due to s‘mall differences in thickness and composition of the
parafilm substrates, are above the noise level of our instrument and fundamentally limit our

ability to measure absorption features in Scy @Cga.
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" The transmittance of Scz@C84 between 30 cm-! and 350 cm-! is plotted in Figure
7.3, Curves 1 through 4. The four curves were generated by computing the ratio of the
Sc;@Cgy4-containing parafilm pellet with: parafilm reference #1 (Curve 1); reference #1,
measured with a different filtering scheme (gurve 2); reference #2 (Curve 3); and reference
#3 (Curve 4). For comparison purposes Curves 2, 3, and 4 have been offset from Curve 1
by -0.1,-0.2, and -0.3 respectively. The agreement between the four curves is remarkably
good, and implies that noise is not important. Curve 4 has a small absorption feature at 77
cm-! not observed in Curves 1, 2,' and 3, which we attribute to imperfect ratioing of the 77
cm-! absorption feature in parafilm. Features smaller than 0.015 cannot be distinguished
from differences in the Fabry Perot interference fringes between the sample and reference
parafilm pellets. In Figure 7.4, Curve 1, we plot the absorption coefficient computed from
the average of these transmittance spectra. Table 7.1 summarizes the absorption features
observed in Sc;@Cg4. The most prominent absorption feature we observe is a band
centered at approximately 95 cm-!, on top of which are superposed a number of smaller,
narrower absorption features.

Our measurements of the transmittance of Erp@Cgy were also limited by small
differences in thickness and composition between the crystal quartz sample substrate and
reference substrate. The transmittance of a I mm thick z-cut crystal quartz substrate at 1.5
K is shown in Figure 7.2, Curve 2. Crystal quartz has a sharp absorption feature at 132.5
cm-!. In addition, the Fabry Perot. interference fringes in the transmittance spectrum of a |
mm thick z-cut crystal quartz substrate are separated by Af = (2nt)"! = 2.3 cmr! where n -
2.2. The ratio of the speétra of two reference crystal quartz substrates has a mimber of
features less than 0.01 in height and less than 3 cm-! in width which are due to the

differences in the Fabry Perot interference fringes of the two samples.
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Fig. 7.4 Absorption coefficient as a function of frequency for Sc;@Cgq (Curve 1),
Ero@Cg; (Curve 2), and Cgg (Curve 3). The Er,@Cg; spectrum was measured with a
spectral resolution of 2 cm!. The Scy@Cgq and Cgg spectra were measured with a spectral
resolution of 1 cmr! below 200 cm! and 1.5 cm! above 200 cm-!. Due to uncertainty in
sample thicknesses, Curves 1, 2, and 3 are determined to within multiplicative errors of

25%. 25%, and 10%, respectively.

We have converted the transmittance spectrum qf Er, @Cg; into a plot of absorption
coefficient as a function .o.f frequency, as shown in Figure 7.4, Curve 2. All features less
than 0.01 in the transmittance spectrum are attributed to differences in the Fabry Perot
interference fringes between the sample and reference substrates. Table 7.2 summarizes
the absorption features observed in Ery@Cgy, listed.in order of increasing frequency. The
largest absorption feature we observe is a broad absorption centered at approximately 94

cm-!, similar to the feature observed in Sc2 @Cgg.
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Frequency (cm-!) Act (cml) Af (crl)

62 12 10
76 (pf) 6 3
88 12 10
95 20 40
97 6 8
105 8 7
122 5 8
137 7 10
168 12 10
182 5 8
194 11 14
222 8 12
245 8 10
260 (pf?) 10 20
330 (pf?) 10 10
345 (pf?) 10 10

Table 7.1 Absorption features in Sc;@Cg4. Columns show the center frequency, height
Aa relative to the background absorption coefficient, and width Af. The center frequency
is determined to within + 2 cm-!; we estimate a 10% error in our determination of At and
Af. Features which are believed to be due to small differences between the sample parafilm
pellet and a reference parafilm pellet are marked by (pf).

Frequency (cm-1) Aa (cm}) Af (cmrl)
45 17 10
59 . 13 - 10
69 7 10
94 34 70
144 6 10
177 5 25

Table 7.2 Absorption features in Ero@Cgj. The center frequency is determined to
within + 2 cm-!; we estimate a 10% error in our determination of A and Af. Columns
show the center frequency, height Aa relative to the background absorption coefficient, and

width Af.
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We re-measured the transmittance spectrum of the sample after approximately 80% of the
sample was removed and again observed the same absorption features; however, the
absorption was reduced by a factor of approximately five. This confirms that the observed
far-infrared absorption features are intrinsic to the EryCg;.

For comparison purposes, we also measured the transmittance spectrum of a 200
um thick Ceg layer embedded in a parafilm pellet and a 40 um thick Cegg film sublimed onto
a crystal quartz substrate. Both Cgg samples had been exposed io air. The frequency
dependence of the deduced absorption coefficient of the thicker film is shown in Figure
7.4, Curve 3. The spectrum of the 40 um thick Cggo film was found to be similar. The
absorption coefficient is featureless and increases linearly with frequency between 100 cm-!
and 330 cm!, in agreement with the result of Onari et al. [1991]. The small feature at 77
cm-! is an artifact of the 77 cm-! parafilm absorption. Our measured absorption coefficient
aat60cm!is3.9+04 cm! at T=1.5K, compared to 4.2 cm-! at T = 4 K measured by
FitzGera]d and Sievers [1994] in Cgo which had been exposed to air. Our sample is too
thin for us to observe the air-induced impurity bands at 18 cm-!, 27 cm-!, and 59 cm-!.
The good agreement between our measured Cgg absorption and that published in the
literature, as well as the fact that we do not observe any significant absorption features
between 30 cm-! and 330 cm-!. confirms the reliability of our sample preparation and

measurement techniques.

7.5 Discussion and Conclusion

In discussing the vibrational properties of the metallofullerenes we distinguish
between internal and external vibrations. The internal motions involve carbon-carbon and
metal-carbon bending and stretching vibrations, whereas the external modes involve
translational and rotational motions of the entire cage. Theoretical calculations by Negri er
al. [1992] of the infrared active vibrational modes of an empty Cg4 cage using the quantum

chemical force field for pi electrons (CQFF/PI) method predict a lowest energy band at
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around 200 cm-l. A similar calculation by Orlandi et al. [1993] for an empty Cg; cage also
finds a lowest energy infrared band at around 200 cm-!. In the case of a metallofullerene
with a relatively strong metal-cage bonding one expects to measure an experimental
spectrum significantly different from these calculations [van Cleef et al., 1993]. In
particular one also expects modes to apbeza:r below 200 cm-l. Even in the case of a weak
metal-cage bon‘ding, the charge transfer to the cage will certainly lead to a significant
renormalization of the cage frequeneies. The spectra presented here show many
reproducible absorﬁtion features below 300 cm-l. In view of the above discussion, we
propose that many of the observed features are due to modified cage vibrations.

Among the internal modes, the metal-cage vibrations are expected to give the
strongest contribution to the far infrared spectrum due to their large dipole derivati;/es.
Without knowledge ef the bonding steength between the metal atoms and the cage, it is
difficult to predict their vibrational frequencies. Since the Er (atomic weight 167.3) is
much heavier than the Sc (atomic weight 44.96), one expects the Er-cage vibrations at
lower frequencies than the Sc-cage vibrations for comparable bonding to the cage.
However, without more knowledge of the metal-cage interaction we cannot yet assign any
of the observed absorption modes.

The most stfiking feature in tﬁe spectra of séz@cm and Erp@Cg; is the large
absorption at 95 cm-! observed in both materials. The coincidence of the 95 cm-!
absorption in both materials suggests that the vibration responsible for this feature' should
be independent of the large mass difference between Er and Sc. The only modes which are
relatively insensitive to this mass difference are the external modes. The frequencies of
these modes depend on the intermolecular force constants and either the total masses
(translations) or total inertial moments (rotations) of the molecules. If we make the
reasonable assumption that the force constants are comparable in both materials, we

estimate the difference between the external frequencies of both molecules to be about 10%
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for the translational modes and only 2% for the rotational modes. In view of these small
differences, we propose that the 95 cm"! absorption feature is due to an external vibration.

Although this is the first experimental study of the far infrared propérties of
metallofullerenes, Kikuchi er al. [1993] have measured the infrared absorption spectra of
Cg2 and LaCgj above 400 cm-!. They found approximately ten absorption lines between
400 cm! and 800 cm-! in both samples and some correlation between the LaCgy modes
and bending motions of the cage. Although some of their absorption features are not
clearly distinguishable from the noise, they appear to have typical widths of 10 cm!,
similar to the widths of the absorption features seen in Scy@Cg4 and Er,@Cgs.

Due to the extreme difficulty in producing and purifying metallofullerene samples.
we were limited to studying two species of dim_etallofullerenes Scr@Cg4 and Er, @Cg;.
However, if sample production becomes more efficient, an especially interesting study
could be performed on a sequence such as Cga, Sc@Cgy, Scy@Cgy, and Sc3@Cg4. As
discussed above, the Cg4 cage without inclusions is not expected to show infrared activity
below 200 cm-!. If theoretical expectations that the two Sc atoms are essentiall.y
noninteracting at opposite ends of the Cgq cage are correct, Sc@Cgq and Sc2@Cgy would
show similar far infrared spectra with the absorption coefficients approximately twice as
strong in the dimetallofullerene. Sc3@Cg4 should show a significantly different
transmittance spectrum if the three Sc atoms are enclosed as a trimer which moves relatively
freely throughbut the Cgq4 cage, analogous to the behavior indicated by EPR measurements
[van Loosdrecht er al.. 1994] for Sc3Cgy. A systematic study of a variety of cages and
metal inclusions will reveal much about the structure and properties of these fascinating

new materials.
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Appendix A: JFET noise

The electronic noise in é detector should be negligible compared to more
fundamental noise sources such as Johnson noise, thermal noise, and photon noise. We
discuss three methods for reducing the noise of readout electronics which use JFETSs to
amplify a voltage signal. In Section "A.l1, we describe voltage and current noise
measurements of the NJ132L JFET at low frequencies (50 - 400 Hz) as a function of JFET
temperature, drain voltage, and current. We find that the noise is minimized for T ~ 130 K,
Vag~6V,andI ~ 0.7 mA. In Section A.2, we describe the fabrication of small, cooled
JFET packages which can bolt to a helium cold plate and self-heat to a selected operating
temperature. In Section A.3. we present an ultra-low noise voltage preamplifier design for
room temperature operation which uses the NJ903L JFET. This preamplifier has é
measured gain of 401, a white voltage noise level of 1.2 nV/VHz, and a voltage noise of
less than 3 nV/VHz at frequencies above 0.5 Hz.

In order to determine the témperature of the cooled JFETSs, we used a 1N4448
diode. In Section A .4, we'describe how to convert any commercial diode into a calibrated
thermometer for use between 77 K and 300 K. Diode thermometers are extremely useful
diagnostic tools for a wide variety of cryogenic applications. They are small, inexpensive,

simple to use. and can be easily calibrated to an accuracy of a few K within minutes.

A.1 JFET noise minimization: NJ132L JFET

A.l.1 Voltage noise

The voltage noise e, of a JFET depends on the following controllable parameters:
JFET temperature T, d;ain voltage Vy, and current I through the JFET. The voltage noise
does nor depend uniquely on the power dissipated in the JFET. It also depends_ on the
manufacturing process, the presence of undesired impurities, and the gate width. These

variations lead to significant differences in the noise properties of nominally identical
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JFETs. The primary JFET property which determines its voltage and current noise is the
gate width. Thus, the NJ9O3L JFET with a 903 um gate width has a smaller voltage noise,
larger current noise, and a larger gate-drain capacitance than the NJ132L JFET which has a
132 pum gate width.

We have measured e, as a function of T, Vg4, and I in the NJ132L dual JFET. In
order to measure the voltage noise of a JFET, the noise fluctuations at the gate must be
amplified well above the noise level of the measuring device. We accomplished this by
using the simple measurement circuit shown in Figure A.1. The JFET sources are
connected to a constant-current supply which is designed to be extremely stable against
fluctuations or slow drifts in the power supply voltage. The current can be controlled by an
appropriate selection of the resistor Ry. The voltage drop across Ry is equal to the sum of

the voltage drops across the three 1N4448 diodes minus the base-emitter diode drop of the

[

N2222 transistor. and is approximately 3 x0.65 V - 0.65 V = 1.3 V where 0.65 V is the
typical diode voltage drop. Therefore the current through each side of the dual JFET is
given by I = 0.65/R;. The current through each JFET can be convéniently measured by
measuring the voltage drop Vi across the 1 k€2 resistor, using th'e conversion factor 1 V for
every 0.5 mA of current through each JFET.

For a given value of I. the drain voltage Vp = +V - IR4 can be controlied by an
appropriate selection of +V and Rq. When the input voitage changes by an amount AV;,
the voltage at the drain varies by an amount AVq4 = gnR4AVi,. The transconductance gp, is
defined as

gm = Alps/AVGs, (A.1)
where D refers to the drain, G refers to the gate, and S refers to the source of the JFET. Ry
is chosen so that the voltage noise at the drain gmRgen 1s several times larger than the input
voltage noise of the PAR-113 preamplifier so that e, can be accurately measured. For
typical values ey =2 nV/#/Hz. gm = (450 Q)-1, and a PAR-113 input voltage noise of 7

nV/NHz, Ry should be above 4.5 kQ in order to ensure a voltage gain of at least 10.
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Fig.A.1 Simple voltage noise measurement circuit which allows easy control of JFET

current and drain voltage.

In order to measure e, as a function of temperature, the JFETs were mounted with
thick copper wires onto an aluminum stage set off from a 77 K cold plate by nylon screws.
The aluminum stage had a calculated time constant of 2.8 minutes, and a measured time

constant of ~ 2.5 minutes. Even for the maximum power through each JFET (4 mW), the
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JFETS were calculated to be thermally sunk within approximately 2 K. The temperature
was measured using a 1N4448 diode mounted on the aluminum stage as described in
Section A.4. The stage was heated with a 500 € heater.

For each measurement of en(T,Vy,I) we applied a small signal into Gate |,
measured the transfer function gmR4 at Drain 1, and made sure that the transfer function
was large enough so that we could ignore corrections for the input noise of the PAR-113.
We then measured the shorted input voltage noise of the JFETS using a Hewlett Packard
Spectrum Analyzer. We checked the consistency of our noise measurements by comparing

the measured voltage noise with the estimated voltage noise of the JFET using the formula

Yy 4kT(3§;) (V—P\I/:z) (A2)

Our measured voltage noise levels confirm the accuracy of our measurement technique.

(Horowitz and Hill, 1980],

For example, when Rq = 13 k€2 we measure a gain of 29.8 and deduce a transconductance
gm = (436 Q)-1.  Using this value for gn,, we predict a noise level at 300 K of 1.65
nVA/Hz which is nearly identical to our measured noise level of 1.72 nV/AHz.

Figure A.2 shows the room temperature voltage noise of the NJ132L JFET as a
function of drain voltage for a current of I mA. The voltage noise has a minimum at V4 ~ 6
V and is relatively insensitive to the drain voltage over a broad range 3 V< V4< 10 V.
However, for V4 < 3 V both the 1/f noise, as evidenced by the increase in e, (50 Hz)
relative to e, (400 Hz), and the absolute noise level increase sharply.

In Figure A.3. we plot the voltage noise as a function of current measured using a
drain voltage of 7 V. At T = 300 K. e (I) has a well-defined minimum value of 2.2
" nVA/Hz at[ = 0.7 mA. When the temperature is lowered to 130 K, the minimum value of
en decreases by 35% to 1.45 nV/VHz at I = 0.7 mA. In contrast to the room temperature
voltage noise. ey (I) at 130 K is nearly independent of current over the range 0.1 mA <I<

1 mA.
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Fig.A.2 Voltage noise of the NJ132L JFET as a function of drain voltage measured at 50
Hz (open circles), 100 Hz (open triangles), and 400 Hz (solid circles). Data were

measured at room temperature using a current of 1 mA.
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Fig.A.3 Voltage noise of the NJ132L JFET as a function of current measured at 300 K
(open circles) and 130 K (solid circles). Data were measured at 100 Hz using a drain

voltage of 7 V.
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Fig.A.4 Voltage noise of the NJ132L JFET as a function of temperature measured at 50
Hz (open circles), 100 Hz (solid circles), and 400 Hz (open triangles) using a current of
0.3 mA and a drain voltage of 8 V. Data were also measured at 400 Hz (solid triangles)

using a current of 0.5 mA and a drain voltage of 2.7 V.

The temperature dependence of the voitage noise is shown in Figure A.4. The minimum
value of ey, is found at T ~ 130 K. At temperatures below 100 K, carrier freeze-out leads to
a sharp increase in e,. For temperatures below ~ 80 K. carrier freeze-out in the NJ132L

JFET is so severe that the JFET is no longer operable.

A.1.2 Current noise

The JFET current noise i, can be estimated from the leakage current I [Horowitz

and Hill, 1980],

In = V2elL (v_l%) (A.3)

where e is the electron charge. Ii can be measured using the simple measurement circuit

shown in Figure A.5. The JFET gate is connected to ground by a switch. When the
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Fig.A.S Measurement circuit used to determine the leakage current It of a JFET. The

leakage current is related to the current noise through Equation A.3.
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Fig.A.6 Room temperature current noise of the NJ132L JFET as a function of drain-gate

voltage.
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switch is opened, the voltage difference Vpg between the drain and gate voltages can be
plotted as a function of time using a chart recorder. The slope at any value of Vpg is
related to the leakage current by

dVpc _ It
dt C+Cpg (A.4)

The drain-gate capacitance Cpg is typically between a few pf and 100 pf. Cpg can be
experimentally determined by comparing the slopes dVpg /dt obtained with two different
values of C, i.e. C =0 pf and C = 50 pf. If C is sufficiently large, Cpg can be neglected in
the determination of Iy and hence ip.

The current noise of the NJ132L JFET at 300 K computed using Equation A.3 is
shown as a function of Vpg in Figure A.6. The current noise is typically a few 10-13
A/NHz and increases with increasing Vpg. For a typical value Vpg = 4.5 V, this current
noise would have to be applied across a 1 M2 resistor in order to produce a voltage noise |
of 2.55 nV/VHz comparable to the voltage noise of the JFET. For comparison purposes.
we note that a | MQ resistor cooled to T = 0.3 K has a Johnson noise equal to (4kTR)0-5 =
4 nV/NHz. When the JFET is cooled below room temperature, its current noise- will be

significantly reduced and is usually negligible compared to the voltage noise contribution.

A.2 Construction of cooled JFET packages

JFETs are frequently used to réad a voltage signal from a low temperature detector
mounted in a *He cryostat. In order to minimize the input capacitance of the amplifier, it is
extremely useful to mount the JFET adjacent to the detector in the low temperature
environment. Since JFETs will not operate at temperatures below ~ 77 K, the JFET must
be contained within a self-heating package which can bolt to the cold plate of the cryostat.

The temperature of the JFET is determined by the power balance equation

TrFeT
wm=%f (T) dT .

Tep (A.5)
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where IVpg is the power dissipated in the JFET, Tcp is the cold plate temperature, TiggT is
the JFET operating temperatute, and x(T) is the thermal conductivity between the JFET and
the cold plate. The cross-sectional area of the thermal link material is A and its length is L.
As discussed above, the JFET voltage noise is typically optimized when Tjrgr = 130 K.
We describe a small JFET package which .can bolt onto a cold plate and self-heat to an
operating temperature of 130 K with only 1.25 mW of power dissipated in each JFET.

A schematic of the JFET package is shown in Figure A.7. In order to produce a
small thermal conductance G = Ax/L between the JFET and the cold plate, the JFET is
glued with Stycast 2850-FT (or another glue with good low temperature adhesion) to the
top of a [.5 cm long thin-walled fiberglass stalk which is glued at the opposite end to a 6-
or an 8-pin header. The thermal conductivity integral of fiberglass [xdT is = 0.3 W/cm
between 1.5 K and 130 K. Fora 1.5 cm long fiberglass stalk with a tube diameter of 1.5
mm and a wall thickness of 0.1 mm, 2 mW of power must be dissipated in the dual JFET
to produce a temperature difference of 130 K.

An additional thermal link between the JFET and the cold plate is provided by the
six 50 um manganin wires which provide electrical connections between the JFET
terminals and the terminals of the 6- or 8-pin header. The thermal conductivity integral of
manganin [xdT is = 11 W/cm between 1.5 K and 130 K. For six wires each 50 pm in
diameter and 2.5 cm in length. an additional 0.5 mW of power must be dissipated in the
dual JFET to maintain a temperature difference of 130 K. The total power in the JFET is
then required to be 2.5 mW, or 1.25 mW per JFET. As shown in Figures A.2-and A3,
for a power dissipation of ‘1 .25 mW the optimum JFET current and drain-source voltage

are approximately 0.3 mA and 4.2 V.
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Fig.A.7 Schematic diagram of a small cooled JFET package. The height of the copper

cap is ~ 1.25" and the diameter is ~ 0.4".

The manganin wires which connect the JFET terminals to the header are coated with
formvar in order to prevent electrical shorts. The insulating coating has been removed from
both ends of the wire with a razor blade. The wires are tightly wound around the fiberglass
stalk as shown in Figure A.7 in order. to prevent microphonics noise. After checking all
electrical connections between the JFET and the header, we glue a copper cap onto the
header. The purpose of the cap is both to protect the JFET and to prevent 130 K radiation
_ from heating the cooled detectors. The copper cap is thermally heat sunk through a thick
copper wire attached to its top. The ‘method we used to attach the copper wire to the cap
was to drill a 4x40 screw clearance h.ole into the top of the cap. We then inserted a 4x40

brass screw into the clearance hole from inside the cap and used a brass nut to clamp the
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copper wire (whose ends were formed into appropriately sized Ioops) between the nut and
the cap. The other end of the copper wire was directly bolted onto the cold plate.

Once the cap has bgen glued onto the JFET package, the electrical connections to
the JFET can be tested outside the package_using a handheld digital multi-meter (DMM).
All JFET wires should be tested for possible shorts to the copper cap. The drain-source
resistancé RDS should be between 30 Q and 1 k2. For the NJ132L JFET, Rps is ~ 200 Q.
The gate-drain \and gate-source resistances should be several MQ when the gate is
positively biased with respect to the drain. When the bias polarity is reversed, Rgp and
Rgs should be larger than the 20 M resistance range of the DMM. The connections
between the gate and the drain or source can also be checked by using the DMM in the |
diode mode. When the gate is positively biased, the room temperature diode drops‘ VGD
and Vgg are ~ 0.7 V. At 77 K, typical diode drops Vgp and Vgg are ~ 1.0 V. Thus, the
DMM used in the diode mode can provide a measurement of the JFET temperature. The
time counstant of the thermal link between the JFET and the cold plate can be determined by
monitoring Vgp(t) or Vgs(t) as the JFET package is cooled from room temperature to 77

K. For the JFET package described above, the time constant is 20 - 30 minutes.

A.3 Low noise preamplifier circuit

| In Figure A.8 we present an extremely low noise room temperature preamplifier
circuit which uses the NJ903L JFET. The gain of this preamplifier is determined by the
ratio of the resistors Ra and Rg, and can be derived by the following argument. The
feedback from the op-amp works to drive the difference in drain voltages (Vp; - Vbl) to
zero. This quantity is proportional to the difference in gate voltages (Vgz - Vi), which is
in turn equal to the difference in the source voltages (Vs2 - V;). The op-amp can exactly
compensate for the voltage differénce between the two sources and hence between the two
drains by applying an output current I, across the resistor Rg which produces a voltage

drop [oRg = (Vs - Vsz). The output voltage of the preamplifier is
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Fig.A.8 Circuit diagram for a low noise voltage preamplifier using the NJ903L JFET.
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Vo -V
Vou =Io (@Ra+ Rp) = USL=VYS2) (5p 4 Ry .

Rg ‘ (A6)
Since (Vsy - Vs2) = (Vg - Vga), the gain is
Vow . 2Ra .
AV, Rs (A

For the values of R4 and Rp given in Figure A.8, the predicted gain is 396 Q compared to
thg measured value of 401 Q.

The value of the resistor Ry is selected so that the current drawn through Ry, [5 =
Vs/Ra, is small compared to the Fotal current through each JFET, I = 1.3V/2R; = 3.6 mA.
The resistor Rg is selected so that its voltage noise will be comparable to or less than the
voltage noise éf the NJ9O3L dual JFET. Due to its large gate width of 903 um, the
NJ903L JFET has an extremely low voltage noise of ~ 0.7 nV/VHz for an operating current
of 3.6 mA. Since a 10  resistor has a room température Johnson noise of 0.4 nV/VHz,
the resistor Rg cannot be much larger than 10 Q before it begins to dominate the voltage
noise of the preamplifier circuit. For the selected value Rg = 22 Q corresponding to a
Johnson noise 6f 0.6 nVNHz, we can estimate the total preamplifier voltage noise referred

to the input:

eninput) = V 2e,2(JFET) + e,2(22 Q) = 1.15 nVAHz. (A.8)
| The estimated voltage noise is in good agreement with the measured white noise level of
1.2 nV/Hz. The frequelncy-dependence of the voltage noise is shown in Figure A.9.

The voltage noise of this circuit remains below 3 nV/VHZ at frequencies down to
0.5 Hz. This exceptionally low noise at low frequencies was achieved by using an
unorthodox technique to assemble the preamplifier .circuit. We found that when we used
solder connections to form electrical contacts, the 1/f knee was always greater than a few
Hz and sometimes extended above 20 Hz. ‘We postulate that the excess low frequency
noise that we observe when electrical connections are made by soldering is due to damage

to the internal contacts of the resistors, JFET, and op-amp caused by the high
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Fig.A.9 Measured voltage noise as a function of frequency of the pre-amplifier shown in
Figure A.8. '

temperatures. However, we found that when the circuit was assembled in ten minutes on a
standard RadioShack breadboard, the 1/f knee was reproducibly near or below 1 Hz and

the noise performance shown in Figure A.9 was easily obtained. Because breadboards are |
rumored to cause excess noise, before insertion into the breadboard all wires were gently
scraped with a razor blade and cleaned with a co[ton-tiﬁped swab dipped in alcohol in order
to remove any oxide layers which could contribute to excess low frequency noise. We
found that the noise performance of a preamplifier circuit assembled on a breadboard and
inserted into a metal box for shieldiné purposes was stable over a period of several years.
Because this preamplifier circuit has a large gain of ~ 400, the two sides of the dual JFET

must be matched in Vgg to within a few mV. When this cannot be achieved, small trim
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resistars must be added to the circuit as shown in Figure A.8. Because variable trimpots
tend to have large 1/f noise, variable trimpots should only be used to determine appropriate

values for the trim resistors which can then be permanently mounted into the circuit.

A.4 Calibration of a diode thermometer
The JFET temperature measurements described in Section A.l and Section A.2
were made using a 1N4448 diode thermometer. Any commercial diode can be used as a
ca_li'brated thermometer between 77 K and 300 K with a calibration error of only a few K.
| The current-voltage relationship of a forward-biased diode at temperatures above ~ 50 K
can be approximated by » |
I =1, exp (eV/KT), : (A.9)
where I, depends weakly on temperature.
When a constant current Ig is applied across a diode, the resulting \r/oltage drop can -
be measured at room temperature (T = 293 K) and at liquid nitrogen temperature (T = 77
K)I. The 77 K measufement can be performed in minutes by dipping the sample into a
contained filled with LN;. The diode can then be used as a thermometer over the

temperature range 77 K < T < 300 K by applying Ig across the diode and measuring the

resulting voltage drop V. The temperature T can be calculated from VT using the equation

B TD (vr- Vi)

T=77+
(V293 - V77) (A.7)

where V293 and V77 refer to the measured voltage drops at 293 K and 77 K, respectively.
In Figure A.10, we plot VT as a function of temperature for a typical 1N4448 diode

between 50 K and 300 K. VT was measured for a constant current Ig = 10 LA across the
diode. The data are very well fit by a straight line, justifying the use of Equation A.9 to

determine the diode temperature.
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Fig.A.10 Measured temperature dependence of the voltage drop across a 1N4448 diode
for a constant bias current Ig = 10 pA. The data are extremely well fit by a straight line.
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Appendix B

Details of numerical optimization program

B.1 Instructions for using the numerical optimization program.

As described in Section 5.4, the numerical optimization program we have developed

requires the user to specify eleven bolometer parameters in a text file called a "configuration

file". The eleven parameters are listed below, along with the prompt given by the

computer:

Bolometer Parameter

B, the temperature exponent of G
Q. the background optical power
To, the heat sink temperafure

A, related to the slope of In R vs. TN
n, the temperature exponent of In R
Po, the resistivity parameter

d, the distance between electrodes
Lo, defined by L =Ly/Tm

m, the temperature exponent of L
en, the amplifier voltage noise

in, the amplifier current noise

Prompt
Beta(1<=Beta<=3)

'Opticall.oading(nW)

BaseTemperature(K)

Delta(K)

n(.25,.5,1.0)

rho(ohm-cm)
BolometerThickness(microns) v
A(Angstroms*K”m)

m(0,.25,.5,1)
AmpVoltageNoise(nV/Sqrt(Hz))
AmpCurrentNoise(le-16A/Sqrt(Hz))

When electrical nonlinearities are neglected, the user should specify Lo =0 and m=0.

In addition to the bolometer parameters listed above, the following three parameters

must either be specified by the user or defined as a variable for optimization:

Bolometer Parameter -

R, the resistance parameter: Ry = pod/A
Go, thermal conductance parameter in W/K

0, the ratio of Tpejo to To

Prompt
R_o(ohm)

G_o
Phi



When the user wishes to optimize one of the above parameters, rather than specifying a

numerical value for Ry, Go, or ¢ the user must specify the letter "o". In addition the user

must specify whether the Davidon-Fletcher Powell minimization method ("DFPMIN") or

the downhill simplex minimization method ("AMOEBA") is to be used.

The following is an actual configuration file named "NTD17" for an 85 mK bolometer

with an optical loading of 40 pW. The bolometer pafameters are typical of NTD-17. The

chip size is fixed at (240 um)3. Therefore, R, = pod/A is a user-specified parameter equal

to 7.5 Q. The "o" after "G_o" and "Phi" indicates that Gy and ¢ are variables to be

optimized.

Configuration file "NTD17"

Beta(1<=Beta<=3)
OpticalLoading(nW)
BaseTemperature(K)

Delta(K)

n(.25,.5,1.0)

rho(ohm-cm)
BolometerThickness(microns)
A(Angstroms*K”m)
m(0,.25,.5,1)
AmpVoltageNoise(nV/Sqrt(Hz))

AmpCurrentNoise(1e-16A/Sqrt(Hz))

R_o(ohm)
G_o

Phi
OutputFile
Method

2.0

0.040
0.085
21.2

0.5

0.18

240

450

0.5

3

1

7.5

)

o)
NTD17out
AMOEBA

The user can run the bolometer optimization program for the above configuration file

using the command

>>bolo NTD17
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The following is the actual text file "NTD17out" created by running the numerical

optimization program with the configuration file "NTD17".

Bolometer Optimization Program output file "NTD17out"

Total NEP (W/sqrt(Hz)) : : 6.235278 e-17
Amplifier voltage noise contribution (W/sqrt(Hz))  3.414448 e-17
Amplifier current noise contribution (W/sqrt(Hz))  2.265353 e-18

Johnson noise contribution (W/sqrt(Hz)) 4.325453 e-17

- Thermal noise contribution (W/sqrt(Hz)) 3.799817 e-17
R_o (ohms) , 7.500000 e+00
G_o (W/K*(beta+1)) 9.170009 e-08
T/T_o ' 1.546572 e+00
Responsivity S (V/W)  -8.786194 e+07
Bolometer resistance R (ohms) 1.990383 e+06
Average thermal conductance G (W/K) 1.090630 e-09
Bias current I.(amps) 2.315242 e-09
Bolometer thickness (microns) ' 2.400000 e+02

B.2 Constants and partial derivatives used in the Davidon-Fletcher-Powell
algorithm

The numerical optimization program described in Chapter 5 allows the user to select
between two distinct optimization routines to minimize the NEP of an infrared bolometer.
The first optimization routine uses a variable metric method called the Davidon-Fletcher-
Powell (DFP) algorithm [Press et al., 1990] to minimize the NEP. The DFP algorithm
requires derivative calculations to locate the optimum values of Ry, Go, and '¢. The
following are the constants and partial derivatives used in the Davidon-Fletcher-Powell
algorithm. Note that when electrical nonlinearities are neglected, L, = 0 and consequently

all terms which are multiplied by B are equal to zero.
B.2.1 Constants
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