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Abstract

Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention 

because they represent one of the only radiographically identifiable precursors of invasive 

pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia 

and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the 

immune system in the progression of IPMNs is unclear, but understanding its role could reveal 

the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression 

or treat invasive disease. The available evidence supports a shift in the immune composition 

of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion 

of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose 

the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. 

Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its 

microbiome.

Pollini et al. Page 2

Lancet Gastroenterol Hepatol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are the most common 

pancreatic cystic neoplasm.1 The recognised prevalence of these neoplasms in the 

general population has increased secondary to the widespread use of high-quality 

cross-sectional abdominal imaging.2 Together with pancreatic intraepithelial neoplasms 

(PanINs), mucinous cystic neoplasms, and rare relations of IPMNs such as intraductal 

tubulopapillary neoplasms,3 IPMNs are the only known precursors of invasive pancreatic 

ductal adenocarcinoma.4,5 However, unlike PanINs, IPMNs are radiographically identifiable, 

which means they are an ideal target for early diagnosis and intervention.6 Because most 

IPMNs are at low risk of malignant transformation and can be safely surveilled, identifying 

the subset of lesions at high risk of malignant transformation remains one of the challenges 

of this field.7,8

The progression of IPMNs from low-grade to high-grade dysplasia is associated with a 

measurable inflammatory response. With progressive amounts of dysplasia, the tumour 

microenvironment shows an increase in the concentration of prostaglandins and cyst fluid 

cytokines, which is indicative of a Th1 and Th2 immunological response.9,10 Thus, it could 

be hypothesised that evaluation and characterisation of the immune response to IPMNs 

could allow for early diagnosis, and potentially enhance treatments to halt progression or 

treat invasive disease. Pancreatic ductal adenocarcinomas are traditionally considered cold 

tumours (ie, they do not provoke a strong immunological response) that are microsatellite 

stable, checkpoint blockade resistant, contain a paucity of actionable mutations or tumour-

associated antigens, and have a low mutational burden.11 Even less is known about the 

immunogenicity of IPMNs. Regardless, patients with invasive IPMNs are treated with the 

same clinical paradigms and agents as patients with pancreatic ductal adenocarcinomas. 

Therefore, an understanding of the immune response to neoplastic progression in IPMNs is 

crucial and remains to be fully elucidated.

PanINs are characterised by an immunosuppressive environment including myeloid-derived 

suppressor cells (MDSCs), regulatory T cells, tumour-associated macrophages (TAMs), and 

γ-T cells. MDSCs represent 1·9% of CD45+ cells in pancreatic intraepithelial neoplasm 

lesions, a result that is similar to what is reported for non-invasive IPMNs.12 In particular, 

regulatory T cells promote tumour growth with an associated absence of cytotoxic CD8+ T 

cell activation via direct interaction with CD11c+ dendritic cells.13 Furthermore, regulatory 

T cells are found in similar numbers in IPMNs and PanINs. Different to PanINs, IPMNs 

have a unique subclass of type 2 dendritic myeloid cells that are present in both low-grade 

dysplastic IPMNs and high-grade dysplastic IPMNs. Perhaps the largest difference in the 

tumour immune microenvironment between IPMNs and PanINs are in the populations of 

cytotoxic CD8+ T cells, activated CD4+ T cells, and fibroblasts. Whereas pancreatic ductal 

adenocarcinomas preceded by PanINs show a loss of CD8+ T cells at early stages, IPMNs 

have a high proportion of cytotoxic CD8+ T cells in low grade lesions compared with 

more advanced lesions. IPMNs with low-grade dysplasia also have activated CD4+ T cells 

that persist through increasing amounts of dysplasia, although differences in the spatial 

distribution of these cells becomes more evident as the condition progresses. Furthermore, 

PanINs are characterised by restraining cancer-associated fibroblasts instead of the cancer-
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promoting cancer-associated fibroblasts (cancer-associated myofibroblasts in particular) that 

characterise IPMNs.14

During the progression from IPMNs with low-grade dysplasia, to IPMNs with high-

grade dysplasia, and then to invasive carcinoma, a shift towards immune tolerance in 

the tumour microenvironment is evident (figure 1). Whether this immunological change 

results in an escape of tumour recognition or an enhancement of an immunosuppressive 

tumour microenvironment15 remains to be determined. However, there is a need to 

better characterise the tumour immune microenvironment of IPMNs for diagnostic and 

therapeutic implications. In this Review, we discuss the changes to the tumour immune 

microenvironment and microbiome of IPMNs that could contribute to the neoplastic 

progression of IPMNs.

The pro-inflammatory tumour immune microenvironment of IPMNs

Polyclonality and signalling pathways

Few transcriptomic studies have been done on IPMNs. Bernard and colleagues16 reported 

the results of single-cell RNA sequencing of a small number of IPMNs with low-grade 

dysplasia, IPMNs with high-grade dysplasia, and IPMNs with invasive carcinoma. At 

the single-cell transcript level, there appeared to be an overlap of phenotypes between 

IPMNs with different amounts of dysplasia. Lesions with histological low-grade dysplasia 

revealed gene clusters with different proliferative states. Lesions with histological low-grade 

dysplasia also had clusters of cells with the same gene expression profile as lesions with 

high-grade dysplasia or invasive cancer, suggesting the presence of tumour heterogeneity 

even in low-grade dysplastic tumours. This finding supports other studies that show a 

polyclonal origin of IPMNs and suggest that there are multiple pathways to invasive 

disease.17 Nonetheless, the study by Bernard and colleagues16 did crucially reveal distinct 

patterns of T-cell responses that were linked to the grade of dysplasia. A pro-inflammatory 

immune signature was clearly apparent in IPMNs with low-grade dysplasia, which was 

composed of cytotoxic T cells, activated T-helper cells, and dendritic cells. This finding is 

consistent with analyses revealing increased proinflammatory markers IL-1β, IL-5, and IL-8 

in the cyst fluid of dysplastic IPMNs.9 However, instead of increasing, the populations of T 

cells decreased in a stepwise manner during progressive dysplasia, suggesting a decrease in 

the immune response or a tumour escape mechanism during tumour progression.

The pro-inflammatory environment of IPMNs with low-grade dysplasia included clustered 

expression of tumour suppressor genes that also decreased with disease progression, 

including a progressive loss of tumour suppressor gene RAP1GAP expression.16 RAP1GAP 
suppresses invasion and metastases, and the expression of RAP1GAP was increased in 

neoplasms with low-grade dysplasia but downregulated in neoplasms with high-grade 

dysplasia. The downregulation of RAP1GAP correlated with enrichment of G2/M phase 

and S phase tumour cells in more advanced disease, and G1/S phase regulation specifically 

in IPMNs with high-grade dysplasia. Furthermore, cell pathway analysis demonstrated 

upregulated signalling of integrins, small GTPases, Wnt–β-catenin, axonal guidance, 

and apoptosis genes in IPMNs with high-grade dysplasia. IPMNs with an associated 

invasive carcinoma contained additional enrichment of genes involved with the DNA 
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damage response, TGF-β1 signalling, and SAPK and JNK signalling. Taken together, 

single-cell RNA sequencing analyses support that progressive dysplasia is associated with 

specific patterns of inflammation, decreased T-cell trafficking, cell-cycle disinhibition, 

apoptosis, oncogene expression, decreased tumour suppressor gene expression, and 

enhanced proliferative signalling pathways. Each of these characteristics could be targets 

for intervention to halt the progression of IPMNs or to treat invasion.

Tumour-infiltrating lymphocytes and tumour architecture

The signalling events associated with dysplasia are also reflected in the changing 

immunocyte population during progression to invasive cancer. Total CD45+ leukocytes 

and CD3+ T cells were increased in IPMNs of all grades compared with adjacent normal 

pancreatic parenchyma.15 A higher proportion of cytotoxic CD8+ T cells and CD4+ T 

cells were observed in IPMNs with low-grade dysplasia than in IPMNs with high-grade 

dysplasia or neoplasms with an associated invasive carcinoma.16,18 The tumour immune 

microenvironment of low-grade dysplasia areas in IPMNs that progressed to high-grade 

dysplasia resembled the tumour immune microenvironment of neoplasms with only high-

grade dysplasia, underscoring the fact that an attenuated immune surveillance occurs at 

an early stage of progression.18 In fact, apart from regulatory T-cells, all T-cell subset 

densities decreased from IPMNs with low-grade dysplasia to neoplasms with invasive 

cancer. A principal component analysis of only the number of tumour-infiltrating T-cells 

and macrophages revealed distinctive clustering that differentiated non-invasive IPMNs 

from those associated with invasive carcinoma. This distinctive clustering could be 

reflective of progression enabled by immune escape and highlights that the tumour immune 

microenvironment changes with the degree of dysplasia and is unique to the progression of 

IPMNs.

As is the case for other neoplasms, the location, type, and density of immunocytes in the 

tumour microenvironment are crucial to understanding the immune response that occurs in 

IPMNs. Roth and colleagues19 assessed the spatial distribution of immune cell populations 

during progression from IPMNs with low-grade dysplasia to those associated with invasive 

carcinoma. Utilising immunohistochemistry, T cells were mapped to the juxtatumoral 

stroma (approximately 150 μm surrounding the neoplastic epithelium), peritumoral stroma 

(surrounding the juxtatumoral stroma), tertiary lymphoid structures, and normal adjacent 

pancreatic tissue. In low-grade lesions, the most abundant T cells were CD3+, Th1, and 

Th2 cells. The CD4+ T cells, namely Th1, Th2, Th7, and Th22 helper T cells, infiltrated 

low-grade lesions, but then decreased during progression of the lesion, particularly in the 

juxtatumoral stroma. Similarly, in non-invasive IPMNs there was a significantly higher 

proportion of CD8+ T cells in the juxtatumoral space than in neoplasms associated with 

invasive disease, whereas the number of CD8+ cells in the peritumoral stroma did not 

change. Moreover, all the investigated subtypes of T cells except regulatory T cells, Th9 

cells, and Th22 cells decreased as IPMNs progressed from low-grade to invasive pancreatic 

cancer.

Tertiary lymphoid structures were identified in IPMNs but not in normal pancreatic tissue. 

Within these tertiary lymphoid structures, similar to within the tumours themselves, T cells 
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dominated and Th2 helper T cells were replaced in prominence by regulatory T cells during 

progression to invasive disease.

Furthermore, transcriptome analysis was performed specifically on the tumour stroma, 

identifying seven unique stromal clusters associated with the amount of dysplasia, including 

cancer-associated myofibroblasts and inflammatory cancer-associated fibroblasts.16 The 

cancer-associated myofibroblasts were more common in IPMNs with low-grade dysplasia 

and high-grade dysplasia than in IPMNs associated with invasive carcinoma, and were 

identified by a relatively decreased expression of CXCL12, ACTA2, and COL3A1 
compared with IPMNs associated with invasive carcinoma. Inflammatory cancer-associated 

fibroblasts were only present in pancreatic ductal adenocarcinomas and were identified 

by increased expression of FAP, ACTA2, COL3A1, and CXCL12. Different to IPMNs, 

the microenvironment of PanINs is characterised by cancer-restraining cancer-associated 

fibroblasts. These cells express high concentrations of meflin that binds to BMP-7 and 

counteracts TGF-β-induced fibrosis.14

Taken together, immunophenotyping of the tumour microenvironment of IPMNs has helped 

identify differences based on the degree of dysplasia. These data support that IPMNs 

drive tumour-infiltrating lymphocytes, and that although the total number of T cells in 

the tumour microenvironment does not change considerably during neoplastic progression, 

the phenotype, localisation, and prevalence of T-cell subtypes changes substantially during 

progression to invasive carcinoma. IPMNs with high-grade dysplasia and those with 

invasive carcinoma appear to be associated with decreased CD8+ T-cell infiltration into 

the juxtatumoral space and increased infiltration of accompanying regulatory T cells 

compared with neoplasms with low-grade dysplasia, which possibly reflects immune escape. 

Tertiary lymphoid structures appear only in invasive disease. In invasive disease, the stroma 

also changes in character, revealing expression of inflammatory fibroblasts that were not 

present in non-invasive IPMNs. This observation is consistent with findings of increased 

inflammatory cancer-associated fibroblasts in traditional pancreatic cancer. It appears that 

non-invasive IPMNs are associated with a considerable T-cell driven immune response that 

is decreased and replaced by an inflammatory stroma when the lesions progress into invasive 

carcinomas.

The immunosuppressive tumour microenvironment of IPMNs

Although there are a small minority of pancreatic ductal adenocarcinomas that are 

microsatellite unstable or that attract a non-exhausted immune infiltrate,20,21 it is accepted 

that the majority of pancreatic ductal adenocarcinomas are generally non-immunogenic. 

The tumours are characterised by a predominance of immunosuppressive cells, including 

regulatory T cells and MDSCs, and a low effector T-cell infiltrate.22,23 Similar findings have 

been observed in IPMNs, but with some important differences that give clues to the unique 

pattern of invasion.

Regulatory T cells are a subset of CD4+ T cells that modulate the immune system by 

maintaining self-tolerance and preventing autoimmune disease.24 Initially characterised by 

a high expression of CD25, regulatory T cells were subsequently defined by the expression 
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of FOXP3, which regulates the conversion of naive CD4+ CD25− T cells into CD4+ CD25+ 

regulatory T cells with inhibitory function.25 The presence of these regulatory T cells in 

several cancer types has been associated with immunosuppressive activity that inhibits the 

anti-tumour immune response.26 Nonetheless, the precise role that regulatory T cells play 

in the tumour microenvironment, including in IPMNs, remains unclear. In pancreatic ductal 

adenocarcinoma, increased regulatory T-cell densities correlate with the presence of distant 

metastasis, advanced tumour stage, and high tumour grade.27 However, the inhibition of 

regulatory T cells has not resulted in tumour regression in animal models. In a pancreatic 

intraepithelial neoplasia mouse model, Zhang and colleagues28 showed that the depletion 

of regulatory T cells actually caused an acceleration to progression to invasive cancer. This 

paradoxical phenomenon might be explained by the fact that the inhibition of regulatory 

T cells was associated with the loss of tumour-restraining fibroblasts and an increase in 

pro-tumour chemokines including CCL3, CCL6, and CCL8.

Although effort has gone into studying the immunosuppressive environment involved 

in the progression of PanINs, there has been a comparative paucity of research on 

the progression of IPMNs. Early studies of resected IPMNs revealed that, similar to 

pancreatic ductal adenocarcinoma, the concentration of CD4+CD25+FOXP3+ regulatory 

T cells were associated with progression of IPMNs, with a significant increase of these 

cells when invasive IPMNs develop.27,29 These findings were confirmed in a larger study 

of resected IPMNs from 58 patients,19 where FOXP3+ regulatory T cells increased as 

IPMNs progressed to invasive disease. Furthermore, FOXP3+ regulatory T cells constituted 

a proportionally larger component of the T-cell repertoire in invasive tumours than in non-

invasive tumours. The regulatory T cells were found to be the predominant T-cell subset 

in the juxtatumoural area of intraductal papillary mucinous neoplasm-associated invasive 

lesions. An additional retrospective study done on human samples confirmed these results, 

showing no increase in the density of FOXP3+ regulatory T cells between IPMNs with 

low-grade dysplasia and those with high-grade dysplasia.18 This result might imply that the 

immune suppression mediated by regulatory T cells is involved specifically in the transition 

between high-grade dysplasia and invasive cancer.

One of the possible factors related to the increased presence of regulatory T cells in 

progressive intraductal papillary mucinous neoplasm is IDO1, an en2yme that is correlated 

with the number of regulatory T cells in the peripheral blood of patients with IPMNs with 

associated invasive carcinoma.30 IDO1 expression in the tumour also correlates with the 

prevalence of regulatory T cells, and appears to be one of the late-stage phenomena of 

intraductal papillary mucinous neoplasm carcinogenesis.29 IDO1 is an enzyme involved in 

tryptophan metabolism. Tryptophan metabolism has been associated with the development 

of tumour tolerance and activates and supports regulatory T-cell function. Both the reduction 

in the tryptophan concentration and the immunosuppressive effect of tryptophan metabolites 

contribute to the effects of IDO1. In IPMNs, IDO1 is thought to be secreted by dendritic 

cells, possibly through the activation of the Notch signalling pathway through Jagged1 

interaction,31 leading to possible targets for therapeutic intraductal papillary mucinous 

neoplasm intervention.32,33
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In addition to regulatory T cells, myeloid-derived suppressor cells are immunosuppressive 

cells that could have a role in the progression of IPMNs. Myeloid-derived suppressor 

cells belong to a heterogeneous group of immature myeloid cells that are undergoing 

evolving characterisation. These cells appear to consist of both granulocytic and monocytic 

phenotypes. Myeloid-derived suppressor cells promote carcinogenesis in several ways: 

by permitting immune evasion through induction of natural killer and T-cell anergy; 

by remodelling the tumour microenvironment to promote tumour growth; by creating 

and establishing a metastatic niche for cancer dissemination; by inducing epithelial 

to mesenchymal transition and mesenchymal to epithelial transition; by promoting 

angiogenesis; and by improving tumour cell survival through immunosuppressive 

activities.34 In particular, myeloid-derived suppressor cells are able to suppress the anti-

tumour immune response directly, through PD1 expression,35 and indirectly, through 

the release of reactive oxygen species.36 Furthermore, myeloid-derived suppressor cells 

can differentiate into M2 macrophages, which contribute to immunosuppression through 

the release of chemokines that include IL-10 and TGF-β.37 In IPMNs, myeloid-derived 

suppressor cells are present in lesions with high-grade dysplasia with increasing density. In 

contrast, in lesions with low-grade dysplasia, myeloid-derived suppressor cells are almost 

absent.16,38 The macrophages accumulate in the peritumoural stroma of these neoplasms 

and infiltrate in areas surrounding neoplastic cells, potentially suppressing the anti-tumour 

immune response. There is also a considerably enriched proportion of myeloid-derived 

suppressor cells in the stromal component of invasive IPMNs, specifically pro-tumoural 

cells of the polymorphonucleate phenotype, which represent 51% of single stromal cells 

in invasive carcinomas compared with 2% in neoplasms with low-grade dysplasia and 

4% in neoplasms with high-grade dysplasia. Similarly, myeloid-derived suppressor cells 

represented 2% of CD45+ cells in a mouse model of PanINs.12 Alternatively, conventional 

type 2 dendritic cells appear in greater proportion in neoplasms with low-grade dysplasia 

or high-grade dysplasia than in those associated with invasive carcinoma.26 These myeloid 

cells stimulate T cells and mediate the cross presentation of tumour antigens. The fact 

that a pro-inflammatory myeloid subpopulation dominates pre-invasive lesions and are 

proportionally replaced by pro-tumoral myeloid-derived suppressor cells in invasive IPMNs 

further supports that an anti-tumour immune response within pre-neoplastic lesions is 

overcome during invasion.

In this context, the pivotal role that PGE2 plays in myeloid-derived suppressor cell 

expansion and maturation is particularly intriguing because PGE2 is associated with 

increased amount of intraductal papillary mucinous neoplasm dysplasia.10,39,40 PGE2 alone 

is sufficient to induce differentiation of dendritic cells into the mesenchymal phenotype 

of myeloid-derived suppressor cells.41 Furthermore, several signals that lead to myeloid-

derived suppressor cells expansion also induce COX2 activity, leading to a positive feedback 

loop that stabilises the suppressive functions of myeloid-derived suppressor cells. The 

production of IDO1 by myeloid-derived suppressor cells also induces regulatory T cells 

and points to a crucial role of PGE2 in the induction of an immunosuppressive tumour 

microenvironment through the combined activity of both cell populations.42 The role of 

PGE2 is consistent with our earlier reports of high-risk IPMNs being associated with higher 

expression of PTGES2, an enzyme that catalyses the conversion of PGH2 to PGE2, than 
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low-risk IPMNs.10,43 Combined, this evidence could explain the reported higher prevalence 

of myeloid-derived suppressor cells in IPMNs with high-grade dysplasia than in those with 

low-grade dysplasia.

There is little research on PD-1 or PD-L1 expression in IPMNs. In a study by Shen and 

colleagues,44 the expression of PD-1 on peripheral CD8+ T cells was higher in pancreatic 

ductal adenocarcinomas than in IPMNs, perhaps indicative of increased T cell exhaustion. 

This year, Hernandez and colleagues18 reported an increase in the stromal density of PD-

L1-expressing macrophages in isolated IPMNs with low-grade dysplasia compared with 

those with high-grade dysplasia, but no epithelial expression of PD-L1 was observed. 

Higher grade of dysplasia in IPMNs has been associated with HHLA2, a protein of the 

B7 family analogous to PD-L1, which inhibits CD4+ and CD8+ T cells.45,46 Similar to PD-1 

or PD-L1, HHLA2 could be a useful target for checkpoint inhibitor immunotherapy,47–49 

although more evidence is needed to fully understand its mechanism. In addition, single-cell 

RNA sequencing analysis of IPMNs revealed a unique subclass of myeloid cells in both 

neoplasms with low-grade dysplasia and those with high-grade dysplasia.16 These cells 

are characterised by CD1c, THBD, and FCER1a. If and how these cells contribute to the 

progression of IPMNs remains to be defined, but the fact that they are specific to these 

neoplasms implies a possible therapeutic target.

The potential role of immunotherapy in IPMNs

In the past decade, unprecedented responses to immune checkpoint inhibitor immunotherapy 

have been observed, particularly for the treatment of patients with melanoma and lung 

cancer.49–52 With regards to pancreatic cancer, only about 1% of patients will receive 

adjuvant immunotherapy after resection, primarily patients with microsatellite unstable 

cancers. In these highly selected patients, adjuvant immunotherapy has shown a survival 

advantage.53,54 There are several clinical trials assessing the effects of immune checkpoint 

inhibitor immunotherapy alone or in combination with other chemotherapeutics for the 

treatment of pancreatic cancer. However, none of these trials have reported a survival benefit 

in non-familial or microsatellite stable disease.55 In fact, not all patients respond in a similar 

way to immune checkpoint inhibitor immunotherapy, highlighting the need to select patients 

that will benefit from specific therapies.56–58 In part, these differences in response could 

be associated with the extent of tumour mutational burden (TMB), supporting the notion 

that tumours that develop a larger spectrum of neoantigens than other tumours trigger a 

more robust immune response once immune checkpoints are blocked.59 The TMB is higher 

in cancers with mismatch repair deficiency than in proficient cancers, and as such, the 

response to PD-1 or PD-L1 blockade is increased in patients with microsatellite unstable 

pancreatic cancer. Unfortunately, mismatch repair deficiency represents an extremely small 

proportion of pancreatic ductal adenocarcinomas.60,61 However, the presence of cytotoxic 

CD8+ T cells, activated CD4+ T cells, and dendritic cells in the microenvironment of IPMNs 

is distinct from that of PanINs, which means there could be biological evidence to support 

the ability to generate an anti-tumour immune response to either inhibit progression or treat 

cancers that arise in association with IPMNs.
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Another possibility to increase the immune response in pancreatic cancer could come from 

the combination of vaccination against tumour-associated antigens and concomitant use of 

immune checkpoint inhibitor immunotherapy. This approach has been used for pancreatic 

ductal adenocarcinoma, by combining a granulocyte-macrophage colony-stimulating 

factor-secreting vaccine (GVAX) with immune checkpoint inhibitor immunotherapy. The 

combination increased the immune response of patients, but it did not improve survival of 

patients with metastatic disease compared with FOLFIRINOX chemotherapy (leucovorin, 

fluorouracil, irinotecan, and oxaliplatin), which is the current standard of care for pancreatic 

cancer.62–64 Potential tumour-associated antigens in IPMN include unique MUC proteins, 

which are highly expressed by the neoplastic cells. The use of these proteins, particularly 

MUC1, to build cancer vaccines has gained popularity as an approach due to its 

overexpression in several adenocarcinomas, including pancreatic cancer.65,66 In general, 

MUC1 is thought to have immunogenicity and carcinomas that express the hypoglycosylated 

form of MUC1 tend to have a more aggressive behaviour than carcinomas that express the 

fully glycosylated form of MUC1.3,67–71 Different subsets of IPMNs have shown different 

MUC profiles.3,67–70 For example, fully glycosylated MUC1 is expressed more abundantly 

in the subset of IPMNs that are characterised by a gastropancreatobiliary lineage,72 whereas 

the tumour-associated hypoglycosylated form of MUC1 has been associated with areas of 

high-grade dysplasia in IPMNs73 and with the presence of tumour-infiltrating neutrophils.74

MUC2 (also known as gel-forming MUC) is the hallmark of the indolent pathway of 

intestinal-type IPMNs and their invasive product, colloid carcinomas, both of which have 

features of intestinal differentiation, which is also evidenced by CDX2 expression.75 

Invasive colloid carcinomas have been reported to have better prognosis than conventional 

ductal adenocarcinomas.76 It is plausible that part of this biological difference could 

be attributable to the different immunogenicity of these different pathways, which is 

presumably driven by MUC genes.68 It is this MUC2+ intestinal group that lead to excessive 

MUC production and secondary obstructive changes in the pancreas that could also induce a 

secondary inflammatory cascade. Colloid carcinomas of the pancreas, which derive from the 

MUC2+ intestinal pathway, are also often associated with an inflammatory response. All of 

these factors alter the tumour microenvironment and warrant further studies to establish their 

biological importance. Furthermore, MUC4, which is absent in the normal pancreas, has 

been found to be expressed in IPMNs with high-grade dysplasia.10,77 The role of MUC4 in 

cancer progression in several epithelial cancers has been described, including in pancreatic 

ductal adenocarcinomas and IPMNs.78,79 Specifically, MUC4 has been shown to promote 

cell-mediated apoptosis of cytotoxic T cells in pancreatic ductal adenocarcinomas. For these 

reasons, MUC4 could provide a better target for a cancer vaccine than MUC1.80,81 The fact 

that both MUC2 and MUC4 are overexpressed in the cyst fluid of high-risk IPMNs points to 

their potential use for targeted immunotherapy.77

Currently, a multicentre, randomised, placebo-controlled phase 2 clinical trial assessing 

the effect using sulindac to inhibit COX on the progression of IPMNs is ongoing 

(NCT04207944). The study, targeting IPMNs considered at high-risk of progression, will 

assess the effect of 3 years of therapy on the rate of malignant progression. A similar 

approach has been used to prevent progression of colorectal cancer in the past. This 

approach was shown to be effective in reducing the number and size of colorectal adenomas; 
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however, concerns regarding the toxicity of sulindac have restricted its use for cancer 

prevention.82,83 Still, new emerging strategies to mitigate the adverse effects of sulindac 

might allow its use to prevent cancer progression if the drug is shown to be effective 

for IPMNs.84 In 2017, a cohort study of 448 patients with IPMNs evaluated the effect 

of low-dose aspirin on the progression of IPMNs to invasive disease. During a median 

follow-up of over 5 years, there was no difference in progression to invasive cancer; 

however, there was a decrease in worsening main duct dilation compared with patients 

who were not given low-dose aspirin.85 These approaches broadly affect the inflammatory 

mediators that are associated with IPMNs. However, more nuanced and targeted therapies 

are clearly needed, which is becoming more possible through phenotypic analysis of the 

tumour immune microenvironment.

The role of the microbiome in the progression of IPMNs

It has become increasingly clear that the microbiome can play a crucial role in the 

development of cancer, cancer progression, immunogenicity, and response to specific 

immune therapies. Therefore, the composition and the role of the microbiome in the normal 

pancreas and in pancreatic diseases, including cancer, have become an important topic of 

investigation. Initially the pancreas was thought to be sterile, with no bacterial colonisation 

in normal conditions. However, several studies have now reported the presence of different 

bacteria in the normal pancreas, but there is no agreement on the typical taxa that compose 

this microbiome.86 It should be noted that the definition of normal pancreas varied across 

studies. Some authors included samples from pancreases with non-malignant aetiologies 

(eg, benign cysts) in their analyses, whereas other authors analysed samples from organ 

donors or cadavers. Furthermore, no agreement is present on the mechanism by which the 

pancreas is colonised by microbes that are present in the gastrointestinal tract. On one 

hand, reflux through the pancreatic duct has been suggested as an aetiology in a genetically 

engineered mouse model, but not in wild-type C57BL/687 or germ-free 129SvEv88 mice. 

On the other hand, translocation from the gut has been implicated with inconsistent results 

in multiple preclinical models.88,89 Clearly, the flora that constitute the microbiome should 

be determined, and current studies do not support a specific source for the colonisation. 

This source will need to be further evaluated to advance our current understanding of the 

microbiome and to identify patients with similar microbial diversity.

The composition and role of the microbiome, specifically in IPMNs, has been investigated in 

relation to pancreatic ductal adenocarcinoma and healthy controls. In a pilot study, the oral 

microbiota of patients with pancreatic ductal adenocarcinomas (n=40), patients with IPMNs 

(n=39), and healthy controls (n=58) were evaluated. This study but did not reveal any 

difference in α-diversity (ie, a metric that summarises the biological richness, or the number 

of different taxa, of each sample) between the groups. However, the relative abundance of 

specific taxa was different between patients with pancreatic ductal adenocarcinomas and 

those with IPMNs, with patients with pancreatic ductal adenocarcinomas having a higher 

proportion of Firmicutes. Although both patients with IPMNs with low-grade dysplasia 

(n=12, 37·5%) and those with high-grade dysplasia (20, 62·5%) were included in this 

study, the analysis did not focus on the differences that existed according to the degree 

of dysplasia, which will be crucial to understand differences in the progression towards 

Pollini et al. Page 11

Lancet Gastroenterol Hepatol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



invasive disease.90 This study and other similar reports could have diagnostic implications 

that will need to be further assessed in future studies.

When analysing the duodenal microbiome of patients with pancreatic ductal 

adenocarcinoma (n=74), a pancreatic cyst (n=98), or a normal pancreas (n=134), a decrease 

in α-diversity was observed in patients with pancreatic ductal adenocarcinomas compared 

with those with unclassified pancreatic cysts or normal pancreases.91 Furthermore, an 

increase in the relative abundance of Escherichia, Shigella, Enterococcus, Clostridium 
sensu stricto 1 and Bifidobacterium was observed in patients with pancreatic ductal 

adenocarcinomas compared with those with pancreatic cysts. No differences were observed 

in the relative abundance of specific taxa between patients with pancreatic cysts and those 

with normal pancreases.

Analysis of the cyst fluid microbiome of 105 patients with pancreatic cystic neoplasms 

also revealed that IPMNs with high-grade dysplasia were associated with an increase in 

bacterial DNA and IL-1β expression compared with non-IPMN cystic neoplasms.92,93 The 

positive association between bacterial DNA and IL-1β pointed to a possible role of the 

cyst microbiome in shaping the tumour immune microenvironment of the neoplasm. An 

investigation on the microbiome of the cyst fluid of IPMNs found that 29 patients that 

underwent preoperative invasive endoscopic procedures had a higher rate of bacterial growth 

than patients who did not undergo these procedures. The bacterial strains that were more 

commonly identified were Klebsiella spp, Enterococcus faecalis, and Enterobacter cloacae, 
with no difference found in the occurrence of these strains between neoplasms with low-

grade dysplasia and those with high-grade dysplasia.94 Similar to investigating the aetiology 

of pancreatic duct colonisation, the role that endoscopic interventions could play in changing 

the microbiome will need to be examined in the future, particularly if specific microbiomes 

are found to correlate with disease outcomes and malignant progression. Furthermore, 

three specific taxa were elevated in the oral microbiome of patients with an intraductal 

papillary mucinous neoplasm with high-grade dysplasia: Fusobacterium, Granulicatella and 

Serratia.92 Among these taxa, Fusobacterium nucleatum, as an oncobacterium, had already 

been reported in association with an increased development of colorectal cancer in an animal 

model.95 Antibiotic treatment with metronidazole was able to reduce Fusobacterium load 

and tumour growth in mice that had colorectal cancer xenografts.96 The characteristics of the 

microbiome of pancreatic cancer and IPMNs are summarised in figure 2.

The causal relationship between the progression of IPMNs and the microbiome is 

still debated. Chronic inflammation caused by bacterial infection has been associated 

with the upregulation of transcription factors associated with epithelial to mesenchymal 

transition in humans.97 Because this transition is known to occur in pancreatic cancer,98 

the contribution of the microbiome and the tumour microenvironment to epithelial to 

mesenchymal transition might offer an alternative strategy to identify patients at high 

risk of malignant transformation.99 In a pancreatic cancer mouse model, bacterial ablation 

with oral antibiotics was associated with a reduction in the development of preinvasive 

and invasive pancreatic adenocarcinoma compared with mice who were not given oral 

antibiotics. Consequently, when the pancreatic ductal adenocarcinoma KC model mice 

(bearing a KRASG12D mutation) were treated with oral antibiotic and then received gut 

Pollini et al. Page 12

Lancet Gastroenterol Hepatol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiome re-population with feces from mice with pancreatic ductal adenocarcinoma, an 

acceleration in tumour growth was observed that was similar to the growth seen before mice 

were treated with antibiotics.87 These results point to the relevance of the gut microbiome 

in the development and progression of pancreatic adenocarcinoma. All of these associations 

are important for the identification of bacterial signatures that could reflect the amount 

of dysplasia in IPMNs. Furthermore, these associations might be modifiable by using 

antibiotics as part of the treatment strategy. Clearly this is a burgeoning field of research 

and both preclinical and clinical research evaluating the microbiome are needed to advance 

our understanding and to identify potential diagnostic and therapeutic interventions.

Conclusions

The tumour immune microenvironment of IPMNs evolves during malignant progression 

in accordance with the paradigm of cancer immunoediting. A cytotoxic immune 

response rich in CD8+T cells and a paucity of suppressing immunocytes changes to an 

immunosuppressive environment when neoplasms progress from low-grade dysplasia to 

high-grade dysplasia, and then to invasive carcinoma. IPMNs with high-grade dysplasia 

or invasive carcinoma contain a predominantly immunosuppressive environment. This 

evidence suggests that therapies that support cytotoxic T cells could be ideal for IPMNs 

with low-risk disease, whereas treatments that target regulatory T cells, myeloid-derived 

suppressor cells, and inhibitory macrophages could play a role in reducing malignant 

progression and treating high-risk disease. In addition to the treatment of IPMNs with 

an associated invasive carcinoma, addressing the tumour immune microenvironment could, 

ideally, prevent the progression of IPMNs at high risk of malignant transformation. Clearly, 

further studies addressing the tumour immune microenvironment of pre-invasive lesions are 

needed, including assessment of main-duct disease compared with branch-duct disease.

One of the main obstacles toward a deeper understanding of the tumour immune 

microenvironment of IPMNs is the absence of a validated preclinical model, including 

organoids or syngeneic animal models that reliably recapitulate the progression towards 

invasive cancer with an intact immune system.100,101 Although validated organoids 

for IPMNs have been created, these organoids have been developed with the WENR 

method (ie, using Wnt, EGF, Noggin, and R-spondin signalling pathways) and thus do 

not have a stromal component that makes it challenging to study the tumour immune 

microenvironment. One solution to this problem would be to co-culture patient-specific 

immune components with the neoplastic epithelial cells102,103 or to use air–liquid interface 

organoids.104,105 Mouse models of IPMNs have also been developed.106–108 However, to 

date, murine IPMN cell lines that can be used in immunocompetent syngeneic murine 

models are yet to be realised.

Overall, in contrast to PanINs, there appear to be substantial changes in the tumour 

microenvironment during the progression of IPMNs. Furthermore, initial studies of the 

tumour immune microenvironment point towards the potential of using immunotherapeutic 

approaches to target IPMNs.
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Search strategy and selection criteria

A PubMed search to identify peer-reviewed articles in English was done from Jan 

1, 1993 to Jan 1, 2022. The search terms “IPMN”, “Intraductal Papillary Mucinous 

Neoplasm”, and “pancreatic cancer” were chosen (on the basis of the authors’ 

expertise within the field). These search terms were used in combination with the 

terms “immune microenvironment”, “immunotherapy”, “lymphocyte”, “MDSC”, “Treg”, 

“immune checkpoint inhibitors”, and “cancer vaccine”. All titles, abstracts, and reference 

lists from identified articles were assessed for relevance.
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Figure 1: 
Summary of immune cell and fibroblast populations during progression from low-grade 

dysplasia, to high-grade dysplasia, to invasive cancer in intraductal papillary mucinous 

neoplasms
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Figure 2: Summary of the oral, duodenal, and cyst fluid microbiome of intraductal papillary 
mucinous neoplasms
*Increased prevalence in patients with pancreatic ductal adenocarcinoma compared with 

patients with intraductal papillary mucinous neoplasm. †Increased prevalence in patients 

with intraductal papillary mucinous neoplasm with high-grade dysplasia compared with 

patients with neoplasms with low-grade dysplasia or invasive cancer.
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