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ORIGINAL ARTICLE Open Access

Removing opportunities to calculate
improves students’ performance on
subsequent word problems
Karen B. Givvin* , Veronika Moroz, William Loftus and James W. Stigler

Abstract

Background: In two studies we investigated whether removing opportunities to calculate could improve students’
subsequent ability to solve similar word problems. Students were first asked to write explanations for three word-
problems that they thought would help another student understand the problems. Half of the participants
explained typical word problems (i.e., problems with enough information to make calculating an answer possible),
while the other half explained the same problems with numbers removed, making calculating an answer
impossible. We hypothesized that removing opportunities to calculate would induce students to think relationally
about the word problems, which would result in higher levels of performance on subsequent transfer problems.

Results: In both studies, participants who explained the non-calculable problems performed significantly better on
the transfer test than participants who explained the typical (i.e., calculable) problems. This was so in spite of the
manipulation not fully suppressing students’ desire to calculate. Many students in the non-calculable group
explicitly stated that they needed numbers in order to answer the question or made up numbers with which to
calculate. There was a significant, positive relationship between the frequency with which students made up
numbers and their self-reported mathematics anxiety.

Conclusions: We hypothesized that the mechanism at play was a reduction in instrumental thinking (and an
increase in relational thinking). Interventions designed to help students remediate prior mathematical failure should
perhaps focus less on the specific skills students are lacking, and more on the dispositions they bring to the task of
“doing mathematics.”

Keywords: Developmental mathematics, Community college, Relational thinking, Anxiety, Intervention

Significance
Large numbers of students enter community college un-
prepared for college-level mathematics. Their time in re-
medial courses delays (and sometimes thwarts) their
progress toward earning a degree and the costs to both
the students and the institutions that serve them is high.
Interventions of different forms have been attempted
with these students, from providing study skills to pro-
viding supplemental instruction; from speeding up
course progressions to slowing them down; from insti-
tuting peer supports to putting materials online. In some
cases, developmental (i.e., remedial) mathematics has

been done away with entirely, with students instead get-
ting “just in time” supports within the context of college
credit-bearing classes. In very few cases have interven-
tions focused on changing teaching routines. The
present study tests a brief intervention that might easily
translate into a routine that could be regularly imple-
mented in classrooms. We have targeted college stu-
dents with particular difficulties in mathematics because
the persistent nature of their struggles suggests that in-
novative interventions might be called for. However, we
have no reason to believe that similar routines could not
be used effectively with younger students who struggle
with math or even with students who do not.
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Background
Perhaps because of the way mathematics is taught in the
USA (Stigler & Hiebert, 1999), many American students
come to view mathematics as a set of facts and proce-
dures to be memorized rather than as a coherent set of
concepts and tools for making sense of the world (Erl-
wanger, 1973; Garofalo, 1989). Although parts of math-
ematics do require memorization, if that is the only goal
students have, and if they fail to connect facts and pro-
cedures to underlying mathematical concepts, the know-
ledge that results is likely to be fragmented, rigid, and
susceptible to bugs (Givvin, Stigler, & Thompson, 2011;
Stigler, Givvin, & Thompson, 2010).
These two conceptualizations of mathematics and

what it means to engage in mathematical tasks - that is,
as procedures to be memorized versus tools for making
sense - are consistent with what Skemp (1976) referred
to as instrumental understanding (i.e., rules without rea-
sons) and relational understanding (knowing what to do
and why). He theorized that there are three compelling
benefits to instrumental understanding: it is usually eas-
ier to understand, the rewards are immediate and more
apparent, and it usually leads to finding an answer more
quickly. However, what it lacks - and what relational un-
derstanding offers - is adaptability to novel tasks.
Though relational understanding is harder to achieve, it
lasts longer and provides more intrinsic satisfaction. Re-
lational schemas “seem to act as an agent of their own
growth” (p. 24), causing learners to seek out new areas
to which the schemas apply, and lead to an ever-growing
network of connected ideas.
The two studies reported here ask whether it is pos-

sible, through a brief intervention, to move students -
even if temporarily - from an instrumental to a relational
approach to solving word problems, and whether evi-
dence of this shift might be seen in students’ success on
an immediate transfer task. In testing this approach, we
chose to work with a group of community college1

students.
Despite the fact that most community college stu-

dents have passed high school algebra and should,
therefore, be ready for college-level mathematics, the
majority, apparently, are not. In one study, Bailey and
colleagues (Bailey, Jeong, & Cho, 2010) found that
59% of students entering community colleges nation-
wide were placed into developmental (remedial) math-
ematics courses: 24% were placed one level below
college entry-level mathematics (i.e., intermediate al-
gebra), 16% two levels below (i.e., elementary algebra),
and 19% three or more levels below (i.e., pre-algebra
or arithmetic). What is more, only 20% of those re-
ferred to developmental mathematics successfully
completed the prerequisites for college-level mathem-
atics within 3 years of their initial placement.

In a series of interviews with community college devel-
opmental mathematics students we found ample evi-
dence that these students bring with them instrumental
views of what it means to know mathematics and what
it takes to learn mathematics (Givvin et al., 2011; Stigler
et al., 2010). Seventy-seven percent of students in our
study indicated that knowing mathematics was simply a
matter of remembering the rules and procedures. “Math-
ematics is just all these steps,” one of the students said.
Or as another student said: “In mathematics, sometimes
you have to just accept that that’s the way it is and
there’s no reason behind it.” And, yet another student: “I
don’t think [being good at mathematics] has anything to
do with reasoning. It’s all memorization” (Givvin et al.,
2011, p. 7). When, in our interviews, we asked students
to answer non-standard questions that required some
conceptual thinking, they usually tried to apply proce-
dures they remembered from their past, even when no
procedures were required to answer the question. They
often applied these procedures inappropriately or
incorrectly.
These findings are consistent with many other studies

in younger students over a number of years (e.g., Erl-
wanger, 1973; Verschaffel & De Corte, 1997). Of particu-
lar interest is work by Stacey and MacGregor (1999),
who identified a phenomenon they referred to as the
“compulsion to calculate.” They found that when stu-
dents are presented with a mathematics word problem,
their first response often is to try to compute an answer,
even before they have tried to understand the problem.
The description offered by Stacey and MacGregor (1999)
reminds us of the community college students we inter-
viewed, who appeared not to think long about the prob-
lem posed, but instead to search their memory for a
procedure that some teacher, at some point, had told
them to use.
This phenomenon is striking because it is in such con-

trast to the way successful problem solvers approach
problems across a number of domains. Studies of expert-
ise have shown that experts attend more to the under-
lying structure of a problem, whereas novices rely more
on surface features (Chi, Glaser, & Rees, 1982; Hinsley,
Hayes, & Simon, 1977; Larkin, McDermott, Simon, & Si-
mon, 1980; Larkin & Simon, 1987; Lesgold, 1988; Mayer,
1985; Newell & Simon, 1972). Research also has shown
that expert problem solvers typically spend more time
thinking about problems and trying to understand them
than do novices, who tend to immediately execute a so-
lution (Hegarty, Mayer, & Monk, 1995; Lesgold, 1988).
That is, experts take a more relational approach,
whereas the approach taken by novices is more
instrumental.
Borrowing from Skemp’s theory, students’ compulsion

to calculate is merely one symptom of an instrumental

Givvin et al. Cognitive Research: Principles and Implications            (2019) 4:24 Page 2 of 13



view of mathematics. What looks like a compulsion is
simply students acting upon what they believe to be the
primary requirement of the domain. Indeed, these stu-
dents may be entirely unclear about what alternative is
available if calculation is not.
It is possible that community college students jump to

procedures because they lack the ability to think about
the problem in a productive, relational way. But we do
not believe this is the case. In our interviews we find evi-
dence that these students are capable of relational think-
ing when supported by the prodding of a skilled
interviewer (Givvin et al., 2011), and further, that when
they bring that thinking to bear on problems, they also
are able to produce correct answers (Stigler et al., 2010).
Instead, we hypothesize that students fail to think about
mathematics relationally not because they cannot, but
because they do not know they are supposed to, and do
not believe that doing so will help them get correct
answers.
It was this line of reasoning that prompted our attempt

to nudge students into thinking relationally about simple
word problems (see Damgaard & Nielsen, 2018, for a re-
view of nudging in education). We did so by preventing
them from doing what they would normally do in such sit-
uations, which is to immediately calculate. Our goal was
not to build a curriculum around this approach, but rather
to first gather evidence to support the idea. We altered
standard word problems in two ways in the two studies re-
ported below. First, for half of the students, we removed
the numbers with which they might calculate, rendering
the problems non-calculable. Second, in order to create a
reason for the students with non-calculable problems to
engage with them (yet have consistent instructions for all
students), instead of asking students to solve the problems,
we asked them to explain them in a way they thought
would be helpful to other students. Self-explanation - hav-
ing students explain to themselves the material they are
learning while they are studying it - has been shown to
lead to enhanced learning and effective problem-solving
(Bielaczyc, Pirolli, & Brown, 1995; Chi, de Leeuw, Chiu, &
LaVancher, 1994; Fonseca & Chi, 2011; Renkl, Stark, Gru-
ber, & Mandl, 1998; Wong, Lawson, & Keeves, 2002).
We predicted that participants forced to interact

with problems for which they could not immediately
engage in calculation would be more likely to develop
relational representations of these problems. Instead
of leaping to write down solution steps, perhaps they
would grapple with (and express in writing) how
quantities were related to each other, in context. We
hypothesized further that these participants, because
they had been nudged to think more relationally,
might be slightly more able to apply what they
learned in the explanation phase of the study to the
solving of future (transfer test) problems.

Study 1
Method
Participants
Thirty-two students enrolled in an Introductory Algebra
(developmental mathematics) course at a Southern Cali-
fornia community college participated in the study. Al-
though demographics for the sample were not collected,
we know that the student body at the college at the time
was 53% female; 59% under the age of 25 years; 55%
Hispanic, 19% Asian, 11% white non-Hispanic, 4% Pa-
cific Islander/Filipino, 3% African American, 3% multi-
ethnic, and 6% other or unknown, according to the col-
lege website. Students were offered extra credit by their
instructor in exchange for their participation in the
study and no student in the class declined to participate.
No power analysis was conducted. For this initial explor-
ation, we simply selected a single, intact classroom.

Explanation phase
In the initial, explanation phase of the study, participants
were presented with three mathematics problems and
asked to write an explanation of each problem that they
thought would “help another student understand the
problem.” We used pre-algebra “part-whole” problems
in which numeric values can be easily substituted with
either letter variables or approximate quantities such as
“some” and “more.” Because these kinds of problems can
be represented in a variety of ways (e.g., drawings, literal
formulas) we believed they had the potential to elicit a
rich variety of explanations.
Two versions of the materials were prepared, with stu-

dents randomly assigned to one of the two versions. In
the calculable condition, the problems were similar to
those found in standard pre-algebra textbooks. In the
non-calculable condition, the same problems were pre-
sented, but problem-relevant numbers were replaced
with approximate quantities, thus making it impossible
to calculate an exact answer. In both conditions, stu-
dents were asked only to explain the problems, not solve
them. All six problems - three in each condition - are in
the Appendix.
It should be noted that numbers were not removed

entirely from non-calculable problems. Rather, enough
of the numbers were removed from the problems to
make it impossible for students to calculate a numeric
answer. It might be argued that the resulting problems
sound artificial. To that point we suggest that they
sound no more artificial than many other problems
common in mathematics texts. What sets the non-
calculable problems apart is that they defy our expecta-
tions, as people familiar with standard mathematics
problems, that all mathematics problems can yield nu-
merical answers. Beyond this, it is important to keep in
mind that performance on these problems, to whatever
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degree they were artificial, was not the focus of our
study. Instead, we were investigating how explaining
these first three problems would influence students’ abil-
ity to solve the standard problems that followed (on the
transfer test).

Transfer test
After explaining three problems, students were asked to
solve four transfer problems (see Appendix for specific
problems). Three were similar in format and complexity
to those the students had been asked to explain earlier
in the study. The fourth problem was a far transfer task.
That is, it was structurally different from the items in
the explanation phase. It was, however, similar in com-
plexity to the prior items. All transfer problems included
numbers to render them solvable by calculation. Both
experimental groups were given the same transfer test.

Procedure
At the beginning of a regular class period, an experi-
menter distributed a multi-page packet to students, ran-
domly assigning half of the students to each
experimental condition. The packet included a consent
form, the three problems for the explain phase of the
study (either the calculable or non-calculable form, de-
pending on condition), and the four-problem transfer
test. We intentionally kept both the experimental task
and the transfer test short so that they could be adminis-
tered within a normal class period, infringing as little as
possible on instructional time. And rather than conduct
a content knowledge pretest, we relied on random as-
signment to produce groups of similar incoming ability.
Students were told that the aim of the study was to in-
vestigate how explanations from peers could help stu-
dents learn mathematics, and that their explanations
would be used for this purpose. Participants were
allowed 30min to work on the packet. Based on pilot
testing, this should have allowed students sufficient time
to complete the problems.
We coded each response in the explanation phase for

the presence or absence of three binary codes, each
based on a priori ideas about how different ways of
interacting with the problems might reflect different
kinds of thinking. Describing the steps necessary to solve
the problem was intended to address Skemp’s (1976)
conception of an instrumental understanding and what
Hiebert and Lefevre (1986) describe as procedural know-
ledge (i.e., “step-by-step [prescriptions for] how to
complete tasks,” p. 6). Explaining mathematical relation-
ships was intended to address Skemp’s conception of re-
lational understanding and what several authors have
referred to as conceptual knowledge (e.g., Baroody,
2003; Haapasalo, 2003; Hatano, 2003; Hiebert & Lefevre,
1986). Though not technically an “explanation,” we also

coded attempts to solve the problem. This code was
intended to address an (instrumental) belief that the goal
of mathematics is to calculate (even if such a calculation
is neither requested nor possible).
The three codes were not mutually exclusive, meaning

that a student could produce more than one type of ex-
planation in a single response. Each participant was
given a summary score for each code. These scores
ranged from 0 to 3, reflecting the number of problems
on which the student’s explanation received the code.
Responses were coded positively for attempting to

solve the problem if students produced a written record
indicating any attempt at solving the problem. Because
we were interested not in the correctness of their expla-
nations but rather in whether students approached the
task as if a numeric solution was expected, an explan-
ation could be coded as attempting to solve the problem
whether or not the solution was correct. Explanations
were coded as describing steps if the student (1) de-
scribed steps that could be part of a problem solution,
or (2) wrote (and perhaps solved) an equation, but ex-
plained neither the values nor the operations in it. For
example, “Add 22 and 20. Subtract that from 66,” “Sub-
tract 6 from 38, then add 13. Then subtract 7 from your
answer and add 4.” Common across all cases was that
students approached the problem as a series of steps,
without any explanation of the values used in a problem,
how they related to one another, or why certain opera-
tions were necessary. Again, the steps they described did
not need to be correct.
Finally, explanations were coded as explaining math-

ematical relationships if the student described or illus-
trated a relationship between an element of the problem
and a particular mathematical procedure, or between
different quantities in the problem. For example, “You
have to multiply by 2 so people can get their seconds.”
See Fig. 1 for one student’s illustration of a relationship.
Alternatively, the student may have provided an equa-
tion that included a rationale for at least one value or

Fig. 1 Student response that illustrated the relationship between
values in the problem. Note: The student’s misunderstanding of the
“less than” and “greater than” signs is irrelevant to the coding
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operation in it. Explanations coded as explaining math-
ematical relationships may also have referred to steps, as
in, “You start by adding how much they walked on the
first two days,” or, “Next you take the number of cup-
cakes you need and divide by how many cupcakes there
are in a box.” But these were not coded as describing
steps because the explanations went beyond the mere
description of how to execute a computation. As with
the other codes, explanations did not need to be correct.
Interrater agreement on the type of explanation(s) rep-

resented in each response exceeded 90%. Discrepancies
were discussed until consensus was achieved.

Results
Performance on the transfer test
The transfer test was analyzed in two ways. First, the
total number correct across all four questions was calcu-
lated for each student, and means were compared across
the two groups of students. Students in the non-
calculable condition (mean (M) = 2.38, SD = 1.02) per-
formed significantly better than those in the calculable
condition (M = 1.50, SD = 1.37; t(30) = 2.05, p = .049,
Cohen’s d = 1.10). Second, to isolate possible effects on
the single, far transfer item, the chi-square test of inde-
pendence was conducted comparing the frequency of
correct responses on that item, across the two condi-
tions. Although three times as many students in the
non-calculable condition answered correctly compared
to students in the calculable condition (6 of 16 versus 2
of 16), the difference was not statistically significant
(X2(1) = 2.67, p = .103).

Explanations
To better understand students’ thinking as they worked
on the three problems in the explain phase of the study,
we conducted exploratory analyses of the explanations
they produced. There was no observed difference be-
tween the two groups in the frequency with which they
attempted to solve the problems, nor did the two groups
did differ in the number of explanations they provided

that described steps or explained mathematical relation-
ships (see Table 1).
Other, descriptive analyses suggest that participants in

the non-calculable condition were particularly perplexed
about how to respond to our request for explanations.
Fifty percent of them stated explicitly in at least one of
their responses that numbers were needed in order to
answer our query. Forty-four percent made up numbers
on at least one of the problems in order to solve and
respond.

Discussion
Our primary hypothesis, supported by the results of this
study, was that removing students’ opportunities to cal-
culate would improve their performance on the transfer
test. Indeed, students asked to explain three problems
that did not include numbers with which they might cal-
culate an answer performed better on the transfer test
than did students asked to explain problems that in-
cluded numbers sufficient to calculate an answer.
Stacey and MacGregor (1999) discussed how patterns

of thinking based on familiar routines can deflect stu-
dents’ use of new, more sophisticated ways of thinking.
Removing numbers with which to calculate was our at-
tempt to deflect students from their reliance on calcula-
tion. Not being able to calculate, students had to come
up with another approach, which might have caused
them to spend more time considering what the problem
asked and at least opened an opportunity for them to
discover its underlying structure - more in line with the
approach to problems taken by more skilled individuals
(Chi et al., 1982; Hegarty et al., 1995; Hinsley et al.,
1977; Larkin et al., 1980; Larkin & Simon, 1987; Lesgold,
1988; Mayer, 1985; Newell & Simon, 1972).
In our examination of students’ written work, we had

hoped to find evidence of different representations of
the problems across the two groups. However, we found
no such differences. We cannot rule out the possibility
that these null effects were due to the limited sample
size, something we hoped to remedy in a replication

Table 1 Average number of explanations of each type by group (study 1)

Type of explanation Calculable
(N = 16)
Mean (SD)

Non-calculable
(N = 16)
Mean (SD)

Group comparison

Attempted to solve 1.81 (1.28) 1.06 (1.06) t(30) = 1.81
p = .081
Cohen’s d = 0.64

Describing steps 0.81 (0.75) 0.63 (0.81) t(30) = 0.68
p = .501
Cohen’s d = 0.23

Explaining mathematical relationships 1.06 (1.00) 0.94 (1.00) t(30) = 0.354
p = .726
Cohen’s d = 0.12

Note. Scores ranged from 0 to 3, with 3 meaning a student produced an explanation of that type for each of the three problems
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study. What we did frequently see in explanations pro-
duced by the non-calculable group was evidence of a de-
sire to have numbers at their disposal. Half of students
expressed that desire explicitly, and more than half made
up numbers so they could calculate an answer.
Although we demonstrated that students in the non-

calculable condition performed significantly better on
the transfer test than those in the calculable condition,
we made little headway in understanding the mechanism
underlying the effect. Perhaps a larger sample, and a
richer written record of students’ work, would tell us
more in this regard. This, and the desire to replicate our
main finding, formed the motivation for our second
study.

Study 2
In study 2, we hoped to replicate the main finding from
study 1, that removing students’ opportunities to calcu-
late by omitting numbers would improve their perform-
ance on subsequent transfer problems. We hoped also
to better understand the mechanism underlying the ef-
fect of removing numbers. To meet that objective, we
added a stipulation to the instructions that students in-
clude a drawing in their responses. We expected that
this addition would have multiple effects. First, requiring
students to produce a drawing as part of their explana-
tions might reinforce our request that they explain prob-
lems (rather than solve them). Second, requiring a
drawing might encourage students to think more deeply
about the structure of the problems. And finally, it might
enrich the written record of students’ work.
The National Council of Teachers of Mathematics

(NCTM) Principles and standards for teaching mathem-
atics (2000), state that drawings and other informal rep-
resentations serve as tools for thinking about problems
and various studies have supported that claim (Clements
& Battista, 1992; Goldin, 2002; Presmeg, 1986; Slovin,
2000; Zimmerman & Cunningham, 1991). Many of the
structures that underlie textbook word problems are
basic, quantitative relationships - for example, the part-
whole schema or path schema, as identified by Lakoff
(1990). These fundamental, underlying structures are
able to be easily visualized in drawings. Encouraging stu-
dents to produce drawings might help them tap into
their understandings of these structures and apply them
to the problem at hand. In younger students, for ex-
ample, generating a graphic representation has been
shown to help students “unpack” the structure of a word
problem (Edens & Potter, 2008).
We made no demand with respect to when in their ex-

planation students were to create a drawing, be it before
or after they produced their verbal explanation. In line
with the recommendations of other researchers (Pre-
smeg, 1992; Zazkis, Dubinsky, & Dauterman, 1996), our

aim was simply to encourage students to draw upon
multiple ways of thinking about the problem. The items
themselves were otherwise the same as in study 1.
In study 2 we also added the Single-Item Mathematics

Anxiety scale (SIMA; Núñez-Peña, Guilera, & Suárez-
Pellicioni, 2014). Mathematics anxiety has consistently
been found to be inversely related to performance on
mathematics tasks (Ashcraft, 2002; Ashcraft & Kirk,
2001; Hembree, 1990; see also meta analyses by Hem-
bree, 1990 and Ma, 1999). Consistent with processing ef-
ficiency theory (Eysenck & Calvo, 1992), mathematics
anxiety causes individuals to focus on intrusive thoughts
and worries, thereby usurping the working memory that
would have otherwise been available to apply to the task
at hand (Ashcraft, 2002). We therefore expected anxiety
to be inversely related to transfer test performance.
Particularly relevant to the current study is recent

work by Ramirez and his colleagues (Ramirez, Chang,
Maloney, Levine, & Beilock, 2016), who found mathem-
atics anxiety to be negatively related to students’ use of
more advanced problem-solving strategies. When anx-
iety was heightened, students appeared to retreat to
strategies with which they were most familiar. Explaining
problems and using drawings to do so offered students
an opportunity to engage in more relational thinking.
But because such activity is infrequent in mathematics
classes and unfamiliar to students, we expected that stu-
dents with high anxiety would be less likely to profit
from this opportunity for sense-making than would stu-
dents with low levels of anxiety. Highly anxious students
might opt to stick with immediate calculation because it
is a familiar strategy. Students with low anxiety, in con-
trast, might be more likely to take advantage of the op-
portunities for sensemaking presented by our removal of
numbers from the problems.

Method
Participants
Eighty-one students enrolled in Elementary Algebra
courses participated in study 2. They were enrolled at a
different Southern California community college than
were participants in study 1. Students were distributed
almost evenly across four intact classes (two sections
taught by each of two instructors). Data collection took
place during class time and although participation was
voluntary, no students declined to participate. Partici-
pants included 37 female, 38 male, and 1 transgender
student, and 5 students who declined to state their sex.
They varied in age from 17 to 41 years (M = 22, SD =
4.76). More than half of students (51%) were of Hispanic
or Latino origin, 22% were white, 6% Asian, 6% black or
African American, 5% were of mixed ethnicity, 3% were
American Indian, Alaska native, native Hawaiian or
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other Pacific Islander, and the remainder (7%) declined
to state their ethnicity.
We did not conduct a power analysis prior to design-

ing study 2; due to the study context we would not have
been able to increase our sample size beyond the 40 in
each group in any case. However, a post-hoc power ana-
lysis (Rosner, 2011) based on the pooled observed stand-
ard deviations from study 1 showed power of 85% for
detecting a 0.75-point difference on the transfer test
with 40 students per group (pooled SD = 1.12, p < .05),
and 92.8% for detecting an effect of 0.75 points on the
type of explanation variables (pooled SD = 0.98, p < .05).

Materials
The same materials were used in study 2 as in study 1,
with two exceptions. As in study 1, there were two ver-
sions of the materials (calculable and non-calculable),
each containing the same seven mathematics problems
as used in study 1. As in study 1, students were asked to
write explanations for the first three problems, and then
asked to solve the final four problems. Different from
study 1, the instructions this time included a request
that students produce a drawing as part of each explan-
ation. Instructions were repeated for each of the three
problems, which we hoped would increase the likelihood
of students including drawings in their explanations.
Specifically, the instructions said, “We are going to

present you with three mathematics problems. Study
each problem until you are sure that you understand it,
then write an explanation that you think would help an-
other student understand the problem. Use a drawing as
part of your explanation.” Each question was followed by
a box in which students could show their work, and in
the box was written, “Write your explanation here.” The
final four problems, which constituted the transfer test,
were the same as in study 1.
The materials for study 2 differed from those of study

1 in one other way. In study 2, the packet that partici-
pants completed included a final page with demographic
questions and also the question, “On a scale from 1 to
10, how mathematics anxious are you?” The anchors for
the scale were 1 (not anxious) and 10 (very anxious).

Experimental design and procedure
As in study 1, individual participants in each class were
randomly assigned to receive one of the two versions of
the materials, resulting in 40 participants in the calcul-
able group and 41 in the non-calculable group. Materials
were distributed at the beginning of a regular class
period and participants were given 30 min to work on
the materials. They were asked not to return to prior
questions once they had advanced through the packet.

Results
Performance on the transfer test
Students’ performance on the transfer test differed
significantly across conditions. Replicating the result in
study 1, students in the non-calculable condition (M =
2.00, SD = 1.18) outscored students in the calculable
condition (M = 1.25, SD = 1.03) on the four transfer
items (scored from 0 to 4 correct; t(79) = 3.04, p = .003;
Cohen’s d = 0.68). Also, more participants in the non-
calculable group (10 of 41) got the single far transfer
item correct than did participants in the calculable
group (3 of 40; X2(1) = 4.287, p = .038).

Students’ explanations
As in study 1, we conducted analyses of the explanations
that students produced for the first three problems. As
in study 1, participants in the calculable group were
more likely to attempt to solve the problems than were
participants in the non-calculable group (see Table 2).
The fact that the problems they explained had numbers,
and thus were calculable, is surely a central reason for
their providing more numerical answers. However, par-
ticipants in the non-calculable group also provided nu-
meric solutions, even though they had to take numbers
out of thin air in order to produce them. One participant
in the non-calculable group, for example, answered
problem 3 with, “Depending on how many of Andrew’s
friends were coming to this party, I’d say buy a dozen
boxes.”
Students in the calculable group also more frequently

described steps than did students in the calculable
group. The average number of times students explained
mathematical relationships did not differ significantly
across groups. Students, on average, explained relation-
ships on barely more than one of the three problems
(see Table 2).
Twenty-nine percent of students in the non-calculable

group stated explicitly in at least one of their responses
that numbers were needed in order to answer. Nearly
half of the students in the non-calculable group (44%) at
least once made up numbers in order to produce a nu-
merical answer.
Despite our clear instructions, many students never

produced a drawing as part of their explanations (50% in
the calculable group, and 24% in the non-calculable
group). And, the average number of drawings produced
by students in the calculable group (M = 1.08, SD = 1.25
did not differ from the average number of drawings
produced by students in the non-calculable group (t(79)
= 1.58, p = .118, Cohen’s d = 0.35).
Drawings were coded as either useful or not useful.

The need for this code arose from the data. Our aim
with requiring students to produce a drawing as part of
their explanation was that doing so might help them
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discover the underlying structure of the word problem.
However, many of the drawings that the students pro-
duced were no more than illustrations of the problem
scenario. Non useful drawings included things such as il-
lustrations of the mountains in which the hike in prob-
lem 1 took place. Though this drawing may have helped
students imagine the setting of the problem, it did not
include any representation of the mathematical
relationships.
We defined drawings as useful, on the other hand, if

they had the potential to support reasoning about the
mathematical relationships in the problem. Useful draw-
ings included things such as a line segment that repre-
sented the total distance of the hike in problem 1,
divided into segments to represent the distance traveled
on each of the 3 days. Interrater agreement on the use-
fulness of drawings exceeded 97%. Discrepancies were
discussed until consensus was achieved. The calculable
and non-calculable groups produced roughly the same
number of useful drawings (M = 0.75, SD = 0.75 vs. M =
0.76, SD = 0.89, respectively; t(79) = 0.03, p = .976,
Cohen’s d = 0.01).
There was no significant correlation between the

provision of a drawing and transfer test performance
(r = 0.03, p = .778), nor when the analysis was limited to
useful drawings (r = −.00, p = .966).

Comparing students’ explanations across the two studies
Our goal in examining students’ explanations was to
gain insight into what students were thinking as they en-
gaged in the explanation task (see Fig. 2 for a compari-
son of the results of the two studies). Mixed analysis of
variance (ANOVA) was run separately for each of the
two studies with experimental condition as a between-
subjects variable (calculable, non-calculable) and explan-
ation type, a within-subjects variable (solved, described
steps, explained mathematical relationships). In study 1
there was no significant interaction between experimen-
tal condition and explanation type (F(2, 60) = 0.97,
p = .383) nor a main effect of experimental condition

(F(1, 30) = 2.91, p = .099). There was, however, a signifi-
cant main effect for explanation type (F(2, 60) = 4.32,
p = .018). Post hoc comparisons using the Tukey hon-
estly significant difference (HSD) test indicated that the
mean score for attempting to solve (M = 1.44, SD = 1.22)
was significantly higher than the mean score for describ-
ing steps (M = 0.72, SD = 0.77; p = .015). Neither differed
from explaining mathematical relationships (M = 1.00,
SD = 0.98; p = .197 and p = .506, respectively).
In study 2, as in study 1, there was no significant inter-

action between experimental condition and explanation
type (F(2, 158) = 2.64, p = .075). However, there was a
significant main effect of experimental condition (F(1,
79) = 33.10, p < .001) and of explanation type (F(2, 158)
= 34.26, p < .001). Students in the calculable condition
produced more explanations overall (M = 4.93, SD =
1.61) than did students in the non-calculable condition
(M = 2.80, SD = 1.71), perhaps indicating that students
were confused about what to do when the numbers were
not there. Post hoc comparisons using the Tukey HSD
test indicated that the mean score for attempting to
solve (M = 1.98, SD = 1.14) was significantly higher than
the mean score for explaining mathematical
relationships (M = 1.22, SD = 1.08; p < .0001), which was
in turn higher than the mean score for describing steps
(M = 0.65, SD = 0.96; p = .002).

Mathematics anxiety
Participants reported moderate levels of mathematics
anxiety (M = 6.45, SD = 2.67), with levels in the calcul-
able condition (M = 6.20, SD = 2.68) that were not statis-
tically different from those in the non-calculable
condition (M = 6.72, SD = 2.66; t(77) = 0.88, p = .382,
Cohen’s d = 0.20). Responses in each condition reflected
the full range of the anxiety scale. Anxiety was negatively
correlated with transfer test performance (r = −.400,
p < .001) across the sample as a whole, meaning that stu-
dents with higher anxiety scored lower on the transfer
test than did students with lower anxiety. Anxiety was
negatively associated with transfer test performance

Table 2 Average number of explanations of each type by group (study 2)

Type of explanation Calculable
(N = 40)
Mean (SD)

Non-calculable
(N = 41)
Mean (SD)

Group comparison

Attempted to solve 2.53 (0.82) 1.44 (1.16) t(79) = 4.85
p < .0001
Cohen’s d = 1.09

Describing steps 1.00 (1.09) 0.32 (0.69) t(79) = 3.39
p = .001
Cohen’s d = 0.75

Explaining mathematical relationships 1.40 (1.19) 1.05 (0.95) t(79) = 1.47
p = .146
Cohen’s d = 0.33

Note, scores ranged from 0 to 3, with 3 meaning a student produced an explanation of that type for each of the three problems
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within the non-calculable group (r = −.505, p < .001), but
not within the calculable group (r = −.251, p = .128).
Within-group correlations were not significantly differ-
ent from each other (Z = 1.3, p = .097). In neither condi-
tion was anxiety related to the frequency with which
students described steps or explained mathematical rela-
tionships. However, within the non-calculable group,
students with higher mathematics anxiety were signifi-
cantly more likely to make up numbers so they could
produce numerical answers than were students with low
anxiety (r = .325, p = .038).

Discussion
Study 2 sought to replicate the primary finding of study
1, that omitting numbers from problems that students
are asked only to explain improved their ability to solve
subsequent transfer problems. The finding was repli-
cated, not only for the 4-item transfer test but also for
the single far transfer item when analyzed separately. In
preventing students’ ability to calculate, we may have
freed them up to explore more sophisticated practices
(Stacey & MacGregor, 1999), and they used those new
understandings on subsequent problems.
In examining what students wrote when they were

asked to explain problems, we found that students in the
calculable group more frequently attempted to solve the

problems, and more frequently described the steps to
solve them, than did students in the non-calculable
group. Both of these coding categories reflect an instru-
mental view of math (Skemp, 1976), suggesting that our
removing numbers from problems might have moved
students in the non-calculable group away from this
view. However, although we would have expected a con-
comitant shift toward a relational approach, we did not
see evidence for this in the data. Students in the non-
calculable group explained relationships no more fre-
quently than did students in the calculable group.
Based on the main effect for experimental condition in

study 2, removing numbers from problems appears to
have caused a general suppression of students’ written
explanations as indicated by the lower overall frequency
with which the explanation codes were applied. Thus,
the better transfer performance of the non-calculable
group may have resulted from just the extra effort re-
quired to figure out what was being asked on these
problems without numbers. Students in the non-
calculable group, similar to expert problem solvers, may
just have allocated more of their time to trying to under-
stand the problem (Hegarty et al., 1995; Lesgold, 1988).
Even the act of concocting numbers when none were
provided might have led to deeper thinking than did cal-
culating with the numbers that had been provided.

Fig. 2 Number of problems students “explained” in different ways, across studies and conditions
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In study 2, we added the request that students provide
a drawing as part of each of their explanations. Partici-
pants in the calculable and the non-calculable groups
provided drawings at the same rate. But overall rates of
including drawings were low and uncorrelated with
transfer test performance. If the drawings served as tools
for thinking more deeply about the problems and, in
particular, more deeply about their structure (Clements
& Battista, 1992; Edens & Potter, 2008; Goldin, 2002;
Lakoff, 1990; Presmeg, 1986; Slovin, 2000; Zazkis et al.,
1996; Zimmerman & Cunningham, 1991), our coding
scheme did not capture it.
Self-ratings of mathematics anxiety were similar across

conditions and, as expected, inversely related to transfer
test performance. Interestingly, within the non-
calculable group, anxiety was positively correlated with
making up numbers with which to calculate. This find-
ing is consistent with work suggesting that anxious stu-
dents fail to use advanced problem-solving strategies,
opting instead for familiar ones (Ramirez et al., 2016).

General Discussion
In the two studies reported here, we explored whether
removing opportunities to calculate could improve stu-
dents’ subsequent ability to solve similar word problems.
Our hypothesis that it might do so was grounded in
Skemp’s (1976) theory that there are two forms of math-
ematical understanding: instrumental understanding
(rules without reasons) and relational understanding
(knowing what to do and why). The former offers more
limited rewards (e.g., quick answers) whereas the latter
offers longer-term benefits (e.g., more flexible thinking).
By removing students’ opportunities to calculate, we re-
moved their ability to exercise instrumental thinking,
which we hoped would move them toward more rela-
tional thinking, and ultimately to more transferable
knowledge. We found some support for this hypothe-
sized chain of events in the non-calculable group’s su-
perior performance on the transfer test, which was
replicated across the two studies.
Evidence for the mechanism behind the improvement

was less clear. A lack of numbers with which to calculate
led to a lower frequency of explanations incorporating
strategies that were instrumental in nature, but it also
led to a lower frequency of incorporating strategies that
were relational in nature. Taking away numbers ap-
peared to suppress explanations altogether - at least as
defined by our coding categories. Further, it seems that
we were unable to suppress students’ desire to use in-
strumental strategies. Many of the students in the non-
calculable group wanted so much to be able to calculate
that they at least once made up numbers so that they
could perform the calculations for which they yearned.
Although we may have removed the immediate

opportunity to calculate, these students found a way to
re-introduce it. This behavior was positively associated
with students’ level of mathematics anxiety. Consistent
with prior research (Ramirez et al., 2016), individuals
with high anxiety found instrumental thinking particu-
larly desirable.
Admittedly, explaining a problem, whether there are

numbers in it or not, is a novel task for most students.
Math teaching in the USA, from kindergarten through
community college, is filled with the execution of proce-
dures (Grubb and Associates, 1999; Stigler & Hiebert,
1999). The task was particularly difficult for students
who were asked to provide an explanation when they
had not calculated an answer, as this is a task in which
likely very few had experience. Students across both
conditions might have solved the problem, instead of
explaining it, because they do not know how to do any-
thing other than compute. Or, maybe they did not
bother to read the instructions; they know that when
there is mathematics to do, there are computations to
produce. Or, perhaps they thought that the experimenter
could not possibly have meant for them to omit a com-
putation and its result.
Given the group differences we found on the transfer

test though, following our instructions successfully ap-
pears to be less important than attempting to follow the
instructions. Struggling to understand what was being
requested - struggling to produce any kind of explan-
ation of the problem - might have by itself been a pro-
ductive task (see struggle in Hiebert & Grouws, 2007),
and sufficient to make students think more deeply about
the problems. It could be that the ability to produce a
particular kind of explanation (or even any explanation
at all) is not necessary in order to disrupt instrumental
thinking. Simply slowing down students’ ability to calcu-
late an answer might afford new opportunities for think-
ing and learning - a finding with clear implications for
classroom teaching.
A final question to consider is what, exactly, students

in the non-calculable group learned that enabled them
to outperform their peers on the transfer test. Did they
mainly learn how to spot the specific structure that was
embodied in the three problems they explained or were
they additionally nudged into adopting more of a think-
ing and sensemaking frame of mind? Performance on
the far transfer item suggests an answer. In study 2, the
non-calculable group significantly outperformed the cal-
culable group on this item. Across both studies, the
number of students answering the far transfer question
correctly in the non-calculable group was three times as
great as the number of students in the calculable group.
Though a single item is hardly sufficient to draw a firm
conclusion, it does point to the possibility that students
became more inclined to apply sensemaking in general
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to a problem that differed in structure from the ones
they had just practiced explaining.

Limitations and proposals for further research
A few limitations of our work bear mention. First among
them is the small sample size in our first study. Our null
results may have been caused by insufficient power to
detect group differences. Second is the number of prob-
lems on the transfer test. A more robust measure of
transfer would require a larger number and wider variety
of problems. Third is the nature of the problems in our
manipulation. Removing numbers from the problems
may have resulted in an imperfect alignment between
the original and the altered item. In particular, one of
the problems in the non-calculable condition included a
fraction, whereas the comparable problem in the calcul-
able condition did not. The fraction might have bene-
fited students by prompting them to think
proportionally, but it also might have harmed students’
thinking by increasing their anxiety. The whole number,
on the other hand, might have led students to focus on
the sequential nature of the problem, thereby increasing
the likelihood that their solution focused on steps. Each
of these limitations should be addressed in future
research.
Other questions warrant exploration as well. The

group differences we saw in transfer test performance
resulted from a very brief experimental manipulation.
Being pressed to make sense of just three problems
made a measurable - though we assume temporary - im-
pact on students. What remains to be seen is how long
the impact lasts, how far it generalizes to different kinds
of mathematics problems, and how it might be strength-
ened by more extended opportunities for sensemaking.
Future research designs should manipulate the dosage

of students’ exposure to non-calculable problems, espe-
cially in combination with delayed post-tests, so that we
might better understand how the amount of exposure is
related to the lastingness of its effects. Future studies
might also employ more complex mathematical tasks. It
might not be possible to remove numbers from a more
complex problem and still end up with a reasonable
non-calculable problem, but one can imagine teaching
more advanced mathematical concepts by reducing in-
strumental thinking in some other way. The key might
not be our particular method but rather that we found a
way to increase the likelihood that students would try to
make sense of a mathematical problem. Studies of all
varieties would profit from the inclusion of interviews
with students to illuminate how they approach problem
solving both before and after the intervention. And
transfer test problem sets should be expanded to include
multiple problems that differ in structure from those
used in the intervention, so that we might better

understand the extent to which students transfer a dif-
ferent way of thinking to new problems.
Although we are far from understanding the mechan-

ism that produces the effect, we are confident that there
is indeed an effect worth explaining. This small experi-
mental finding suggests to us that interventions designed
to help students remediate prior mathematical failure
should perhaps focus less on the specific skills students
are lacking, and more on the dispositions they bring to
the task of “doing mathematics.”

Endnotes
1Community colleges are open access, 2-year schools

that provide affordable postsecondary education. Pro-
grams normally culminate with an Associate’s degree
and may serve as a pathway to a 4-year college or
university.

Appendix
Mathematics problems for which participants were
asked to write an explanation (i.e., problems in the ex-
perimental manipulation).

Calculable condition Non-calculable condition

A group of tourists planned a 3-
day walking trip from Big Rock to
Eagles Landing, a total of 66 km.
On the first day they walked 22 km.
On the second day they walked
20 km. How far would they have to
walk on the third day of their trip?

A group of tourists planned a 3-
day walking trip from Big Rock to
Eagles Landing. On the first day
they walked one third of the total
distance. On the second day they
walked a little less. How far would
they have to walk on the third day
of their trip?

A bus left the station and headed
downtown. At the first stop, 7
people got off the bus and 4
people got on. At the second stop,
6 people got off and 13 got on.
After the second stop there were
38 people on the bus. How many
people were on the bus before it
made its first stop?

A bus left the station and headed
downtown. At the first stop, some
people got off the bus, but only a
few people got on. At the second
stop, a few people got off, but
even more got on. After the
second stop the bus was full. How
many people were on the bus
before it made its first stop?

Andrew was planning a party for
20 people. He found a bakery that
had amazing cupcakes, and
wanted to make sure each person
could have at least 2. The bakery
only sells the cupcakes in boxes of
6. How many boxes does he need
to buy?

Andrew was planning a big party
for his friends. He found a bakery
that had amazing cupcakes, and
wanted to make sure each person
could have seconds. The bakery
only sells the cupcakes in boxes of
six. How many boxes does he
need to buy?

The mathematics problems that participants were
asked to solve (i.e., transfer test questions) are as
follows:

1. Alisa started a YouTube channel with some
followers on Friday. On Saturday 8 people
unsubscribed her channel but 12 new people
started following her. On Sunday 7 more people
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unsubscribed but 5 new people started following
her channel which then had a total of 32 followers.
How many followers did she start with on her
channel on Friday?

2. Mark rented a 900-page book in the library. In the
first day he read 225 pages, and on the second day
he read 23 pages more than he did on the first day.
How many pages does he have left to read to finish
the book?

3. A boat has a maximum capacity of 80 passengers.
The captain already greeted 8 newly married
couples, 7 families of four, and 5 families of three.
How many more people can board to reach the
maximum number of people allowed on the boat?

4. There are 32 students in class – 23 of the students
like cats, 18 like dogs, and 10 like both cats and
dogs. How many students do not like either cats or
dogs? [far transfer item]
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