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Abstract

Background: In cystic fibrosis (CF), the spectrum and frequency of CFTR variants differ by 

geography and race/ethnicity. CFTR variants in White patients are well-described compared with 

Latino patients. No studies of CFTR variants have been done in patients with CF in the Dominican 

Republic or Puerto Rico.
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Methods: CFTR was sequenced in 61 Dominican Republican patients and 21 Puerto Rican 

patients with CF and greater than 60 mmol/L sweat chloride. The spectrum of CFTR variants was 

identified and the proportion of patients with 0, 1, or 2 CFTR variants identified was determined. 

The functional effects of identified CFTR variants were investigated using clinical annotation 

databases and computational prediction tools.

Results: Our study found 10% of Dominican patients had two CFTR variants identified 

compared with 81% of Puerto Rican patients. No CFTR variants were identified in 69% of 

Dominican patients and 10% of Puerto Rican patients. In Dominican patients, there were 19 

identified CFTR variants, accounting for 25 out of 122 disease alleles (20%). In Puerto Rican 

patients, there were 16 identified CFTR variants, accounting for 36 out of 42 disease alleles (86%) 

in Puerto Rican patients. Thirty CFTR variants were identified overall. The most frequent variants 

for Dominican patients were p.Phe508del and p.Ala559Thr and for Puerto Rican patients were 

p.Phe508del, p.Arg1066Cys, p.Arg334Trp, and p.I507del.

Conclusions: In this first description of the CFTR variants in patients with CF from the 

Dominican Republic and Puerto Rico, there was a low detection rate of two CFTR variants after 

full sequencing with the majority of patients from the Dominican Republic without identified 

variants.

Keywords

CFTR variants; health disparities; Latino; whole genome sequencing

1 | INTRODUCTION

Although the majority of the 80 000 people worldwide with cystic fibrosis (CF) are White, 

an increasing proportion of patients are of other races and ethnicities. In the United States 

(U.S.), the percentage of patients with CF who are Latino increased from 5.6% to 8.7% over 

the past 15 years.1 The increase in the Latino CF population is important as these patients 

have increased morbidity and mortality compared with the White CF population.2,3

Latino patients not only have a different clinical course than White patients, but they also 

have different CFTR variants.4 Latino patients are also more likely to have CFTR Class IV 

to V or uncharacterized variants whereas White patients are more likely to have Class I to III 

variants. Latino patients are more likely to have one or no CFTR variants identified, in part 

due to CF genetic panels and newborn screens having lower sensitivity to variants that are 

more common in the Latino population.5

CFTR variants are population-specific and the spectrum of known CFTR variants is based 

largely on investigations of White populations.6 Even among investigations of Latino 

populations, there have been limited efforts to describe the genetic profile of CF in the 

Caribbean.7 There is considerable genetic heterogeneity between Latino populations and 

within the Caribbean.8

In this study, full genetic sequencing of CFTR was done in Dominican and Puerto Rican 

patients with CF to describe the spectrum of CFTR variants. The proportion of patients with 

0, 1, or 2 CFTR variants identified was determined. The functional impact of each identified 
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CFTR variant was classified based on clinical databases and deleteriousness prediction 

algorithms.

2 | METHODS

2.1 | Study population

This was a cross-sectional study of CFTR variants in patients with CF in the Dominican 

Republic and Puerto Rico. All patients had a diagnosis of CF made by their clinical doctor 

based on the presence of clinical CF symptoms and a positive sweat chloride concentration 

(≥60 mmol/L) based on Cystic Fibrosis Foundation guidelines.9 Patients with an 

intermediate sweat chloride concentration (<60 mmol/L) were not included in our study. 

Patients 6 years of age and older were recruited from CF clinics in the Dominican Republic 

and Puerto Rico in 2017. Consent and assent were obtained from patients and their 

guardians as appropriate. This study was approved by the Western Institutional Review 

Board.

At the time of recruitment, CFTR variants identified through prior genotyping, sweat 

chloride concentration, demographic data, pancreatic sufficiency status, and pulmonary 

function percent predicted based on Global Lung Initiative was recorded for each patient. 

Blood was drawn for genetic analysis.

2.2 | Whole genome sequencing analysis

DNA was isolated from whole blood using the Wizard Genomic DNA Purification kits 

(Promega, Fitchburg, WI). DNA samples were quantified by fluorescence using the Quant-

iT PicoGreen dsDNA assay (Thermo Fisher Scientific, Waltham, MA) on a Spectramax 

fluorometer (Molecular Devices, Sunnyvale, CA). DNA samples were sequenced as part of 

the Trans-Omics for Precision Medicine (TOPMed) whole genome sequencing (WGS) 

program.9 WGS was performed at the Northwest Genomics Center on a HiSeqX system 

(Illumina, San Diego, CA) using a paired-end read length of 150 base pair, to a minimum of 

30× mean genome coverage. Details on DNA sample handling, quality control, library 

construction, clustering and sequencing, read processing, and sequence data quality control 

are previously described.10 Variant calls were obtained from TOPMed data freeze 8 variant 

call format files. The term “variant” is used in place of “mutation” or “polymorphism”.11 

Variants with a minimal depth of coverage of 10 reads were included in our analyses.

Variants were annotated in TOPMed using the WGSA pipeline.12 CFTR variants were 

annotated with reference to the NM_000492.3 transcript. Genetic variants in CFTR were 

extracted (ENSG00000001626; ENST00000003084) from chr7:117,465,784–117,715,971, 

which included segments 15 kb upstream of the CFTR transcription start site and 47 kb 

downstream of the last exon. Sequences aligned to hs38DH 1000 Genomes GRCh38/hg38 

reference assembly using BWA-MEM were received as CRAM files from TOPMed.13 

Chromosome 7 sequence reads were extracted from the CRAM files using Samtools v1.9.14 

Copy number variation was detected using a bin size of 500 with CNVnator v0.3.3.15 

Structural variation in chromosome 7, including deletions, duplications, inversions, and 

translocations, were detected with LUMPY express v0.2.13.16 The sequencing quality of 
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variants that did not have value “PASS” in the FILTER field from TOPMed was checked by 

manual inspection of the sequencing reads alignment using Integrative Genome Viewer. 

Other possible FILTER values include centromere (variant overlaps with centromeric 

region), SVM (variant failed SVM filter), and duplicate discordances (variant with high 

mendelian or duplicate genotype discordance [3/5% or more]).10

Phased genotypes from TOPMed data freeze 8 were used to determine whether two variants 

are in cis or trans (see section below).17 These were statistically phased by applying Eagle 

2.4 (Dec 13, 2017) to the whole panel of 137 977 samples included in TOPMed freeze 8. 

Phasing was done in 1 Mb chunks with 0.1 Mb overlap. The entire CFTR locus 

(chr7:117,465,784–117,715,971) falls within a single chunk. Phasing was limited to variants 

which pass all filters and starts with minDP10 genotypes to restrict to high quality 

genotypes. Phasing imputes any missing genotypes. Statistical phasing has limited accuracy 

for very rare variants (those seen in fewer than five individuals in the panel).18

2.3 | Clinical annotations of variants

To determine the clinical impact of CFTR variants identified by sequencing, variants were 

first compared with the Clinical and Functional Translation of CFTR (CFTR2) database.19 

The CFTR2 database provides functional classifications for variants with clinical and 

laboratory evidence of phenotypic consequence. These classifications include “CF-causing,” 

“varying clinical consequence,” “un-known significance,” and “non-CF-causing.” CFTR 
variants identified by sequencing that were not listed in the CFTR2 database were analyzed 

to identify common variants, defined by an allele frequency greater than 3% on Genome 

Aggregation Database (gnomAD) in the general non-CF population.9 Variants that are 

common in a non-CF population are unlikely to be disease-causing. All identified variants 

that were not in the CFTR2 database or had an allele frequency less than 3% were cross-

referenced with two variant databases, ClinVar and Invitae, to determine the functional 

impact of the variant. ClinVar is a publicly available repository of genotype-phenotype 

investigations.20 Invitae is a clinical genetic sequencing laboratory.21 Variants in the ClinVar 

and Invitae databases were annotated as “pathogenic,” “likely pathogenic,” “uncertain 

significance,” or “benign.”

Genetic variants without clinical annotations in the CFTR2, ClinVar, or Invitae databases 

were analyzed for deleteriousness using three computational prediction algorithms: 

Combined Annotation Dependent Depletion (CADD), FATHMM-XF, and Rare Exome 

Variant Ensemble Learner (REVEL).22–24 Variants predicted to be deleterious had a scaled 

C-score ranking from CADD >16 or were predicted to be likely damaging by FATHMM-XF 

or had a REVEL score greater than 0.5.

Variants were categorized into five functional classifications based on databases and 

computational predictions as follows: (a) CF-disease causing variant, (b) variant of varying 

clinical consequence, (c) variant of uncertain significance, (d) variant predicted to be 

deleterious, and (e) Non-CF-disease causing or likely benign variant (Figure 1).

The CFTR variants and genotype for each patient were determined. In patients with two 

variants, the phased genotype (variants in cis or trans) was assessed using BCFtools.25 
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Patients were categorized as fully identified CFTR genotype (two variants in trans) versus 

those who were not (with two variants in cis, one variant, or no variants).

3 | RESULTS

3.1 | Genotyping results before recruitment

Our study population consisted of 82 patients diagnosed with CF from the Dominican 

Republic (N = 61) and Puerto Rico (N = 21). At recruitment, 3% of Dominican patients had 

two identified CFTR variants, 3% had one variant, and 93% had not been genetically tested 

for CF. Among Puerto Rican patients, 57% of patients had two identified CFTR variants, 

24% had one variant, 5% had no variants, and 14% had not been tested.

At the time of recruitment, Dominican patients were a median age of 10.6 years old and 

Puerto Rican patients were 15.4 years old. The majority of Dominican patients (86.9%) and 

Puerto Rican patients (81.0%) were pancreatic insufficient. The predicted percentage of 

average forced expiratory volume in 1 second was 91.7% in Dominican patients and was 

83.4% in Puerto Rican patients.

3.2 | WGS results

There were 1568 CFTR variants identified by WGS in our study population (Figure 1). No 

structural variation or copy number variation was detected in the CFTR region 

(ENSG00000001626; chr7:117,465,784–117,715,971). Of the 1568 variants identified, 29 

variants were functionally classified in the CFTR2 database: 16 CF-disease causing variants, 

four varying clinical consequence variants, two variants of uncertain significance, and seven 

non-CF-causing variants. Of the 1539 CFTR variants not present in the CFTR2 database, 

397 were identified as common variants in the general population, therefore were interpreted 

as benign and not analyzed further. Of the remaining 1142 variants, functional classification 

using the ClinVar and Invitae databases was determined in 30 variants: one CF-disease 

causing variant, four variants of uncertain significance, and 25 likely benign variants. There 

was no functional classification description for the 1112 remaining variants, so they were 

further annotated using three functional prediction algorithms. Seven variants were predicted 

to be deleterious by at least one computational prediction tool. Three of these seven variants 

were removed after manual inspection of the sequencing reads alignment suggested these 

were sequencing or alignment errors.

Overall, we identified 30 CFTR variants as follows: 16 CF-disease causing variants (Table 

1), four variants of varying clinical consequence, six variants of uncertain significance, and 

four variants predicted to be deleterious (Table 2). The most frequent known disease-causing 

variants for Dominican patients were p.Phe508del (10%) and p.Ala559Thr (3%). The most 

frequent known disease-causing variants for Puerto Rican patients were p.Phe508del (33%), 

p.Arg1066Cys (33%), p.Arg334Trp (14%), and p.Ile507del l (14%).

Only 10% of Dominican patients had two CF-disease causing variants in trans compared 

with 81% of Puerto Rican patients (Table 3). Both Dominican patients (10%) and Puerto 

Rican patients (10%) had multiple CFTR variants in cis. Eleven percent of Dominican 

patients had only one CFTR variant identified; no Puerto Rican patients had only one CFTR 
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variant identified. No variants were identified in 69% of Dominican patients and in 10% of 

Puerto Rican patients.

The 30 identified CFTR variants accounted for 25 out of 122 disease alleles (20%) in 

Dominican patients and 36 out of 42 disease alleles (86%) in Puerto Rican patients.

4 | DISCUSSION

In this first genetic description of CFTR variants in Dominican and Puerto Rican patients 

with CF, we found that there was a low rate of patients having two CFTR variants identified 

after full sequencing. The spectrum of CFTR variants differed between the two populations, 

which are of the same ethnicity in close geographic proximity. In the overall CF population 

in the U.S., 86% of patients have at least one copy of p.Phe508del. In contrast, in our study, 

only 9.8% of Dominican patients and 33% of Puerto Rican patients had at least one copy of 

p.Phe508del.1 The most frequent variants we found in Puerto Rican patients occurred at low 

rates in the general CF population in the U.S.: p.Ile507del is the 15th most common variant 

occurring in 0.8% of the general CF population but was observed in 14% of Puerto Rican 

patients in our study; p.Arg334Trp is the 25th most common variant occurring in 0.3% of 

the general CF population but was observed in 14% of Puerto Rican patients and 3% of 

Dominican patients in our study. p.Arg1066Cys was observed in a third of Puerto Rican 

patients in our study but is not in the top 25 most common variants in the general CF 

population. p.Ala559Thr was observed in 3% of Dominican patients in our study was not in 

the top 25 variants of the general CF population.1

The spectrum of CFTR variants varies between Latino populations across the world and also 

varied between the two specific Latino populations we studied: Dominicans and Puerto 

Ricans. In patients with CF in Spain, the most frequent CFTR variants were p.Phe508del 

(52%), p.Gly542x (8%), p.Asn1303Lys (3%), and 3849 + 10kbC→T (2%).26 In Latino 

patients with CF from across the U.S., the most frequent variants were p.Phe508del (37%), 

p.Gly542x (11%), and p.Arg334Trp (11%),27 but most frequent variants differed across the 

U.S. In the Southwestern U.S., the most frequent CFTR variants were p.Phe508del (47%), 

p.Gly542x (5%), and 3849 + 10kbC→T (3%),28 which was similar to the pattern observed 

in Southern California: p.Phe508del (52%), p.Gly542x (4%), 3849 + 10kbC→T (4%), and 

p.Ser549Asn (2%).29 In Illinois, the most frequent variants were p.Phe508del (52%), 3849 + 

10kbC→T (7%), and p.Phe311del (7%).4 p.Phe508del was observed at a lower frequency in 

Dominican patients (10%) and Puerto Rican patients (33%) in this study than in the Latino 

populations described above. 3849 + 10kbC→T, a frequent variant in all referenced Latino 

populations, was not found in any patient in our study, which may be due to low frequencies 

in other Hispanic populations (2%–3%). p.Gly542X, one of the most frequent variants in 

Latino populations, was not present at all in Dominicans and observed only in 10% of Puerto 

Rican patients. The unique spectrum of CFTR variants in Dominican and Puerto Rican 

patients may be due to their heterogeneous genetic background, with a higher proportion of 

African ancestry than in Latino populations from the mainland U.S.8 Our findings highlight 

the need for investigating population-specific CFTR variants.
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In this comprehensive genetic analysis of patients with clinically confirmed CF, 81% of 

Puerto Rican patients had disease-causing CFTR variants identified on both chromosomes 

compared with only 10% of the Dominican patients. Over two-thirds of Dominican patients 

had no identifiable variant in CFTR compared with 10% of Puerto Rican patients. We were 

surprised at the high proportion of Dominican patients without any identifiable CFTR 
variants. In contrast, sequencing analysis in other Latino populations with CF have reported 

much higher detection rate (approximately 95%) of CFTR variants.4,26 All the patients 

included in our study had clinical evidence of CFTR dysfunction with symptoms consistent 

with CF and a sweat chloride concentration of greater than 60 mmol/L. Analysis of nasal 

potential difference and functional analysis of the CFTR channel may increase our 

understanding of CFTR function in patients lacking CFTR variants. Other studies have 

described patients with symptoms of CF and elevated sweat chloride concentrations but 

without evidence of CFTR variants.30,31 Patients without 2 CFTR variants in trans may have 

variants in other genes such as the epithelial sodium channel (ENaC) or may have defective 

pathways that lead to CFTR dysfunction.32

We were also surprised that 10% of Dominican and 10% of Puerto Rican patients had 

multiple variants found on only one chromosome (ie, in cis). Genotype phase is not routinely 

analyzed in clinical sequencing of CFTR, so deleterious effects of different variants in cis 
may be more common in the general CF population than currently understood.

Understanding the spectrum and frequency of CFTR variants in diverse populations is 

important for improving CF genetic panels and newborn screening programs. Genetic panels 

and newborn screening programs are generally developed based on variant frequencies 

observed in the White population and have lower sensitivity (ie, higher false negative rate) 

when applied to a Latino population. The American College of Medical Genetics (ACMG)/

American College of Obstetricians and Gynecologists (ACOG)-recommended CFTR 23 

variant panel offered to pregnant women has a 76% detection rate in White patients with CF, 

while the detection rate is only 48% in Latino patients with CF.5,33 The ACOG panel would 

have detected only 7 of the 30 variants that we identified in our study (five variants in 

Dominicans, six variants in Puerto Ricans). Using the ACOG panel in our patients, 73% of 

patients would have no variants identified and 15% would have had only one variant 

identified.

Genetic screens and newborn screens should be sensitive to the target population and include 

the prevalent CFTR variants for all racial and ethnic groups to minimize false negative 

diagnoses. Detection via newborn screening is important as patients diagnosed via newborn 

screen demonstrate improved lung function and nutritional status compared with those not 

detected on a newborn screen.34 In the Illinois newborn screen, for example, Latino infants 

were more likely to have undefined variants and twice as likely to have only one variant 

identified compared to White infants.4 Latino patients have both more rare and novel CFTR 
variants so newborn or genetic screens will always be less effective for Latino patients if 

they do not include sequencing.35,36

CFTR genetic variant identification and functional classification have become increasingly 

valuable not only for CF phenotype prediction but also for identifying those patients who 
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would benefit from CFTR modulator therapies.37 CFTR modulators target specific CFTR 
variants, which occur more frequently in White patients compared with minorities. As a 

result, only a third of Latino patients qualify compared with three-quarters of White patients.
38 This is consistent with our studyʼs findings that only 5 of 82 patients (three Dominicans 

and two Puerto Ricans) were eligible for CFTR modulator pharmacotherapy. Only two of 

the 30 variants we identified were eligible CFTR modulator targets: p.Phe508del and 

p.Arg74Trp. The most common variant in Puerto Rican patients, p.Arg1066Cys, is not 

approved for CFTR modulators. To combat this disparity in access to life-altering 

pharmacogenetic therapies, the first step is to identify CFTR variants in CF populations, as 

we have done in this study, and then to describe the functional implications of the identified 

variants and investigate the protein response to CFTR modulators. The final step is to 

include Latino and other non-Latino non-White patients in clinical trials of CFTR 

modulators, as minorities are underrepresented in the majority of CF pharmacotherapy 

clinical trials.39

In silico prediction algorithms have been used to identify likely disease-contributing CFTR 
variants, but the utility of predictive algorithms is controversial as they cannot differentiate 

between variants that caused severe, moderate, or minimal reduction in CFTR function.40–42 

Our study similarly found inconsistent predictions as the algorithms predicted five variants 

to be deleterious but were annotated by CFTR2 as “non-CF-causing” (Table S1). 

Additionally, we identified three variants that were predicted to be deleterious but were 

removed after manual inspection of the sequencing reads alignment.

Although we sequenced the majority of known patients with CF over 6 years old in both 

Puerto Rico and the Dominican Republic, our study was limited by a small number of 

patients. To fully understand CFTR variants in these populations, a genetic analysis of the 

general population of the Dominican Republic and Puerto Rico is needed. Our study 

identified multiple variants in cis, but our study was not designed to genotype parents to 

confirm genotype phase.

Our study results indicate that the spectrum of CFTR variants in an unstudied CF population 

cannot be inferred from another CF population, even if the racial and ethnic background is 

similar. Genetic panels and even genome sequencing have limitations in identifying CFTR 
variants in Latino patients with CF. Understanding the spectrum of CFTR variants in all 

populations with CF is the first step towards developing effective CF treatment for all 

patients. Studies of cystic fibrosis and pharmacotherapies need to include more racially 

diverse populations to make precision medicine socially precise.
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FIGURE 1. 
Flowchart for assignment of CFTR variant categories. CF, cystic fibrosis
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TABLE 3

Type and frequency of CFTR genotypes

CFTR Genotype Dominican Republic, N (%) Puerto Rico, N (%)

2 CF-disease causing, trans 6 (10%) 17 (81%)

2 CF-disease causing, cis 1 (2%) 1 (5%)

2 VVCC, 1 VUS, cis --- 1 (5%)

1 VUS, 1 predicted, cis 1 (2%) ---

2 Predicted, cis 3 (5%) ---

1 VVCC, 1 VUS, cis 1 (2%) ---

1 CF-causing 1 (2%) ---

1 VVCC 3 (5%) ---

1 VUS 2 (3%) ---

1 Predicted 1 (2%) ---

No variants 42 (69%) 2 (10%)

Note: CFTR variants were categorized using three functional annotation databases as well as three computational tools for predicting 
deleteriousness. Cis and trans describe the relationship between two or more variants; cis refers to variants on the same gene copy while trans 
describes variants on different gene copies.

Abbreviations: CF, cystic fibrosis; VVCC, variant of varying clinical consequence; VUS, variant of uncertain significance.
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