
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Error Characterization, Channel Modeling and Coding for Flash
Memories

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Communication Theory and Systems)

by

Veeresh Taranalli

Committee in charge:

Professor Paul H. Siegel, Chair
Professor Young-Han Kim
Professor Laurence B. Milstein
Professor Steven Swanson
Professor Alexander Vardy

2017



Copyright

Veeresh Taranalli, 2017
All rights reserved.



The Dissertation of Veeresh Taranalli is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2017

iii



DEDICATION

To my parents.

iv



EPIGRAPH

An approximate answer to the right problem

is worth a good deal more than

an exact answer to an approximate problem.

—John Tukey

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Design and Structure of Flash Memories . . . . . . . . . . . . . . . . . . . 2
1.3 Error Mechanisms in Flash Memories . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Error Characterization and Inter-Cell Interference Mitigation for Multi-Level
Cell Flash Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Experimental Setup and Procedures . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Procedure for Program/Erase (P/E) Cycling Experiments . . . . . 11
2.2.3 Procedure for Data Retention Experiments . . . . . . . . . . . . . 12

2.3 Error Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Characterization of Bit and Cell Errors during P/E cycling . . . . 13
2.3.2 Characterization of Number of Bit Errors per ECC Frame . . . . . 15
2.3.3 Characterization of Errors due to Inter-Cell Interference . . . . . . 16
2.3.4 Characterization of Data Retention Errors . . . . . . . . . . . . . . 19

2.4 ICI Mitigation using Run-length Limited (RLL) Constrained Codes . . . . 21
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Channel Models for Multi-Level Cell Flash Memories . . . . . . . . . . . . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Candidate Discrete Memoryless Channel Models . . . . . . . . . . . . . . 29
3.4 The 2-Binary Asymmetric Channel (2-BAC) Model . . . . . . . . . . . . . 29
3.5 The 2-Beta-Binomial (2-BBM) Channel Model . . . . . . . . . . . . . . . 32

vi



3.6 Normal and Poisson Approximation Channel Models . . . . . . . . . . . . 37
3.7 Simulation Results and Evaluation of Channel Models . . . . . . . . . . . 38

3.7.1 Statistical Goodness of Fit Tests . . . . . . . . . . . . . . . . . . . 39
3.7.2 ECC FER Performance Estimation . . . . . . . . . . . . . . . . . . 40

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9.1 Proof of Proposition 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . 46
3.9.2 Proof of Proposition 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . 47
3.9.3 Proof of Proposition 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . 48

4 On the Capacity of the Beta-Binomial Channel Model for Multi-Level Cell Flash
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Capacity of the Beta-Binomial Channel Model . . . . . . . . . . . . . . . . 53
4.3 Truncated-Support Beta-Binomial Channel Model . . . . . . . . . . . . . 54

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Definition and Statistics of the TS-BBM Channel Model . . . . . . 56
4.3.3 Choosing the Truncation Intervals . . . . . . . . . . . . . . . . . . 60
4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Capacity of the TS-BBM Channel Model . . . . . . . . . . . . . . . . . . . 66
4.4.1 Coding for the TS-BBM Channel Model . . . . . . . . . . . . . . . 70

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.1 Proof of Proposition 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.2 Proof of Proposition 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.3 Proof of Proposition 4.3.5 . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.4 Proof of Proposition 4.3.6 . . . . . . . . . . . . . . . . . . . . . . . 77

5 Adaptive Linear Programming Decoding of Polar Codes . . . . . . . . . . . . . 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 LP Decoding of Polar Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Adaptive LP Decoding of Polar Codes . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Adaptive LP Decoding of a Binary Linear Code . . . . . . . . . . . 82
5.3.2 Modified ACG-ALP Decoder for Polar Codes . . . . . . . . . . . . 83
5.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Polar Code Sparse Factor Graph Reduction . . . . . . . . . . . . . . . . . 85
5.4.1 Polar Code Sparse Factor Graph Reduction Algorithm . . . . . . . 86
5.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



LIST OF FIGURES

Figure 1.1: Cell level to bit mapping and block schematic in MLC flash memories.
In the block schematic, the rectangles depict the MLC flash memory
cells connected to horizontal wordlines (WL) and vertical bitlines (BL). 3

Figure 1.2: 2-step programming of the lower and upper page bits in MLC flash
memories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1: A system diagram of our experimental setup. . . . . . . . . . . . . . . 11
Figure 2.2: 3 x 3 neighborhood of a victim cell (×) . . . . . . . . . . . . . . . . . 11
Figure 2.3: Measured average raw bit error rates over 4 blocks of vendor-A and

vendor-B chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.4: Average raw bit error rates corresponding to specific bit errors in the

lower pages (LP) and upper pages (UP) over 4 blocks of vendor-A and
vendor-B chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.5: Two dimensional maps of bit error counts in frames of lower and upper
pages in a single block of MLC flash memory chips from vendor-A and
vendor-B at 8,000 P/E cycles. . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.6: Contribution of victim cell neighbors to cell (symbol) errors measured
as a percentage of total cell (symbol) errors across all P/E cycles for
vendor-A chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.7: Measured average raw bit error rate using 16 blocks of vendor-A chip
by programming all pages in a block, only alternate wordlines in a
block and only alternate bitlines in a block with pseudo-random data
in all P/E cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.8: Comparison of measured average raw bit error rates for vendor-A chip
across 6000 P/E cycles with added data retention stress. . . . . . . . . 20

Figure 2.9: Contribution of victim cell neighbors to cell (symbol) errors measured
as a percentage of total cell (symbol) errors across all P/E cycles for
vendor-A chip. Data retention stress of 90 days. . . . . . . . . . . . . 20

Figure 2.10: Contribution of victim cell neighbors to cell (symbol) errors measured
as a percentage of total cell (symbol) errors across all P/E cycles for
vendor-A chip. Data retention stress of 180 days. . . . . . . . . . . . . 21

Figure 2.11: Graph representation of the (1, 7)-RLL constraint . . . . . . . . . . . 23
Figure 2.12: Measured average raw bit error rate comparison when all pages are

programmed with pseudo-random data and when (1, 7)-RLL and (2, 7)-
RLL coded data are programmed to forbid ‘3-x-3’ patterns along word-
lines or bitlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.1: Binary asymmetric channel . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3.2: Variation of parameter estimates for the upper page BBM channel

model ((a, b) for 0 → 1 error, (c, d) for 1 → 0 error) for 3 different
4-block sets for vendor-A chip. N = 8192. . . . . . . . . . . . . . . . . 36

Figure 3.3: Variation of parameter estimates for the upper page BBM channel
model ((a, b) for 0 → 1 error, (c, d) for 1 → 0 error) for different
frame lengths for vendor-A chip. . . . . . . . . . . . . . . . . . . . . . 36

viii



Figure 3.4: Comparison of CDFs for number of bit errors per frame observed from
empirical data and from the BAC, BBM, NA-BAC, PA-BAC models
at 8,000 P/E cycles for vendor-A chip. . . . . . . . . . . . . . . . . . . 41

Figure 3.5: Comparison of CDFs for number of bit errors per frame observed from
empirical data and from the BAC, BBM, NA-BAC, PA-BAC models
at 8,000 P/E cycles for vendor-B chip. . . . . . . . . . . . . . . . . . . 41

Figure 3.6: Comparison of FER performance of a (N = 8191, k = 7683, t = 39)
BCH code using empirical error data and error data from simulation
using the 2-BAC, 2-BBM, 2-NA-BAC channel models for vendor-A
and vendor-B chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.7: Comparison of FER performance of a (N = 8192, k = 7683) regu-
lar QC-LDPC code using empirical error data and error data from
simulation using the 2-BAC, 2-BBM, 2-NA-BAC channel models for
vendor-A and vendor-B chips. . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.8: Comparison of FER performance of a (N = 8192, k = 7683) regular
QC-LDPC code using empirical error data and error data from sim-
ulation using the BAC and BBM channel models for both lower and
upper pages of vendor-A chip and the lower page of vendor-B chip. . . 44

Figure 3.9: Comparison of FER performance of a (N = 8192, k = 7684) polar
code optimized for BSC(0.001) using empirical error data and error
data from simulation using the 2-BAC, 2-BBM, 2-NA-BAC channel
models for vendor-A and vendor-B chips. . . . . . . . . . . . . . . . . 44

Figure 4.1: Plot showing |∆(x)
mean| and |∆(x)

var| obtained using Algorithm 4, corre-
sponding to the beta distributions at 6,000 P/E cycles for vendor-A
chip. N = 8192, µ = 10−6, ϵ = 0.01. . . . . . . . . . . . . . . . . . . . 60

Figure 4.2: Plot showing the beta pdf corresponding to the upper page 0 → 1
errors BBM channel model and the truncation interval points, pl and
pu, corresponding to TS-BBM channel models in Table 4.2 at 8,000
P/E cycles for vendor-A chip. . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.3: Comparison of FER performance of a regular QC-LDPC code and a
Polar code using empirical error data and simulated error data from
the 2-BAC, 2-BBM and 2-TS-BBM channel models for vendor-B chip. 66

Figure 4.4: Plot showing the evolution of TS-BBM channel model capacities as
a function of P/E cycle count for lower and upper pages of vendor-A
flash memory chip. ϵ = 0.01, µ = 10−6. . . . . . . . . . . . . . . . . . 68

Figure 4.5: Plot showing the evolution of TS-BBM channel model capacities as
a function of P/E cycle count for lower and upper pages of vendor-B
flash memory chip. ϵ = 0.01, µ = 10−6. . . . . . . . . . . . . . . . . . 68

Figure 4.6: Plot showing the TS-BBM channel model capacities corresponding to
lower and upper pages of vendor-A flash memory chip at 8,000 P/E
cycles for different values of ϵ parameter. µ = 10−8 for LP, min |∆(x)

var|
and µ = 10−6 for others. . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



Figure 4.7: Plot showing the difference between the capacity and the symmetric
information rate (SIR) for the lower page TS-BBM channel models cor-
responding to vendor-A and vendor-B flash memory chips. ϵ = 0.01,
µ = 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.8: Plot showing the difference between the capacity and the symmetric
information rate (SIR) for the upper page TS-BBM channel models
corresponding to vendor-A and vendor-B flash memory chips. ϵ = 0.01,
µ = 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.1: Sparse factor graph representation of a length-8 polar code. . . . . . . 82
Figure 5.2: Average time for decoding one codeword of a (64, 32) polar code over

a BAWGN channel with ACG-ALP decoding. . . . . . . . . . . . . . . 83
Figure 5.3: FER performance of a (64, 32) polar code over a BAWGN channel. . . 85
Figure 5.4: FER performance of a (128, 64) polar code over a BAWGN channel. . 86
Figure 5.5: Reducing a polar code sparse factor graph. . . . . . . . . . . . . . . . 86
Figure 5.6: Reduced factor graph (RFG) of a (8, 4) polar code. . . . . . . . . . . 88
Figure 5.7: Average time for decoding one codeword of a (64, 32) and (128, 64)

polar code over a BAWGN channel. OFG – with original factor graph;
RFG – with reduced factor graph. . . . . . . . . . . . . . . . . . . . . 90

Figure 5.8: Representation complexity (d = f(N, r)) for polar codes using the
original sparse factor graph (OFG) and the reduced factor graph (RFG). 91

x



LIST OF TABLES

Table 2.1: Frequency of cell (symbol) errors measured as a percentage of total
number of cell errors observed across all P/E cycles when all 4 blocks
are programmed with pseudo-random data. . . . . . . . . . . . . . . . 14

Table 2.2: Sample mean and variance of the number of bit errors per frame ob-
tained from empirical data for lower and upper pages across P/E cycles
when all 4 blocks are programmed with pseudo-random data. Frame
length N = 8192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.3: Frequency of cell (symbol) errors measured as a percentage of total
number of cell errors observed across all P/E cycles after 90 days
(∼ 3 months) and 180 days (∼ 6 months) of data retention using
vendor-A chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.1: Upper page BBM channel model parameter estimates for vendor-A and
vendor-B chips. N = 8192. . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.2: Lower page BBM channel model parameter estimates for vendor-A and
vendor-B chips. N = 8192. . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.3: Test statistic values from K-S two sample tests comparing the lower
and upper page BAC, BBM, NA-BAC, PA-BAC models with empirical
data at 8,000 P/E cycles. Frame length N = 8192. . . . . . . . . . . . 40

Table 3.4: Test statistic values from K-S two sample tests comparing the lower
and upper page BAC, BBM, NA-BAC, PA-BAC models with empirical
data at 4,000 P/E cycles. Frame length N = 8192. . . . . . . . . . . . 40

Table 4.1: Parameters corresponding to the upper page BBM channel models for
vendor-A and vendor-B chips along with the corresponding ζa,b and ζc,d
values. N = 8192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 4.2: Truncation intervals for the TS-BBM channel models obtained using
Algorithm 4 using N = 8192, µ = 10−6, ϵ = 0.01 for vendor-A chip.
All truncation interval points should be multiplied by 10−3. . . . . . . 63

Table 4.3: Truncation intervals for the TS-BBM channel models obtained using
Algorithm 4 using N = 8192, µ = 10−6, ϵ = 0.01 for vendor-B chip.
All truncation interval points should be multiplied by 10−3. . . . . . . 63

Table 4.4: Comparison of mean and variance of the number of bit errors per frame
obtained from experiment, BBM and TS-BBM channel models using
N = 8192, ϵ = 0.01 and µ = 10−6 for vendor-A chip. . . . . . . . . . . 64

xi



ACKNOWLEDGEMENTS

My Ph.D. at UC San Diego would not have been possible without the unwavering

support and encouragement of many people whom I would like to thank here.

First, I would like to thank my advisor Prof. Paul H. Siegel for his excellent

teaching of courses on coding theory which inspired me to transfer to the Ph.D. pro-

gram from the M.S. program at UC San Diego. It was Prof. Siegel’s encouragement

that made this transition possible. During the later years of my Ph.D., it was not only

Prof. Siegel’s excellent guidance and his attention to detail, but also his kindness and

patience in listening to my various ideas that helped me complete my research success-

fully. I would sincerely like to thank Prof. Young-Han Kim, Prof. Laurence B. Milstein,

Prof. Steven Swanson and Prof. Alexander Vardy for their time and effort to serve on my

doctoral committee. I would also like to thank all the UC San Diego faculty members for

the various intellectually stimulating courses they taught me in extensive topics whose

knowledge will serve me for the rest of my life. I would also like to thank my B.Tech

advisors at NITK Surathkal, Prof. Sumam David and Prof. U. Sripati for helping me

develop a great foundation of technical knowledge on which to build on.

I would like to thank CMRR-STAR group members and alumni for providing an

intellectually stimulating environment for research. I would like to thank Aman Bhatia

for helping me develop my knowledge of polar codes through our discussions. A special

thanks to Hironori Uchikawa for providing me valuable insights into the practical opera-

tions of flash memories and applicable coding techniques and also for introducing me to

the problem of ECC performance estimation in flash memories that forms the basis of

this dissertation. I would like to thank Sarit Buzaglo and Arman Fazeli for our delightful

discussions on polar codes over the past year. I would also like to thank Zachary Blair,

Brian Butler, Bing Fan, Pengfei Huang, Seyhan Karakulak, Scott Kayser, Yi Liu, Ming-

hai Qin, Osamu Torii, Wei Wu, Xiaojie Zhang for various discussions during my time at

UC San Diego that have enriched my knowledge and research.

I would also like to thank Iris Villanueva, Ray Descoteaux and all the other

CMRR staff members for providing me all the support and making my stay at CMRR

such an enjoyable and memorable experience.

Finally I would like to thank my parents, Uma Taranalli and Prof. Ashok Taranalli,

my sister and brother-in-law, Rashmi Taranalli and Praveen Dodagoudar and my fi-

ancée, Manjusha Bolishetty for their love and support. I would also like to thank my

xii



friends, Vaibhav Bedia, Krishna Bharadwaj, Vanamali Bhat, Niranjana Bhatta, Sattvik

Chakravarthy, Krishna Pavan, Srikanth Prabhu and Sudharsan Seshadri etc. for their

friendship which has been a constant source of inspiration for me.

This research was supported in part by the National Science Foundation under

Grants CCF-1116739 and CCF-1405119, and by the Toshiba Corporation, Japan, and by

the Center for Memory and Recording Research, University of California, San Diego.

Chapter 2 contains material from the papers: Veeresh Taranalli, Hironori Uchikawa,

and Paul H. Siegel, “Error analysis and inter-cell interference mitigation in multi-level

cell flash memories,” in Proc. IEEE International Conference on Communications (ICC),

London, June 2015, pp. 271–276; Veeresh Taranalli, Hironori Uchikawa, and Paul H.

Siegel, “Channel models for multi-level cell flash memories based on empirical error anal-

ysis,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3169–3181, August 2016.

The dissertation author was the primary investigator and author of these papers, and

co-authors have approved the use of the material for this dissertation.

Chapter 3 is in part a reprint of the paper: Veeresh Taranalli, Hironori Uchikawa,

and Paul H. Siegel, “Channel models for multi-level cell flash memories based on empirical

error analysis,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3169–3181,

August 2016. The dissertation author was the primary investigator and author of these

papers, and co-authors have approved the use of the material for this dissertation.

Chapter 4 is in part a reprint of the paper: Veeresh Taranalli, Hironori Uchikawa,

and Paul H. Siegel “On the capacity of the beta-binomial channel model for multi-level

cell flash memories,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 9,

pp. 2312–2324, September 2016. The dissertation author was the primary investigator

and author of these papers, and co-authors have approved the use of the material for this

dissertation.

Chapter 5 is a reprint of the paper: Veeresh Taranalli, and Paul H. Siegel, “Adap-

tive linear programming decoding of polar codes,” in Proc. IEEE International Sympo-

sium on Information Theory (ISIT), Hawaii, June-July 2014, pp. 2982–2986. The disser-

tation author was the primary investigator and author of these papers, and co-authors

have approved the use of the material for this dissertation.

xiii



VITA

2009 B. Tech in Electronics and Communication Engineering, National
Institute of Technology Karnataka, India

2013 M. S. in Electrical Engineering (Communication Theory and Sys-
tems), University of California San Diego, USA

2017 Ph. D. in Electrical Engineering (Communication Theory and Sys-
tems), University of California San Diego, USA

PUBLICATIONS

Veeresh Taranalli, Hironori Uchikawa, and Paul H. Siegel, “On the capacity of the beta-
binomial channel model for multi-level cell flash memories,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 9, pp. 2312–2324, September 2016.

Veeresh Taranalli, Hironori Uchikawa, and Paul H. Siegel, “Channel models for multi-level
cell flash memories based on empirical error analysis,” IEEE Transactions on Communi-
cations, vol. 64, no. 8, pp. 3169–3181, August 2016.

Sarit Buzaglo, Arman Fazeli, Paul H. Siegel, Veeresh Taranalli, and Alexander Vardy,
“On efficient decoding of polar codes with large kernels,” submitted to IEEE Wireless
Communications and Networking Conference, Workshop on Polar Coding in Wireless
Communications: Theory and Implementation, 2017.

Veeresh Taranalli, Hironori Uchikawa, and Paul H. Siegel, “Error analysis and inter-cell
interference mitigation in multi-level cell flash memories,” in Proc. IEEE International
Conference on Communications (ICC), London, June 2015, pp. 271–276.

Aman Bhatia, Veeresh Taranalli, Paul H. Siegel, Shafa Dahandeh, Anantha Raman Kr-
ishnan, Patrick Lee, Dahua Qin, Moni Sharma, and Teik Yeo, “Polar codes for magnetic
recording channels,” in Proc. IEEE Information Theory Workshop (ITW), Jerusalem,
April–May 2015.

Veeresh Taranalli, and Paul H. Siegel, “Adaptive linear programming decoding of polar
codes,” in Proc. IEEE International Symposium on Information Theory (ISIT), Hawaii,
June–July 2014, pp. 2982–2986.

xiv



ABSTRACT OF THE DISSERTATION

Error Characterization, Channel Modeling and Coding for Flash
Memories

by

Veeresh Taranalli

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2017

Professor Paul H. Siegel, Chair

NAND Flash memories have become a widely used non-volatile data storage tech-

nology and their application areas are expected to grow in the future with the advent of

cloud computing, big data and the internet-of-things. This has led to aggressive scaling

down of the NAND flash memory cell feature sizes and also increased adoption of flash

memories with multiple cell levels to increase the data storage density. These factors

have adversely affected the reliability of flash memories.

In this dissertation, our main goal is to perform detailed characterization of the

errors that occur in multi-level cell (MLC) flash memories and develop novel mathematical

channel models that better reflect the measured error characteristics than do current

models. The channel models thus developed are applied to error correcting code (ECC)

xv



frame error rate (FER) performance estimation in MLC flash memories and to estimating

the flash memory channel capacity as represented by the channel models. We also utilize

the characterization of inter-cell interference (ICI) errors to evaluate the performance

of constrained coding schemes that mitigate ICI and improve the reliability of flash

memories.

In Chapter 5, which is self-contained, we propose and study modifications to

adaptive linear programming decoding techniques applied to decoding polar codes. We

also propose a reduced complexity representation of the polar code sparse factor graph,

resulting in time complexity improvements in the adaptive LP decoder.

xvi



1 Introduction

1.1 Background

The data storage industry is in a transition phase today, moving from mechan-

ical hard disk drives to semiconductor-based solid state drives as the storage media for

majority of the applications. NAND flash memory technology is a fundamental building

block of the ubiquitous solid state drives. The demand for NAND flash memories is

mainly driven by their ability to execute read/write operations with very small latencies

compared to their mechanical counterparts such as hard disk drives. Apart from this,

NAND flash memories also provide high density of data storage which has led to their

success in portable consumer electronics such as smartphones, wearable devices and more

recently, in laptops. The demand for NAND flash memories is also expected to grow for

enterprise applications, mainly for cloud computing data centers. However, NAND flash

memories also have certain limitations such as small endurance/lifetime and poor reli-

ability. The endurance and reliability of flash memories are adversely affected due to

increasing density of flash memory cells and simultaneous reduction of the flash memory

cell feature sizes (the current generation is about 15-19nm).

Coding, signal processing and information-theoretic tools can be used to improve

the endurance and reliability of NAND flash memories for practical applications. Data

storage can be viewed as a form of digital communication wherein messages are trans-

mitted across time (present to future) rather than across space as in conventional digital

communication. The communication channel is thus the data storage medium. In his

seminal paper in 1948 [1], Claude Shannon established fundamental bounds on the max-

imum achievable rate of transmission of information through a communication channel

and thus introduced the field of information theory. In that same paper [1], Shannon

also studied constrained systems that gave birth to the field of constrained coding. Error

1



2

correction codes such as Hamming codes, BCH and Reed-Solomon (RS) codes have been

extensively used in data storage as well as wired and wireless communication systems.

More recently, low density parity check (LDPC) codes, spatially coupled LDPC codes

and polar codes represent advances in error correction coding. Constrained coding tech-

niques which prevent certain bad data patterns from being written to the storage media

have also been successfully used in hard disk drives for inter-symbol interference (ISI)

mitigation and timing recovery.

Error correction coding (ECC) and constrained coding techniques can be used to

improve the reliability of NAND flash memories. However, to derive maximum benefit,

it is essential to study and understand the NAND flash memory channel in terms of

the error mechanisms and characteristics of the errors at various levels such as the bit

and cell level and the dependence of errors on programmed data patterns. Such error

characterization is presented in Chapter 2. For NAND flash memories, ECC frame error

rate (FER) performance needs to be evaluated at extremely low levels such as 10−12 in

practice to accurately quantify the endurance of the flash memory device. This requires

simple but accurate mathematical channel models that capture the characteristics of

errors and hence are able to provide good ECC FER performance estimates. Such channel

models derived from empirical data are presented in Chapter 3. It is also critical to

quantify the information-theoretic capacity of NAND flash memory channels to be able

to appropriately allocate redundancy in practice. In Chapter 4, we present capacity

estimates for NAND flash memories using channel models derived from empirical data.

In this chapter, we first provide a brief introduction to NAND flash memories in

Section 1.2. Section 1.3 describes the various error mechanisms in NAND flash memories

and Section 1.4 presents a detailed overview of the following chapters in this dissertation.

1.2 Design and Structure of Flash Memories

The fundamental data storing unit in NAND flash memories is a floating-gate

transistor commonly referred to as a cell. A cell can be programmed to hold different

levels of charge and these charge levels represent the data bits stored in a cell. The

programming operation consists of pumping electrons into the floating-gate of a cell

using the channel hot electron injection mechanism. To read the data stored in a cell, a

voltage referred to as the threshold voltage (Vth) is applied to the control gate of a cell

while measuring the drain current to determine the logical bit represented by the cell. A



3

cell is erased by using the Fowler-Nordheim electron tunneling mechanism, which consists

of applying a strong electric field across the oxide layer to push the electrons out of the

floating-gate of the cell. For more details on flash memory cell operations, we refer the

reader to [2]. Typically, a programmed cell is represented by a logical ‘0’ and an erased cell

is represented by a logical ‘1’ for single-level cell (SLC) flash memories capable of storing

1 bit/cell. Other commonly used cells in today’s flash memories are capable of holding

up to 4 and 8 distinct charge levels (2, 3 bits/cell respectively) and are referred to as

multi-level cell (MLC) and three-level cell (TLC) flash memories respectively. These flash

memory cells are organized into a rectangular array interconnected through horizontal

wordlines (WL) and vertical bitlines (BL) to form a flash memory block. A collection of

such blocks makes up the flash memory chip.

3
2
1
0

01
00
10
11

Low Voltage

High Voltage

Cell Level to Bit Mapping

Lower Page

Upper Page

10 11 01 10

11 01 01 11

01 10 00 11

00 01 11 01

WLi−1

WLi

WLi+1

WLi+2

BLi−2BLi−1BLi BLi+1

MLC Flash Block Schematic

Figure 1.1: Cell level to bit mapping and block schematic in MLC flash memories.
In the block schematic, the rectangles depict the MLC flash memory cells connected to
horizontal wordlines (WL) and vertical bitlines (BL).

In this dissertation, we focus on MLC flash memories capable of storing 2 bits

per cell. A schematic of the block structure of MLC flash memories is shown in Fig. 1.1.

The two bits belonging to a MLC flash memory cell are separately mapped to logical

units of programming, called pages. A page is also the smallest unit for program and

read operations whereas a block is the smallest unit for the erase operation. The most

significant bit (MSB) is mapped to the lower page while the least significant bit (LSB)

is mapped to the upper page. We represent the four charge levels in MLC flash memory

as 0, 1, 2, 3 in the increasing order of charge levels/threshold voltages respectively. The

corresponding 2-bit patterns written to the lower (MSB) and upper (LSB) pages are ‘11’,

‘10’, ‘00’ and ‘01’ respectively as shown in Fig. 1.1.



4

The lower page bit of a cell always precedes the corresponding upper page bit in

the programming order as depicted by the 2-step programming process in Fig. 1.2. For

example, to program a cell to represent the bits ‘01’, the cell Vth is first pushed up to an

intermediate state corresponding to lower page bit 0 and then the Vth is further pushed

up corresponding to the upper page bit 1. This 2-step programming process makes it

possible to independently program the lower and upper pages. The page read operation

is also evident from the 2-step program process, where a single read at VB is sufficient to

determine the lower page bit and two reads at VA and VC can be used to independently

determine the upper page bit.

E (0)
Initial State

Vth

E (0) I (Intermediate State)
Lower Page Program

VI

11 01 Vth

E (0) A (1) B (2) C (3)
Upper Page Program

VA VB VC

11 10 00 01 Vth

Figure 1.2: 2-step programming of the lower and upper page bits in MLC flash memories.

1.3 Error Mechanisms in Flash Memories

The major error mechanisms in flash memories are program disturb, read dis-

turb, cell wear due to program/erase (P/E) cycling, charge loss over time affecting data

retention and inter-cell interference (ICI). We briefly describe these error mechanisms as

follows [3].

Program disturb

Program disturb is the mechanism in which errors occur in the stored data when

charge collects on the floating-gate of cells not being currently programmed, typically cells



5

on neighboring pages. Due to this, the threshold voltage of these victim cells increases and

could possibly result in a bit error. There is no damage to the cells due to program disturb

and the disturbed cells can be reset using the block erase operation. The errors due to

program disturb can be corrected using ECCs while reading, or substantially mitigated

by using the sequential page programming order which imposes the constraint that the

lower pages of the wordlines WLi and WLi+1 must be programmed before programming

the upper page of the wordline WLi for MLC flash memories.

Read disturb

Read disturb is the mechanism where charge collects on the floating-gate of cells

not being currently read, typically the neighboring pages of the same block that contains

the page being read. Due to this, the threshold voltage of these victim cells increases

and could possibly result in a bit error. The errors due to read disturb are of concern

only when the number of reads between two erase operations is very large, e.g., ∼100,000

reads for MLC flash memories [3]. There is no damage to the cells due to read disturb

and the read disturb effect can be reset using the block erase operation. Read disturb

errors can be corrected using ECCs or their onset can be delayed by ensuring all pages

are read an equal number of times between erase operations.

Cell wear due to P/E cycling

During program/erase operations, electrons that get trapped in the dielectric layer

cause a permanent upward shift in the threshold voltage distributions of the flash memory

cells. This phenomenon is commonly referred to as cell wear and its effects cannot be

reversed. Due to cell wear, bit errors occur and this determines the endurance/lifetime of

a flash memory block. The bit errors are usually corrected using an ECC which enhances

the endurance. Another technique used in practice to improve endurance of flash memory

blocks is wear leveling, which ensures that all available blocks in a flash memory chip

are cycled an equal number of times. Flash memory cells programmed to high charge

levels are more susceptible to wear and hence data shaping (controlling the frequency of

programming high charge levels) can also provide improved endurance.



6

Charge loss over time

The cells in a programmed flash memory block lose charge over time which results

in bit errors and affects the data-retention ability of the flash memory. This effect is

reversible with erase operations and does not cause any damage to the cells. In practice,

the data retention ability of flash memories is usually of the order of a few months to

years. Due to charge loss, there is a downward direction shift in the threshold voltages

of the flash memory cells that results in bit errors during read operations. An ECC can

correct these data-retention errors, or the data on the flash memory can be periodically

refreshed to ensure no loss in stored data.

Inter-Cell Interference (ICI)

Inter-Cell Interference (ICI) is a mechanism that increases the charge on flash

memory cells that are programmed to low charge levels when surrounded by neighboring

cells programmed to high charge levels, thus resulting in bit errors. The main cause of ICI

is the parasitic capacitance coupling among neighboring flash memory cells. The errors

due to ICI are data dependent in nature and typically some programmed data patterns

are more susceptible to errors than others. ICI errors can be corrected using ECCs or

mitigated using constrained codes that forbid ICI-susceptible data patterns from being

written onto the flash memory. The ICI effect also depends on the semiconductor feature

size and hence is a dominant cause of errors in recent smaller feature size flash memories.

1.4 Dissertation Overview

In this dissertation, we first perform detailed experiments to characterize errors

in state-of-the-art MLC flash memories. Using the error characterization results, we

evaluate run-length limited (RLL) constrained coding schemes for ICI mitigation, and

develop novel channel models for ECC frame error rate (FER) performance prediction

and capacity estimation for MLC flash memories. The last chapter in this dissertation is

a self-contained chapter on adaptive linear programming decoding of polar codes.

With an aim to quantify, model and understand the types of errors in MLC

flash memories, we design and perform a series of program/erase (P/E) cycling and data

rentention experiments in Chapter 2. We create a database of errors at various levels

of granularity such as bit, cell, page and block, and we record the neighborhood data



7

patterns of cells in error to provide a quantitative understanding of the underlying error

mechanisms in MLC flash memories. The error characterization results reported in this

dissertation are from 1X-nm and 2Y-nm MLC flash memory chips from different vendors

referred to as vendor-A and vendor-B respectively. Using P/E cycling experiments, we

identify the overdispersion phenomenon in the empirical statistics of the number of bit

errors per frame, which leads us to develop improved channel models for ECC FER per-

formance and capacity estimation as presented in Chapter 3 and Chapter 4 respectively.

We also quantify the data dependence of ICI errors in MLC flash memories and identify

highly susceptible data patterns across wordlines and bitlines that help us to empirically

evaluate the performance of previously proposed (d, k)-RLL constrained coding schemes

for ICI mitigation in MLC flash memories.

In Chapter 3, we propose binary discrete parametric channel models for multi-

level cell (MLC) flash memories that provide accurate ECC performance estimation by

modeling the empirically observed error characteristics under program/erase (P/E) cy-

cling stress. Based on the empirical error characterization results presented in Chapter 2,

we observe that a well-studied channel model such as the binary asymmetric channel

(BAC) model is unable to provide accurate ECC FER performance estimation, due to

the overdispersed statistics of the number of bit errors per frame discussed in Chapter 2.

Hence we propose a channel model based on the beta-binomial probability distribution

(2-BBM channel model) which is a good fit for the overdispersed empirical error char-

acteristics, and we show through statistical tests and simulation results for BCH, LDPC

and polar codes that the 2-BBM channel model provides accurate ECC FER performance

estimation in MLC flash memories.

In Chapter 4, we study the capacity of the BBM channel model for MLC flash

memories which was discussed in Chapter 3. Using the compound channel approach,

we first show that the BBM channel model capacity is zero. However, based on empir-

ical results, this appears to be a very pessimistic estimate of the flash memory channel

capacity. Therefore, we propose a refined channel model called the truncated-support

beta-binomial (TS-BBM) channel model and derive its capacity. Using empirical error

statistics for MLC flash memories presented in Chapter 2, we numerically estimate the

TS-BBM channel model capacity as a function of the program/erase (P/E) cycling stress.

The capacity of the 2-TS-BBM channel model provides an upper bound on the coding

rates for the flash memory chip assuming a single binary error correction code is used.



8

In Chapter 5, we propose adaptive linear programming (LP) decoding for polar

codes. Polar codes are high density parity check codes and hence the sparse factor graph,

instead of the parity check matrix, has been used to practically represent an LP polytope

for LP decoding. Although LP decoding on this polytope has the ML-certificate property,

it performs poorly over a BAWGN channel. We propose modifications to previously

proposed adaptive cut generation based LP decoding techniques and apply the modified

adaptive LP decoder to short blocklength polar codes over a BAWGN channel. The

proposed decoder provides significant FER performance gain compared to the previously

proposed LP decoder and its performance approaches that of maximum likelihood (ML)

decoding at high SNRs. We also present an algorithm to obtain a smaller factor graph

from the original sparse factor graph of a polar code. This reduced factor graph preserves

the small check node degrees needed to represent the LP polytope in practice. We show

that the fundamental polytope of the reduced factor graph can be obtained from the

projection of the polytope represented by the original sparse factor graph and the frozen

bit information. Thus, the LP decoding time complexity is decreased without affecting

the FER performance by using the reduced factor graph representation.



2 Error Characterization and

Inter-Cell Interference Mitigation

for Multi-Level Cell Flash Memories

2.1 Introduction

Typically, error correction coding (ECC) schemes have been used to ensure re-

liability of flash memory operation at the cost of sacrificing a small percentage of the

storage capacity. However as reported in recent studies [4, 5, 6], the errors observed in

flash memories are asymmetric in nature and hence ECC schemes assuming an underlying

symmetric channel model may not be the most efficient. Therefore to aid the design of

better ECC schemes it is important to develop an understanding of the dominant types

of cell and bit errors and be able to use such error characterization to develop improved

flash memory channel models based on empirical data.

In this chapter, we first describe our flash memory error characterization experi-

mental setup and procedures in Section 2.2. We use state-of-the-art flash memory chips

of feature sizes 1X-nm from vendor-A, and 2Y-nm from vendor-B, for the error char-

acterization. In Section 2.3.1, we present results on the characterization of bit and cell

errors in MLC flash memories and identify and study the evolution of dominant cell error

characteristics over the lifetime of the flash memory during P/E cycling. We identify and

quantify the overdispersion phenomenon in the statistics of the number of bit errors per

ECC frame during P/E cycling in Section 2.3.2. These results will be used to propose

improved channel models for flash memories in Chapter 3.

Cell errors due to ICI are dependent on the data patterns written to the flash

memory with some data patterns being more susceptible to ICI than others. A charac-

9



10

terization of errors due to such susceptible data patterns will be useful in designing cod-

ing/signal processing/programming schemes to prevent/correct ICI errors in an efficient

manner. In Section 2.3.3, we present results that clearly highlight and quantify the data

dependent nature of ICI by studying the correlation of cell errors with their neighborhood

data patterns. We also study and quantify the effect of wordline ICI along the horizontal

direction and bitline ICI along the vertical direction in isolation. In Section 2.3.4, we

present error characterization results obtained during data retention experiments.

Constrained codes can prevent certain ICI-susceptible data patterns from being

written to the flash memory. Various techniques for the design and use of constrained

codes to mitigate ICI were previously proposed in [7, 8, 9, 10]. In [7], the authors

proposed using binary (d,k)-RLL codes to forbid the ICI-susceptible data patterns 1-0-1

and 3-0-3 (along the wordlines) from being written to SLC and MLC flash memories

respectively. They also evaluated this constrained coding scheme along with an ECC

concatenation for the SLC case using an ICI channel model. In Section 2.4, we extend

their constrained coding scheme to forbid the most ICI-susceptible data patterns found

in our error characterization. We also experimentally evaluate the effectiveness of the

proposed coding schemes on our MLC flash memory chips and present the results.

2.2 Experimental Setup and Procedures

In this section, we describe our experimental setup and procedures for performing

the program/erase (P/E) cycling and data retention experiments on multi-level cell flash

memory chips to characterize the nature of errors that occur in flash memories.

2.2.1 Experimental Setup

Fig. 2.1 shows a system diagram of our experimental setup. The main compo-

nent is a Zedboard which has a Xilinx Zynq-7000 All Programmable SoC, an Ethernet

interface, and many GPIO pins capable of interfacing with flash memory chips. The

flash memory controller operations are implemented in Verilog and programmed onto the

Zynq-7000 SoC. The Zynq-7000 SoC also consists of two ARM processor cores capable of

running a high level operating system (OS) such as Ubuntu Linux. The communication

and data transfer protocol between the OS and the flash memory controller logic uses

the Xillybus intellectual property (IP) core. The error characterization experiments are

implemented in a high level programming language such as the C language.



11

Figure 2.1: A system diagram of our experimental setup.

2.2.2 Procedure for Program/Erase (P/E) Cycling Experiments

The program/erase (P/E) cycling experiment for the MLC flash memory chip

under test consists of repeated application of the following steps:

1. Erase MLC flash memory blocks under test.

2. Program MLC flash memory pages (of blocks under test) with pseudo-random (PR)

data generated using a Mersenne-Twister pseudo-random number generator. The

pseudo-random number generator is initialized with a randomly generated seed for

every page in every P/E cycle.

3. Starting with the first cycle, perform a read operation on the MLC flash memory

block(s) at intervals of every 100th cycle. Record bit errors and their locations in the

block and the programmed values of every victim cell (X) and its 8-neighborhood

section (cells a to h) as shown in Fig. 2.2.

e c f
a × b
g d h

Figure 2.2: 3 x 3 neighborhood of a victim cell (×)

We arbitrarily choose sets of contiguous blocks in an MLC flash memory chip for

our experiments. The MLC flash memory blocks are P/E cycled up to 10,000 P/E cycles

and the experiments are performed at room temperature in a continuous manner. No

extra dwell time is added during the P/E cycling as we did not observe any significant

difference in the error rates even with > 60 seconds of extra dwell time added between

the P/E cycles.



12

2.2.3 Procedure for Data Retention Experiments

To characterize and study the errors due to the charge loss over time/data reten-

tion error mechanism in flash memories, we use a thermal accelerated aging technique by

baking the flash memory chips in a convection oven to simulate the effects of long term

aging as specified in [11]. The principle used is the Arrhenius equation for reliability [11],

AT = e
−Eaa

k

(
1
T1

− 1
T2

)
(2.1)

where AT is the acceleration factor for aging, Eaa is the apparent activation energy (eV),

k is Boltzmann’s constant (8.62× 10−5 eV/K), T1 and T2 are the absolute temperatures

(in K) of the test and the system respectively. Based on (2.1), the experiment parameters

for characterization of data retention errors are as shown,

• Room Temperature, T2 = 21◦C

• Baking Temperature, T1 = 70◦C

• Activation Energy, Eaa = 1.1eV

• Baking Duration

– 90 days aging equivalent - 4.23 hours

– 180 days aging equivalent - 8.46 hours

– 270 days aging equivalent - 12.69 hours

– 360 days aging equivalent - 16.92 hours

To characterize the behavior of data retention errors over the range of P/E cycles, we

choose 13 blocks of MLC flash with each block being cycled with pseudo-random data

for different number of P/E cycles in the range of 0 - 6000 P/E cycles with intervals of

500 P/E cycles per block. The MLC flash memory chip is then baked for different time

durations to simulate accelerated aging and the errors are recorded after the baking. No

extra dwell time is added during the P/E cycling as we did not observe any significant

difference in the error rates even with > 60 seconds of extra dwell time added between

the P/E cycles.



13

0 2000 4000 6000 8000 10000

Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it

 E
rr

o
r 

R
at

e
 (

B
E

R
)

Average BER (Vendor-A)

Average BER (Vendor-B)

Lower Page Average BER (Vendor-A)

Lower Page Average BER (Vendor-B)

Upper Page Average BER (Vendor-A)

Upper Page Average BER (Vendor-B)

Figure 2.3: Measured average raw bit error rates over 4 blocks of vendor-A and vendor-B
chips.

2.3 Error Characterization Results

2.3.1 Characterization of Bit and Cell Errors during P/E cycling

The first step in the error characterization of a flash memory chip is to study its

raw bit error rate (BER) performance when all the pages in all the blocks under test

are programmed with pseudo-random data. This closely resembles the most common

use in practice, where random data are stored and retrieved. Fig. 2.3 shows the average

raw BER across the P/E cycles when all pages in each block are programmed for both

the vendor-A and vendor-B flash memory chips. The raw BER is averaged over 4 blocks

tested. Fig. 2.3 also shows the average raw BER separately for the lower and upper pages

of the MLC flash memory. Although the lower page is expected to have a smaller BER

compared to the upper page [5], we observe that this is only the case up to a certain

number of P/E cycles in the beginning and as the P/E cycle count increases, the lower

page begins to show a larger number of errors than the upper page. This observation is

consistent across both the vendor-A and vendor-B flash memory chips. Using empirical

data from 20 blocks of the same flash memory chip, we have also observed consistent

measured average raw BER estimates across all the P/E cycles.

We also record the specific cell (symbol) errors corresponding to all the bit errors



14

0 2000 4000 6000 8000 10000

Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
it

 E
rr

o
r 

R
at

e 
(B

E
R

)

LP, 1 to 0 (Vendor-A)

LP, 0 to 1 (Vendor-A)

UP, 1 to 0 (Vendor-A)

UP, 0 to 1 (Vendor-A)

LP, 1 to 0 (Vendor-B)

LP, 0 to 1 (Vendor-B)

UP, 1 to 0 (Vendor-B)

UP, 0 to 1 (Vendor-B)

Figure 2.4: Average raw bit error rates corresponding to specific bit errors in the lower
pages (LP) and upper pages (UP) over 4 blocks of vendor-A and vendor-B chips.

Table 2.1: Frequency of cell (symbol) errors measured as a percentage of total number
of cell errors observed across all P/E cycles when all 4 blocks are programmed with
pseudo-random data.

Vendor-A
Write Cell Read Cell Values

Values 11 10 00 01
11 0.00 17.25 0.08 2.57
10 0.19 0.00 48.19 0.74
00 0.00 0.14 0.00 30.61
01 0.00 0.03 0.20 0.00

Vendor-B
Write Cell Read Cell Values

Values 11 10 00 01
11 0.00 18.39 0.03 4.01
10 0.07 0.00 62.22 1.84
00 0.00 0.06 0.00 13.39
01 0.00 0.00 0.00 0.00

observed. Table 2.1 shows the frequencies of all possible cell errors as a percentage of

the total number of cell errors observed across all the blocks in all the P/E cycles. The

corresponding average cell error probabilities across all P/E cycles are ∼4.16× 10−3 and



15

∼2.71×10−3 for vendor-A and vendor-B chips respectively. We observe that the level 1 to

2 cell error “10 (1) → 00 (2)” is the most dominant for both vendor-A and vendor-B chips.

This observation explains why the lower page average raw BER is worse than the upper

page average raw BER as shown earlier in Fig. 2.3. We also note that the three adjacent

level cell errors “10 (1) → 00 (2)”, “11 (0) → 10 (1)” and “00 (2) → 01 (3)” are the most

frequent and together make up about 96% and 94% of all the cell errors observed for the

vendor-A and vendor-B chips respectively. Such knowledge about dominant cell errors can

be very useful in utilizing ECC redundancy more effectively. This was demonstrated in [4],

where the authors designed two BCH codes with different error correction capabilities for

the lower and upper pages of an MLC flash memory and proposed a stagewise combined

decoding algorithm for both pages. Their scheme gave better results than using a single

BCH code independently for all pages. Fig. 2.4 shows the asymmetry of bit errors in MLC

flash memories. We present the average raw BERs corresponding to the specific types of

bit errors, i.e., 0 → 1 and 1 → 0 bit errors, in the lower and upper pages of both vendor-A

and vendor-B MLC flash memory chips. While there is a high degree of asymmetry in

the lower page bit errors throughout the P/E cycle range, the degree of asymmetry in the

upper page bit errors is much lower. This agrees well with the observations in Table 2.1,

where the dominant cell errors imply a large proportion of 1 → 0 bit errors in the lower

page and comparable proportions of 0 → 1 and 1 → 0 bit errors in the upper page. This

asymmetry in bit errors in both the lower and upper pages also reflects the dominance of

data dependent inter-cell interference (ICI) errors, i.e., the middle cells in the cell level

data patterns 303, 313 and 323 across wordlines are highly susceptible to errors as shown

by ICI error characterization results in Section 2.3.3.

2.3.2 Characterization of Number of Bit Errors per ECC Frame

As we want to develop parametric channel models for MLC flash memories which

provide an accurate representation of the empirically observed bit errors and enable ac-

curate ECC FER performance estimation, we study the distribution of the number of bit

errors per frame parameter. This is the key factor in determining the FER performance

of an ECC with a specified error correction capability of t number of bit errors per frame.

From the error data collected during P/E cycling experiments, we obtain the

sample counts of the number of bit errors per frame for 0 → 1 and 1 → 0 bit errors in

both the lower and upper pages by choosing a fixed frame length of N = 8192 bits.



16

This choice of the frame length is representative of the large ECC frame lengths used in

practice, while still being small enough to ensure sufficient empirical data can be collected

easily. Commonly used ECC frame lengths range from 8192 to 32768 bits and multiple

ECC frames are written to a single flash memory page in practice.

The sample mean and variance statistics of the number of bit errors per frame

are computed using the sample counts and are shown in Table 2.2 for both vendor-A and

vendor-B chips. We also plot two dimensional (2D) maps showing the number of bit errors

for every frame in a single block of MLC flash memory at 8,000 P/E cycles in Fig. 2.5. The

2D maps are obtained by stacking horizontally the bit error counts in frames belonging

to a page, and then stacking vertically all the pages belonging to a single block. From

Table 2.2 and Fig. 2.5, we clearly observe that the variance in the number of bit errors

per frame is much larger than the mean, i.e., the experiment data is overdispersed with

respect to a binomial distribution, Binomial(n, p), typically used to model count data

whose mean and variance are approximately equal when p is small.

Table 2.2: Sample mean and variance of the number of bit errors per frame obtained
from empirical data for lower and upper pages across P/E cycles when all 4 blocks are
programmed with pseudo-random data. Frame length N = 8192.

P/E Vendor-A Vendor-B
Cycles Lower Page Upper Page Lower Page Upper Page

Mean Variance Mean Variance Mean Variance Mean Variance
2000 2.63 3.08 1.90 2.17 0.98 1.05 0.79 0.86
4000 12.21 18.70 7.76 9.84 5.10 6.97 2.84 3.66
6000 21.90 46.71 18.43 30.06 14.85 29.64 7.18 10.23
8000 30.55 75.89 32.01 66.43 30.03 84.81 14.46 24.37
10000 41.37 111.35 48.88 125.99 52.61 216.95 26.06 51.30

2.3.3 Characterization of Errors due to Inter-Cell Interference

To characterize the ICI effect of neighbor cells on the victim cell, we classify

the cell errors observed into different groups identified by the programmed values of

the neighbor cells in a 8-neighborhood section as shown in Fig. 2.2. The four types of

neighbor groups considered are the neighbors along

• the same wordline as the victim cell (a, b)

• the same bitline as the victim cell (c, d)



17

0 5 10 15

U
p

p
er

 P
ag

es

Vendor-A

0
6
12
18
24
30
36
42
48
54
60

0 1 2 3 4 5 6 7

Vendor-B

4
8
12
16
20
24
28

0 5 10 15

Frame Index Within Page

L
o

w
er

 P
ag

e
s

8
16
24
32
40
48
56
64

0 1 2 3 4 5 6 7

Frame Index Within Page

6
12
18
24
30
36
42
48
54
60

Figure 2.5: Two dimensional maps of bit error counts in frames of lower and upper
pages in a single block of MLC flash memory chips from vendor-A and vendor-B at 8,000
P/E cycles.

• the diagonals on the previous wordline (e, f)

• the diagonals on the next wordline (g, h).

Fig. 2.6 shows the percentage of cell errors that were observed in each type of neighbor

group for all possible programmed levels of the neighbors. We observe a strong correlation

between the programmed levels of the wordline (a, b) and bitline (c, d) neighbors and the

cell errors, whereas there is very little correlation of the cell errors with the programmed

levels of the neighbor cells along the diagonals (e, f, g, h). For example, we see that

the neighbor patterns of (3, 3) are dominant ones for the wordline and bitline neighbors

whereas for the diagonal neighbor cells we do not see a dominant neighbor pattern. This

clearly suggests that it is sufficient to consider only the wordline and bitline neighbor

cells in the design of ICI mitigating/correcting codes. We also observe that the wordline

neighbor patterns that have at least one neighbor programmed to the highest level 3

correspond to a significant percentage of the cell errors. It is also interesting to note

that wordline patterns such as (2, 3) and (3, 2) correspond to approximately the same

percentage of errors indicating that the relative position of the wordline neighbor cell

programmed to a 3 does not affect the ICI it causes. This is consistent with the flash

memory programming model where all the cells in a wordline are programmed at the



18

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Neighbors of Victim Cell

0

5

10

15

20

25

30

%
 o

f S
ym

bo
l E

rr
or

s

Wordline neighbors (a, b)
Bitline neighbors (c, d)
Diagonal neighbors on previous wordline (e, f)
Diagonal neighbors on next wordline (g, h)

Figure 2.6: Contribution of victim cell neighbors to cell (symbol) errors measured as a
percentage of total cell (symbol) errors across all P/E cycles for vendor-A chip.

same time. However, for the bitline neighbors we see that neighbor patterns where the

bitline neighbor cell immediately below the victim cell is programmed to the highest level

3 correspond to about 60% of the total cell errors observed. These are the (3, 3), (2, 3),

(1, 3) and (0, 3) bitline neighbor patterns. From our results, it is easy to see that the

bitline neighbor cells are the most correlated with the cell errors observed, implying that

the bitline ICI is stronger than the wordline ICI.

In another P/E cycling experiment, we isolate wordline ICI effects by program-

ming only pages belonging to alternate wordlines (WLi, WLi+2, . . . ) using pseudo-

random data. The objective is to eliminate the bitline ICI effect in the vertical direction

by ensuring that the bitline neighbor cells (c, d) of any programmed cell remain unpro-

grammed. The raw BER across P/E cycles in this case is shown in Fig. 2.7. We observe

a significant BER reduction (∼100X at 4,000 P/E cycles) compared to the case when all

wordlines are programmed.

To isolate the bitline ICI, we only programmed cells on alternate bitlines (BLi,

BLi+2, . . . ) using pseudo-random data. This ensures there is no wordline ICI in the

horizontal direction. Fig. 2.7 shows the observed raw BER across P/E cycles in this case.

The reduction in the raw BER due to the absence of wordline ICI is only about 5X at

4,000 P/E cycles. Comparing this with the previous experiment where bitline ICI was



19

0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it 

Er
ro

r R
at

e 
(B

ER
)

Programming all pages in a block
Programming only alternate wordlines in a block
Programming only alternate bitlines in a block

Figure 2.7: Measured average raw bit error rate using 16 blocks of vendor-A chip by
programming all pages in a block, only alternate wordlines in a block and only alternate
bitlines in a block with pseudo-random data in all P/E cycles.

suppressed, it is clear that the bitline ICI in the vertical direction is the dominant part

of the ICI seen in flash memories.

2.3.4 Characterization of Data Retention Errors

Fig. 2.8 shows the average raw bit error rate corresponding to data retention

errors with 90, 180, 270 and 360 days of aging compared with the average raw bit error

rate without any aging. We observe ∼3X increase in the raw bit error rate due to 90

days of aging after 1000 P/E cycles.

Table 2.3: Frequency of cell (symbol) errors measured as a percentage of total number
of cell errors observed across all P/E cycles after 90 days (∼ 3 months) and 180 days
(∼ 6 months) of data retention using vendor-A chip.

90 days
Write Cell Read Cell Values

Values 11 10 00 01
11 0.00 4.40 0.10 0.91
10 17.80 0.00 6.99 0.01
00 0.00 32.58 0.00 1.86
01 0.01 0.02 35.32 0.00

180 days
Write Cell Read Cell Values

Values 11 10 00 01
11 0.00 2.32 0.08 0.54
10 17.50 0.00 3.45 0.01
00 0.00 35.55 0.00 0.82
01 0.00 0.01 39.72 0.00



20

0 1000 2000 3000 4000 5000 6000
Program/Erase (P/E) Cycle Count

10-6

10-5

10-4

10-3

10-2

10-1

B
it 

Er
ro

r R
at

e 
(B

ER
)

No data retention stress
Data retention stress (90 days)
Data retention stress (180 days)
Data retention stress (270 days)
Data retention stress (360 days)

Figure 2.8: Comparison of measured average raw bit error rates for vendor-A chip across
6000 P/E cycles with added data retention stress.

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Neighbors of Victim Cell

0

5

10

15

20

%
 o

f S
ym

bo
l E

rr
or

s

Wordline neighbors (a, b)
Bitline neighbors (c, d)
Diagonal neighbors on previous wordline (e, f)
Diagonal neighbors on next wordline (g, h)

Figure 2.9: Contribution of victim cell neighbors to cell (symbol) errors measured as
a percentage of total cell (symbol) errors across all P/E cycles for vendor-A chip. Data
retention stress of 90 days.

Table 2.3 shows the distribution of dominant cell errors during data retention

in the MLC flash memory blocks after 6000 P/E cycles. We observe that the most



21

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Neighbors of Victim Cell

0

5

10

15

20

%
 o

f S
ym

bo
l E

rr
or

s

Wordline neighbors (a, b)
Bitline neighbors (c, d)
Diagonal neighbors on previous wordline (e, f)
Diagonal neighbors on next wordline (g, h)

Figure 2.10: Contribution of victim cell neighbors to cell (symbol) errors measured as
a percentage of total cell (symbol) errors across all P/E cycles for vendor-A chip. Data
retention stress of 180 days.

dominant cell errors are adjacent cell level errors in the downward direction, such as the

3 → 2, 2 → 1 and 1 → 0 errors, with the 3 → 2 and 2 → 1 cell errors being almost

equally dominant. We also studied the dependence of the data retention errors on the

programmed values of neighbor cells of the victim cell in a 3 x 3 neighborhood as shown in

Fig 2.2. Fig. 2.9 and Fig. 2.10 depict this neighborhood data dependence in terms of the

correlation of percentage of cell errors observed corresponding to the 2 cell neighbor data

patterns along the wordline, bitline and diagonal neighbor directions. We observe that, in

general, neighbor cells programmed to the lowest cell level (erase state) 0 correspond to

larger number of data retention errors in the wordline and bitline directions. Specifically

in the bitline direction, the bitline neighbor cell on the next wordline ‘d’ being in the

erased state 0 has the highest correlation with the data retention cell errors observed.

2.4 ICI Mitigation using Run-length Limited (RLL) Con-

strained Codes

From the ICI characterization results presented in the previous section, it is clear

that the ICI effect on a victim cell is strongly correlated to the programmed levels on



22

its wordline (horizontal) and bitline (vertical) neighbors. It is also observed that the

probability of a flash memory cell being in error is the largest if its immediate neighbors

along the same wordline and the same bitline are programmed to the highest level ‘3’.

More specifically, our results show that the patterns most susceptible to ICI, considering

only immediate wordline and bitline neighbors, are ‘3-0-3’, ‘3-1-3’ and ‘3-2-3’. Hence the

number of cell errors due to ICI can be reduced by ensuring that these cell-level symbol

patterns are never written to the flash memory.

In [7], the authors observed that a ‘3-0-3’ pattern in an MLC flash memory consists

of a ‘1-1-1’ pattern in the upper page; that is, the binary representation of the ‘3-0-3’

pattern is ‘01-11-01’, where the left bit represents the lower (MSB) page and the right bit

represents the upper (LSB) page. Hence to forbid ‘3-0-3’ patterns from being written to

the flash memory, it is sufficient to forbid ‘1-1-1’ patterns from being written to the upper

page of any wordline. As shown in [7], this can be done efficiently by encoding the data

to be stored in the upper page using a suitably chosen binary (d, k)-runlength-limited

(RLL) code.

Binary (d, k)-RLL codes are a popular class of constrained codes which have been

successfully applied in magnetic recording to mitigate the adverse effects of inter-symbol

interference (ISI). The codewords of a (d, k)-RLL code are a subset of binary sequences

that satisfy the (d, k)-RLL constraint, which requires that the lengths of consecutive runs

of zeros are at least d and at most k. In particular, as noted in [7], the ‘1-1-1’ pattern is

forbidden by any (d, k)-RLL code such that d = 1.

A (d, k)-RLL constraint can be easily represented using a directed graph with

labeled states (nodes) and labeled edges, where the constrained sequences are obtained

by reading the edge labels in a sequential manner while traversing a path in the graph.

A graph representation of the (1, 7)-RLL constraint is shown in Fig. 2.11. The directed

graph can be described by an adjacency matrix A, and the capacity of the binary (d, k)-

RLL constraint is given by

C = log2 λmax(A) (2.2)

where λmax(A) is the largest positive eigenvalue of the matrix A [12, 13]. (The capacity

represents the supremum of achievable rates of codes satisfying the constraint.)

The capacity of the (1, 7)-RLL constraint computed using (2.2) is ∼0.6793. An

efficient rate 2/3 (1, 7)-RLL encoder based on table lookup was used in [7] to encode the

upper pages of an MLC chip, thereby guaranteeing that the symbol pattern ‘3-0-3’ would



23

0 1 2 3 4 5 6 7

0 0

1

0

1

0

1

0

1

0

1

0

1
1

Figure 2.11: Graph representation of the (1, 7)-RLL constraint

not be written1. Since the lower page is uncoded, corresponding to a rate of 1, the overall

rate of this encoding scheme is therefore given by (1 + 2/3)/2 ≈ 0.83.

Referring to Table 2.1, we see that in our MLC flash memory the cells programmed

to level ‘1’ are the most affected by ICI and “10 (1) → 00 (2)” is the dominant error.

Thus, forbidding only the ‘3-0-3’ pattern to mitigate ICI effects is inadequate, so we

extend the approach of [7] and show how to use (d, k)-RLL codes to forbid the ‘3-1-3’

and ‘3-2-3’ patterns in addition to the ‘3-0-3’ pattern.

Note that the bit representations of these two additional patterns are given by

‘01-10-01’ and ‘01-00-01’, respectively, and that both patterns induce a ‘1-0-1’ bit pattern

in the upper page. Hence to forbid all three ICI-susceptible patterns it is sufficient to

forbid the bit patterns ‘1-1-1’ and ‘1-0-1’ in the upper page of every wordline. This is

easily accomplished by using a (d, k)-RLL code satisfying a d = 2 constraint, which would

ensure at least two zeros between any two ones in the encoded upper page data. A graph

representation of the (2, 7) constraint can be obtained from the graph in Fig. 2.11 by

eliminating the directed edge from state 1 to state 0. The capacity of the (2, 7)-RLL

constraint computed using (2.2) is ∼0.5174. We can use an efficient 6-state rate-1/2

encoder, proposed in [14], for our (2, 7)-RLL constrained code. Since the lower page is

again left uncoded, the overall rate of our encoding scheme is given by (1+1/2)/2 = 0.75.

Although a specific value of k is not required to forbid ICI-susceptible data patterns, we

choose k = 7 due to the availability of efficient encoders for the (1, 7)-RLL and (2, 7)-

RLL codes [12, 13, 14]. We also note that there exist practical constrained codes with

higher rates than the (d, k)-RLL codes examined here that can be used to avoid ICI-

susceptible data patterns. For example, maximum transition run (MTR) codes [15],
1The authors of [7] also used the (1,7)-RLL code with an NRZI precoder to forbid writing the ‘0-1-0’

pattern into an SLC flash memory, where ‘1’ denotes the erased state. They evaluated the resulting
performance improvement using a mathematical model of ICI.



24

0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it 

Er
ro

r R
at

e 
(B

ER
)

Programming all pages in a block
Programming 3-0-3 forbidden patterns along wordlines in a block
Programming 3-x-3 forbidden patterns along wordlines in a block
Programming 3-x-3 forbidden patterns along bitlines in a block

Figure 2.12: Measured average raw bit error rate comparison when all pages are pro-
grammed with pseudo-random data and when (1, 7)-RLL and (2, 7)-RLL coded data are
programmed to forbid ‘3-x-3’ patterns along wordlines or bitlines.

originally designed for magnetic recording applications, forbid the bit pattern ‘1-1-1’ and

achieve rates close to the capacity, ∼0.8791, of the corresponding constraint.

To evaluate the error rate performance gain due to the (d, k)-RLL coding, we

perform P/E cycling experiments as described in Section 2.2 with the (d, k)-RLL coded

data being written and read from the flash memory blocks. We separately consider the

encoding of data using (1, 7)-RLL and (2, 7)-RLL codes along the wordlines (horizontal)

and the bitlines (vertical) of the flash memory block to measure the effect of forbidding

the ICI-susceptible data patterns in each direction. Fig. 2.12 shows the raw BER results

obtained from our experiments using the (d, k)-RLL coded data.

Note that forbidding the ‘3-0-3’, ‘3-1-3’ and ‘3-2-3’ data patterns using (2, 7)-RLL

coding for the upper page also results in forbidding the ‘3-3-3’ pattern. We therefore

denote the results corresponding to this case as ‘3-x-3’ forbidden data patterns in the

plot legend in Fig. 2.12. We observe that forbidding the ICI-susceptible patterns results

in significantly lower raw BER especially in the early life of the flash memory (up to

∼1, 000 P/E cycles). However, at later stages in the P/E cycling, forbidding the ‘3-x-3’

patterns across the wordlines does not provide significant performance gain. This is due

to the fact that the ICI along the bitlines is dominant and, consequently, coding along

the bitlines to prevent ‘3-x-3’ patterns provides the largest performance gain compared

to an uncoded system.



25

2.5 Conclusion

We performed P/E cycling and data retention experiments on MLC NAND flash

memories to characterize the error behavior at various levels. At the cell level, our results

indicate an asymmetric distribution of cell errors. We also observed and characterized

the overdispersion phenomenon in the statistics of the number of bit errors observed per

ECC frame during P/E cycling. We studied and characterized the data dependence of

ICI along with the wordline and bitline ICI effect and our results clearly show that the

bitline ICI in the vertical direction is much more significant than the wordline ICI in the

horizontal direction. Using (d,k)-RLL codes to mitigate ICI by forbidding ICI-susceptible

patterns, we observed that it is important to consider coding techniques along the bitlines

in flash memories for successful mitigation of ICI errors.

Acknowledgements

This chapter is in part a reprint of the material in the papers: Veeresh Taranalli,

Hironori Uchikawa, and Paul H. Siegel, “Error analysis and inter-cell interference mit-

igation in multi-level cell flash memories,” in Proc. IEEE International Conference on

Communications (ICC), London, June 2015, pp. 271–276; Veeresh Taranalli, Hironori

Uchikawa, and Paul H. Siegel, “Channel models for multi-level cell flash memories based

on empirical error analysis,” IEEE Transactions on Communications, vol. 64, no. 8,

pp. 3169–3181, August 2016. The dissertation author was the primary investigator and

author of these papers, and co-authors have approved the use of the material for this

dissertation.



3 Channel Models for Multi-Level

Cell Flash Memories

3.1 Introduction

Channel modeling for NAND flash memories is a developing research area with

applications to better signal processing and coding techniques. A channel model for a

flash memory can be viewed as a simplified representation of the underlying physical

mechanisms which induce errors in stored data. As introduced in Chapter 1, the major

error mechanisms in NAND flash memories are program disturb and cell wear that occur

during program/erase cycling, charge loss that occurs during data retention and inter-cell

interference (ICI) [2, 3, 16]. The main applications of a flash memory channel model are

improved design, decoding and performance evaluation of error-correcting codes (ECCs)

and error-mitigating codes. Other applications include information theoretic studies that

provide an analysis of the capacity of flash memories [17], as well as insights for the

development of new coding techniques. In this chapter, we focus on the development of

parametric channel models for multi-level cell (MLC) flash memories based on empirical

error characterization results presented in Chapter 2, that enable accurate ECC frame

error rate (FER) performance estimation/prediction.

Efficient evaluation of ECC FER performance is important for storage system

design and optimization. One approach to ECC FER performance estimation is to ex-

perimentally collect error data for use in Monte-Carlo simulations of the ECC decoder,

but this can be impractical because of the large amount of error data required when

estimating low frame error rates. Another approach is to analytically predict the perfor-

mance of a code based upon a measured average raw bit error rate. While this is feasible

for algebraic codes with bounded distance decoders, it is difficult for low density parity

26



27

check (LDPC) codes and polar codes that use probabilistic decoders based upon message

passing or successive cancellation. Moreover, the implicit assumption of independent,

symmetric bit errors may not be justified.

Previously proposed [18, 19] parametric channel models for MLC flash memories

were obtained by using well known probability distributions to model the empirical cell

threshold voltage distributions. In [18], a Gaussian distribution, and in [19], a Normal-

Laplace mixture model were shown to be a good fit for the experimentally observed cell

threshold voltage distributions in MLC flash memories. Such models can be used to

reliably predict/estimate the experimentally observed raw bit error rate (RBER) of the

flash memory. However in this chapter, we show based on empirical error characterization

results presented in Chapter 2, that the RBER is not necessarily a good indicator of

the ECC FER performance, and that this is due to the overdispersion phenomenon in

the number of bit errors per frame in MLC flash memories. Overdispersion refers to the

greater variability in empirical data compared to a statistical model, such as the binomial

distribution typically used to model count data. Therefore, a memoryless channel model

such as the binary asymmetric channel (BAC) model provides an optimistic estimate of

the ECC FER performance when compared to the actual ECC FER performance estimate

obtained from empirical data.

In this chapter, first we study the suitability of well known discrete memoryless

channel (DMC) models, such as the 4-ary DMC, the BSC and the BAC, to represent

the bit errors observed in the MLC flash memory channel. Among the DMC models, a

per-page BAC (2-BAC) model appears to align well with our empirical error character-

ization results. However we show through analysis as well as empirical results that the

per-page BAC model is unable to fit the empirical distribution of the number of bit errors

per frame and is not a good model for ECC FER performance estimation. This is due

to the interdependence of mean and variance statistics of the number of bit errors per

frame for a BAC where the number of 0 → 1 and 1 → 0 errors are modeled as binomial

distributions. The binomial distribution is a single parameter (degree of freedom) distri-

bution, hence its mean and variance cannot be chosen independently. Thus the binomial

distribution is unable to accurately model the overdispersed empirical error data as de-

scribed in Chapter 2. A natural next choice is to consider the normal approximation to

the binomial distribution which provides two parameters (degrees of freedom) for mod-

eling the observed mean and variance statistics independently. However we observe that



28

the normal approximation based channel model does not accurately fit the shape of the

empirical data distribution. Another commonly used probability distribution to model

overdispersed data with respect to a binomial distribution is the beta-binomial distribu-

tion [20, 21]. Hence we propose a discrete channel model based on the beta-binomial

distribution for the lower and upper pages, referred to as the 2-BBM channel model.

We show that this model fits the empirical distribution of the number of bit errors per

frame and provides accurate ECC FER performance estimation. We also present simple

approximations of the 2-BAC model based on the normal and Poisson probability distri-

butions. Although these approximations are able to fit the empirical distribution of the

number of bit errors per frame better than the 2-BAC model, they are not as good a fit

as the proposed 2-BBM channel model.

Through quantitative evaluation of the proposed channel models using the statis-

tical Kolmogorov-Smirnov (K-S) Two Sample goodness of fit test and using Monte-Carlo

simulation results of FER performance for BCH, LDPC and polar codes, we show that

the 2-Beta-Binomial channel model is an accurate channel model to represent the overdis-

persed nature of bit errors in MLC flash memories.

3.2 Definitions and Notation

Let K represent the total number of bit errors in a frame of length N bits. Let

Km be the total number of bit errors in a frame of N bits which consists of m zeros and

N − m ones. The relationship between probability distributions of K and Km is given

by

Pr(K = k) =

N∑
m=0

(
N
m

)
2N

Pr(Km = k) (3.1)

where (Nm)
2N

represents the probability of observing exactly m zeros in a frame of N bits.

Km can be represented as the sum of the number of 0 → 1 and 1 → 0 bit errors as

Km = K(0)
m +K

(1)
N−m (3.2)

where K
(0)
m and K

(1)
N−m denote the number of 0 → 1 and 1 → 0 bit errors respectively. K

can also be represented as the sum of the total number of 0 → 1 and 1 → 0 bit errors as

K = K(0) +K(1) where, (3.3)

Pr(K(u) = k) =
N∑

m=k

(
N
l

)
2N

Pr(K
(u)
l = k) (3.4)



29

Note that u ∈ {0, 1} where l = m+ (N − 2m)u.

We use E[X] and Var[X] to denote the expected value (mean) and the variance

of a random variable X respectively. We use X | Y to denote “X given Y ”.

3.3 Candidate Discrete Memoryless Channel Models

The primary error mechanism in MLC flash memories is at the cell level and

hence the 4-ary DMC model with 4 inputs and 4 outputs can naturally account for all

the cell level errors. This 4-ary DMC model requires 16 parameters (only 12 independent

parameters) which are the cell level transition probabilities and these parameters can

be easily estimated from experiment data such as that shown in Table 2.1. However the

4-ary DMC model is not useful in practice as the logical unit of progam/read operations in

current MLC flash memory applications is a binary page. Hence any practically applicable

channel model would have to treat the errors in the lower and upper pages of the MLC

flash memory independently, even though it is clear that the errors occur at the cell level

and hence the lower and upper page bit errors are not independent.

A simpler more commonly used DMC model is the 2-BSC model where two

independent BSCs are used to represent the bit errors occuring in the lower and upper

pages. The advantage of using the BSC model for each page independently is that it

is simple and well studied, with a variety of error correction coding (ECC) techniques

available for transmission over the BSC. However, based on our error characterization

results in Chapter 2, the bit errors in MLC flash memories during P/E cycling are mostly

asymmetric in nature. Therefore, the BSC is clearly not an accurate model to represent

the bit errors in MLC flash memories. A numerical comparison of estimated capacities of

the 4-ary DMC model and the 2-BSC model was presented in [22], where it was observed

that the 4-ary DMC model provides a significant capacity gain compared to the 2-BSC

model for MLC flash memories.

3.4 The 2-Binary Asymmetric Channel (2-BAC) Model

Based on the asymmetry of bit errors observed in MLC flash memories (Chap-

ter 2.3), we propose a per page BAC model called the 2-BAC model where two indepen-

dent BAC models are used to represent the bit errors occuring in the lower and upper

pages. The 2-BAC model is a parametric model with 4 parameters which are the prob-



30

1− p

1− q

p

q

0

1

0

1

x y

Figure 3.1: Binary asymmetric channel

abilities of 0 → 1 and 1 → 0 errors in lower and upper page BACs, p
(l)
0 , p

(l)
1 and p

(u)
0 ,

p
(u)
1 . For a theoretical evaluation, we mainly compare the mean and variance statistics of

the number of bit errors per frame corresponding to a BAC model with the empirically

observed sample mean and variances shown in Table 2.2. We consider a BAC as shown in

Fig. 3.1, where p is the probability of 0 → 1 error and q is the probability of 1 → 0 error.

Next, we derive closed form expressions for the mean, E[K], and the variance, Var[K], of

the number of bit errors per frame corresponding to a BAC model. For the BAC model,

K
(0)
m and K

(1)
N−m are distributed according to the binomial probability distribution and

are independent i.e.,

K(0)
m ∼ Binomial(m, p) (3.5)

K
(1)
N−m ∼ Binomial(N −m, q) (3.6)

K(0)
m ⊥⊥ K

(1)
N−m (3.7)

The mean and the variance of K(0)
m are given by

E[K(0)
m ] = mp (3.8)

Var[K(0)
m ] = mp(1− p) (3.9)

and those of K(1)
N−m are given by

E[K
(1)
N−m] = (N −m)q (3.10)

Var[K
(1)
N−m] = (N −m)q(1− q). (3.11)

Proposition 3.4.1. The mean and the variance of K for a BAC model are given by

E[K] =
N

2
(p+ q) (3.12)

Var[K] =
N

2

(
(p+ q)− pq − 1

2
(p2 + q2)

)
. (3.13)



31

Proof. See Appendix 3.9.1.

The parameters of the BAC model p and q are estimated as the average 0 → 1

and 1 → 0 bit error rates obtained from experimental data corresponding to a particular

P/E cycle point in the flash memory lifetime. An algorithmic description of the BAC

model is presented in Algorithm 1.

Algorithm 1 BAC Model Implementation
Input: Input frame x of length N , BAC model parameters (p, q).

Output: Data frame with errors y.

1: for xi ∈ x do

2: Generate random sample u ∼ Uniform[0, 1].

3: if xi = 0 then t = p else t = q.

4: if u ≤ t then ei = 1 else ei = 0.

5: yi = xi ⊕ ei.

Using the results of Proposition 3.4.1, we compute E[K] and Var[K] for a BAC

model as follows. For example, at 8,000 P/E cycles for the upper page BAC model for

vendor-A chip, we have p = 4.97 × 10−3 and q = 2.84 × 10−3 and assuming N = 8192,

we get E[K] = 32.01 and Var[K] = 32.02. Comparing E[K] and Var[K] to the sample

mean and variance of K recorded using experimental data as shown in Table 2.2, we

observe that the BAC model is unable to account for the large observed sample variance.

For small values of p and q, from Proposition 3.4.1, we have Var[K] ≈ E[K]. Therefore,

the BAC model is not a good fit for the observed empirical probability distribution of

K as shown in Fig. 3.4 and Fig. 3.5 for vendor-A and vendor-B flash memory chips,

respectively. As the Var[K] is much less than the observed sample variance, the 2-BAC

model for MLC flash memory is expected to provide a more optimistic estimate of the

ECC FER performance when compared to the actual performance. We discuss this in

more detail in Section 3.7. However, note that the 2-BAC model does provide an accurate

estimate of the average raw BER which is given by E[K]
N . This shows that the ability

to accurately estimate/predict the average raw BER is not the sole criterion for a good

MLC flash memory channel model.



32

3.5 The 2-Beta-Binomial (2-BBM) Channel Model

As mentioned in Chapter 2, the empirically observed sample mean and variance

estimates show that the number of bit errors per frame data is overdispersed with respect

to the binomial distribution. This is the major reason for the poor fit of the 2-BAC model

discussed in the previous section. To account for the overdispersion, we propose a channel

model for MLC flash memories based on the beta-binomial probability distribution called

the 2-Beta-Binomial (2-BBM) channel model.

The beta-binomial probability distribution was first proposed in [20] as the prob-

ability distribution for counts resulting from a binomial distribution if the probability of

success varies according to the beta distribution between sets of trials. Using empirical

data, it was also shown in [20] that the beta-binomial probability distribution is a good

fit for overdispersed binomial data. Lindsey et al. [21] studied the beta-binomial proba-

bility distribution based model in fitting overdispersed human sex ratio in families data

and it was found to be a good fit. Stapper et al. [23] developed a yield prediction model

for semiconductor memory chips by modeling the overdispersed distribution of number

of faults per chip using the gamma-Poisson distribution which is closely related to the

beta-binomial distribution.

For the beta-binomial channel model, we model the variables K(0)
m and K

(1)
N−m as

being distributed according to the beta-binomial distribution i.e.,

p ∼ Beta(a, b)

K(0)
m | p ∼ Binomial(m, p)

K(0)
m ∼ Beta-Binomial(m, a, b) (3.14)

q ∼ Beta(c, d)

K
(1)
N−m | q ∼ Binomial(N −m, q)

K
(1)
N−m ∼ Beta-Binomial(N −m, c, d) (3.15)

K(0)
m ⊥⊥ K

(1)
N−m (3.16)

where (a, b) and (c, d) correspond to the parameters of a beta probability distribution

defined as

f(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)
0 ≤ θ ≤ 1 (3.17)

B(α, β) =

∫ 1

0
θα−1(1− θ)β−1dθ (3.18)



33

where B(α, β) represents the beta function. Thus the Beta-Binomial (BBM) channel

model is derived from a BAC model where the bit error probabilities p and q are ran-

dom variables which vary from frame to frame and are distributed according to the

beta distribution. The BBM channel model is a 4-parameter model (compared to the

2-parameter BAC) and hence the 2-BBM channel model for MLC flash memories will be

an 8-parameter model. The beta-binomial probability distributions of K(0)
m and K

(1)
N−m

are given by

Pr(K(0)
m = k) =

(
m

k

)
B(a+ k, b+m− k)

B(a, b)
(3.19)

Pr(K
(1)
N−m = k) =

(
N −m

k

)
B(c+ k, d+N −m− k)

B(c, d)
. (3.20)

The mean and the variance of K(0)
m and K

(1)
N−m are given by

E[K(0)
m ] =

ma

a+ b
(3.21)

Var[K(0)
m ] =

mab(a+ b+m)

(a+ b)2(a+ b+ 1)
(3.22)

E[K
(1)
N−m] =

(N −m)c

c+ d
(3.23)

Var[K
(1)
N−m] =

(N −m)cd(c+ d+N −m)

(c+ d)2(c+ d+ 1)
. (3.24)

Proposition 3.5.1. The mean and the variance of K for a BBM channel model are

given by

E[K] =
N

2

(
a

a+ b
+

c

c+ d

)
(3.25)

Var[K] =
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
+

N

4

(
c(c+ d)(c+ 2d+ 1) +Ncd

(c+ d)2(c+ d+ 1)

)

−N

4

(
2ac

(a+ b)(c+ d)

)
. (3.26)

Proof. See Appendix 3.9.2.

Proposition 3.5.2. The mean and the second moment of K(0) and K(1) for a BBM



34

channel model are given by

E[K(0)] =
N

2

(
a

a+ b

)
(3.27)

E[(K(0))2] =
N

4

(
a(a+ 2b+ 1) +Na(a+ 1)

(a+ b)(a+ b+ 1)

)
(3.28)

E[K(1)] =
N

2

(
c

c+ d

)
(3.29)

E[(K(1))2] =
N

4

(
c(c+ 2d+ 1) +Nc(c+ 1)

(c+ d)(c+ d+ 1)

)
. (3.30)

Proof. See Appendix 3.9.3.

The parameters a, b, c, d of the BBM channel model are estimated from the

sample moments of K(0) and K(1) using the method of moments [20]. From P/E cycling

experiment data, we obtain the sample mean and sample second moment estimates of the

random variables K(0) and K(1) which represent the total number of 0 → 1 and 1 → 0 bit

errors per frame. Let µ1, µ2 represent the first and second moment estimates of K(0) and

µ3, µ4 represent the first and second moment estimates of K(1). Solving the equations

in Proposition 3.5.2 for a, b, c, d, we have the parameter estimates

â =
µ2
1(N + 1)− 2µ1µ2

N(µ2 − µ1)− µ2
1(N − 1)

b̂ = â

(
N

2µ1
− 1

)
(3.31)

ĉ =
µ2
3(N + 1)− 2µ3µ4

N(µ4 − µ3)− µ2
3(N − 1)

d̂ = ĉ

(
N

2µ3
− 1

)
. (3.32)

Table 3.1 and Table 3.2 show the estimated parameters for the upper and lower pages,

respectively, for both vendor-A and vendor-B flash memory chips. An algorithmic de-

scription of the BBM channel model is presented in Algorithm 2.

Algorithm 2 BBM Channel Model Implementation
Input: Input frame x of length N , BBM channel model parameters (a, b, c, d).

Output: Data frame with errors y.

1: Generate two independent random samples,

p ∼ Beta(a, b) and q ∼ Beta(c, d).

2: y = BAC(x, p, q) [Use Algorithm 1].



35

Table 3.1: Upper page BBM channel model parameter estimates for vendor-A and
vendor-B chips. N = 8192.

P/E Cycles Vendor-A Vendor-B
a b c d a b c d

2000 12.72 46368.34 8.05 42569.08 10.82 302596.64 6.86 43747.02
4000 25.95 20940.98 15.46 23556.92 11.39 48028.59 6.00 13142.88
6000 22.67 7596.71 18.16 11890.14 15.58 20535.47 7.16 7193.92
8000 20.72 4143.52 22.28 7821.13 15.28 9068.43 7.58 4092.87
10000 21.36 2819.03 26.12 5890.35 13.36 4142.23 9.28 2938.88

Table 3.2: Lower page BBM channel model parameter estimates for vendor-A and
vendor-B chips. N = 8192.

P/E Cycles Vendor-A Vendor-B
a b c d a b c d

2000 2.85 446831.46 15.31 24066.27 0.21 94462.08 11.71 49463.01
4000 3.57 315123.27 22.49 7551.62 0.44 147347.64 13.75 11048.61
6000 1.68 95672.63 18.90 3528.74 0.29 80804.58 14.79 4070.45
8000 2.01 86407.03 20.09 2682.08 1.30 319651.96 16.30 2208.23
10000 1.81 61326.54 23.79 2338.70 1.39 337300.38 16.57 1273.77

For evaluation of the BBM channel model, we compute E[K] and Var[K] using

Proposition 3.5.1. Corresponding to the example used for evaluating the BAC model,

the parameter estimates of the upper page BBM channel model for vendor-A are as

shown in Table 3.1 and using these parameter estimates, we obtain E[K] = 32.01 and

Var[K] = 57.88 for N = 8192 at 8,000 P/E cycles. Comparing with the results from

Table 2.2, we observe that the Var[K] obtained using the BBM channel model is still

lower than the sample variance; however, it is clear that the BBM channel model is

vastly better at modeling the overdispersed number of bit errors per frame empirical

data than the BAC model. This will be even more evident based on the ECC FER

performance estimation results presented in Section 3.7.

We also observe remarkable consistency in the parameter estimates of the BBM

channel model across different blocks of the same MLC flash memory chip. Fig. 3.2 shows

the empirical parameter estimates corresponding to the upper page BBM channel models

for vendor-A chip using data collected from 3 different sets of 4 contiguous blocks of the

MLC flash memory chip. Fig. 3.3 shows the empirical parameter estimates correspond-

ing to the upper page BBM channel models for vendor-A chip obtained using different



36

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10
15
20
25
30
35
40
45
50

P
ar

am
et

er
 V

al
u

es

c

Block Set 1

Block Set 2

Block Set 3

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

4000

6000

8000

10000

12000

14000

16000

d
Block Set 1

Block Set 2

Block Set 3

10

15

20

25

30

35

40

P
ar

am
et

e
r 

V
a
lu

e
s

a

Block Set 1

Block Set 2

Block Set 3

2000

3000

4000

5000

6000

7000

8000

9000

b
Block Set 1

Block Set 2

Block Set 3

Figure 3.2: Variation of parameter estimates for the upper page BBM channel model
((a, b) for 0 → 1 error, (c, d) for 1 → 0 error) for 3 different 4-block sets for vendor-A
chip. N = 8192.

10

15

20

25

30

35

40

P
ar

am
et

er
 V

al
u

e
s

a

2000

4000

6000

8000

10000

12000

14000

b N = 8192

N = 16384

N = 32768

N = 65536

N = 141312

5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

5

10

15

20

25

30

P
ar

am
et

e
r 

V
a
lu

es

c

5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

4000
6000
8000

10000
12000
14000
16000
18000
20000

d

Figure 3.3: Variation of parameter estimates for the upper page BBM channel model
((a, b) for 0 → 1 error, (c, d) for 1 → 0 error) for different frame lengths for vendor-A
chip.



37

frame sizes. Although not shown, we also observe similar consistency in the lower page

parameter estimates for both the vendor chips using different sets of blocks on the same

chip and different frame sizes. We also note that the estimates for lower page parameters

a and b will be noisy because the 0 → 1 bit error rate in the lower page is extremely

small. This consistency suggests that we may be able to model every flash memory chip

with just 8 parameters of the 2-BBM channel model for accurate ECC FER performance

estimation.

3.6 Normal and Poisson Approximation Channel Models

To model the overdispersed number of bit errors per frame empirical data, an

alternative approach from a statistical viewpoint is to consider approximations to the

binomial probability distribution which retain the general shape of the binomial distribu-

tion and whose mean and variance can be controlled independently. We propose two such

channel models for MLC flash memories based on the normal and Poisson probability

distributions called the 2-Normal Approximation to the BAC (2-NA-BAC) model and

the 2-Poisson Approximation to the BAC (2-PA-BAC) model respectively. Similar to the

2-BAC and 2-BBM channel models, the 2-NA-BAC (resp., 2-PA-BAC) model consists

of two independent NA-BAC (resp., PA-BAC) models for the lower and upper pages of

MLC flash memories. The design goal for the NA-BAC and PA-BAC models is to ensure

a match between the mean and variance statistics of the data from the model and the

observed sample mean and sample variance. Based on this, we define rules for the normal

and Poisson approximation as follows.

Let µ0 and σ2
0 denote the sample mean and sample variance of K(0) and µ1 and

σ2
1 denote the sample mean and sample variance of K(1). Let N (µ, σ2) denote a normal

distribution with mean µ and variance σ2 and let P(λ) denote a Poisson distribution

with rate parameter λ. Let g0 and g1 represent the sampled number of 0 → 1 and 1 → 0

bit errors per frame.

Definition 3.6.1. The normal approximation rules for the NA-BAC model are given by

g0 = [ĝ0] where ĝ0 ∼ N
(
µ0, σ

2
0

)
g1 = [ĝ1] where ĝ1 ∼ N

(
µ1, σ

2
1

)
. (3.33)

where [·] denotes the round to nearest integer operator.



38

Definition 3.6.2. The Poisson approximation rules for the PA-BAC model are given by

g0 = ĝ0 − (σ2
0 − µ0) where ĝ0 ∼ P

(
σ2
0

)
g1 = ĝ1 − (σ2

1 − µ1) where ĝ1 ∼ P
(
σ2
1

)
. (3.34)

Algorithm 3 NA-BAC and PA-BAC Model Implementation
Input: Input frame x of length N , sample (E[K(0)],Var[K(0)]), and sample

(E[K(1)],Var[K(1)]).

Output: Data frame with errors y.

1: Generate integers g0, g1 according to the Normal or Poisson approximation rules.

2: T0 = {i | xi = 0}, T1 = {i | xi = 1}.
3: Pick subsets E0 of size g0 and E1 of size g1 uniformly at random from T0 and T1,

respectively.

4: Create a binary error vector e of length N such that ei = 1 if i ∈ E0 ∪ E1.
5: y = x⊕ e.

Based on these rules, an algorithmic description of the NA-BAC and PA-BAC

models is presented in Algorithm 3. The normal probability distribution is a continuous

distribution with infinite support whereas the variables K(0) and K(1) being modeled

have finite support and are discrete (integers). Hence we require the round to nearest

integer function in Definition 3.6.1. The Poisson probability distribution is a discrete

distribution with an infinite support set. Using goodness of fit tests in Section 3.7, we

show that the 2-NA-BAC and 2-PA-BAC models are a better fit than the 2-BAC model

for the observed empirical data. However, the 2-NA-BAC and the 2-PA-BAC models are

not as good a fit as the 2-BBM model to describe the bit errors in MLC flash memories.

3.7 Simulation Results and Evaluation of Channel Models

In this section, we provide a quantitative evaluation of the proposed channel

models for MLC flash memories. For this we consider two viewpoints. The first one

is a purely statistical viewpoint where we perform the Kolmogorov-Smirnov (K-S) Two

Sample test [24] to evaluate the goodness of fit of the proposed channel models when

compared with the empirical data. Next, we evaluate the proposed channel models for



39

their application in ECC FER performance estimation. We emphasize the results of

this latter evaluation when compared to the former, as accurate ECC FER performance

estimation has been the main driving factor in the design of the proposed channel models.

3.7.1 Statistical Goodness of Fit Tests

The Kolmogorov-Smirnov (K-S) Two Sample test is a commonly used statistical

test for determining if two sets of data samples are drawn from the same probability dis-

tribution. The K-S test is a very general test in that it makes no assumptions about the

underlying probability distributions of the input data samples and is a non-parametric

test [24]. This makes it suitable for our purpose as we have a varied set of underlying

probability distributions of the number of bit errors per frame corresponding to the pro-

posed channel models. The BAC and BBM model distributions do not match any well

known probability distributions exactly although, they are close to the binomial distri-

bution, and the NA-BAC and PA-BAC model distributions are approximately normal

and Poisson respectively.

We perform K-S Two Sample tests comparing the number of bit errors per frame

data samples from the proposed channel models to the empirical data obtained from P/E

cycling experiments. The empirical data sample sizes, i.e., number of frames for each

page, are 8704 for vendor-A and 4096 for vendor-B, respectively. For the BAC, BBM,

NA-BAC and PA-BAC models, we simulate 10000 frames. The beta random variates

to simulate the BBM channel model and the K-S Two Sample test statistic values are

computed using the SciPy library [25]. The test statistic values are shown in Tables 3.3

and 3.4 for 8, 000 and 4, 000 P/E cycles, respectively. The null hypothesis is that the data

samples from a proposed channel model and empirical data belong to the same underlying

probability distribution. The test statistic is indicative of the difference in underlying

probability distributions of the two input data samples. From Table 3.3, we see that the

test statistic values are consistently low for the BBM channel model, thus indicating that

it provides the best fit to the empirical data among all the proposed channel models. The

p-values recorded (not shown) for all the K-S Two Sample tests in Tables 3.3 and 3.4 are

smaller than 0.01 indicating that the test statistic values are estimated with a significant

level of confidence. The K-S Two Sample test compares the cumulative distribution

functions (CDF) obtained from input data samples to compute the test statistic. Fig. 3.4

and Fig. 3.5 provide a visual comparison of these CDFs corresponding to vendor-A and



40

vendor-B chips.

Table 3.3: Test statistic values from K-S two sample tests comparing the lower and
upper page BAC, BBM, NA-BAC, PA-BAC models with empirical data at 8,000 P/E
cycles. Frame length N = 8192.
K-S Two Sample Tests Vendor-A Vendor-B

Lower Page Upper Page Lower Page Upper Page
BAC vs. Experiment 0.0979 0.0744 0.1278 0.0669
BBM vs. Experiment 0.0386 0.0357 0.0190 0.0135

NA-BAC vs. Experiment 0.0430 0.0715 0.0373 0.0659
PA-BAC vs. Experiment 0.0268 0.0777 0.0337 0.1008

Table 3.4: Test statistic values from K-S two sample tests comparing the lower and
upper page BAC, BBM, NA-BAC, PA-BAC models with empirical data at 4,000 P/E
cycles. Frame length N = 8192.
K-S Two Sample Tests Vendor-A Vendor-B

Lower Page Upper Page Lower Page Upper Page
BAC vs. Experiment 0.0498 0.0291 0.0436 0.0422
BBM vs. Experiment 0.0268 0.0153 0.0137 0.0053

NA-BAC vs. Experiment 0.0575 0.0973 0.0632 0.1191
PA-BAC vs. Experiment 0.0642 0.0703 0.0223 0.1953

3.7.2 ECC FER Performance Estimation

We evaluate the proposed channel models for their accuracy in ECC FER perfor-

mance estimation using binary BCH, LDPC, and polar codes. The choice of these ECCs

reflects the fact that BCH and LDPC codes are already being used in practical flash

memory applications, while polar codes are a promising candidate for the future. The

baseline ECC FER performance estimates are obtained from the empirical error data

collected from MLC flash memory chips during P/E cycling experiments. As pseudo-

random data was written to the flash memory chips during P/E cycling experiments, for

ECC decoding we assume an all-zero codeword as the transmitted codeword with the

error vector obtained from the empirical error data. This assumption is valid because

all the ECCs considered are linear codes. To estimate the ECC FER performance using

the proposed channel models, Monte-Carlo simulations are used where pseudo-random

codewords of the ECC are generated and transmitted through the appropriate channel

model and the received codeword is decoded. At least 400 frame errors are recorded for



41

10 15 20 25 30 35 40 45 50

No. of Bit Errors per Frame

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Lower Page

PA-BAC

NA-BAC

BBM

BAC

Experiment

10 15 20 25 30 35 40 45 50

No. of Bit Errors per Frame

0.0

0.2

0.4

0.6

0.8

1.0
Upper Page

PA-BAC

NA-BAC

BBM

BAC

Experiment

Figure 3.4: Comparison of CDFs for number of bit errors per frame observed from
empirical data and from the BAC, BBM, NA-BAC, PA-BAC models at 8,000 P/E cycles
for vendor-A chip.

10 15 20 25 30 35 40 45 50

No. of Bit Errors per Frame

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Lower Page

PA-BAC

NA-BAC

BBM

BAC

Experiment

0 5 10 15 20 25

No. of Bit Errors per Frame

0.0

0.2

0.4

0.6

0.8

1.0
Upper Page

PA-BAC

NA-BAC

BBM

BAC

Experiment

Figure 3.5: Comparison of CDFs for number of bit errors per frame observed from
empirical data and from the BAC, BBM, NA-BAC, PA-BAC models at 8,000 P/E cycles
for vendor-B chip.



42

FER estimation.

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100

F
ra

m
e 

E
rr

o
r 

R
at

e 
(F

E
R

)

Vendor-A

Experiment

2-BAC

2-BBM

2-NA-BAC

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100 Vendor-B

Experiment

2-BAC

2-BBM

2-NA-BAC

Figure 3.6: Comparison of FER performance of a (N = 8191, k = 7683, t = 39) BCH
code using empirical error data and error data from simulation using the 2-BAC, 2-BBM,
2-NA-BAC channel models for vendor-A and vendor-B chips.

The FER performance of a (N = 8191, k = 7683, t = 39) BCH code using

empirical data and the proposed channel models is shown in Fig. 3.6. Fig. 3.7 shows the

FER performance of a (N = 8192, k = 7683) regular quasi-cyclic LDPC (QC-LDPC)

code with dc = 64 and dv = 4, where dc and dv refer to the check node and variable

node degrees, respectively, in the parity check matrix. The parity check matrix of the

QC-LDPC code is constructed using size 128×128 circulant permutation matrices and the

design rate is specified as 0.9375. To ensure the required variable node degree dv, exactly

dv permutations of the circulant matrix are stacked vertically along the rows of the parity

check matrix for every set of columns. Zero matrices of size 128× 128 are used to fill up

any remaining rows. This is done using the progressive edge growth (PEG) algorithm [26]

to avoid short cycles. Note that although the specified design rate corresponds to a code

dimension of 7680, we get k = 7683 due to three dependent parity checks in the final

parity check matrix thus obtained. A sum-product belief propagation decoder with a

maximum of 50 iterations and early termination is used to decode the QC-LDPC code.

Fig. 3.8 also shows additional results comparing the FER performance of the QC-LDPC

code obtained using empirical data and simulation data from the BAC, BBM channel



43

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100

F
ra

m
e 

E
rr

o
r 

R
at

e 
(F

E
R

)

Vendor-A

Experiment

2-BAC

2-BBM

2-NA-BAC

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100 Vendor-B

Experiment

2-BAC

2-BBM

2-NA-BAC

Figure 3.7: Comparison of FER performance of a (N = 8192, k = 7683) regular QC-
LDPC code using empirical error data and error data from simulation using the 2-BAC,
2-BBM, 2-NA-BAC channel models for vendor-A and vendor-B chips.

models, separately for the lower and upper pages of vendor-A chip and the lower page of

vendor-B chip. The lowest FER performance estimates from empirical data were obtained

by P/E cycling 44 and 24 blocks of vendor-A and vendor-B chips, respectively. A total

of 6 and 4 frame errors were observed to obtain the lowest FER performance estimates

from empirical data for the lower and upper pages of vendor-A chip, respectively. For the

lower page of vendor-B chip, 4 frame errors were observed to estimate the lowest FER

performance from empirical data. Note that the results for the upper page of vendor-B

chip are not shown as we did not observe any frame errors in the empirical data. We

also note that a different vendor-B chip was used to obtain the additional results shown

in Fig. 3.8 when compared to the rest of the paper. Fig. 3.9 shows the comparison of

FER performance of a (N = 8192, k = 7684) polar code using empirical data and the

proposed channel models. The polar code is optimized for a binary symmetric channel

(BSC) with bit error probability p = 0.001 using the construction technique proposed

in [27]. The successive cancellation list (SC-List) decoder proposed in [28] is used for

decoding the polar code.

For all the ECCs considered and using data from both vendor chips, we observe

that the 2-BAC model provides an optimistic estimate of the FER performance when



44

4000 5500 7000
10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e
 E

rr
o

r 
R

a
te

 (
F

E
R

)

LP, Vendor-A

Experiment

BAC

BBM

4000 5500 7000

Program/Erase (P/E) Cycle Count

UP, Vendor-A

Experiment

BAC

BBM

4000 5500 7000

LP, Vendor-B

Experiment

BAC

BBM

Figure 3.8: Comparison of FER performance of a (N = 8192, k = 7683) regular QC-
LDPC code using empirical error data and error data from simulation using the BAC
and BBM channel models for both lower and upper pages of vendor-A chip and the lower
page of vendor-B chip.

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100

F
ra

m
e 

E
rr

o
r 

R
at

e 
(F

E
R

)

Vendor-A, SC-List-32 Decoder

Experiment

2-BAC

2-BBM

2-NA-BAC

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100 Vendor-B, SC-List-8 Decoder

Experiment

2-BAC

2-BBM

2-NA-BAC

Figure 3.9: Comparison of FER performance of a (N = 8192, k = 7684) polar code
optimized for BSC(0.001) using empirical error data and error data from simulation using
the 2-BAC, 2-BBM, 2-NA-BAC channel models for vendor-A and vendor-B chips.



45

compared to the empirically observed FER performance. This is mainly due to the

inability of the 2-BAC model to capture the high variance in the number of bit errors

per frame observed empirically. The gap in ECC FER performance estimates using the

2-BAC model and the empirical data is increasing as the FER decreases, and it is about

an order of magnitude for vendor-A chip at 6, 500 P/E cycles and greater than an order of

magnitude for vendor-B chip at 7, 000 P/E cycles for the BCH code as shown in Fig. 3.6.

This gap in ECC FER performance estimates at low FERs is bad for determining the

correct endurance (life-time) of a flash memory chip. From the results shown in Fig. 3.8

for the QC-LDPC code, we observe that the BBM channel model estimates the FER

performance accurately even at lower FERs around 10−4, for the upper page of vendor-A

chip and the lower page of vendor-B chip. The FER performance estimates obtained

using the BBM channel model are better than those obtained using the BAC channel

model for the lower page of vendor-A chip, however we observe a small mismatch in the

BBM channel model FER performance estimates at lower FERs when compared to the

empirical FER estimates. This mismatch is due to the inability of the BBM channel

model to fit the larger proportions of frames with small number of bit errors observed

in the lower tail of the empirical error histograms for the lower page of vendor-A chip.

This appears to be a vendor-specific effect, as this kind of effect was not observed in the

empirical error histograms corresponding to the lower page of vendor-B chip. Overall, the

2-BBM model is able to match the empirical ECC FER performance estimates accurately,

while the estimates obtained using the 2-NA-BAC model lie between those of the 2-BAC

and the 2-BBM models. The ECC FER performance estimates using the 2-PA-BAC

model are the same as those using the 2-NA-BAC model and are omitted. From these

results it is clear that the proposed 2-BBM channel model is able to accurately describe

the nature of the number of bit errors per frame in MLC flash memories and hence

provides accurate estimates of the ECC FER performance.

3.8 Conclusion

We studied the feasibility of using well known discrete memoryless channel models

to model the MLC flash memory channel. Based on empirical error analysis and ECC

FER performance estimation for BCH, LDPC, and polar codes, we observe that the

2-BAC model with parameter estimates derived from empirical error data suffices to

produce an accurate estimate of the average raw bit error rate, but it provides an incorrect



46

optimistic estimate of the ECC FER performance when compared to the empirically

observed ECC FER performance. This is mainly due to the overdispersed nature of

the number of bit errors per frame in empirical data which is not modeled well by the

2-BAC model. We proposed the 2-Beta-Binomial (2-BBM) channel model based on the

beta-binomial probability distribution and using statistical analysis, goodness of fit tests

and ECC FER performance results showed that the 2-BBM channel model accurately

describes the nature of the number of bit errors per frame in MLC flash memories. We

also note that the BBM channel model can be shown to be equivalent to an urn based

channel model [29] and hence has memory associated with it. Although the proposed

channel models are for MLC flash memories, the proposed empirical design approach is

generic and can easily be extended for three-level cell (TLC) flash memories.

3.9 Appendix

3.9.1 Proof of Proposition 3.4.1

To compute Var[K], we compute its mean E[K] and the second moment E[K2].

Based on (3.1), both these moments of K can be computed from the moments of Km as

E[K] =
N∑

m=0

(
N
m

)
2N

E[Km] (3.35)

E[K2] =

N∑
m=0

(
N
m

)
2N

E[K2
m]. (3.36)

From (3.2) and (3.7), we have

E[Km] = E[K(0)
m ] + E[K

(1)
N−m]

= mp+ (N −m)q (3.37)

Var[Km] = Var[K(0)
m ] + Var[K

(1)
N−m]

= mp(1− p) + (N −m)q(1− q). (3.38)

Therefore, E[K2
m] is given by

E[K2
m] = Var[Km] + (E[Km])2

= mp+ (N −m)q +m(m− 1)p2 + 2m(N −m)pq+

(N −m)(N −m− 1)q2. (3.39)



47

Hence E[K] and E[K2] are given by

E[K] =

N∑
m=0

(
N
m

)
2N

E[Km]

=
N

2
(p+ q) (3.40)

E[K2] =

N∑
m=0

(
N
m

)
2N

E[K2
m]

=
N

2
(p+ q) +

(N2 −N

2

)
pq +

(N2 −N

4

)
(p2 + q2). (3.41)

Note that we have used the combinatorial identities

N∑
m=0

(
N

m

)
m = N2N−1 (3.42)

N∑
m=0

(
N

m

)
m2 = (N +N2)2N−2. (3.43)

Therefore we can obtain Var[K] from (3.40) and (3.41) as

Var[K] = E[K2]− (E[K])2

=
N

2

(
(p+ q)− pq − 1

2
(p2 + q2)

)
. (3.44)

□

3.9.2 Proof of Proposition 3.5.1

We take the same approach as the proof of Proposition 3.4.1. From (3.2) and

(3.16), we have

E[Km] =

(
ma

a+ b

)
+

(
(N −m)c

c+ d

)
(3.45)

Var[Km] =

(
mab(a+ b+m)

(a+ b)2(a+ b+ 1)

)
+

(
(N −m)cd(c+ d+N −m)

(c+ d)2(c+ d+ 1)

)
. (3.46)

Therefore, E[K2
m] is given by

E[K2
m] = Var[Km] + (E[Km])2

= Var[K(0)
m ] + (E[K(0)

m ])2 +Var[K
(1)
N−m] + (E[K

(1)
N−m])2+

2E[K(0)
m ] E[K

(1)
N−m]. (3.47)



48

Substituting using (3.21) - (3.24) and simplifying, we have

E[K2
m] =

(
ma(m(a+ 1) + b)

(a+ b)(a+ b+ 1)

)
+

(
(N −m)c((N −m)(c+ 1) + d)

(c+ d)(c+ d+ 1)

)

+

(
2m(N −m)ac

(a+ b)(c+ d)

)
. (3.48)

Hence E[K] and E[K2] are given by

E[K] =
N∑

m=0

(
N
m

)
2N

E[Km]

=
N

2

(
a

a+ b
+

c

c+ d

)
(3.49)

E[K2] =

N∑
m=0

(
N
m

)
2N

E[K2
m]

=
N

4

(
(N + 1)a(a+ 1) + 2Nab

(a+ b)(a+ b+ 1)

)
+

N

4

(
(N + 1)c(c+ 1) + 2Ncd

(c+ d)(c+ d+ 1)

)

+
N(N − 1)

4

(
2ac

(a+ b)(c+ d)

)
. (3.50)

We have used the combinatorial identities (3.42) and (3.43). From (3.49) and (3.50),

Var[K] is easily obtained as

Var[K] = E[K2]− (E[K])2

=
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
+

N

4

(
c(c+ d)(c+ 2d+ 1) +Ncd

(c+ d)2(c+ d+ 1)

)

−N

4

(
2ac

(a+ b)(c+ d)

)
. (3.51)

□

3.9.3 Proof of Proposition 3.5.2

This proof proceeds along similar lines as the proof of Proposition 3.5.1. From

(3.4) and (3.19),

Pr(K(0) = k) =

N∑
m=k

(
N
m

)
2N

(
m

k

)
B(a+ k, b+m− k)

B(a, b)



49

E[K(0)] =

N∑
k=0

kPr(K(0) = k)

=
1

2N

N∑
k=0

N∑
m=k

k

(
N

m

)(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

) m∑
k=0

k

(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

)
E[K(0)

m ]

=
N

2

(
a

a+ b

)
(3.52)

E[(K(0))2] =
N∑
k=0

k2 Pr(K(0) = k)

=
1

2N

N∑
k=0

N∑
m=k

k2
(
N

m

)(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

) m∑
k=0

k2
(
m

k

)
B(a+ k, b+m− k)

B(a, b)

=
1

2N

N∑
m=0

(
N

m

)
E[(K(0)

m )2]

=
N

4

(
a(a+ 2b+ 1) +Na(a+ 1)

(a+ b)(a+ b+ 1)

)
(3.53)

Var[K(0)] = E[(K(0))2]− (E[K(0)])2

=
N

4

(
a(a+ b)(a+ 2b+ 1) +Nab

(a+ b)2(a+ b+ 1)

)
. (3.54)

We have used the combinatorial identities (3.42) and (3.43) and also the fact that the

second moment of a beta-binomial random variable K
(0)
m ∼ Beta-Binomial(m, a, b) is

given by ma(m(a+1)+b)
(a+b)(a+b+1) . The expressions for E[K(1)] and Var[K(1)] can be derived similarly.

□

Acknowledgements

This chapter is in part a reprint of the material in the paper: Veeresh Taranalli,

Hironori Uchikawa, and Paul H. Siegel, “Channel models for multi-level cell flash memories



50

based on empirical error analysis,” IEEE Transactions on Communications, vol. 64, no.

8, pp. 3169–3181, August 2016. The dissertation author was the primary investigator

and author of this paper, and co-authors have approved the use of the material for this

dissertation.



4 On the Capacity of the

Beta-Binomial Channel Model for

Multi-Level Cell Flash Memories

4.1 Introduction

Channel models for flash memories are important mathematical tools to esti-

mate the capacity of the underlying flash memory channel. In this chapter, we fo-

cus on the information-theoretic aspect of flash memory channel models and study

the capacity of the 2-Beta-Binomial (2-BBM) channel model for multi-level cell (MLC)

flash memories proposed in Chapter 3. As described in Chapter 3, the beta-binomial

(BBM) channel model for MLC flash memories accurately models the overdispersed

statistics of the number of bit errors per frame observed empirically during program/erase

(P/E) cycling. We also showed that the 2-BBM channel model for MLC flash memo-

ries provides more accurate ECC frame error rate (FER) performance estimation than

a 2-Binary Asymmetric Channel (2-BAC) model. Therefore, the 2-BBM channel model

presents itself as a natural candidate for estimating the actual MLC flash memory chan-

nel capacity. However, as we will show in this chapter, the capacity of the BBM channel

model is zero. Therefore, the main problem presented in this chapter is to derive a

non-zero capacity channel model for MLC flash memories which is also representative of

the empirically observed overdispersed error statistics and provides accurate ECC FER

performance estimation. We note that the BBM channel model can be shown to be

equivalent to an urn based channel model, similar to the zero-capacity urn based con-

tagion channel model proposed in [29]. In [29], an alternative finite memory version of

the zero-capacity urn based contagion channel model was proposed and this alternative

51



52

channel model was shown to have a non-zero capacity. Another approach to studying

zero-capacity real world channels is provided by the example of slow fading channels in

wireless communications. The Shannon capacity of a slow fading wireless communication

channel is known to be zero and, hence, in practice, the ϵ−outage capacity is used as an

alternative performance measure for slow fading channels [30].

Previously, information-theoretic studies of NAND flash memory channel models

have been proposed in [31, 17, 32]. In [31], an approximate channel model that incorpo-

rates P/E cycling, inter-cell interference (ICI), and data retention effects for MLC flash

memories is proposed, and bounds on its capacity are established. In [17], the problem

of estimating flash memory capacity with an underlying m-AM (amplitude modulation)

channel model with input dependent Gaussian noise variance is studied. An information-

theoretic study of a one-dimensional causal channel model for ICI in flash memories is

presented in [32]. It is important to note that all these previous information-theoretic

studies used cell-level based channel models. However, in practice, the ECC is applied

at the bit (page) level and, hence, we consider a binary-input binary-output channel

model such as the BBM channel model for the study of MLC flash memory capacity.

The problem of how well the channel models used in [31, 17] represent the empirical

error characteristics has also not been addressed. In this context, the BBM channel

has been shown to provide accurate bit error rate and ECC FER performance predic-

tion under P/E cycling. This makes the BBM channel model an ideal candidate for an

information-theoretic study of the flash memory channel.

In this chapter, we observe that the BBM channel model for MLC flash memories

is a compound channel model. Using well known results for compound channel capac-

ity [33, 34], we show that the capacity of the BBM channel model is zero. Using the

BBM channel model parameters derived from empirical error characterization results, we

observe that the BBM channel model is a very pessimistic channel model for MLC flash

memories with respect to the problem of capacity estimation. This is because the prob-

ability mass of the beta-distributed 0 → 1 and 1 → 0 bit error probabilities in the BBM

channel model is concentrated in a small interval of the support [0, 1]. This observation

allows us to define a truncated-support beta random variable and, correspondingly, a

truncated-support beta-binomial (TS-BBM) channel model. We derive analytically the

relationships between the statistics of the number of bit errors per frame resulting from

a TS-BBM channel model and those corresponding to the BBM channel model. These



53

results are then used to propose an approximate search algorithm to identify the trunca-

tion intervals necessary to obtain a TS-BBM channel model from a BBM channel model.

Using Monte-Carlo simulations, we show LDPC and polar code FER performance results

using the TS-BBM channel model. Comparing with the results obtained using the BBM

channel model in Chapter 3, we observe that the proposed TS-BBM channel model is

also able to provide accurate ECC FER performance estimation by modeling the overdis-

persed statistics of the number of bit errors per frame. Next, we derive the capacity of

the proposed TS-BBM channel model using the compound channel approach. We then

present non-zero capacity estimates corresponding to the TS-BBM channel models de-

rived from empirical error characterization results under P/E cycling stress. To the best

of our knowledge, this is the first study that presents capacity estimates for a binary-

input binary-output channel model that has been shown to accurately fit the empirical

error characteristics in MLC flash memories. However, note that the BBM and the TS-

BBM channel models do not explicitly model the data dependence of cell/bit errors due

to ICI [22] and assume independent random bit errors in lower and upper pages of a

MLC flash memory. Therefore these constraints of the TS-BBM channel model have to

be considered when using the corresponding capacity estimates in practical applications.

4.2 Capacity of the Beta-Binomial Channel Model

Let BAC(X ,Y, s) denote a binary asymmetric channel with state s = (p, q) where

p = Pr(y = 1|x = 0) and q = Pr(y = 0|x = 1). Let X and Y denote the input and output

alphabets, respectively, both of which are binary. From Fig. 3.3 in Chapter 3, we observe

that the parameter values of the beta distributions are independent of the frame length

used to estimate them. Next, we define the BBM channel model as a compound channel

model and derive its capacity.

Definition 4.2.1. A compound channel is defined as a set of discrete memoryless chan-

nels with state, DMC(X ,Y, s), with input alphabet X , output alphabet Y and state s ∈ S,

where the channel state is chosen at random and fixed throughout the entire transmission

block/frame i.e., Pr(yN |xN , s) = ΠN
i=1 Pr(yi|xi, s).

Definition 4.2.2. The BBM channel is a compound channel consisting of a set of

BACs with state, BAC(X , Y, s), indexed by the state variable, s ∈ S = {(p, q) | p ∼
Beta(a, b), q ∼ Beta(c, d)}.



54

Proposition 4.2.3. The capacity of a compound channel assuming no state information

is available at the encoder or the decoder is given by [33, 34]

CCC = sup
π̄

inf
s∈S

Iπ̄,s(X;Y ) (4.1)

where Iπ̄,s(X;Y ) denotes the mutual information corresponding to a DMC with state s

and input probability distribution, π̄.

Theorem 4.2.4. The capacity of a BBM channel is 0.

Proof. From Definition 4.2.2 and Proposition 4.2.3,

CBBM = sup
π̄

inf
s∈S

Iπ̄,s(X;Y ) (4.2)

where Iπ̄,s(X;Y ) = h(π0(1 − p) + π1q) − π0h(p) − π1h(q) is the mutual information

for a BAC with state s = (p, q) and input probability distribution π̄ = (π0, π1), i.e.,

π0 = Pr(x = 0), π1 = Pr(x = 1). Here h(·) denotes the binary entropy function. Using

the max-min inequality [35],

CBBM ≤ inf
s∈S

sup
π̄

Iπ̄,s(X;Y ) = inf
s∈S

Cs (4.3)

where Cs is the capacity of a BAC with state s. As p, q ∈ [0, 1], Cs = 0 when the state

s = (12 ,
1
2). Therefore,

CBBM ≤ 0 =⇒ CBBM = 0. (4.4)

4.3 Truncated-Support Beta-Binomial Channel Model

4.3.1 Motivation

In the previous section, we showed that the capacity of a BBM channel model

for MLC flash memories is zero. However empirical observations suggest that the BBM

channel model is a very pessimistic model in this respect. To elaborate, from Tables 3.1

(c.f., Chapter 3), we observe that the upper page BBM channel model parameters satisfy

a > 2, b > 2, c > 2 and d > 2. It is known [36] that the beta probability density function

(pdf) with parameters α and β is unimodal and bell-shaped with two inflection points in

[0, 1] if α > 2 and β > 2. The inflection points about the mode are given by

α− 1

α+ β − 2
±

√
(α−1)(β−1)

α+β−3

α+ β − 2
. (4.5)



55

The difference between the two inflection points, ζα,β , can be used as a measure of spread

of the beta density function, where

ζα,β = 2

√
(α−1)(β−1)

α+β−3

α+ β − 2
. (4.6)

Table 4.1: Parameters corresponding to the upper page BBM channel models for vendor-
A and vendor-B chips along with the corresponding ζa,b and ζc,d values. N = 8192.

P/E Upper Page
Cycles Vendor-A

a b ζa,b c d ζc,d
6000 22.67 7596.71 1.22× 10−3 18.16 11890.14 0.69× 10−3

8000 20.72 4143.52 2.13× 10−3 22.28 7821.13 1.18× 10−3

10000 21.36 2819.03 3.17× 10−3 26.12 5890.35 1.69× 10−3

Vendor-B
6000 15.58 20535.47 0.37× 10−3 7.16 7193.92 0.69× 10−3

8000 15.28 9068.43 0.83× 10−3 7.58 4092.87 1.25× 10−3

10000 13.36 4142.23 1.69× 10−3 9.28 2938.88 1.95× 10−3

Table 4.1 shows the values of ζa,b and ζc,d for the upper page BBM channel

model for vendor-A and vendor-B chips along with the parameter estimates. Both ζa,b

and ζc,d are small indicating that the probability mass corresponding to the Beta(a, b)

and Beta(c, d) pdf’s of the BBM channel model is concentrated in a small interval. For

example, from a visual inspection of a typical beta pdf corresponding to the BBM channel

model, as shown in Fig. 4.2, it is clear that the pdf value is negligible outside the bit

error probability range of [0.002, 0.009]. For the parameter estimates corresponding to

the beta distributions of lower page 1 → 0 errors, Table 3.2 indicates that we have to

consider additional cases. In the case where the beta distribution parameters satisfy

1 < a < 2 and b > 2, the distribution is unimodal with a single inflection point to

the right of the mode. When 0 < a < 1 and b > 2, the mode of the beta density

occurs at 0, and it is strictly decreasing to the right. These observations motivate us

to propose and define a truncated-support beta-binomial (TS-BBM) channel model for

MLC flash memories. The primary goal of the TS-BBM channel model is to provide a

non-zero capacity estimate which can be reasonably interpreted in the context of MLC

flash memories, while modeling the empirically observed distributions of the number of bit

errors per frame as accurately as possible. This latter constraint is essential for accurate

ECC FER performance estimation as shown in Chapter 3.



56

4.3.2 Definition and Statistics of the TS-BBM Channel Model

Before defining a TS-BBM channel model, we define truncated-support beta (TS-

Beta) and truncated-support beta-binomial (TS-BBM) random variables as follows.

Definition 4.3.1. A TS-Beta random variable is defined by the probability density func-

tion

g(θ;α, β) =
θα−1(1− θ)β−1

Bθu(α, β)−Bθl(α, β)
. (4.7)

Here the support of the beta density function is truncated, i.e., θ ∈ [θl, θu], θl < θu and

Bθl(α, β) and Bθu(α, β) are incomplete beta functions defined as

Bθ(α, β) =

∫ θ

0
λα−1(1− λ)β−1dλ. (4.8)

Note that the TS-Beta probability density function is obtained by normalizing

the beta probability density function as follows

g(θ;α, β) =


0 , θ /∈ [θl, θu]

f(θ;α, β)

ηθ
, θ ∈ [θl, θu]

(4.9)

where

ηθ = Pr(θl ≤ θ ≤ θu) =
Bθu(α, β)−Bθl(α, β)

B(α, β)
. (4.10)

Definition 4.3.2. A TS-BBM random variable Z is defined by the probability distribution

Pr(Z = z) =

(
n

z

)(
Bθu(α+ z, β + n− z)−Bθl(α+ z, β + n− z)

Bθu(α, β)−Bθl(α, β)

)
. (4.11)

Here z ∈ {0, 1, . . . , n} where n is the number of trials and θu, θl are the upper and lower

limits of the success probability distributed as a TS-Beta random variable.

Before we compute the mean and variance of a TS-BBM random variable, we

define the functions δθ, ϕθ in terms of the beta density function, which will be useful in

simplifying the notation and interpretation of the results:

δθ = ρ(f(θu;α+ 1, β + 1)− f(θl;α+ 1, β + 1)) (4.12)

ϕθ = ρ(θuf(θu;α+ 1, β + 1)− θlf(θl;α+ 1, β + 1)) (4.13)

ρ =
αβ

(α+ β)(α+ β + 1)
. (4.14)



57

Proposition 4.3.3. The mean and variance of a TS-BBM random variable Z are given

by

E[Z] = n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

)
(4.15)

= E[Z̃]−
(

n

α+ β

)
δθ
ηθ

(4.16)

Var[Z] = n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

)
(
1− n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

))

+n(n− 1)

(
Bθu(α+ 2, β)−Bθl(α+ 2, β)

Bθu(α, β)−Bθl(α, β)

)
(4.17)

= Var[Z̃]−
(

nβ(α+ β + n)

(α+ β)2(α+ β + 1)

)
δθ
ηθ

− n2

(α+ β)2

(
δθ
ηθ

)2

−
(

n(n− 1)

α+ β + 1

)
ϕθ

ηθ
(4.18)

where Z̃ is a beta-binomial random variable with parameters (n, α, β).

Proof. See Appendix 4.6.1.

Next, we define the 2-TS-BBM channel model for MLC flash memories as follows.

The 0 → 1 and 1 → 0 bit error counts for a given input frame containing m zeros are

denoted by K
(0)
m and K

(1)
N−m, respectively. Similarly, K(0) and K(1) denote the total

number of 0 → 1 and 1 → 0 bit errors, respectively. The variables K
(0)
m and K

(1)
N−m are

modeled as being distributed according to the TS-BBM distribution i.e.,

p ∼ TS-Beta(pl, pu; a, b)

K(0)
m | p ∼ Binomial(m, p)

K(0)
m ∼ TS-BBM(pl, pu;m, a, b); (4.19)

q ∼ TS-Beta(ql, qu; c, d)

K
(1)
N−m | q ∼ Binomial(N −m, q)

K
(1)
N−m ∼ TS-BBM(ql, qu;N −m, c, d); (4.20)

K(0)
m ⊥⊥ K

(1)
N−m. (4.21)

Before we derive expressions for the mean and variance of the number of bit errors per

frame resulting from a TS-BBM channel model, we introduce some simplifying notation



58

as follows. Let

U (i)
pj = Bpj (a+ i, b) (4.22)

V (i)
qj = Bqj (c+ i, d) (4.23)

where j ∈ {l, u} and i ∈ {0, 1, 2}.

Proposition 4.3.4. The mean and variance of K(0) and K(1) for a TS-BBM channel

model are given by

E[K(0)] =
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)
(4.24)

Var[K(0)] =
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
1− N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

))
+

N(N − 1)

4

(
U

(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

)
; (4.25)

E[K(1)] =
N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)
(4.26)

Var[K(1)] =
N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)(
1− N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

))
+

N(N − 1)

4

(
V

(2)
qu − V

(2)
ql

V
(0)
qu − V

(0)
ql

)
. (4.27)

Proof. See Appendix 4.6.2.

Proposition 4.3.5. The mean and the variance of K for a TS-BBM channel model are

given by

E[K] =
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

+
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)
(4.28)

Var[K] =
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
1− N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

))

+
N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)(
1− N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

))

+
N(N − 1)

4

(
U

(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

+
V

(2)
qu − V

(2)
ql

V
(0)
qu − V

(0)
ql

)

−N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)
. (4.29)



59

Proof. See Appendix 4.6.3.

Proposition 4.3.6. The mean and variance of K(0), K(1), K corresponding to a TS-BBM

channel model can be expressed in terms of the mean and variance of K̃(0), K̃(1), K̃ cor-

responding to a BBM channel model with the same parameters, as

E[K(0)] = E[K̃(0)]−∆(0)
mean (4.30)

Var[K(0)] = Var[K̃(0)]−∆(0)
var; (4.31)

E[K(1)] = E[K̃(1)]−∆(1)
mean (4.32)

Var[K(1)] = Var[K̃(1)]−∆(1)
var; (4.33)

E[K] = E[K̃]−∆mean (4.34)

Var[K] = Var[K̃]−∆var (4.35)

where

∆(0)
mean =

N

2

1

(a+ b)

δp
ηp

(4.36)

∆(0)
var =

N

4

(
w1

δp
ηp

+ w2
ϕp

ηp
+ w3

(
δp
ηp

)2
)
; (4.37)

∆(1)
mean =

N

2

1

(c+ d)

δq
ηq

(4.38)

∆(1)
var =

N

4

(
w4

δq
ηq

+ w5
ϕq

ηq
+ w6

(
δq
ηq

)2
)
; (4.39)

∆mean =
N

2

(
1

(a+ b)

δp
ηp

+
1

(c+ d)

δq
ηq

)
(4.40)

∆var =
N

4

(
w7

δp
ηp

+ w8
δq
ηq

+ w2
ϕp

ηp
+ w5

ϕq

ηq
+ w3

(
δp
ηp

)2

+ w6

(
δq
ηq

)2

+

w9
δp
ηp

δq
ηq

)
, (4.41)

w1 =
(a+ b)(a+ 2b+ 1) +N(b− a(a+ b+ 1))

(a+ b)2(a+ b+ 1)
(4.42)

w2 =
N − 1

a+ b+ 1
w3 =

N

(a+ b)2
(4.43)

w4 =
(c+ d)(c+ 2d+ 1) +N(d− c(c+ d+ 1))

(c+ d)2(c+ d+ 1)
(4.44)

w5 =
N − 1

c+ d+ 1
w6 =

N

(c+ d)2
(4.45)



60

0 500 1000 1500 2000

Search Window Index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

V
a
lu

e

j¢(0)
mean

j

j¢(1)
mean

j

0 500 1000 1500 2000

Search Window Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

j¢(0)
var
j

j¢(1)
var
j

Figure 4.1: Plot showing |∆(x)
mean| and |∆(x)

var| obtained using Algorithm 4, corresponding
to the beta distributions at 6,000 P/E cycles for vendor-A chip. N = 8192, µ = 10−6,
ϵ = 0.01.

w7 =
N(b− a(a+ b+ 1))

(a+ b)2(a+ b+ 1)
+

2d

(a+ b)(c+ d)
(4.46)

w8 =
N(d− c(c+ d+ 1))

(c+ d)2(c+ d+ 1)
+

2b

(a+ b)(c+ d)
(4.47)

w9 =
2

(a+ b)(c+ d)
. (4.48)

Proof. See Appendix 4.6.4.

4.3.3 Choosing the Truncation Intervals

As shown in Proposition 4.3.6, the mean and variance statistics of the number of

bit errors per frame for the TS-BBM channel model differ from those of the BBM channel

model and this difference depends on the functions ηp, ηq, δp, δq, ϕp, ϕq of the truncation

points (pl, pu), (ql, qu) of the TS-BBM channel model. Recall that ηp, ηq represent the

area under the beta pdf curve (probability) between the chosen truncation points. For

choosing the truncation intervals of a TS-BBM channel model, we let ηp, ηq be equal

to some large probability value, e.g., ηp = 1 − ϵ and ηq = 1 − ϵ where ϵ ≪ 1. Subject

to the constraints on ηp, ηq, the choice of the truncation intervals should be such that



61

the respective differences between the mean and the variance of the number of bit errors

per frame for the TS-BBM and the BBM channel models are minimized; i.e., |∆(0)
mean|,

|∆(1)
mean| and |∆(0)

var|, |∆(1)
var| are minimized. Ideally, we would want to solve the following

optimization problems to determine the optimal truncation intervals for the TS-BBM

channel model:

(P1) Choose points p∗l , p
∗
u s.t. ηp = 1− ϵ and

|∆(0)
mean| and |∆(0)

var| are minimized. (4.49)

(P2) Choose points q∗l , q
∗
u s.t. ηq = 1− ϵ and

|∆(1)
mean| and |∆(1)

var| are minimized. (4.50)

However there are some major issues we encounter when trying to solve (P1) and (P2)

directly. The first issue is that the constraints in the above optimization problems involve

incomplete beta functions (expressions for ηp and ηq) which do not have a closed form

and the constraints are nonlinear. The second issue is that it is not known if |∆(0)
mean|

and |∆(0)
var| (and similarly |∆(1)

mean| and |∆(1)
var|) can be minimized simultaneously subject

to the given constraints; i.e., it is not known if feasible solutions exist for problems (P1)

and (P2).

Hence we propose a numerical discrete search algorithm to find the truncation

intervals that minimize |∆(0)
mean| (resp., |∆(1)

mean|) and |∆(0)
var| (resp., |∆(1)

var|) separately,

subject to the relaxed constraints 1− ϵ ≤ ηp < 1 and 1− ϵ ≤ ηq < 1. The justification for

the relaxed constraints is that, in the context of deriving a TS-BBM channel model from

a BBM channel model, the specific values of ηp and ηq are not very important in practice

as long as they are close to 1, which ensures that the TS-BBM channel model preserves

the variability (randomness) of the original BBM channel model as much as possible. The

numerical discrete search algorithm is described by Algorithms 4 and 5. The search for the

truncation interval is done by dividing the continuous interval [0, 1] into a set of discrete

points with resolution µ. Using pairs of these points as endpoints, windows that satisfy

the relaxed constraints are identified. The algorithm then computes |∆(x)
mean| or |∆(x)

var|,
and picks the window with a minimum value as the truncation interval. Fig. 4.1 shows

a plot of the |∆(x)
mean| and |∆(x)

var| obtained using the numerical discrete search algorithm.

We note that it appears that an absolute minimum exists for |∆(x)
mean| functions whereas

for |∆(x)
var| functions, it does not appear to be so. However choosing a small µ ensures



62

that the algorithm provides accurate results for practical purposes, as shown in Table 4.4.

The complexity of Algorithm 4 is O(l log l) where l = 1/µ.

Algorithm 4 Get Truncation Interval
Input: N , α, β, ϵ, µ, optParam

Output: Truncation interval points θ̂l and θ̂u

1: cIntervals = searchCandidates(α, β, ϵ, µ)

2: Initialize ∆̄ as an empty vector.

3: Initialize intervalCount = 0.

4: for θl, θu ∈ cIntervals do

5: Compute ηθ using (4.10).

6: Compute δθ using (4.12) and ϕθ using (4.14).

7: if optParam == “mean” then

8: ∆̄[intervalCount] = |∆(x)
mean|

9: else

10: ∆̄[intervalCount] = |∆(x)
var|

11: intervalCount = intervalCount + 1

12: minimumIndex = argmin ∆̄

13: return θ̂l, θ̂u = cIntervals[minimumIndex]

Algorithm 5 searchCandidates(α, β, ϵ, µ)
Input: α, β, ϵ, µ

Output: List of candidate truncation interval pairs [θl, θu].

1: Divide the unit interval [0, 1] into l equal intervals where l = 1/µ and store the

points in a list candidatePoints.

2: Compute cumulative distribution function F of Beta(α, β) at every point in candi-

datePoints.

3: Initialize candidateList as an empty list.

4: for startPoint ∈ candidatePoints do

5: Using binary search, find the smallest interval [startPoint, endPoint] such that

F (endPoint)− F (startPoint) ≥ 1− ϵ.

6: Add [startPoint, endPoint] to candidateList.

7: return candidateList



63

4.3.4 Results

Table 4.2: Truncation intervals for the TS-BBM channel models obtained using Algo-
rithm 4 using N = 8192, µ = 10−6, ϵ = 0.01 for vendor-A chip. All truncation interval
points should be multiplied by 10−3.

P/E Vendor-A, Upper Page

Cycles min |∆(x)
mean| min |∆(x)

var|
x = 0 x = 1 x = 0 x = 1

pl pu ql qu pl pu ql qu

6000 1.64 4.89 0.78 2.64 1.71 6.16 0.82 3.36
8000 2.66 8.35 1.56 4.69 2.79 11.02 1.63 6.01
10000 4.06 12.51 2.54 7.03 4.26 16.18 2.66 8.81

Vendor-A, Lower Page
6000 0.000 0.064 2.76 9.14 0.000 0.064 2.90 12.34
8000 0.001 0.083 3.94 12.56 0.001 0.083 4.13 16.79
10000 0.001 0.111 5.64 16.34 0.001 0.111 5.91 21.87

Table 4.3: Truncation intervals for the TS-BBM channel models obtained using Algo-
rithm 4 using N = 8192, µ = 10−6, ϵ = 0.01 for vendor-B chip. All truncation interval
points should be multiplied by 10−3.

P/E Vendor-B, Upper Page

Cycles min |∆(x)
mean| min |∆(x)

var|
x = 0 x = 1 x = 0 x = 1

pl pu ql qu pl pu ql qu

6000 0.36 1.37 0.31 2.29 0.38 1.64 0.34 3.41
8000 0.80 3.05 0.60 4.18 0.84 3.78 0.65 5.56
10000 1.44 6.05 1.17 6.63 1.53 7.83 1.25 10.84

Vendor-B, Lower Page
6000 0.000 0.004 1.70 6.63 0.000 0.004 1.80 8.68
8000 0.000 0.004 3.58 13.04 0.000 0.004 3.78 18.90
10000 0.000 0.004 6.33 22.71 0.000 0.004 6.68 30.54

Table 4.2 and Table 4.3 show the truncation intervals for the TS-BBM channel

models obtained using Algorithm 4 for vendor-A and vendor-B flash memory chips, re-

spectively. We observe that the truncation intervals corresponding to the min |∆(x)
var|

constraint are wider than those corresponding to the min |∆(x)
mean| constraint. This is

expected because a wider support would lead to a larger variance for the number of bit

errors per frame in the TS-BBM channel model. Fig. 4.2 shows the beta pdf and the trun-



64

Table 4.4: Comparison of mean and variance of the number of bit errors per frame
obtained from experiment, BBM and TS-BBM channel models using N = 8192, ϵ = 0.01
and µ = 10−6 for vendor-A chip.

P/E Vendor-A, Upper Page
Cycles Experiment BBM TS-BBM TS-BBM

min |∆(x)
mean| min |∆(x)

var|
Mean Variance Mean Variance Mean Variance Mean Variance

6000 18.43 30.06 18.43 27.06 18.43 26.42 18.52 26.79
8000 32.01 66.43 32.01 57.88 32.01 55.96 32.17 56.97
10000 48.88 125.99 48.88 105.10 48.88 100.92 49.11 102.97

Vendor-A, Lower Page
6000 21.90 46.71 21.90 46.90 21.90 45.04 22.01 46.01
8000 30.55 75.89 30.55 76.25 30.55 72.86 30.71 74.54
10000 41.37 111.35 41.37 111.92 41.37 106.68 41.56 109.13

cation intervals at 8,000 P/E cycles. We also observe that for the TS-Beta distributions

of the lower page 0 → 1 bit errors, the truncation intervals for both the min |∆(x)
mean| and

min |∆(x)
var| constraints are exactly the same. This is because the 0 → 1 bit error probabil-

ity in the lower page is extremely small during P/E cycling, as was observed in Chapter 2,

which leads to a very narrow-width beta distribution. Because we have ϵ = 0.01, in this

case there is only one truncation interval that satisfies the probability mass condition

given in step 5 of Algorithm 5. The mean and variance of the total number of bit errors

per frame for the TS-BBM channel models in Table 4.2 are shown in Table 4.4 and are

compared with the statistics obtained from empirical data and the BBM channel models.

We observe that the TS-BBM channel models optimized for the min |∆(x)
mean| constraint

are able to match the mean corresponding to the BBM channel models, which yields a

precise estimate of the average raw bit error rate (RBER).

Fig. 4.3 shows the FER performance of a regular QC-LDPC code and a Polar

code, respectively, using empirical data, as well as the 2-BAC, 2-BBM and 2-TS-BBM

channel models for vendor-B chip. The empirical FER performance estimates are ob-

tained from the error data collected from MLC flash memory chips during P/E cycling

experiments. To estimate the FER performance using the proposed channel models,

Monte-Carlo simulations are used where pseudo-random codewords of the code are gen-

erated and transmitted through the appropriate channel model and the received codeword

is decoded. At least 400 frame errors are recorded for FER estimation. The simulation



65

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Bit Error Probability, p

0

50

100

150

200

250

300

350

400

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n

ct
io

n
 (

p
d

f)

min j¢(0)
mean

j

min j¢(0)
var
j

Figure 4.2: Plot showing the beta pdf corresponding to the upper page 0 → 1 errors
BBM channel model and the truncation interval points, pl and pu, corresponding to
TS-BBM channel models in Table 4.2 at 8,000 P/E cycles for vendor-A chip.

of the TS-BBM channel model is implemented using rejection sampling and the beta

random variates are generated using the SciPy library [25].

The regular quasi-cyclic LDPC (QC-LDPC) code parameters are N = 8192,

k = 7683, with dc = 64 and dv = 4, where dc and dv refer to the check node and

variable node degrees, respectively, in the parity check matrix. A sum-product belief

propagation decoder with a maximum of 50 iterations and early termination is used to

decode the QC-LDPC code. A detailed description of construction of the QC-LDPC

code is given in Chapter 3. The polar code parameters are N = 8192, k = 7684 and it

is optimized for a binary symmetric channel (BSC) with bit error probability p = 0.001

using the construction technique proposed in [27]. The successive cancellation list (SC-

List) decoder proposed in [28] is used for decoding the polar code with list size 8.

We observe that the ECC FER performance estimates obtained using the min |∆(x)
var|

2-TS-BBM channel model are slightly more accurate (with respect to the empirical re-

sults) than those obtained using the min |∆(x)
mean| 2-TS-BBM channel model. We also

observe that the min |∆(x)
var| 2-TS-BBM channel model is essentially the same as the BBM

channel model with respect to ECC FER performance estimation.



66

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100

F
ra

m
e 

E
rr

o
r 

R
at

e 
(F

E
R

)

QC-LDPC Code

Experiment

2-BAC

2-BBM

2-TS-BBM,

 min j¢(x)
mean

j

2-TS-BBM,

 min j¢(x)
var
j

6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

10-4

10-3

10-2

10-1

100 Polar Code

Experiment

2-BAC

2-BBM

2-TS-BBM,

 min j¢(x)
mean

j

2-TS-BBM,

 min j¢(x)
var
j

Figure 4.3: Comparison of FER performance of a regular QC-LDPC code and a Polar
code using empirical error data and simulated error data from the 2-BAC, 2-BBM and
2-TS-BBM channel models for vendor-B chip.

4.4 Capacity of the TS-BBM Channel Model

The capacity of the TS-BBM channel model can be derived using the compound

channel approach presented in Section 4.2, as shown in Lemma 4.4.1 and Theorem 4.4.2

below. Lemma 4.4.1 shows that a pair of BACs can be ordered with respect to their

mutual information irrespective of the input probability distribution, when their 0 → 1

and 1 → 0 bit error probability pairs (p, q), can be ordered componentwise. This result

is key to showing, in Theorem 4.4.2, that the capacity of the TS-BBM channel, which is

a compound channel consisting of a set of BACs, achieves the upper bound given by the

max-min inequality [35] on the compound channel capacity.

Lemma 4.4.1. Given two BACs, BAC(X ,Z, (p1, q1)), BAC(X ,Y, (p2, q2)) with 0 ≤ p2 ≤
p1 < 1

2 and 0 ≤ q2 ≤ q1 < 1
2 , there always exists a degrading channel BAC(Y,Z, (p′, q′))

such that,

Pr(z|x) =
∑
y∈Y

Pr(y|x) Pr(z|y) (4.51)

and I(X;Z) ≤ I(X;Y ).

Proof. For the first part, it is sufficient to show that p′ and q′ obtained by solving the set



67

of equations resulting from (4.51) are always positive. From (4.51),

(1− p2)p
′ + p2(1− q′) = p1 (4.52)

q2(1− p′) + (1− q2)q
′ = q1. (4.53)

Solving (4.52) and (4.53),

q′ =
(q1 − q2)(1− p2) + (p1 − p2)q2

1− p2 − q2
(4.54)

p′ =
(p1 − p2)(1− q2) + (q1 − q2)p2

1− p2 − q2
. (4.55)

Clearly, q′ ≥ 0 and p′ ≥ 0.

Since X → Y → Z form a Markov chain, the data processing inequality [37] implies that

we have I(X;Z) ≤ I(X;Y ).

Assume, without loss of generality,

0 ≤ pl < pu <
1

2
0 ≤ ql < qu <

1

2
. (4.56)

Theorem 4.4.2. The capacity of a TS-BBM channel is equal to the capacity of a

BAC(X ,Y, (pu, qu)) given by

CTS-BBM =

(
pu

1− pu − qu

)
h(qu)−

(
1− qu

1− pu − qu

)
h(pu)+

log2

(
1 + 2

h(pu)−h(qu)
1−pu−qu

)
. (4.57)

Proof. The TS-BBM channel is also a compound channel consisting of a set of BACs with

varying states s ∈ S where S = {(p, q)|p ∼ TS-Beta(pl, pu; a, b), q ∼ TS-Beta(ql, qu; c, d)}.
Using the compound channel approach, the capacity of the TS-BBM channel is given by

CTS-BBM = sup
π̄

inf
s∈S

Iπ̄,s(X;Y ) (4.58)

Using Lemma 1, ∀s ∈ S and π̄, Iπ̄,s(X;Y ) ≥ Iπ̄,s′(X;Y ), where s′ = (pu, qu). Therefore,

inf
s∈S

Iπ̄,s(X;Y ) = Iπ̄,s′(X;Y ) (4.59)

so

CTS-BBM = sup
π̄

Iπ̄,s′(X;Y ) (4.60)

From (4.60), CTS-BBM is equal to the capacity of BAC(X ,Y, (pu, qu)) and is given by

(4.57).



68

3000 4000 5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

0.90

0.92

0.94

0.96

0.98

1.00

C
ap

ac
it

y
 (

b
it

s/
c
el

l)

LP, min j¢(x)
mean

j

UP, min j¢(x)
mean

j

LP, min j¢(x)
var
j

UP, min j¢(x)
var
j

Figure 4.4: Plot showing the evolution of TS-BBM channel model capacities as a
function of P/E cycle count for lower and upper pages of vendor-A flash memory chip.
ϵ = 0.01, µ = 10−6.

3000 4000 5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

0.90

0.92

0.94

0.96

0.98

1.00

C
ap

ac
it

y
 (

b
it

s/
ce

ll
)

LP, min j¢(x)
mean

j

UP, min j¢(x)
mean

j

LP, min j¢(x)
var
j

UP, min j¢(x)
var
j

Figure 4.5: Plot showing the evolution of TS-BBM channel model capacities as a
function of P/E cycle count for lower and upper pages of vendor-B flash memory chip.
ϵ = 0.01, µ = 10−6.



69

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

²

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

C
a
p

a
c
it

y
 (

b
it

s/
c
e
ll

)

LP, min j¢(x)
mean

j

UP, min j¢(x)
mean

j

LP, min j¢(x)
var
j

UP, min j¢(x)
var
j

Figure 4.6: Plot showing the TS-BBM channel model capacities corresponding to lower
and upper pages of vendor-A flash memory chip at 8,000 P/E cycles for different values
of ϵ parameter. µ = 10−8 for LP, min |∆(x)

var| and µ = 10−6 for others.

Figures 4.4 and 4.5 show the TS-BBM channel model capacity estimates for both

the lower and upper pages of vendor-A and vendor-B flash memory chips respectively.

The changing TS-BBM channel model capacity estimates across P/E cycles are indicative

of the rate of degradation of the underlying flash memory channel, for e.g., the TS-BBM

channel model capacity for the upper page of vendor-A chip decreases from ∼0.99 at

3, 000 P/E cycles to ∼0.92 at 10, 000 P/E cycles. We also note that for vendor-B chip,

the upper page TS-BBM channel models consistently have larger capacity than the lower

page TS-BBM channel models at all P/E cycles, whereas this is not the case for vendor-A

chip. Such knowledge of the page capacities as a function of P/E cycle count in flash

memories could be useful and advantageous for ECC design. For example, the estimates

of the page capacities can be directly utilized for designing rate adaptive ECC schemes

and for optimally distributing redundancy between the lower and upper pages at different

lifetime stages of the MLC flash memory. We also observe that the TS-BBM channel

models optimized for min |∆(x)
mean| have larger capacities than those optimized for min

|∆(x)
var|. Fig. 4.6 shows the variation of the TS-BBM channel model capacities with respect

to the ϵ parameter. Choosing a larger ϵ generally leads to a larger capacity TS-BBM

channel model; however a larger ϵ also results in a narrower truncation interval of the



70

beta pdf. Hence a TS-BBM channel model corresponding to large ϵ may not be able to

accurately model the variance of the number of bit errors per frame resulting in optimistic

ECC FER performance estimates.

4.4.1 Coding for the TS-BBM Channel Model

Recall that the TS-BBM channel model is a compound channel consisting of a

set of BACs with varying states s ∈ S where S = {(p, q)|p ∼ TS-Beta(pl, pu; a, b), q ∼
TS-Beta(ql, qu; c, d)}. From Theorem 4.4.2, the capacity of a TS-BBM channel model

is equal to the capacity of the most noisy channel i.e., BAC(X ,Y, (pu, qu)). Although

coding techniques based on polar codes and sparse graph codes for achieving the capacity

of a single BAC have been proposed in the literature [38, 39, 40], the application of such

techniques to a set of BACs as represented by the TS-BBM compound channel appears

to be a difficult problem.

Therefore, we look at existing coding techniques that can achieve the symmetric

information rate (SIR) of the TS-BBM channel. The SIR of a binary DMC is defined

as its mutual information with a uniform input probability distribution. It is known

that the difference between the capacity and the SIR of a binary DMC (∆C,SIR) is at

most ∼5.8% of its capacity [41]. Hence, we compute and show this difference between

the capacity and the SIR of the TS-BBM channel model as a function of the P/E cycle

count, in Figures 4.7 and 4.8, for the lower page and upper page models, respectively. We

observe that this difference between the capacity and the SIR of the TS-BBM channel

model is extremely small for both pages. Therefore for practical applications, the loss (in

capacity) is almost negligible if we use linear codes that achieve the SIR of the TS-BBM

channel.

Under the assumption that both the encoder and decoder have no knowledge of

the channel state, we require a single code that can achieve the SIR of all the component

BACs of the TS-BBM channel. Polar codes have been shown to achieve the SIR of any

binary DMC [42]. The SIR of a single BAC can be achieved by a polar code constructed

as shown in [42], with a suitable choice of values for the frozen bits. However, finding

such a set of frozen bit values of a polar code for asymmetric binary DMCs such as the

BAC is an open problem. Even though the component BACs in the TS-BBM channel

model are ordered by degradation, it is not clear if the frozen bit indices of polar codes

corresponding to these component BACs are aligned. We leave these problems open for



71

3000 4000 5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

¢
C
;
S
IR

 (
b

it
s/

ce
ll

)

Vendor-A, LP, min j¢(x)
meanj

Vendor-A, LP, min j¢(x)
varj

Vendor-B, LP, min j¢(x)
meanj

Vendor-B, LP, min j¢(x)
varj

Figure 4.7: Plot showing the difference between the capacity and the symmetric infor-
mation rate (SIR) for the lower page TS-BBM channel models corresponding to vendor-A
and vendor-B flash memory chips. ϵ = 0.01, µ = 10−6.

future work.

4.5 Conclusion

Using the compound channel model approach, we showed that the beta-binomial

(BBM) channel model for MLC flash memories proposed in Chapter 3 has zero capac-

ity. Flash memories in practice do have non-zero positive capacities and hence the BBM

channel model appears to be a very pessimistic model. As an alternative, based on empir-

ical observations, we proposed the truncated-support beta-binomial (TS-BBM) channel

model for MLC flash memories and derived its capacity. We used empirical error char-

acterization data from 1X-nm and 2Y-nm MLC flash memories to obtain the TS-BBM

channel model parameters and estimate its capacity. Using FER performance results

for a regular QC-LDPC code and a polar code, we also showed that the 2-TS-BBM

channel model is almost as good as the BBM channel model for ECC FER performance

estimation. When using a single binary ECC for all pages in MLC flash memories, the

TS-BBM channel model capacity represents an upper bound on the rate of the ECC.

This is because, the ECC must be able to correct all the errors resulting from the most

noisy channel in the set of channels represented by the TS-BBM channel model.



72

3000 4000 5000 6000 7000 8000 9000 10000

Program/Erase (P/E) Cycle Count

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

¢
C
;
S
IR

 (
b

it
s/

ce
ll

)

Vendor-A, UP, min j¢(x)
meanj

Vendor-A, UP, min j¢(x)
varj

Vendor-B, UP, min j¢(x)
meanj

Vendor-B, UP, min j¢(x)
varj

Figure 4.8: Plot showing the difference between the capacity and the symmetric infor-
mation rate (SIR) for the upper page TS-BBM channel models corresponding to vendor-A
and vendor-B flash memory chips. ϵ = 0.01, µ = 10−6.

4.6 Appendix

4.6.1 Proof of Proposition 4.3.3

The mean of a TS-BBM random variable Z is given by

E[Z] =

n∑
z=0

z Pr(Z = z)

=

n∑
z=0

z

(
n

z

)(
Bθu(α+ z, β + n− z)−Bθl(α+ z, β + n− z)

Bθu(α, β)−Bθl(α, β)

)
. (4.61)

Let

tθu =
n∑

z=0

z

(
n

z

)
Bθu(α+ z, β + n− z)

=

n∑
z=0

z

(
n

z

)∫ θu

0
λα+z−1(1− λ)β+n−z−1dλ

=

∫ θu

0

(
n∑

z=0

z

(
n

z

)
λz−1(1− λ)n−z

)
λα−1(1− λ)β−1dλ.

The term in parentheses in the above equation is the expected value of a binomial random

variable with parameters n and λ, namely nλ. Substituting, we have

tθu = n

∫ θu

0
λα+1−1(1− λ)β−1dλ



73

= nBθu(α+ 1, β). (4.62)

Similarly,

tθl = nBθl(α+ 1, β). (4.63)

Substituting (4.62), (4.63) in (4.61), we find

E[Z] = n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

)
. (4.64)

To relate E[Z] and E[Z̃] where Z̃ is a beta-binomial random variable, we use the recur-

rence relations [36]

Bx(α+ 1, β)

B(α+ 1, β)
=

Bx(α, β)

B(α, β)
− xα(1− x)β

αB(α, β)
(4.65)

B(α+ 1, β) =

(
α

α+ β

)
B(α, β) (4.66)

B(α, β + 1) =

(
β

α+ β

)
B(α, β). (4.67)

Using (4.65), (4.66), (4.67) in (4.64), we get

E[Z] =
nα

α+ β
−
(

n

α+ β

)
δθ
ηθ

= E[Z̃]−
(

n

α+ β

)
δθ
ηθ

. (4.68)

To compute the variance, we compute the second moment of Z, E[Z2], as follows,

E[Z2] =

n∑
z=0

z2 Pr(Z = z)

=
n∑

z=0

z2
(
n

z

)(
Bθu(α+ z, β + n− z)−Bθl(α+ z, β + n− z)

Bθu(α, β)−Bθl(α, β)

)
. (4.69)

Let,

t̄θu =

n∑
z=0

z2
(
n

z

)
Bθu(α+ z, β + n− z)

=

n∑
z=0

z2
(
n

z

)∫ θu

0
λα+z−1(1− λ)β+n−z−1dλ

=

∫ θu

0

(
n∑

z=0

z2
(
n

z

)
λz−1(1− λ)n−z

)
λα−1(1− λ)β−1dλ.



74

The term in parentheses in the above equation is the second moment of a binomial random

variable with parameters n and λ, namely n(n− 1)λ2 + nλ. Substituting, we have

t̄θu = n(n− 1)

∫ θu

0
λα+2−1(1− λ)β−1dλ+ n

∫ θu

0
λα+1−1(1− λ)β−1dλ

= n(n− 1)Bθu(α+ 2, β) + nBθu(α+ 1, β). (4.70)

Similarly,

t̄θl = n(n− 1)Bθl(α+ 2, β) + nBθl(α+ 1, β). (4.71)

Substituting (4.70), (4.71) in (4.69), we find

E[Z2] = n(n− 1)
Bθu(α+ 2, β)−Bθl(α+ 2, β)

Bθu(α, β)−Bθl(α, β)
+ n

Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)
;(4.72)

Var[Z] = E[Z2]− (E[Z])2

= n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

)(
1− n

(
Bθu(α+ 1, β)−Bθl(α+ 1, β)

Bθu(α, β)−Bθl(α, β)

))
+

n(n− 1)

(
Bθu(α+ 2, β)−Bθl(α+ 2, β)

Bθu(α, β)−Bθl(α, β)

)
. (4.73)

Using the recurrence relations (4.65), (4.66), (4.67) in (4.73), we get

Var[Z] = Var[Z̃]−
(

nβ(α+ β + n)

(α+ β)2(α+ β + 1)

)
δθ
ηθ

− n2

(α+ β)2

(
δθ
ηθ

)2

−(
n(n− 1)

α+ β + 1

)
ϕθ

ηθ
(4.74)

where Var[Z̃] is the variance of a BBM random variable and ηθ, δθ, ϕθ are defined in

equations (4.10), (4.12), (4.14), respectively. □

4.6.2 Proof of Proposition 4.3.4

The probability distribution of K(0) in terms of the probability distribution of

K
(0)
m is given by

Pr(K(0) = k) =
N∑

m=k

(
N
m

)
2N

Pr(K(0)
m = k)

=

N∑
m=k

(
N
m

)
2N

(
m

k

)(
Bpu(a+ k, b+m− k)

Bpu(a, b)−Bpl(a, b)
−

Bpl(a+ k, b+m− k)

Bpu(a, b)−Bpl(a, b)

)
. (4.75)



75

The mean of K(0) is given by

E[K(0)] =

N∑
k=0

kPr(K(0) = k)

=
1

2N

N∑
m=0

(
N

m

)
E[K(0)

m ]

=
1

2N

N∑
m=0

(
N

m

)
m

(
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)

)

=
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)
. (4.76)

The second moment of K(0) is given by

E[(K(0))2] =

N∑
k=0

k2 Pr(K(0) = k)

=
1

2N

N∑
m=0

(
N

m

)
E[(K(0)

m )2]. (4.77)

Using (4.72),

E[(K(0)
m )2] = m(m− 1)

(
Bpu(a+ 2, b)−Bpl(a+ 2, b)

Bpu(a, b)−Bpl(a, b)

)

+m

(
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)

)
. (4.78)

Substituting (4.78) in (4.77) and simplifying, we get

E[(K(0))2] =
N(N − 1)

4

(
Bpu(a+ 2, b)−Bpl(a+ 2, b)

Bpu(a, b)−Bpl(a, b)

)
+

N

2

(
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)

)

=
N(N − 1)

4

(
U

(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

)
+

N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)
. (4.79)

Therefore, using (4.76) and (4.79), we get

Var[K(0)] = E[(K(0))2]− (E[K(0)])2

=
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
1− N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

))
+

N(N − 1)

4

(
U

(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

)
. (4.80)



76

Note that we have used the following combinatorial identities to simplify the summations

in this proof:

N∑
m=0

(
N

m

)
m = N2N−1 (4.81)

N∑
m=0

(
N

m

)
m2 = (N +N2)2N−2. (4.82)

The expressions for E[K(1)] and Var[K(1)] can be derived similarly. □

4.6.3 Proof of Proposition 4.3.5

By definition, we have

K = K(0) +K(1) (4.83)

E[K] = E[K(0)] + E[K(1)]. (4.84)

Using the results of Proposition 4.3.4, we have

E[K] =
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

+
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)
. (4.85)

To compute Var[K], we first need E[K2], derived as follows:

E[K2] =
1

2N

N∑
m=0

(
N

m

)
E[K2

m] (4.86)

where E[K2
m] = Var[Km] + (E[Km])2. (4.87)

E[Km] = E[K(0)
m ] + E[K

(1)
N−m] (4.88)

Var[Km] = Var[K(0)
m ] + Var[K

(1)
N−m]. (4.89)

Using the results of Proposition 4.3.3, we obtain

E[Km] = m
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)
+

(N −m)
Bqu(c+ 1, d)−Bql(c+ 1, d)

Bqu(c, d)−Bql(c, d)
(4.90)



77

Var[Km] = m

(
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)

)
−m2

(
Bpu(a+ 1, b)−Bpl(a+ 1, b)

Bpu(a, b)−Bpl(a, b)

)2

+

m(m− 1)

(
Bpu(a+ 2, b)−Bpl(a+ 2, b)

Bpu(a, b)−Bpl(a, b)

)
+

(N −m)

(
Bqu(c+ 1, d)−Bql(c+ 1, d)

Bqu(c, d)−Bql(c, d)

)
−

(N −m)2

(
Bqu(c+ 1, d)−Bql(c+ 1, d)

Bqu(c, d)−Bql(c, d)

)2

+

(N −m)(N −m− 1)

(
Bqu(c+ 2, d)−Bql(c+ 2, d)

Bqu(c, d)−Bql(c, d)

)
. (4.91)

E[K2
m] can be computed using equations (4.87), (4.90) and (4.91). Using E[K2

m] in

equation (4.86), E[K2] can be computed and thus Var[K] can be written as

Var[K] = E[K2]− (E[K])2

=
N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
1− N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

))

+
N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)(
1− N

2

(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

))

+
N(N − 1)

4

(
U

(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

+
V

(2)
qu − V

(2)
ql

V
(0)
qu − V

(0)
ql

)

−N

2

(
U

(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

)(
V

(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

)
. (4.92)

Note that we have used the following combinatorial identities to simplify the summations

in this proof:

N∑
m=0

(
N

m

)
m = N2N−1 (4.93)

N∑
m=0

(
N

m

)
m2 = (N +N2)2N−2. (4.94)

This completes the proof. □

4.6.4 Proof of Proposition 4.3.6

Using (4.10), (4.12)-(4.14) and the recurrence relations in (4.65)-(4.67), we have

U
(1)
pu − U

(1)
pl

U
(0)
pu − U

(0)
pl

=
a

a+ b
− 1

(a+ b)

δp
ηp

(4.95)



78

U
(2)
pu − U

(2)
pl

U
(0)
pu − U

(0)
pl

=
a(a+ 1)

(a+ b)(a+ b+ 1)
− a+ 1

(a+ b)(a+ b+ 1)

δp
ηp

− 1

(a+ b+ 1)

ϕp

ηp
(4.96)

V
(1)
qu − V

(1)
ql

V
(0)
qu − V

(0)
ql

=
c

c+ d
− 1

(c+ d)

δq
ηq

(4.97)

V
(2)
qu − V

(2)
ql

V
(0)
qu − V

(0)
ql

=
c(c+ 1)

(c+ d)(c+ d+ 1)
− c+ 1

(c+ d)(c+ d+ 1)

δq
ηq

− 1

(c+ d+ 1)

ϕq

ηq
. (4.98)

Substituting (4.95) and (4.96) in the expressions for E[K(0)] and Var[K(0)] given by

Proposition 4.3.4 and simplifying, we derive the relationships between E[K(0)], E[K̃(0)]

and between Var[K(0)], Var[K̃(0)] as

E[K(0)] = E[K̃(0)]−∆(0)
mean (4.99)

Var[K(0)] = Var[K̃(0)]−∆(0)
var (4.100)

The relationships among E[K(1)], E[K̃(1)] and Var[K(1)], Var[K̃(1)] can be derived simi-

larly. Substituting (4.95)-(4.98) in the expressions for E[K] and Var[K] given by Propo-

sition 4.3.5 and simplifying, we derive the relationships between E[K], E[K̃] and between

Var[K], Var[K̃] as

E[K] = E[K̃]−∆mean (4.101)

Var[K] = Var[K̃]−∆var. (4.102)

□

Acknowledgements

This chapter is in part a reprint of the material in the paper: Veeresh Taranalli,

Hironori Uchikawa, and Paul H. Siegel, “On the capacity of the beta-binomial channel

model for multi-level cell flash memories,” IEEE Journal on Selected Areas in Commu-

nications, vol. 34, no. 9, pp. 2312–2324, September 2016. The dissertation author was

the primary investigator and author of this paper, and co-authors have approved the use

of the material for this dissertation.



5 Adaptive Linear Programming

Decoding of Polar Codes

5.1 Introduction

Polar codes, first introduced in [42], were shown to be capacity-achieving for bi-

nary input memoryless output symmetric channels. However, their performance on a

binary additive white gaussian noise channel (BAWGNC) with successive cancellation

(SC) decoding is unimpressive at practical blocklengths. Thus, improving their perfor-

mance either by improved decoding algorithms or modified constructions of polar codes

has been a recent topic in coding theory. The most notable improvement in error rate

performance was observed using the successive cancellation list (SC-List) decoding al-

gorithm proposed in [28]. Alternatively, a cyclic redundancy check (CRC) concatenated

polar code with SC-List decoding was also shown to improve the performance signifi-

cantly [28].

Linear Programming (LP) decoding has been a research topic in coding theory and

is attractive mainly because of its maximum likelihood (ML)-certificate property [43]. It

was introduced for polar codes in [44] where the sparse factor graph was used to represent

the LP polytope instead of the high density parity check matrix. For polar codes over

a binary erasure channel (BEC), it was shown that LP decoding achieves capacity and

also outperforms SC decoding at finite blocklengths [44]. However, for a BAWGNC, the

LP decoder in [44] is suboptimal and performs very poorly.

Adaptive LP decoding techniques were proposed in [45, 46] to improve the de-

coding time complexity as well as the error rate performance. Based on these techniques,

we propose modifications to the adaptive cut generation based LP decoder in [46] that

significantly improve its error rate performance for polar codes over a BAWGNC. We

79



80

then present an algorithm to obtain a smaller factor graph representation of a polar

code, called the reduced factor graph, which decreases the representation complexity of

the fundamental polytope and, hence, improves the decoding time complexity of the

modified-adaptive LP decoder.

In Section 5.2, we review the LP decoding of polar codes proposed in [44]. In

Section 5.3, we review the adaptive LP decoding techniques [45, 46] and describe the

proposed modified-adaptive LP decoder for short blocklength polar codes, along with

simulation results. In Section 5.4, we present the algorithm for reducing a polar code

sparse factor graph.

5.2 LP Decoding of Polar Codes

Consider a binary linear code Cl of length N and rate r = k
N , where k < N is

the number of information bits in a codeword. Let H denote a parity check matrix for

Cl. Suppose a codeword x ∈ Cl is transmitted over a binary input memoryless output

symmetric channel and y is the received vector. ML decoding is equivalent to solving

the optimization problem [43]:

minimize γTx subject to x ∈ Cl (5.1)

where xi ∈ {0, 1}, i ∈ 1, . . . , N and γ is the vector of log-likelihood ratios (LLR) defined

as

γi = log

(
Pr(yi|xi = 0)

Pr(yi|xi = 1)

)
. (5.2)

In [43], the ML decoding problem (5.1) was relaxed to a linear programming (LP) prob-

lem, where the relaxed polytope, also known as the fundamental polytope Q has both

integral and non-integral vertices. The polytope Q is defined by linear inequalities, also

referred to as constraints, generated from each row j of the parity-check matrix H, given

by ∑
i∈V

xi −
∑

i∈N (j)\V

xi ≤ |V | − 1 ∀ V ⊆ N (j) s.t. |V | is odd (5.3)

where N (j) is the support of the row j of H. This polytope Q has the ML-certificate

property which guarantees that an integral solution of the LP problem would be a valid

ML codeword. The number of constraints needed to define the polytope Q is exponential



81

in the maximum parity-check degree of H, i.e., O(2
max

j
|N (j)|

). Let a polar code C be

constructed using the channel polarization transform of length N = 2m proposed in [42],

which is denoted by a matrix GN, where GN = BNG2
⊗m, G2 =

[
1 0
1 1

]
, the operator ⊗m

represents the m-times Kronecker product of G2, and BN is the bit-reversal permutation

matrix defined in [42]. Assuming all the N − k frozen (non-information) bits in C are

set to 0, a parity check matrix H for C can be constructed by selecting the columns

corresponding to the frozen bit indices in GN as the parity checks [44]. Thus, H consists

of high density rows with the maximum possible parity-check degree being N . Hence, the

number of constraints needed to define the polytope Q as per (5.3) is O(2N−1). This is

clearly impractical for all but very short length polar codes. It was also shown in [44] that

LP decoding on the fundamental polytope Q will fail for a BEC(ϵ), binary symmetric

channel BSC(p) or a BAWGNC(σ), even if the polytope Q could be represented in

practice.

A sparse factor graph representation with O(N logN) auxiliary variable nodes was

proposed in [42] for the polar code C. An example sparse factor graph for N = 8 is

shown in Fig. 5.1. It is easy to see that there are only degree-3 or degree-2 check nodes

in the sparse factor graph. Let HP denote the adjacency matrix of the sparse factor

graph where the rows and columns represent the check and variable nodes, respectively.

The LP polytope P is defined as the intersection of local minimal convex polytopes of

each row (parity check) in HP and the set of cutting planes corresponding to the frozen

column indices (variable nodes) in HP [44].

Using the polytope P, an LP decoder for the polar code C as proposed in [44] is

given by

minimize γT x̄ subject to x ∈ P ⊆ [0, 1]N(1+logN) (5.4)

where x̄ is defined as the first N component subset of x and corresponds to the codeword

variable nodes, x̄i = xi ∀ i ∈ {1, . . . , N}. Similarly, the projection of polytope P is

defined [44] as

P̄ = {x̄ ∈ [0, 1]N | ∃ x̂ s.t. (x̄, x̂) ∈ P} (5.5)

It was shown that if the projection x̄ (on P̄) of the LP decoder output vector x

in (5.4) is integral then it is guaranteed to be the ML codeword i.e., LP decoding on the

polytope P as defined in (5.4) has the ML-certificate property (Lemma 3 in [44]). It was



82

also shown (Theorem 1 in [44]) that the projection P̄ of polytope P is tighter than the

fundamental polytope Q.

u0 = s3,0

u4 = s3,1

u2 = s3,2

u6 = s3,3

u1 = s3,4

u5 = s3,5

u3 = s3,6

u7 = s3,7

s2,0

s2,1

s2,2

s2,3

s2,4

s2,5

s2,6

s2,7

s1,0

s1,1

s1,2

s1,3

s1,4

s1,5

s1,6

s1,7

s0,0 = x0

s0,1 = x1

s0,2 = x2

s0,3 = x3

s0,4 = x4

s0,5 = x5

s0,6 = x6

s0,7 = x7

Figure 5.1: Sparse factor graph representation of a length-8 polar code.

5.3 Adaptive LP Decoding of Polar Codes

5.3.1 Adaptive LP Decoding of a Binary Linear Code

An Adaptive LP (ALP) decoder for binary linear codes solves a sequence of LP

decoding problems with the addition of intelligently chosen constraints called cuts at

every iteration [45]. A cut at a point x ∈ [0, 1]N is a violated constraint at x derived

from a check node. An ALP decoder starts by solving the initial LP with the constraints

xi ≥ 0 if γi ≥ 0; xi ≤ 1 if γi < 0 (5.6)

The solution of this initial LP coincides with the output of a hard decision decoding of

the received LLR values. The ALP decoder then searches constraints from all parity

checks to find cuts, adds the cuts to the LP and solves the resulting LP. This procedure

is repeated until an integer solution is obtained or no further cuts can be found. Violated

constraints or cuts can also be generated using redundant parity checks (RPCs). RPCs

are obtained by the modulo-2 addition of parity checks in the parity check matrix of

the code. The addition of cuts from RPCs during the LP decoding iterations can only

tighten the LP polytope and hence can only improve the error rate performance. In [46],

efficient algorithms to perform the cut-search on parity checks and to find cut-inducing

RPCs were proposed. Based on these algorithms, an adaptive cut generation based LP

(ACG-ALP) decoder (Algorithm 2 in [46]) was proposed. Next, we present modifications

to the ACG-ALP decoder which make it suitable for decoding polar codes.



83

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

T
im

e
(s

ec
on

d
s)

ACG-ALP-1

ACG-ALP-3

ACG-ALP-4

Figure 5.2: Average time for decoding one codeword of a (64, 32) polar code over a
BAWGN channel with ACG-ALP decoding.

5.3.2 Modified ACG-ALP Decoder for Polar Codes

A polar code can be defined using the sparse factor graph (HP) with the frozen bit

information or the parity check matrix (H). The availability of these two representations

motivates the idea of modifying the ACG-ALP decoder (Algorithm 2 in [46]) to improve

its performance when compared to a LP decoder. The ACG-ALP decoder uses the

parity check matrix to generate constraints and cuts. RPCs and cuts from these RPCs

are also derived from the parity check matrix by the ACG-ALP decoder. Based on these

observations, we investigate four ways of using the sparse factor graph and the parity

check matrix representations in the ACG-ALP decoder:

1. Use the unmodified ACG-ALP decoder with the parity check matrix H.

2. Use HP as the parity check matrix in the ACG-ALP decoder. Add the frozen bit

constraints to the inital-LP.

3. Initialize the ACG-ALP decoder with the polytope P and generate subsequent

cut-inducing RPCs from HP .

4. Initialize the ACG-ALP decoder with the polytope P and generate subsequent

cut-inducing RPCs from H.



84

Note that the ACG-ALP decoders 1 and 2 do not use constraints from parity

checks in defining the initial LP. Hence, these decoders are expected to have a larger

average decoding time complexity compared to the ACG-ALP decoders 3 and 4, as

shown in Fig. 5.2. Due to its large decoding time complexity, the simulation results

corresponding to the ACG-ALP decoder 2 could not be obtained. We have empirically

observed that the other three ACG-ALP decoders (1, 3, 4) perform equally well in terms

of the frame error rate (FER) performance but the ACG-ALP decoder 4 has the smallest

average decoding time complexity. Hence, we select this modified decoder for decoding

polar codes (ACG-ALP-Polar) as shown in Algorithm 6.

Algorithm 6 ACG-ALP decoding algorithm for Polar codes
Input: γ, HP , frozen bit indices, H

Output: Optimal solution of the current LP problem

1: Initialize the LP problem with the constraints obtained from HP and frozen bit

information.

2: Solve the current LP problem to get the solution x∗.

3: if x∗ is nonintegral then

4: Construct cut-inducing RPC matrix H̃ from H [46].

5: Apply the cut-search algorithm (Algorithm 1 in [46]) to each row of H̃.

6: if No cut is found then

7: Terminate.

8: else

9: Add the cuts found to the LP problem, go to line 2.

5.3.3 Simulation Results

Fig. 5.3 and Fig. 5.4 show the FER performance over a BAWGNC of rate-0.5

length-64 and length-128 polar codes, respectively. The performance of the proposed

ACG-ALP-Polar decoder is compared with the previously proposed LP decoder for polar

codes [44], the SC and the SC-List decoders [28]. We choose a list size = 32 for the

SC-List decoder (SC-List-32) as it is known to have performance close to the ML lower

bound [28]. The polar codes are constructed using the bit channel degrading merge

algorithm presented in [27] optimized for a BAWGN channel with signal-to-noise ratio,

SNR (Es/N0) = 2.0 dB. The proposed decoder uses the LP solver in the CVXOPT

package [47]. A total of 200 frame errors were recorded at each Eb/N0 point. We also



85

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−4

10−3

10−2

10−1

100

F
ra

m
e

E
rr

or
R

at
e

(F
E

R
)

SC Decoder

SC-List Decoder, List size = 32

LP Decoder

ACG-ALP-Polar Decoder

ML Lower Bound

Figure 5.3: FER performance of a (64, 32) polar code over a BAWGN channel.

show an ML lower bound obtained using the ML-certificate property of the proposed

decoder. The ACG-ALP-Polar decoder shows a significant improvement in performance

compared to the LP decoder for both polar codes. For the length-64 polar code, the

ACG-ALP-Polar decoder performance is very close to the ML lower bound. However, for

the length-128 polar code, there is a performance gap in the lower SNR region. The ACG-

ALP-Polar decoder performs better than the SC decoder for both polar codes studied.

Compared to the SC-List-32 decoder, the ACG-ALP-Polar decoder performs equally well

for the (64, 32) polar code while its performance is worse in the low SNR region for the

(128, 64) polar code. Although the ACG-ALP-Polar decoder shows promise in FER

performance, we have empirically observed that its decoding time complexity is larger

than that of the SC-List-32 decoder especially in the low SNR region and is prohibitively

high for moderate to long blocklength polar codes.

5.4 Polar Code Sparse Factor Graph Reduction

Due to its recursive structure the polar code sparse factor graph has some redun-

dant variable nodes connected to degree-2 check nodes. We use this redundancy and the

frozen bit information to propose an algorithm for reducing the number of constraints

needed to represent the sparse factor graph based LP polytope P. Simulation results show

that the new reduced factor graph representation can be used in the ACG-ALP-Polar



86

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−4

10−3

10−2

10−1

100

F
ra

m
e

E
rr

or
R

at
e

(F
E

R
)

SC Decoder

SC-List Decoder, List size = 32

LP Decoder

ACG-ALP-Polar Decoder

ML Lower Bound

Figure 5.4: FER performance of a (128, 64) polar code over a BAWGN channel.

decoder to achieve an improvement in the time complexity.

5.4.1 Polar Code Sparse Factor Graph Reduction Algorithm

The sparse factor graph, the set of frozen bit indices and their values define the

polar code. The set of frozen bit indices is obtained using a polar code construction

technique [27]. We assume that all frozen bits are set to 0.

(a) Z-shaped structure (b) Propagate frozen bit-pairs

and eliminate

(c) Single frozen bit

(d) Remove a degree-2 check node

Figure 5.5: Reducing a polar code sparse factor graph.

Every pair of degree-2 and degree-3 check nodes in the sparse factor graph is

interconnected through a Z-shaped structure shown in Fig. 5.5(a), referred to as a Z-

structure. The possible configurations of frozen variable nodes in a Z-structure are:

1. Both the variable nodes on the left are frozen.



87

2. Only a single variable node is frozen and due to the channel polarization principle,

this must be the degree-1 variable node on the left.

In case (1), we propagate the left frozen variable node values (0’s in this case) to the right

variable nodes of the Z-structure and eliminate the Z-structure as shown in Fig. 5.5(b).

We note that this step is similar to the one proposed in the simplified successive cancel-

lation decoder [48] used to reduce the complexity of the SC decoder. We are left with

Z-structures in the graph where only a single bit is frozen i.e., the case (2). We reduce

such a Z-structure by replacing it with a degree-2 check node as shown in Fig. 5.5(c).

Now, there are no more frozen variable nodes in the factor graph and hence starting at

the code bit variable nodes on the right, we iteratively reduce degree-2 check nodes as

shown in Fig. 5.5(d).

Next, we show that for LP decoding, the polar code sparse factor graph can be

reduced further by eliminating degree-1 auxiliary variable nodes and their check node

neighbors from the graph.

Lemma 5.4.1. The constraints from a parity check node which is connected to a degree-1

auxiliary variable node in the polar code sparse factor graph do not affect the LP decoder

solution and hence the degree-1 auxiliary variable node and its check node neighbor can

be deleted from the graph.

Proof. From the formulation of LP decoding for polar codes ((5.4) in Section 5.2), we

know that the LP decoder objective function is independent of the auxiliary variable

nodes (which do not correspond to codeword bits). Hence a degree-1 auxiliary variable

node is free to be assigned any feasible value by the LP solver and can be deleted from

the graph.

The steps for reducing a polar code sparse factor graph are described in Algo-

rithm 7. Assuming u0, u1, u2, u4 (Fig. 5.1) are the frozen bits, the reduced factor graph

(RFG) of a (8, 4) polar code sparse factor graph obtained using Algorithm 7 is illustrated

in Fig. 5.6.

Let HR be a parity-check matrix representation of the polar code reduced factor

graph. We show that HR has small degree check nodes necessary to represent the LP

polytope efficiently.

Lemma 5.4.2. A polar code reduced factor graph HR consists of only degree-3 check

nodes.



88

Algorithm 7 Reduce Polar Code Sparse Factor Graph
Input: Polar code sparse factor graph HP , frozen bit indices

Output: Reduced factor graph

1: Step 1: Propagate frozen variable node pairs as shown in Fig. 5.5(b) and eliminate

the corresponding Z-structures.

2: Step 2: Replace Z-structures containing a single frozen variable node with degree-2

check nodes. (Fig. 5.5(c))

3: Step 3: For each degree-2 check node, delete a variable node neighbor connecting

all its neighboring check nodes to the other variable node neighbor. (Fig. 5.5(d))

4: Step 4: Iteratively delete degree-1 auxiliary variable nodes and their check node

neighbors until no further degree-1 auxiliary variable nodes exist.

x0 x1 x2 x3 x4 x5 x6 x7

x8

x9

Figure 5.6: Reduced factor graph (RFG) of a (8, 4) polar code.



89

Proof. We refer to the steps of Algorithm 7 for this proof. A polar code sparse factor

graph has only degree-2 and degree-3 check nodes. Step 1 deletes check nodes in Z-

structures with two frozen bits (Fig. 5.5(b)) and hence does not change the degree of any

other check nodes. Step 2 operates on Z-structures with a single frozen bit (Fig. 5.5(c))

and deletes the degree-2 check node while reducing the degree of the degree-3 check node

by 1. Step 3 iteratively deletes degree-2 check nodes and does not affect the degree-3

check nodes. Hence, we are left with only degree-3 check nodes in the factor graph. Step 4

deletes the degree-1 auxiliary variable nodes and their check node neighbors. Therefore,

the reduced factor graph HR consists of only degree-3 check nodes.

Theorem 5.4.3. Let R be the fundamental polytope of the reduced factor graph HR of a

polar code C. Then, R ⊂ [0, 1]d, where d = f(N, r) is the dimension of the vectors in

R and is a function of the polar code blocklength N and the rate r. Let P be the polytope

obtained from the original sparse factor graph and the frozen bit information of C and

let P̃ be the projected polytope obtained from the projection of vectors in P onto the d

variables in HR. Then,

R = P̃ (5.7)

Proof. First we show that P̃ ⊆ R i.e., every vector in polytope P̃ is also in polytope R.

Consider a vector u ∈ P ; its projection of length d, ũ ∈ P̃, can be constructed by deleting

the components of u corresponding to the variable nodes deleted in Algorithm 7. It is

clear that no step in Algorithm 7 requires a change in the value of a variable node which

is not deleted and hence ũ ∈ R. Next, we show that R ⊆ P̃. Let v ∈ R; then v satisfies

all the parity checks in HR. From the proof of Lemma 2, we know that there are degree-3

parity checks without frozen variable node neighbors in the original sparse factor graph

which cannot be reduced. In HR, even though the variable node indices participating

in these checks may be different from those in HP , the parity checks remain unchanged

because there is one representative variable node for a group of deleted variable nodes

which were constrained to take on the same values. Hence, the set of parity checks in

HR is a subset of the parity checks in HP and v ∈ P̃. Therefore, R = P̃.

LP decoding on the polytope P has the ML-certificate property [44] and from

Theorem 1 it follows that the polytope R also has the ML-certificate property. We

replace the matrix HP with HR in the ACG-ALP-Polar decoder (Algorithm 6). The

size of the matrix HR is strictly smaller than that of HP for any polar code of rate < 1.



90

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−2

10−1

100

101

102

A
ve

ra
ge

T
im

e
(s

ec
on

d
s)

(128, 64) Polar Code(128, 64) Polar Code(128, 64) Polar Code

(64, 32) Polar Code(64, 32) Polar Code(64, 32) Polar Code

ACG-ALP-Polar Decoder (OFG)

ACG-ALP-Polar Decoder (RFG)

SC-List Decoder, List size = 32

ACG-ALP-Polar Decoder (OFG)

ACG-ALP-Polar Decoder (RFG)

SC-List Decoder, List size = 32

Figure 5.7: Average time for decoding one codeword of a (64, 32) and (128, 64) polar
code over a BAWGN channel. OFG – with original factor graph; RFG – with reduced
factor graph.

Hence the decoding time complexity of the ACG-ALP-Polar decoder can only decrease

by using the reduced factor graph.

5.4.2 Simulation Results

We present simulation results using the reduced factor graph representation in

the ACG-ALP-Polar decoder for the two polar codes discussed in Section 5.3.3. The

FER performance is unchanged (Fig. 5.3 and Fig. 5.4) and hence is not shown. However,

as Fig. 5.7 shows, the decoding time complexity is decreased when using the reduced

factor graph representation. Compared to the SC-List-32 decoder, the ACG-ALP-Polar

decoder with the reduced factor graph has a lower average decoding time complexity at

higher SNRs. The reduction in the representation complexity of polar codes using the

reduced factor graph is shown in Fig 5.8.

5.5 Conclusion

We proposed modifications to the ACG-ALP decoder [46] which make it suitable

for decoding short to moderate length polar codes with FER performance close to the ML

performance. This indicates that with the proper polytope representation, LP decoding

works well for polar codes over a BAWGNC. We also presented an algorithm to generate



91

6 7 8 9 10 11 12

m = log2(N)

102

103

104

105

N
u

m
b

er
of

V
ar

ia
b

le
N

o
d

es

OFG

RFG, r = 0.5

RFG, r = 0.7

RFG, r = 0.9

Figure 5.8: Representation complexity (d = f(N, r)) for polar codes using the original
sparse factor graph (OFG) and the reduced factor graph (RFG).

an efficient reduced factor graph representation of a polar code. This reduced factor

graph decreases the decoding time complexity of the ACG-ALP-Polar decoder without

degrading its error rate performance.

Acknowledgements

This chapter is a reprint of the material in the paper: Veeresh Taranalli, and

Paul H. Siegel, “Adaptive linear programming decoding of polar codes,” in Proc. IEEE

International Symposium on Information Theory (ISIT), Hawaii, June-July 2014, pp.

2982–2986. The dissertation author was the primary investigator and author of this

paper, and co-authors have approved the use of the material for this dissertation.



Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical
Journal, vol. 27, pp. 379–423, 1948.

[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,”
Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, April 2003.

[3] J. Cooke, “The inconvenient truths about NAND flash memory,” in Micron MEM-
CON 7, 2007.

[4] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf, “Error char-
acterization and coding schemes for flash memories,” in Proc. IEEE Global Telecom-
munications Conference (GLOBECOM) Workshops, December 2010, pp. 1856–1860.

[5] E. Yaakobi, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf, “Characterization
and error-correcting codes for TLC flash memories,” in Proc. International Confer-
ence on Computing, Networking and Communications (ICNC), January 2012, pp.
486–491.

[6] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC NAND flash
memory: Measurement, characterization, and analysis,” in Design, Automation and
Test in Europe Conference Exhibition (DATE), March 2012, pp. 521–526.

[7] Y. Kim, B. Kumar, K. L. Cho, H. Son, J. Kim, J. J. Kong, and J. Lee, “Modula-
tion coding for flash memories,” in Proc. International Conference on Computing,
Networking and Communications (ICNC), January 2013, pp. 961–967.

[8] A. Berman and Y. Birk, “Error correction scheme for constrained inter-cell interfer-
ence in flash memory,” in Annual Non-Volatile Memories Workshop (NVMW), 2011,
March 2011.

[9] R. Motwani, “Hierarchical constrained coding for floating-gate to floating-gate cou-
pling mitigation in flash memory,” in Proc. IEEE Global Telecommunications Con-
ference (GLOBECOM), December 2011.

[10] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate inter-cell
interference in read/write cycles for flash memories,” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 5, pp. 836–846, May 2014.

92



93

[11] J. Solid State Technology Association, “JESD91A Method for developing accelera-
tion models for electronic component failure mechanisms.”

[12] P. H. Siegel and J. K. Wolf, “Modulation and coding for information storage,” IEEE
Communications Magazine, vol. 29, no. 12, pp. 68–86, December 1991.

[13] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon Foundation
Publishers, 2004.

[14] P. A. Franaszek, “Run-length-limited variable-length coding with error propagation
limitation,” US Patent 3,689,899 (1972).

[15] J. Moon and B. Brickner, “Maximum transition run codes for data storage systems,”
IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 3992–3994, September 1996.

[16] J. D. Lee, S. H. Hur, and J. D. Choi, “Effects of floating-gate interference on NAND
flash memory cell operation,” IEEE Electron Device Letters, vol. 23, no. 5, pp. 264–
266, May 2002.

[17] X. Huang, A. Kavcic, X. Ma, G. Dong, and T. Zhang, “Multilevel flash memories:
Channel modeling, capacities and optimal coding rates,” International Journal on
Advances in Systems and Measurements, vol. 6, no. 3–4, pp. 364–373, 2013.

[18] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in
MLC NAND flash memory: Characterization, analysis, and modeling,” in Proc.
of the Conference on Design, Automation and Test in Europe (DATE), 2013, pp.
1285–1290.

[19] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the thresh-
old voltage distributions of sub-20 nm NAND flash memory,” in Proc. IEEE Global
Communications Conference (GLOBECOM), Dec 2014, pp. 2351–2356.

[20] J. G. Skellam, “A probability distribution derived from the binomial distribution by
regarding the probability of success as variable between the sets of trials,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 10, no. 2, pp. 257–261,
1948.

[21] J. K. Lindsey and P. M. E. Altham, “Analysis of the human sex ratio by using
overdispersion models,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 47, no. 1, pp. 149–157, 1998.

[22] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-cell inter-
ference mitigation in multi-level cell flash memories,” in Proc. IEEE International
Conference on Communications (ICC), London, UK, June 2015, pp. 271–276.

[23] C. H. Stapper, A. N. McLarent, and M. Dreckmann, “Yield model for productivity
optimization of VLSI memory chips with redundancy and partially good product,”
IBM Journal of Research and Development, vol. 24, no. 3, pp. 398–409, May 1980.

[24] F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,” Journal of the
American Statistical Association, vol. 46, no. 253, pp. 68–78, 1951.



94

[25] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for
Python,” 2001–. [Online]. Available: http://www.scipy.org/

[26] D. M. Arnold, E. Eleftheriou, and X. Y. Hu, “Progressive edge-growth tanner
graphs,” in Proc. IEEE Global Telecommunications Conference (GLOBECOM),
vol. 2, 2001, pp. 995–1001.

[27] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Infor-
mation Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[28] ——, “List decoding of polar codes,” IEEE Transactions on Information Theory,
vol. 61, no. 5, pp. 2213–2226, May 2015.

[29] F. Alajaji and T. Fuja, “A communication channel modeled on contagion,” IEEE
Transactions on Information Theory, vol. 40, no. 6, pp. 2035–2041, Nov 1994.

[30] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Press, 2005.

[31] G. Dong, Y. Pan, N. Xie, C. Varanasi, and T. Zhang, “Estimating information-
theoretical NAND flash memory storage capacity and its implication to memory
system design space exploration,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 20, no. 9, pp. 1705–1714, Sep. 2012.

[32] Y. Li, A. Kavcic, and G. Han, “On the capacity of multilevel NAND
flash memory channels,” CoRR, vol. abs/1601.05677, 2016. [Online]. Available:
http://arxiv.org/abs/1601.05677

[33] J. Wolfowitz, “Simultaneous channels,” Archive for Rational Mechanics and Analysis,
vol. 4, no. 1, pp. 371–386, January 1959.

[34] D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacity of a class of channels,”
The Annals of Mathematical Statistics, vol. 30, no. 4, pp. 1229–1241, December 1959.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[36] A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and Its Applications.
CRC Press, 2004.

[37] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. New
York: John Wiley, 2006.

[38] D. Sutter, J. M. Renes, F. Dupuis, and R. Renner, “Achieving the capacity of any
DMC using only polar codes,” in Proc. IEEE Information Theory Workshop (ITW),
Sep. 2012, pp. 114–118.

[39] J. Honda and H. Yamamoto, “Polar coding without alphabet extension for asym-
metric models,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
7829–7838, Dec. 2013.

http://www.scipy.org/
http://arxiv.org/abs/1601.05677


95

[40] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “How to achieve the capacity
of asymmetric channels,” CoRR, vol. abs/1406.7373, 2014. [Online]. Available:
http://arxiv.org/abs/1406.7373

[41] E. E. Majani and H. Rumsey, Jr., “Two results on binary-input discrete memoryless
channels,” in Proc. IEEE Symposium on Information Theory (ISIT), June 1991, p.
104.

[42] E. Arikan, “Channel Polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Transactions on In-
formation Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[43] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming to
decode binary linear codes,” IEEE Transactions on Information Theory, vol. 51,
no. 3, pp. 954–972, March 2005.

[44] N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar codes,” in Proc.
IEEE Information Theory Workshop (ITW), August 2010.

[45] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear programming decod-
ing,” IEEE Transactions on Information Theory, vol. 54, no. 12, pp. 5396–5410,
December 2008.

[46] X. Zhang and P. H. Siegel, “Adaptive cut generation algorithm for improved linear
programming decoding of binary linear codes,” IEEE Transactions on Information
Theory, vol. 58, no. 10, pp. 6581–6594, October 2012.

[47] M. S. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A python package for
convex optimization, version 1.1.6. Available at cvxopt.org,” 2013.

[48] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation de-
coder for polar codes,” IEEE Communications Letters, vol. 15, no. 12, pp. 1378–1380,
December 2011.

http://arxiv.org/abs/1406.7373

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Design and Structure of Flash Memories
	Error Mechanisms in Flash Memories
	Dissertation Overview

	Error Characterization and Inter-Cell Interference Mitigation for Multi-Level Cell Flash Memories
	Introduction
	Experimental Setup and Procedures
	Experimental Setup
	Procedure for Program/Erase (P/E) Cycling Experiments
	Procedure for Data Retention Experiments

	Error Characterization Results
	Characterization of Bit and Cell Errors during P/E cycling
	Characterization of Number of Bit Errors per ECC Frame
	Characterization of Errors due to Inter-Cell Interference
	Characterization of Data Retention Errors

	ICI Mitigation using Run-length Limited (RLL) Constrained Codes
	Conclusion

	Channel Models for Multi-Level Cell Flash Memories
	Introduction
	Definitions and Notation
	Candidate Discrete Memoryless Channel Models
	The 2-Binary Asymmetric Channel (2-BAC) Model
	The 2-Beta-Binomial (2-BBM) Channel Model
	Normal and Poisson Approximation Channel Models
	Simulation Results and Evaluation of Channel Models
	Statistical Goodness of Fit Tests
	ECC FER Performance Estimation

	Conclusion
	Appendix
	Proof of Proposition 3.4.1
	Proof of Proposition 3.5.1
	Proof of Proposition 3.5.2


	On the Capacity of the Beta-Binomial Channel Model for Multi-Level Cell Flash Memories
	Introduction
	Capacity of the Beta-Binomial Channel Model
	Truncated-Support Beta-Binomial Channel Model
	Motivation
	Definition and Statistics of the TS-BBM Channel Model
	Choosing the Truncation Intervals
	Results

	Capacity of the TS-BBM Channel Model
	Coding for the TS-BBM Channel Model

	Conclusion
	Appendix
	Proof of Proposition 4.3.3
	Proof of Proposition 4.3.4
	Proof of Proposition 4.3.5
	Proof of Proposition 4.3.6


	Adaptive Linear Programming Decoding of Polar Codes
	Introduction
	LP Decoding of Polar Codes
	Adaptive LP Decoding of Polar Codes
	Adaptive LP Decoding of a Binary Linear Code
	Modified ACG-ALP Decoder for Polar Codes
	Simulation Results

	Polar Code Sparse Factor Graph Reduction
	Polar Code Sparse Factor Graph Reduction Algorithm
	Simulation Results

	Conclusion

	Bibliography

