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ARTICLE OPEN

Alprazolam modulates persistence energy during emotion
processing in first-degree relatives of individuals with
schizophrenia: a network control study
Arun S. Mahadevan 1, Eli J. Cornblath 1,2, David M. Lydon-Staley1,3, Dale Zhou 2, Linden Parkes 1, Bart Larsen4,
Azeez Adebimpe 4, Ari E. Kahn 1,2, Ruben C. Gur 4,5,6, Raquel E. Gur4,5,6, Theodore D. Satterthwaite4, Daniel H. Wolf 4 and
Dani S. Bassett 1,4,5,7,8,9,10✉

© The Author(s) 2023

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also
found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like
amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using
benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic
abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution
of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network
control theory to model persistence energy – the control energy required to maintain brain activation states – during emotion
identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy
controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam
increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory
mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate
that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing.
Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and
(ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering
neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and
the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and
abnormal GABAergic effects on persistence energy during threat processing.

Molecular Psychiatry (2023) 28:3314–3323; https://doi.org/10.1038/s41380-023-02121-z

INTRODUCTION
Schizophrenia is associated with deficits in emotion processing.
Individuals with schizophrenia demonstrate marked deficits in facial
affect perception, as measured through tasks that require the
identification of emotions such as happiness, sadness, anger or fear
[1, 2]. Emotion processing deficits in schizophrenia contribute
substantially to impairments in social cognition and poor functional
outcomes [3, 4]. First-degree family members of individuals with
schizophrenia also display abnormalities in facial affect perception,
albeit to a lesser extent than probands [5–8]. Abnormalities in first-
degree relatives are particularly remarkable as the study of family
members allows for the investigation of schizophrenia associated
endophenotypes without the confounding effects of antipsychotic

medication and secondary effects related to disease chronicity [9].
More broadly, investigations of facial affect processing in family
members may offer insight into a key cognitive domain adversely
affected by schizophrenia and can serve to inform effective
treatment strategies.
Prior studies have used neuroimaging to characterize the neural

circuitry associated with altered facial affect processing in
individuals with schizophrenia and their relatives. These studies
have primarily focused on linking differences in activation of
limbic regions like the amygdala with altered identification and
recall of threat-related faces [9–12]. However, facial affect
perception is a complex process involving multiple brain regions,
and evidence exists for impairment in both emotion-processing

Received: 12 January 2022 Revised: 28 April 2023 Accepted: 6 June 2023
Published online: 23 June 2023

1Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA. 2Department of Neuroscience, Perelman
School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA. 3Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA.
4Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 5Department of Neurology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA. 6Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA.
7Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA. 8Department of Physics &
Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA. 9Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA. 10Leonard Davis
Institute of Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA. ✉email: dsb@seas.upenn.edu

www.nature.com/mp Molecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02121-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02121-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02121-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02121-z&domain=pdf
http://orcid.org/0000-0001-7315-8261
http://orcid.org/0000-0001-7315-8261
http://orcid.org/0000-0001-7315-8261
http://orcid.org/0000-0001-7315-8261
http://orcid.org/0000-0001-7315-8261
http://orcid.org/0000-0002-2619-8778
http://orcid.org/0000-0002-2619-8778
http://orcid.org/0000-0002-2619-8778
http://orcid.org/0000-0002-2619-8778
http://orcid.org/0000-0002-2619-8778
http://orcid.org/0000-0001-9240-1327
http://orcid.org/0000-0001-9240-1327
http://orcid.org/0000-0001-9240-1327
http://orcid.org/0000-0001-9240-1327
http://orcid.org/0000-0001-9240-1327
http://orcid.org/0000-0002-9329-7207
http://orcid.org/0000-0002-9329-7207
http://orcid.org/0000-0002-9329-7207
http://orcid.org/0000-0002-9329-7207
http://orcid.org/0000-0002-9329-7207
http://orcid.org/0000-0001-9049-0135
http://orcid.org/0000-0001-9049-0135
http://orcid.org/0000-0001-9049-0135
http://orcid.org/0000-0001-9049-0135
http://orcid.org/0000-0001-9049-0135
http://orcid.org/0000-0002-2127-0507
http://orcid.org/0000-0002-2127-0507
http://orcid.org/0000-0002-2127-0507
http://orcid.org/0000-0002-2127-0507
http://orcid.org/0000-0002-2127-0507
http://orcid.org/0000-0002-4082-8502
http://orcid.org/0000-0002-4082-8502
http://orcid.org/0000-0002-4082-8502
http://orcid.org/0000-0002-4082-8502
http://orcid.org/0000-0002-4082-8502
http://orcid.org/0000-0002-9731-8781
http://orcid.org/0000-0002-9731-8781
http://orcid.org/0000-0002-9731-8781
http://orcid.org/0000-0002-9731-8781
http://orcid.org/0000-0002-9731-8781
http://orcid.org/0000-0002-6183-4493
http://orcid.org/0000-0002-6183-4493
http://orcid.org/0000-0002-6183-4493
http://orcid.org/0000-0002-6183-4493
http://orcid.org/0000-0002-6183-4493
https://doi.org/10.1038/s41380-023-02121-z
mailto:dsb@seas.upenn.edu
www.nature.com/mp


limbic regions as well as early-stage visual processing in
schizophrenia [9, 13]. Facial affect processing involves a distrib-
uted network comprising limbic regions, fusiform and occipital
cortex, medial and lateral prefrontal areas, and insula [14–16].
Indeed, components of this distributed network have been
implicated in facial emotion processing abnormalities in indivi-
duals with schizophrenia [17] and individuals with high genetic
risk for schizophrenia [18], suggesting heritability. Thus, an
integrative understanding of facial affect processing abnormalities
in schizophrenia requires analysis of the distributed network
regulating a complex domain.
Facial affect processing abnormalities in schizophrenia, and

other cognitive deficits, may be driven by abnormal GABAergic
neurotransmission [19]. Notably, GABAergic abnormalities in
schizophrenia have been documented quite broadly, across the
prefrontal cortex [20], visual cortex [21, 22], amygdala [23], and
temporal lobe [24], regions that overlap with the distributed
network involved in facial affect processing. The role of GABAergic
circuitry in facial affect processing and its impairment in
schizophrenia can be effectively studied through pharmacological
modulation using GABA modulators like benzodiazepines [25].
Alprazolam (Xanax®) is among the most widely used benzodia-
zepines, with well-known anxiolytic effects through enhanced
GABAergic inhibition of the amygdala and limbic structures, and
sedative effects from more broad GABAergic inhibition [26–28].
Thus, benzodiazepine challenge provides an opportunity to study
the role of GABAergic circuitry in the etiology of facial affect
processing abnormalities in schizophrenia.
Benzodiazepines impair emotion identification and emotion

memory in healthy individuals, mainly in processing threatening
faces [29–31]. The neural basis for the observed impairments in
threat processing have been investigated in neuroimaging studies
of emotion processing with benzodiazepine challenge in healthy
subjects. These studies have shown that benzodiazepines alter
activation of brain regions in the distributed facial affect
processing network including amygdala, fusiform gyrus, orbito-
frontal cortex, and insula during facial affect processing tasks
[32, 33]. We showed that alprazolam unmasks amygdalar and/or
GABAergic abnormalities in first-degree relatives of individuals
with schizophrenia during emotion identification and recall tasks
[34]. However, there remains a lack of mechanistic understanding
of benzodiazepine action during facial affect processing that goes
beyond traditional activation studies. More recent tools for
modeling the dynamics of brain activation states can help to
synthesize results from activation studies and provide mechanistic
insight into benzodiazepine action as well as GABAergic
abnormalities in schizophrenia.
The mechanistic basis of benzodiazepine action on the brain

during emotion processing can be effectively modeled using
network control theory (NCT). NCT is a tool originating in
theoretical physics and systems engineering that has successfully
been used to understand how to control real-world systems
comprised of interacting components, such as power grids and
electronic circuits [35, 36]. In the context of NCT, control refers to
the ability to drive the system, through a suitable choice of inputs,
from an initial state to a final state. Given that the brain is a
complex system comprised of interconnected networks of
neurons [37], NCT provides an intuitive and compelling tool to
model the dynamic trajectory of brain activation states that
support its rich cognitive functions. Indeed, NCT has already been
used to provide insight into the structure and function of model
nervous systems like C. elegans [38], Drosophila [39], mouse
[39, 40], and macaque [41], as well as human brain networks
[39, 42–46].
The application of NCT to model the brain typically involves the

definition of a structural network through diffusion weighted
imaging, and the definition of brain states as activation patterns
across brain regions [47]. Brain states can be defined by arbitrarily

switching ‘on’ canonical brain sub-networks like the visual and
default mode networks, or directly as task activation obtained
through functional magnetic resonance imaging data [43, 48–51].
The NCT framework is then used to model the temporal
progression of brain states as a function of the underlying
structural network and theoretical control energy applied to
different brain regions. The calculated control energy may
represent external electrical stimulation or internal cognitive
control needed to steer the brain between defined initial and
final states [42]. Additionally, the brain regions important for
driving specific brain state transitions can be identified through
control impact analysis. This framework naturally lends itself to
modeling the effect of drugs like alprazolam in driving brain state
trajectories relevant to facial affect processing and can provide
mechanistic insight into the mode of action of the drug beyond
simple measures of activation.
Here we applied principles from network control theory to

investigate the effect of alprazolam and schizophrenia risk status
in driving brain state transitions during facial affect processing. We
leveraged a previously reported dataset [34] where fMRI BOLD
data was collected during emotion identification and emotion
memory tasks, with and without administration of alprazolam, in a
cohort consisting of healthy controls and unaffected first-degree
relatives of individuals with schizophrenia. We considered task-
evoked brain activation patterns during emotion processing tasks
to be brain states and quantified the theoretical control energy
needed to maintain those states – the persistence energy. In our
previous study, we showed that alprazolam reduced amygdala
activation during emotion identification only in first-degree
relatives, suggesting an unmasking of amygdala GABAergic
hypersensitivity in this group [34]. Accordingly, our primary
hypothesis was that when administered alprazolam, family
members would have altered persistence energy during identifi-
cation and recall of threatening faces which requires amygdalar
processing, but not during non-threatening or neutral stimuli. We
predicted that brain regions of high control impact in the NCT
model would align with known regions involved in facial affect
processing including fusiform cortex, occipital cortex, and sub-
cortical regions like the amygdala and insula. Finally, we predicted
that regions of high control impact would also spatially align with
regions of high GABA receptor expression, but not with other
neurotransmitters like dopamine and serotonin, reflecting the
biological mode of benzodiazepene action. By testing and
validating our hypotheses, we uncover novel insights regarding
the network organization of emotion processing and the
contribution of GABAergic abnormalities toward emotion proces-
sing deficits associated with genetic risk for schizophrenia.

METHODS
Participants
The sample included 27 healthy participants with a first-degree relative
affected by schizophrenia and 20 healthy controls without a family history
of schizophrenia, for a total of n= 47 participants. Controls and relatives
were matched based on demographic and clinical variables (Table 1). After
excluding scans based on motion estimates (mean framewise displace-
ment > 0.5 mm), the final sample for data analysis included n= 44
participants (19 relatives; 25 controls) for emotion identification, and
n= 40 participants (17 relatives; 23 controls) for emotion memory (see
Supplementary Methods for details on assessment). Study procedures
were approved by the University of Pennsylvania Institutional Review
Board, and written informed consent was obtained from participants.
Participants underwent standard medical, neurological, psychiatric, and
neurocognitive evaluations (see Supplementary Methods).

Study design and pharmacological challenge
To study the impact of GABAergic modulation on brain activation during
emotion processing, participants underwent fMRI imaging during facial
affect processing tasks with and without administration of alprazolam.
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Details of study design have been described previously [34]. Briefly,
participants underwent two identical fMRI sessions approximately one
week apart. Participants were administered 1mg oral alprazolam in one
session and an identical-appearing placebo in the other session, in a
balanced double-blind within-subject crossover design.
During each fMRI session, participants performed an emotion identifica-

tion task followed by an emotion memory task (Fig. 1B). In the emotion
identification task, 60 unique color pictures of human faces were
presented in pseudorandomized order, with facial expressions falling into
one of five emotional categories: happy, sad, fearful, angry or neutral [52].
Participants were asked to identify the emotion expressed on each face. In
the emotion memory task, the same sequence of faces as in the preceding
emotion identification task was presented, with each target face
accompanied by two foil expressions. Participants were instructed to
recall the expression that matched the previously seen face. In both tasks,
each emotion category was presented 12 times, with each emotion being
used as a foil 24 times in the emotion memory task. Faces were displayed
for 5.5 s, with a variable interval of between 0.5 and 18.5 s, during which a
complex crosshair matched to faces on perceptual qualities was presented.
Each task lasted 10.5 min, with a 2min delay between tasks.

Image acquisition and processing
Structural and functional image sequences were acquired with a Siemens
Trio 3 T system (Erlangen, Germany). Structural images were acquired for
the whole brain, whereas functional volumes were acquired in a slab
covering ventral regions of the brain with a spatial resolution of
2 × 2 ×mm (Fig. S1).
We used fMRIPrep software (version 1.2.6) to process the BOLD fMRI data

[53]. Briefly, fMRIPrep was used to perform brain extraction and
segmentation of individual T1-weighted images, spatial normalization of
T1 images to the ICBM 152 Nonlinear Asymmetrical template, susceptibility
distortion correction for BOLD images, estimation of confound variables
including head motion parameters and resampling of BOLD sequences to
MNI152NLin2009cAsym standard space. We excluded sessions for which
the average framewise displacement was greater than 0.5 mm. No other
exclusion criteria were applied.
Next, we used generalized linear models (GLM) to measure subject-

specific brain activation patterns during emotion identification and
memory tasks. Specifically, GLM analysis was performed using the FEAT
module [54] in FSL 5.0.10 implemented using XCP Engine [55]. BOLD
sequences preprocessed using fMRIPrep were high-pass filtered (100 s) and
spatially smoothed (4 mm FWHM, isotropic); further, the first 6 non-steady
state volumes were discarded. All event conditions were modeled as 5.5s-
boxcars convolved with a canonical hemodynamic response function.
Consistent with previous work [15, 56], correct responses to fear and anger

stimuli were combined as a “threat” regressor; happy and sad stimuli were
combined as a “non-threat” regressor; and neutral stimuli were modeled
separately. All specified contrasts measured BOLD activation compared to
baseline. Incorrect responses and 6 motion parameters were included as
regressors of non-interest. We chose to include only correct responses in
the model to limit the potential effects of inattention due to sedation by
alprazolam.
We then divided the brain into 233 parcels based on the Lausanne

parcellation (after excluding the brain stem), which provides coverage of
both cortical and subcortical areas including thalamus, caudate, putamen,
pallidum, accumbens, hippocampus, and amygdala [57]. Parameter
estimates (beta weights) from each voxel were averaged within each
parcel resulting in estimates of brain activation (brain states); these
activation maps were then evaluated using network control theory.
See Supplementary Methods for further details on image acquisition and

processing, as well as a detailed explanation of the network control theory
model used.

Construction of structural brain networks from diffusion
spectrum imaging data
Structural brain connections are an essential component of network
control theory models. Since we did not collect structural brain images in
our previous study, we leveraged an average structural matrix from a
separate study. Diffusion spectrum imaging (DSI) data was collected from a
separate set of 10 healthy young adults as described elsewhere [47].
Consistent with previous work [48, 49], we defined nodes of the structural
network as brain regions according to the Lausanne atlas [57]. To encode
each structural network, we constructed adjacency matrices for each
subject based on the quantitative anisotropy (QA) between each pair of
brain regions. The average structural matrix across 10 participants was
used for all results shown in the main text.
See Supplementary Methods for further details on DSI image acquisition,

processing, and structural matrix generation.

Spatial correlations with neurotransmitter maps
In order to explore the underlying biology of drug action reflected through
control energy measures, we analyzed the spatial alignment of drug-induced
differences in control energy input with neurotransmitter receptor maps
obtained through PET imaging. Given the known role of alprazolam as a
GABAmodulator [27], we expected brain regions whose control energy input
varied strongly with drug condition to also be correlated with GABA receptor
density, but not with other receptors such as serotonin and dopamine.
For this analysis, we used published PET/SPECT maps of the following

receptors: 5-HT1a (serotonin 5-hydroxytryptamine receptor subtype 1a),

Table 1. Demographic and clinical information at time of scan.

Variable Controls (n= 27) Relatives (n= 20) p-value

Percentage Proportion Percentage Proportion Odds ratio

Sex (% F) 51.9 14 F/13M 55.0 11 F/9 M 1.0 0.88

Handedness (% R) 92.6 25 R/2 L 80.0 16 R/4 L 0.38 0.32

Smoke (% N) 77.8 21 N/6Y 80.0 16 N/4Y 1.0 0.88

Mean (SD) Range Mean (SD) Range Test statistic* (DOF)

Age (years) 39.0 (11.4) 21.1–56.5 42.3 (14.8) 20.9–59.4 0.31 −1.02

Education (years) 15.0 (2.0) 11.0–19.0 14.8 (2.3) 12.0–20.0 0.79 0.26 (45)

Parental education 13.6 (3.1) 7.5–20.0 13.9 (2.7) 9.5–18.0 0.76 −0.31 (43)

Height (in.) 67.7 (4.0) 61.0–77.0 67.6 (4.3) 60.0–73.0 0.93 0.09 (45)

Weight (lb.) 176.4 (33.0) 115.0–255.0 175.5 (34.0) 118.0–250.0 0.93 0.09 (45)

BMI (lb./in.2) 27.1 (4.9) 20.4–36.8 27.0 (4.5) 18.7–33.9 0.94 0.08 (45)

Trait anxiety 28.3 (6.7) 20.0–47.5 30.1 (8.9) 20.0–58.0 0.64 −0.46

Schizotypy (SIS) total 11.5 (7.2) 1.0–29.0 15.0 (7.2) 7.0–39.0 0.11 −1.64 (44)

Alprazolam level (ng/mL) 7.5 (4.1) 0.0–13.0 7.8 (4.1) 1.0–14.0 0.80 −0.26 (42)

F Female, MMale, R Right, L Left, N Non-smoker, Y Smoker, SD Standard deviation, BMI Body mass index, SIS Structured interview for schizotypy, DOF Degrees of
freedom; reported p-values are from Fisher’s exact test for categorical variables (sex, handedness, and smoking status), Wilcoxon rank sum tests for non-normal
data (age, trait anxiety), and two-sample t-tests for normally distributed data (all other variables). *t-statistic for two-sample t-tests, z-statistic for Wilcoxon rank
sum test (degrees of freedom not reported).
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5-HT1b (5-HT subtype 1b), 5-HT2a (5-HT subtype 2a), D1 (dopamine D1),
D2 (dopamine D2), DAT (dopamine transporter), F-DOPA (dopamine
synthesis capacity), GABAA (gamma-aminobutyric acid A receptor), NAT
(noradrenaline transporter), and SERT (serotonin transporter) [58–64]. All
provided PET/SPECT maps were voxel-wise average group maps of variable
numbers of healthy volunteers, linearly rescaled to a range of 0 to 100 [58].
We further averaged the PET/SPECT maps voxel-wise for each Lausanne
parcel to obtain 233×1vectors, each of which represented a spatial map of
the distribution of a given neurotransmitter. We then evaluated correla-
tions between all PET/SPECT maps and region-wise difference maps in
control input between alprazolam and placebo sessions for all subjects.
See Supplementary Methods for details on statistical analysis.

RESULTS
Alprazolam differentially modulates persistence energy in
relatives and controls during threat emotion processing
We first tested our primary hypothesis of alprazolam altering
persistence energy during threat emotion processing. Persistence
energy was measured as the control energy needed to maintain
specific brain activation patterns observed during in-scanner
emotion identification and memory tasks. We evaluated the effect
of group and drug on persistence energy using linear mixed
models with drug and group treated as categorical variables
(Equations 1−3, Supplementary Methods). During emotion
identification, there was no main effect of group or drug, and

no group×drug interaction in any emotion category (Fig. 2A, see
Supplementary Data Files 1 for model coefficients and statistics).
During emotion memory, we found that persistence energy was
moderately increased with alprazolam administration during recall
of threat stimuli, in family members but not in controls (Fig. 2B,
group×drug interaction, γ11=−0.048, p= 0.026, df= 73). There
was no main effect of group (γ01= 0.026, p= 0.133, df= 73) or
drug (β1i= 0.01, p= 0.50, df= 74) (Supplementary Data Files 1). As
expected, no significant effects were found in non-threat and
neutral conditions. Alternate analyses where categorical drug
indicator was replaced with alprazolam blood levels and
categorical group indicator was replaced with the total score on
the structured interview for schizotypy (SIS) showed similar results
(Supplementary Information, Supplementary Data Files 2, 3).
In order to elucidate the influence of structural brain networks

and spatial activation patterns on the observed results, we
performed a series of investigations using structural and spatial
null models (see Supplementary Methods for details). When
control energies were recalculated using null models of structural
brain networks, we found that the new mixed model coefficients
remained largely similar to the coefficients from the original
model (Fig. S4, Supplementary Data Files 8). However, when
control energies were recalculated using null models of spatial
activation patterns, we found large deviations in the mixed
model coefficients compared to our original model (Fig. S5,

Fig. 1 Operationalizing network control theory in the context of human neuroimaging. A The strength of structural connections between
brain regions were determined by the quantitative anisotropy (QA) estimated from diffusion spectrum imaging data. We used beta
coefficients from general linear models to specify brain activation maps during task sessions where participants were given 1mg oral
alprazolam or placebo. These maps were then fed into a network control model to analyze the energy required for transitions between
different brain states. We were particularly interested to estimate the persistence energy, Pe, defined as the energy required to maintain a
state. Brain regions in the cortex and subcortex were defined by the 234-node Lausanne parcellation. B Schematic of emotion identification
and emotion memory tasks. In the emotion identification task, participants were required to identify the emotions expressed on the displayed
faces, with variable crosshair fixation between cues. In the emotion memory task, the same sequence of faces as in the preceding emotion
identification task was presented, with each target face accompanied by two foil expressions. Participants were instructed to recall the
expression that matched the previously seen face.
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Supplementary Data Files 9). These investigations showed that the
differential effect of alprazolam on persistence energy in relatives
and controls during recall of threatening faces was partially
dependent on the underlying structural brain networks but largely
dependent on the task-specific spatial activation patterns.
Finally, we used control impact analysis to investigate the

relative importance of different brain regions in driving brain state
transitions associated with emotion identification and memory.
Control impact of individual nodes was measured by iteratively
removing each node from the network and recomputing the
persistence energy [49].
As hypothesized, we found that regions with high control

impact in both emotion identification and memory tasks were
primarily located in the fusiform and occipital cortex, reflecting
the visual and facial processing nature of the tasks (Fig. 2C, D,
Supplementary Data Files 4). One node in the lateral precentral
gyrus also exhibited high control impact, perhaps reflecting
facial motor control processes involved in embodied aspects of
facial affect perception [65, 66]. Surprisingly, subcortical areas
including the amygdala, hippocampus, and insula had relatively
low control impact. Areas with high control impact aligned
largely with areas of high activation obtained from beta weight
maps estimated from a general linear model (Fig. S3, Supple-
mentary Data Files 5). Similar high associations were found
between region-wise control energy integrated over simulation
time and GLM beta weights. Thus, the control model suggests
that the direct and indirect connectivity of the fusiform and
occipital regions with the whole brain structural network

facilitates efficient coordination of neural dynamics associated
with facial affect processing.

Individual differences in persistence energy explain variance
in task performance during threat emotion identification
Next, we performed an exploratory analysis to examine the
relationship between persistence energy and task performance.
We reasoned that increased persistence energy during emotion
identification and memory tasks might reflect cognitive effort
expended and thus might be reflected in measures of task
performance. We summarized task performance using an
efficiency measure (accuracy divided by reaction time), and then
evaluated associations between efficiency and persistence energy
using a different set of linear mixed effects models (Equations 4–6,
Supplementary Methods).
We found that efficiency during threat emotion identification was

positively associated with persistence energy (Fig. 3A, main effect of
persistence energy, β= 0.335, pFDR= 0.047, df= 81). No significant
associations were found for other emotion categories, or for the
emotion memory task, after correction for multiple comparisons
(Fig. 3B–F). Consistent with our previous study [34], we found that
alprazolam significantly reduced task efficiency during both
emotion identification and memory tasks (see Supplementary Data
Files 6 for all model coefficients and statistics). We also found,
consistent with our previous study, that there were no group effects
on task performance for any of the task conditions (Supplementary
Data Files 6). Thus, relatives and controls performed equally well on
emotion identification and memory tasks.

Regional differences in control energy spatially align with
neurotransmitter systems
Finally, we explored the underlying biology of control energy
measures by evaluating the spatial correspondence between
control energy parameters from our model and known neuro-
transmitter systems described through PET/SPECT receptor maps
[58]. To achieve this, we calculated the spatial correlation between
PET/SPECT maps (Fig. 4A, B) and maps describing regional
differences in control energy input between alprazolam and
placebo conditions (Fig. 4C, Supplementary Data Files 7). Given
the known role of alprazolam as a GABAA receptor modulator [27],
we expected brain regions whose control input varied strongly with
drug condition to also be correlated with GABAA receptor density.
To calculate regional control input difference maps, we

subtracted total control input in each brain region (over the
simulation time) between alprazolam and placebo sessions. These
maps show that the effects of alprazolam are mainly located in
occipital and fusiform areas, with some effects in frontal and
orbitofrontal regions (Fig. 4C, Supplementary Data Files 7). We then
evaluated correlations between regional control input difference
maps and PET/SPECT receptor maps. Surprisingly, we found that
correlations between control input difference maps and GABAA
receptors were not significant (Fig. 4D, E). Moreover, in both
emotion identification and memory tasks, control input difference
maps were positively correlated with serotonergic receptors, and
negatively correlated with dopaminergic receptors (Fig. 4D, E).

DISCUSSION
In this study, we applied a network control theory model to
investigate the effects of alprazolam during facial affect proces-
sing in a cohort of healthy controls and first-degree relatives of
people with schizophrenia. The main findings from our analysis
and their implications are discussed below.

Control energy measures reflect GABAergic abnormalities in
schizophrenia
In our previous study [34], we found that alprazolam effects on
standard task fMRI measures in amygdala were stronger in

Fig. 2 Alprazolam modulates persistence energy during recall of
threatening faces. A Boxplots show persistence energy for the
emotion identification task, grouped by emotion category; P
Placebo; A Alprazolam. B Boxplots show persistence energy for
emotion memory task, grouped by emotion category. We observed
a significant group×drug interaction in the threat condition
(γ11=−0.048, p= 0.026, df= 73); P Placebo, A Alprazolam.
C Average spatial maps of control impact for threat emotion
identification, shown on surface renderings of cortical and
subcortical areas. D Average spatial maps of control impact for
threat emotion identification, shown on surface renderings of
cortical and subcortical areas. Parcels outside the imaging slab are
colored gray.
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Fig. 4 Neurotransmitter receptor profiles are associated with drug effect on control input. A PET neurotransmitter heatmaps from Dukart
et al. (2021). B PET map of GABAA expression shown on surface renderings of cortical and subcortical areas. C Regional differences in average
control input on alprazolam and placebo (absolute values) during threat emotion identification and memory, shown on surface renderings of
cortical and subcortical areas. D, E Boxplots of subject-level Spearman correlation coefficients between PET spatial maps and regional control
input differences during threat emotion ID (D) and threat emotion memory (E). Red asterisks indicate the level of statistical significance from
permutation tests with 500 permutations, corrected for multiple comparisons; *pFDR < 0.05, **pFDR < 0.005, ***pFDR < 0.0005.
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relatives of individuals with schizophrenia compared to controls
during emotion identification, suggesting alprazolam could be
unmasking underlying GABAergic abnormalities. Given these prior
results, we expected that alprazolam would also differentially
influence control energy measures associated with whole-brain
emotion-processing activation patterns in relatives versus con-
trols. Indeed, we found that alprazolam increased the persistence
energy associated with brain states during the recall of threaten-
ing faces (anger and fear) in family members but not in controls.
The persistence energy is the control energy needed to

maintain a brain state associated with a task and has been
previously associated with the cognitive effort required during
those tasks [43]. We found further evidence for this relation
between energy and effort by demonstrating that increased
persistence energy is associated with better task performance in a
subset of tasks. Since family members demonstrated relatively
normal behavioral performance, increased persistence energy
during the recall of threatening faces may represent a compensa-
tory GABAergic mechanism that enables them to perform as well
as controls. Further investigation into potential compensatory
mechanisms might uncover promising avenues to target ther-
apeutic drugs that aim to support improved cognitive function in
schizophrenia.
In our previous study [34], we found that alprazolam induced

strong reduction in amygdala activation during emotion identifi-
cation (but not during emotion recall) in relatives compared to
controls. In the current manuscript, we report increased persis-
tence energy during threat emotion recall (but not during
emotion identification) in relatives compared to controls. While
the findings from our previous study shed light on amygdalar
GABAergic abnormalities in relatives, the findings from the current
study provide insight into GABAergic abnormalities in the broad
facial affect processing network. It is possible that the more purely
affective nature of the emotion identification task renders it more
sensitive to changes in amygdalar activation [11], which explains
the main finding from our previous study. Persistence energy is a
measure that reflects not only regional activation but also the
energetic stability of a particular pattern of regional activation
given the underlying structural network. The emotion recall task
being cognitively demanding [11] may be more sensitive to brain-
wide measures such as persistence energy, which explains the
main finding of the current study.
Control energy measures such as persistence energy go beyond

traditional measures of activation, instead reflecting brain-wide
network dynamics constrained by underlying white matter
architecture [43, 50, 51]. Since facial affect processing is known
to involve a distributed network of brain regions [14, 15], models
that capture network-wide brain dynamics are important to
investigate the neural substrate of this cognitive domain and its
modulation by psychiatric disease. Our results add evidence of
GABAergic abnormalities in family members when processing
faces with negative affect, unmasked by drug action. Importantly,
these abnormalities were measured using network-wide readouts,
demonstrating that our analyses provide an important comple-
mentary approach to identifying such effects. Taken together, our
results indicate that control energy measures reflect network-wide
effects of GABAergic abnormalities during facial affect processing
in first-degree relatives of individuals with schizophrenia.

Regions most impacting network control align with the facial
affect processing network and distributions of
neuromodulatory receptors
We sought to understand the impact of different brain regions in
driving brain state transitions associated with emotion processing,
expecting that regions of high importance would align with the
distributed network associated with facial affect processing
[14–16]. In partial support of this hypothesis, we found that brain
regions with high control impact during emotion identification

and memory were primarily in the fusiform and occipital cortices.
Fusiform and visual brain regions are core components of the
classical network associated with facial affect processing
[14, 15, 67, 68]. Our mathematical model suggests that the direct
and indirect connectivity of these regions with the whole brain
structural network facilitates efficient coordination of neural
dynamics associated with performance of face processing
behavior, providing novel intuition regarding their role as the
“face areas” of the brain.
Our analysis also showed that limbic and sub-cortical regions

such as amygdala, hippocampus and insula did not have high
control impact in any emotion category. These regions have been
classically associated with emotion processing [16, 69], and their
low prominence in our network control model is therefore
somewhat surprising. Our results suggest that primary sensory
areas associated with visual processing exert top-down control on
whole-brain activation during facial affect processing, while
subcortical regions including the amygdala are circumscribed to
a bottom-up role with limited impact on the rest of the brain. It is
possible that changes in amygdala activation, while being
significantly different between relatives and controls during
emotion identification [34], did not produce a significant change
in persistence energy due to the limited role of this brain region in
our model. Further, the high prominence of fusiform and occipital
regions and low prominence of subcortical regions is also
consistent with a constructive view of emotion [70] – the
perception of faces constructs a multi-modal explanation of the
sensory stimuli and context, triggering an emotion reflected in the
instance of emotion depicted in the face stimuli.
Finally, we sought to understand the underlying biology of

alprazolam action during facial affect processing by evaluating
correlations between drug-induced differences in control input
and neurotransmitter receptor maps obtained through PET/SPECT
imaging. Due to alprazolam’s known mechanism of action as a
positive allosteric modulator of GABAA receptors [27], we expected
drug-induced differences in control input to align spatially with
GABAA receptors. We found that these correlations, although
trending positive, were not statistically significant. However, drug
difference maps were positively correlated with serotonergic
receptors and negatively correlated with dopamine receptors.
These results indicate that the effect of alprazolam may manifest
primarily through driving complementary serotonergic and
dopaminergic neuromodulatory systems [71–73], perhaps shed-
ding light on a possible mechanistic basis of its well-documented
sedative and anxiolytic effects. Our results align with previous
studies which have shown that benzodiazepines like most drugs
do not act in isolation, and their clinical effects likely result from
affecting multiple interacting neurotransmitter systems [73].
Overall, our findings and approach highlight the utility of network
control theory in understanding the neurobiological basis of drug
action in the brain.

Limitations
This study has a number of limitations. The first relates to the
sample under study. As discussed previously [34], the sample
studied did not include patients with schizophrenia, preventing
definitive evaluation of putative endophenotypes. Further, this
particular sample of relatives did not exhibit marked emotion
processing abnormalities assessed by behavioral performance
(Supplementary Data Files 6), unlike previous results with larger
cohorts [8]. Schizotypy scores of first-degree relatives in our
sample were not statistically different from healthy controls
(p= 0.11). However, this could also be due to the low sample size
(Cohen’s d effect size ~0.48). Further, we did not find significant
associations between schizotypy scores and control energy
measures, perhaps reflecting the lack of significant variation in
clinical risk for psychosis in this sample. The small sample size also
resulted in uncertainty in our finding of altered persistence energy
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during threat emotion memory, given the relatively low statistical
significance of this result [74]. Thus, future work could seek to
replicate the findings reported here in larger samples, and control
energy abnormalities found here in family members could be
tested in patients with frank illness. Second, while GLM parameter
estimates provide a reliable indicator of brain activation patterns
at the group level in response to task stimuli, this approach fails to
account for dynamic variations in activation, including latencies in
interactions among different brain regions. Recently developed
network approaches could prove useful in studying the effect of
drug and schizophrenia status on these dynamics [75, 76]. Third,
the use of a group-averaged structural matrix and PET/SPECT
maps from external datasets is a limitation of our study.
Individuals with schizophrenia and their relatives are known to
have altered structural brain properties and receptor distributions
[20, 77–79]. It is possible that group differences in structural brain
properties would have contributed to more significant group
differences in control energy in our model. However, as
demonstrated by our null model analysis, structural brain
networks appear to have minimal influence over control energy
measures, leading us to believe that any further contributions to
group differences would be minimal. Regarding group differences
in receptor distributions, it remains to be seen whether the
resolution of PET/SPECT imaging modalities is sufficiently high to
capture group differences in receptor distributions between
healthy controls and first-degree relatives. Fourth, while the
alprazolam dose in this study (1 mg) is sufficient to produce
clinical and neurobiological effects, the lack of dose response in
the experimental design weakens the causal and mechanistic
interpretation of the findings [80], and should be assessed in
future studies. Finally, we were able to analyze neuroimaging data
only from a limited slab that was chosen for high-resolution
coverage of a specific set of emotion processing areas including
fusiform and orbitofrontal cortex in addition to subcortical and
limbic regions. The power of the network control approach in
uncovering whole-brain network dynamics was thus limited to
regions covered within the slab. Future studies could extend the
network control approach to whole-brain imaging data obtained
during facial affect processing.

CONCLUSION
In summary, we used a novel network control theory framework to
investigate abnormalities in the distributed facial affect processing
network in individuals at familial risk for schizophrenia. Using this
modeling framework, we found that alprazolam increased
persistence energy in relatives but not in controls during recall
of threatening faces. Increased persistence energy during threat
recall points toward altered dynamics within the facial affect
processing network in relatives during threat processing elicited
by alprazolam, suggesting a compensatory mechanism during
processing of threatening faces. Our approach and results provide
a new perspective and deeper theoretical understanding of the
neural mechanisms underlying facial affect processing, and point
toward specific altered dynamics during facial affect processing in
individuals at genetic risk for schizophrenia.
More broadly, the network control approach described here is a

powerful mechanistic framework to uncover endophenotypes of
psychiatric disease and to investigate the effect of pharmacologic
manipulation on the brain. Brain regions identified by the network
control approach can be used to inform more targeted drug
development for neuropsychiatric disorders, in addition to
informing novel regions for stimulation through paradigms such
as rTMS [81]. Further, control energy measures represent a readout
of brain function and can be used to investigate abnormalities in
various cognitive domains such as working memory [43] and
sensorimotor function [82].

Citation diversity statement
Recent work in several fields of science has identified a bias in
citation practices such that papers from women and other
minority scholars are under-cited relative to the number of such
papers in the field [83–87]. Here we sought to proactively consider
choosing references that reflect the diversity of the field in
thought, form of contribution, gender, race, ethnicity, and other
factors. First, we obtained the predicted gender of the first and last
author of each reference by using databases that store the
probability of a first name being carried by a woman [87, 88]. By
this measure (and excluding self-citations to the first and last
authors of our current paper), our references contain 7.23%
woman(first)/woman(last), 12.66% man/woman, 22.09% woman/
man, and 58.01% man/man. This method is limited in that a)
names, pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity
and b) it cannot account for intersex, non-binary, or transgender
people. Second, we obtained predicted racial/ethnic category of
the first and last author of each reference by databases that store
the probability of a first and last name being carried by an author
of color [89, 90]. By this measure (and excluding self-citations), our
references contain 12.63% author of color (first)/author of
color(last), 13.13% white author/author of color, 19.37% author
of color/white author, and 54.87% white author/white author. This
method is limited in that a) names and Florida Voter Data to make
the predictions may not be indicative of racial/ethnic identity,
and b) it cannot account for Indigenous and mixed-race authors,
or those who may face differential biases due to the ambiguous
racialization or ethnicization of their names. We look forward to
future work that could help us to better understand how to
support equitable practices in science.

CODE AVAILABILITY
All analysis code is available at https://github.com/arunsm/alpraz-project.git.
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