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ABSTRACT OF THE DISSERTATION

T-OPU: An FPGA-based Overlay Processor for Natural Language Processing

by

Yiheng JIAN
Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022
Professor Lei HE, Chair

There has been a rapid development of custom accelerators to speed
up the training and inference of deep neural networks (DNNs) by us-
ing their parallel computing resources. Recently, most accelerators fo-
cused on convolutional neural networks (CNNs), which are composed
of linear functions (matrix multiplication) in convolutional or fully con-
nected layers. There is no publicly available study on accelerating the
transformers. Transformers have achieved great success in many ar-
tificial intelligence fields and attracted lots of interest from academic
and industry researchers. Bidirectional Encoder Representation from
Transformers (BERTs) are the most recent Transformer-based model
that achieves state-of-the-art performance in various Natural Language
Processing (NLP) tasks. Unlike the CNNs, there are numerous nonlin-
ear functions in BERT in softmax, layer normalization, and GELU lay-
ers. In this paper, we propose an FPGA-based accelerator of quantized
BERT for NLP. The accelerator provides the end users with software-
like programmability, which means it does not require hardware re-
configuration when the models are modified or updated. It can achieve
state-of-the-art performance, power, and area (PPA) compared to exist-
ing studies.
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CHAPTER 1

Introduction

1.1 Overview

Transformer is a promising deep learning model that have been widely utilized in natural
language processing (NLP). It is originally introduced to solve the machine translation tasks.
Later research shows representative potential in various tasks. As transformer develops, more
and more researchers join and the application of transformer is rapidly expanding to other fields.
Researchers in computer vision (CV) field utilize transformer in image recognition [DBK] and
object detection [CMS] and achieve about the same results as that of CNN.

Transformer adopts a mechanism named self-attention to replace recurrence used in RNN and
LSTM, which fail to capture long-term dependency in sentence. Its architecture contains various
components, and they could be broadly divided into 2 parts: encoder and decoder.

Bidirectional Encoder Representations from Transformers (BERT) [DCL] is the state-of-the-
art transformer-based model. It is simple encoder representation of transformer and neglect the
decoder. The encoder consists of 2 parts. One of them is self-attention and the other is feed for-
ward neural network. Unlike other transformer variants, BERT is dedicated to learning language
representations. As soon as it introduced, it beat other NLP models and broke the existing results
in 11 NLP tasks.

Field Programmable Gate Arrays (FPGAs) have been demonstrated to be an effective hard-
ware platform to accelerate the training and inference of neural networks. Compared to CPU or
GPU, whose hardware and software are designed independently, FPGAs could be dedicated for
the target algorithms. This enables developers to implement only necessary logic in hardware.
Besides, FPGAs are promising given its full capacity of parallelism in network computation to
achieve low latency and high performance with better energy efficiency.

Current FPGA accelerators are mostly designed for traditional networks, including CNN,
which consists mostly of linear matrix operations like convolution and batch normalization. How-
ever, BERT networks have a unique mix of computations, as nonlinear operations like softmax
and layer normalization are introduced in attention layer in addition to standard matrix multiply
based layers. FPGA accelerator designed for CNN cannot handle transformer or BERT networks.

Most existing accelerators include specialized units for computing each type of nonlinear-
ity. For instance, FTRANS, the only previously published FPGA accelerator for transformers,
includes separate softmax and layer normalization modules. Since NLP is a constantly evolving
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field that may introduce different types of non-linearity, this specialized approach means that an
FPGA design may need reconfiguration for additional NLP networks. It also leads to unnecessary
area overhead and under-utilized resources across nonlinear operations.

1.2 Contribution

In this paper, an FPGA based overlay processor name T-OPU for BERT model inference is
proposed. Unlike most other accelerators, T-OPU employ a common method for approximat-
ing different nonlinear functions efficiently and accurately without added overhead. The main
contributions of our work are as follows:

1. We design a software-programmable domain-specific overlay processor with a matrix mul-
tiply unit and a multi-precision vector unit for NLP processing. We employ a unified piece-
wise polynomial approach for nonlinear function approximation to allow extensibility to
future nonlinear functions that may be required.

2. We demonstrate that our proposed accelerator can meet the real-time latency constraints
for conversational AI while maintaining 4x and 6x lower power than GPUs and CPUs,
respectively. Our design utilizes 3x fewer FPGA resources.

1.3 Outline

This dissertation is organized as follows. The background and related work of this research is
presented in Chapter 2. The architecture of our implementation is present in Chapter 3. Chapter
4 present the experiment design and results. Finally, conclusions and future work are given in
Chapter 5.

2



CHAPTER 2

Background and related work

In this chapter, the background for T-OPU is presented. We first introduce the structure of
BERT, then discuss the development of FPGA accelerators. After that, FPGA accelerators de-
signed for BERT will be presented.

2.1 Transformer

2.1.1 Vaswani Transformer

Transformer, first introduced by Vanilla[VSP], is a sequence-to-sequence model and consists
of an encoder and a decoder. Each encoder consists of Multi-head self-attention, feed-forward
network, positional encoding, and embedding layers. The output of the encoder is connected to
the decoder. The decoder structure of the transformer consists of output embedding, positional
encoding, decoder layers (masked multi-head attention, multi-head attention, feed-forward). To-
gether, these work as a transformer. Self-attention mechanism solves perfectly the problem of
long-term dependency. It is not restricted to a fixed structure like RNN or troubled by limited by
the size of receptive fields in CNN.

2.1.2 BERT

BERT[DCL] stands for Bidirectional Encoder Representation from Transformers. It is a lan-
guage model learning representations with transformer by representing the relationships of the
words in a language. Compared to Vaswani transformer, BERT is only an encoder, which is
similar to that of original transformer. In the architecture of BERT, all recurrence is replaced by
attention and feed-forward layers.

The structure of BERT is composed of Embedding layer, transformer-encoder layer, and out-
put layer. The input is obtained by summing the three types of features: token embedding, seg-
ment embedding, and position embedding. The transformer-encoder layer is the key component
of BERT. It is composed of N identical encoding layers. In Vaswani paper, N is set to 6. An en-
coding layer has 2 sub-layers: multi-head self-attention module and fully connected feed-forward
network. These 2 sub-layers are connected by a residual layer followed by a layer normalization
layer. In this way, the output of the sub-layer could be described as:
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sub-layer = LayerNorm(x+ sub-layer(x)) (2.1)

Given the Query Q, Key K, and Value V , the multi-head attention could be described as:

Attention(Q,K,V ) = Softmax
(QKT

√
dk

)
V (2.2)

Our implementation focuses on BERTBASE, which is based on stacked layers of encoders.
It contains 12 encoder layers and each has 12 attention heads and a hidden layer of 768. The
structure of

Figure 2.1: Architecture of BERTBASE

BERTBASE is shown in figure 2.1. The model starts with an embedding layer that converts
input language into features. An input language sequence of 512 tokens will be converted into a
512 × 768 matrix. Each token will be converted by a 768-length vector.

The embedding layer is followed by 12 encoders, each of which performs 4 operations: multi-
headed self-attention, layer normalization, feed-forward layers, and layer normalization. Those
operations could be decomposed into 4 computation units: matrix multiplication, softmax, layer
normalization, and GELU.

2.2 FPGA Accelerator

2.2.1 FPGA

Field programmable gate arrays (FPGAs) [KTR] are semiconductor devices that can be re-
configured by users even after manufacturing. It emerges as a semi-custom circuit in the field of
application-specific integrated circuits (ASICs). An FPGA consists of a matrix of configurable
logic blocks (CLBs) connected by programmable interconnections. The combination logic is
implemented by small lookup tables (LUTs). Each lookup table is connect to the input of a D
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flip-flop, which in turn drives other logic circuits or drives I/O. This constitutes a basic logic cell
module that can implement both combination and timing logic functions. The logic of the FPGA
is implemented by loading programming data into the internal static memory cells. The values
stored in the memory cells determine the logic functions of the logic cells and the way modules
are connected to each other.

In comparison to ASICs, FPGAs have lower performance, energy efficiency, and higher la-
tency. For the same logic, the implementation of FPGAs requires a much larger area than that of
ASICs. Despite these disadvantages, FPGAs still provide a compelling alternative to ASICs. Due
to the programmability and abundant hardware resources, the development cycles of FPGAs is
shorter than that of ASICs. The developers can implement their algorithms rapidly with provided
logic cells, multipliers, and on-chip memory. In addition, the capability of reconfiguration enables
users to update the hardware design when algorithms develop.

2.2.2 FPGA accelerator for neural network

Massively parallel processing, distributed storage, and elastic topology are 3 of the neural
network characteristics. Neural networks have natural parallelism, which is determined by their
structural features. Each neuron can perform independent operations and processing based on
the received information and output the result. Different neurons in the same layer can perform
operations simultaneously and then transmit to the next layer for processing. This means that
neural networks can take full advantage of parallelism. The networks store the information in the
adjusted values of each weight. During the training and inference process of neural networks, the
processors need to read and write massive intermediate data from and to storage frequently.

Based on above information, CPUs of Von Neumann architecture are not the best solution for
deep learning. Although general purpose processors are easy to program, they have to execute
instructions in sequence and cannot take full advantage of the parallelism of neural networks. In
addition, a lot of time is wasted in analyzing instructions, reading out and writing data. GPUs pro-
vide an alternative platform to accelerate the deep learning by offering flexible frameworks and
highly programming interfaces. The frameworks are specially optimized for deep learning algo-
rithms so that they can run in full parallel. The programming interfaces and compatible API allow
developers to implement their algorithms with their preferred languages including C, python, and
matlab. But, the high-energy consumption make it hard for GPUs to deploy on edge side.

FPGA is becoming an effective solution for deep learning algorithm acceleration and widely
adopted to accelerate the training and inference process of neural network model. Unlike general
processors like CPUs and GPUs, FPGA accelerators are dedicated for neural networks. Because
they are required to support one or a series of algorithms, FPGAs only need to implement neces-
sary logic. By eliminating redundant logic, FPGA accelerators can achieve high-performance and
low latency with better energy efficiency.
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Figure 2.2: A typical structure of an FPGA-based NN accelerator [GZY]

A typical structure of an FPGA-based NN accelerator is shown in figure 2.2. The system
usually consists of Host part and FPGA part. The host and FPGA could be connected through
PCIe, Ethernet, and even USB. Both host and FPGA have external memory to store the model and
kernel data. In general, the FPGA will handle the training or inference of the neural network and
the host will serve to control the FPGA with software.

A domain-specific FPGA overlay processor named OPU [YWZ] is proposed to accelerate
CNN networks. On the host side, a compiler is built to compile the deep learning model of
popular framework like tensorflow and pytorch into executable instructions that could be decoded
by OPU. The generated instructions along with model kernel data will be sent to and executed by
OPU. By re-compiling switched or updated models, the OPU can accelerate different networks
without reconfiguration.
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Figure 2.3: Architecture of OPU

The overview architecture of OPU is shown in figure 2.3. It can be decomposed into 6 main
modules and 4 storage buffers. This paper demonstrates that OPU can achieve 2.9x faster com-
pared with Jetson Tx2, which has a similar amount of computing resources.

7



CHAPTER 3

Architecture

3.1 ACCELERATOR ARCHITECTURE

In this section, the overall architecture of T-OPU is presented. T-OPU is consisted of data fetch
unit, Matrix Multiply Unit (MMU), output control unit, Nonlinear Vector Memory (NVM) unit,
and Nonlinear Vector (NV) unit. Among these units, MMU and output control unit are adopted
from OPU. Figure 3.1 shows the architecture of the accelerator. In this picture, blue represents
compute units and green for memory.

Figure 3.1: Overview architecture

3.2 Matrix Multiplier Unit

Our implementation of the matrix multiplication unit is shown in figure 3.2. It is composed of
a process unit (PE) array and an adder tree, followed by a register array to store the result.

8



Figure 3.2: Architecture of Matrix Multiplication Unit

Among the PE array, each PE contains a multiplier with large bit-width input. With different
data arrangement, a PE could support multiplication between different bit-width data. Assume
the data width of input feature map and kernel is 8-bit, then a PE could handle the multiplication
between 1 input feature map and 2 kernel data at the same time by concatenating 2 kernel data
together. When we are processing NLP tasks, the data width is usually 16-bit. So, 1 PE unit can
only handle the multiplication between 1 input feature map and kernel data. In our implementation
of T-OPU, the supported data width choices include 4, 8, and 16-bit.

The MMU also supports multiple channel counters by limiting the depth of the adder tree.
The outputs number choices include 64, 32, 16, 8, 4, and 2. This allows the computation unit to
flexibly fit into the needs of different combination of input-output channels. Assume the number
of input channel is 1024, the number of output channel should be 32 if it interrupts at the 5th layer
of adder tree.

3.3 Architecture of Memory

Bandwidth is one of the critical issues that limit accelerator overall performance. To solve
the data congestion and improve bandwidth, a ping-pong structure-based caching memory named
NVU memory (NMEM) is adopted between the output control module and NVU to hide off-chip
latency. It is implemented using single-port BRAMs on FPGA. While one of the buffer’s data is
being fetched by the NVU, the other buffer could get refilled and updated by the output control
module. In this way, the maximum bandwidth utilization could be maintained.
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3.4 Nonlinear Vector Unit (NVU) Architecture

The nonlinear vector unit is a critical component of our T-OPU. It implements non-linear
function computation including softmax, layer normalization, and GELU with minimal resource.
To support different scale of BERT model, our architecture is flexible enough. As shown in
figure 3.3, the input data fed in will be first stored in the input buffer. After data transmission is
completed, the data in input buffer will be loaded into vector compute unit for nonlinear function
computation.

Figure 3.3: Architecture of NVU

To support different scales of BERT model, we adopt a piecewise architecture for input buffer.
The data will come in package by package. Each package contains 32 numbers and the maximum
capacity of the cache is 8 packages, which is 256 numbers. The input data length could range
from 1 to 256, which is flexible for different models. Assume that the length of data from output
control unit is 128, the data will be fully received in 4 cycles and the rest of memory will be filled
with 0.

3.4.1 Softmax

The softmax function is a normalized exponential function. It always serves to be the last
activation function in DNNs. Since it contributes little to run time of the inference process, little
attention has been given to it. In our OPU, the softmax layer is processed on host side by software.
However, as the transformer become more and more important, the infection of softmax can no
longer be ignored. A transformer layer consists of a multi-headed self-attention block and a feed
forward block. The softmax unit is performed nearly in every transformer layer.
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P (y = j|x) =
ex

Twj∑K
k=1 e

xTwk
(3.1)

As shown in eq 3.1, the softmax function converts the input data into a vector of probabilities.
To implement a softmax function, several operations including exponential, accumulator, and
division are required. The softmax module is composed of 1 input buffer and 5 compute unit
including maximum, subtraction, exponential, accumulator, and division. The data loaded from
the input buffer will be sent through each compute unit in sequence.

To implement an exponential function with minimum hardware resources, we approximate it
with a segmentation function. The function could be described as eq 3.2.

Exp(x) =



0 x < −6.2383

0.0156(x+ 6.2383) + 0.002 −6.2383 ≤ x < −3

0.0859(x+ 3) + 0.0488 −3 ≤ x < 2

0.2324(x+ 2) + 0.1348 −2 ≤ x < −1

0.6328(x+ 1) + 0.3672 −1 ≤ x

(3.2)

The curves of accurate function and approximate function are plotted in figure 3.4. As shown
in the picture, the difference between accurate and approximate function is subtle. In this way,
the nonlinear exponential function is replaced by a linear function with comparator, subtraction,
addition, and constant multiplication. It takes 3 cycles to complete the computation.

Figure 3.4: Approximate and accurate curve of exponential
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3.4.2 Layer Normalization

Layer normalization function is widely used in transformer network. Unlike batch normaliza-
tion, it is calculated across the feature dimension for each element and instance independently. It
could be expressed as Eq. 3.3

µl =
1

H

H∑
i=1

ali

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2

x̂i,k =
xi,k − µi√

σ2
i

(3.3)

In eq 3.3, H represents the number of hidden elements in a layer and l is the short of the word
”layer”. The layer normalization calculates the standard variance of 1 layer data and the process
could be divided into several parts including mean, subtraction, square, and square root.

To implement the standard variance with limited resources, a continuous piecewise linear ap-
proximation is adopted. We use a partial segmentation method to describe the non-linear function.
The evaluation of it could be described as algorithm 1.

Algorithm 1: Continuous piecewise linear approximation method
Data: X = [x0, x1, · · · , xn]
Input: x
Output: v(x)

1 xi−1 ≤ x < xi ;
2 δ = (x− xi−1)/(xi − xi−1) ;
3 v(x) ≈ (1− δ)v(xi−1) + δv(xi)

On a CPU or GPU, this operation may take couples of instructions, while it only take 4 cy-
cles. Although piecewise linear approximation is not always accurate enough, by limiting the
fixed point input and subsequent denormalization of the output, it could keep accurate with a few
segments.
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Figure 3.5: Approximate and accurate curve of inverse of square root

We implement a 7 segments approximation and the comparison with accurate function is
shown in figure 3.5. Through the figure, we could find that the approximation curve is close
to the accurate curve.

3.4.3 GELU

The Gaussian Error Linear Unit, or GELU, is an activation function. Different from ReLU,
the GELU function weights inputs by their percentile.

The GELU function is defined by the following equation:

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1

2
[1 + erf(x/

√
2)] (3.4)

In eq 3.4, erf is the short of error function. It is commonly to approximate the GELU with eq
3.5.

GELU(x) = 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)]) (3.5)

To make hardware implementation easier without accuracy loss, a segmentation function.
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GELU(x) =



0 x < −3

−0.0773(x+ 3)− 0.004 −3 ≤ x < −1

0.1587(x+ 1)− 0.1587) −1 ≤ x < 0

0.8413x 0 ≤ x < 1

1.0773(x− 1) + 0.8413) 1 ≤ x < 3

x 3 ≤ x

(3.6)

The curves of accurate gelu function and approximate gelu function are plotted in figure 3.6.
Through the figure, we could find that approximate function curve is similar to actual function
curve, which proves that the approximation is effective.

Figure 3.6: The plot of theory gelu function and approximated gelu function
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CHAPTER 4

Evaluation

We implement T-OPU at 200MHz on the Xilinx Zynq Z-7100 FPGA, which has 2,020 DSP
slices, 26.5 Mb RAM, and 277k LUTs. We examine FPGA utilization for each NVU variant sep-
arately, then show overall FPGA utilization of each of the six resulting T-OPU configurations. We
calculate software-simulated inference times for BERT for these six configurations and compare
them to the corresponding NVU-2048 reference inference time. Finally, we evaluate T-OPU’s
performance on BERT inference relative to other implementations’.

4.1 FPGA utilization

In Table 4.1, we individually show the FPGA utilization results for several components of the
NVU: the NVU memory (NMEM), the vector register file (VRF), and the compute units (VCU
and SCU). Then, in Table 4.2, we give the cumulative FPGA resource utilization for T-OPU using
each NVU variant, both for 8-bit and 16-bit T-OPU.

Table 4.1: Overall FPGA resource Utilization on Zynq Z-7100 for T-OPU with 8-bit and 16-bit
MMU with NVU-256, NVU-512, and NVU-1024

MMU VRWIDTH LUT FF DSP Slices BRAM
8-bit NVU-256 165776 (59.76%) 341151 (61.49%) 1994 (98.71%) 345 (45.70%)
8-bit NVU-512 175701 (63.33%) 344385 (62.07%) 2002 (99.10%) 353 (46.75%)
8-bit NVU-1024 192448 (69.37%) 351061 (63.28%) 2018 (99.90%) 369 (48.87%)
16-bit NVU-256 129231 (46.59%) 250738 (45.19%) 1995 (98.76%) 502.5 (66.56%)
16-bit NVU-512 139156 (50.16%) 253972 (45.78%) 2003 (99.16%) 510.5 (67.61%)
16-bit NVU-1024 155903 (56.20%) 260648 (46.98%) 2019 (99.95%) 526.5 (69.73%)

From these results, we see that all the NVU variants are small relative to the overall T-OPU
design. Even NVU-1024 uses less than three percent of overall flip-flop, DSP slice, and BRAM
resources each. The larger NVU do use 7-15% of the overall LUT resources, much of which is
due to the muxes required for shifting. Despite this, the overall design still has many LUTs left
over.
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Table 4.2: FPGA Resource Utilization for components of NVU-256, NVU-512, and NVU-1024
on Zynq-7100

Module VRWIDTH LUT FF DSP Slices BRAM F7 Mux F8 Mux
NMEM NVU-256 776 (0.28%) 1234 (0.22%) 0 4 0 0
VRF NVU-256 156 (0.06%) 513 (0.09%) 0 4 0 0
VCU+SCU NVU-256 10328 (3.72%) 1753 (0.32%) 8 (0.4%) 0 3 (<0.01%) 0
Total NVU-256 11260 (4.06%) 3500 (0.63%) 8 (0.4%) 8 (1.06%) 3 (<0.01%) 0
NMEM NVU-512 1330 (0.48%) 2268 (0.41%) 0 8 (1.06%) 0 0
VRF NVU-512 306 (0.11%) 1025 (0.18%) 0 8 (1.06%) 0 0
VCU+SCU NVU-512 19549 (7.05%) 3441 (0.62%) 16 (0.79%) 0 12 (<0.01%) 5 (<0.01%)
Total NVU-512 21185 (7.64%) 6734 (1.21%) 16(0.79%) 16 (2.1%) 12 (<-0.01%) 5 (<0.01%)
NMEM NVU-1024 2902 (1.05%) 4377 (0.79%) 0 16 (2.1%) 350 (0.25%) 0
VRF NVU-1024 607 (0.22%) 2049 (0.37%) 0 16 (2.1%) 0 0
VCU/SCU NVU-1024 34423 (12.41%) 6984 (1.26%) 32 (1.58%) 0 37 (0.03%) 5 (<0.01%)
Total NVU-1024 37932 (13.67%) 13410 (2.42%) 32 (1.58%) 32 (4.2%) 387 (0.28%) 5 (<0.01%)

4.2 Inference time

The system simulation gives a cycle count estimate for a single inference of BERTBASE,
which can be used to determine inference time given the operating clock speed. The relative
inference times of T-OPU with 16-bit MMU and NVU-256, NVU-512, and NVU-1024 are com-
pared to inference time with NVU-2048. For T-OPU with 16-bit MMU, NVU-2048 gives the
ideal inference time because it always exceeds the MMU throughput.

Figure 4.1: BERT inference time percent overhead using T-OPU with 16-bit MMU for different
sequence lengths and NVU variants. Overhead is relative to the minimum time using NVU-2048

Figure 4.1 shows the percent inference time overhead of NVU of different for T-OPU with 16-
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bit MMU. We see that in all cases, GELU does not add latency overhead for any sequence length.
Overall, NVU-1024 has very little overhead compared to the baseline case. The small difference
is because layer normalization throughput is slightly lower than that which is needed to match the
MMU. For smaller sequence lengths, NVU-1024 adds less than 1% latency overhead, NVU-512
adds around 10%, and NVU-256 adds about 30%. Depending on the use case, these overheads
may be acceptable given the reduced area costs. For higher sequence lengths, NVU-256 begins to
show huge overheads of 53% and 97%. Note that inference time overhead alone is not the only
criteria that should be used to evaluate these options. Even larger overheads may be acceptable,
as long as the overall inference time including overhead is within the target for conversational AI.
For this reason, the actual inference time is compared below.

Figure 4.2: BERT inference time (in ms) with different NVU widths and sequence lengths.
Results are shown separately for T-OPU with 8-bit and 16-bit matrix multiplies

The BERT inference time for T-OPU with 16-bit and 8-bit MMUs with each is shown in Figure
4.2. We see that T-OPU with 8-bit MMU can achieve sub-10 ms inference time with sequence
length of 64 even with NVU-512, but that the inference time increases proportionally as sequence
length increases. For typical applications, a sequence length of 64 is sufficient. For conversational
AI, we require within 10-15 ms inference time, which we can clearly surpass with NVU-512 and
NVU-1024 for both 8 and 16-bit.

4.3 Comparison with CPU, GPU, and FPGA

The authors of the FTRANS transformer FPGA accelerator [17] provide inference benchmarks
by running RoBERTa, an optimized version of BERT with the same model architecture but trained
more thoroughly. Since BERT and RoBERTa have the same architecture, we can compare our
BERT accelerator’s inference times with their RoBERTa benchmarks. We compare with our T-
OPU with 16-bit and 8-bit MMUs with NVU-1024 on the Zynq Z-7100. The devices used in the
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benchmark are an i7-8700k CPU, an RTX 5000 GPU, and an Ultrascale+ VCU118 FPGA (for
FTRANS). The RTX 5000 has 1.52× more compute units than our Zynq FPGA and runs at 8.1×
higher clock frequency. The VCU118 has 6,840 DSP slices and 2,586k logic cells (3.39× the DSP
slices and 5.82× the logic cells on our board). The inference times and relative latencies are shown
in Table 4.3. We also give the approximate power consumption of each device.

Table 4.3: Throughput (inference/sec) of NPE with NVU-1024 compared with CPU (i7-8700k),
GPU (RTX 5000), and FPGA (VCU118). We also give relative throughput compared to

FTRANS, throughput per DSP slice relative to FTRANS (for FPGA implementations), and
approximate power consumption

i7-8700k RTX5000 FIRANS T-OPU (16-bit) T-OPU (8-bit)
Throughput 3.76 57.46 101.79 73.69 135.14
Relative Speedup 0.037x 0.56x 1x (baseline) 0.72x 1.33x
DSP Slices Utilized - - 6,840 2,020 2,020
Throughput per DSP - - 0.0148 (1x) 0.0365 (2.5x) 0.0669 (4.5)
Approximate Power (W) 80 120 25 20 20

From the results, we see that the CPU is far too slow for conversational AI. While the RTX
5000 GPU gets close, it does not meet the conversational AI latency targets. However, with a
larger or more optimized GPU it could meet these requirements, albeit with much higher power
consumption. Both FTRANS and T-OPU implementations stay within the range needed for con-
versational AI.

4.4 Comparison with CPU, GPU, and FPGA

The authors of the FTRANS transformer FPGA accelerator [17] provide inference benchmarks
by running RoBERTa, an optimized version of BERT with the same model architecture but trained
more thoroughly. Since BERT and RoBERTa have the same architecture, we can compare our
BERT accelerator’s inference times with their RoBERTa benchmarks. We compare with our T-
OPU with 16-bit and 8-bit MMUs with NVU-1024 on the Zynq Z-7100. The devices used in the
benchmark are an i7-8700k CPU, an RTX 5000 GPU, and an Ultrascale+ VCU118 FPGA (for
FTRANS). The RTX 5000 has 1.52× more compute units than our Zynq FPGA and runs at 8.1×
higher clock frequency. The VCU118 has 6,840 DSP slices and 2,586k logic cells (3.39× the DSP
slices and 5.82× the logic cells on our board). The inference times and relative latencies are shown
in Table ??. We also give the approximate power consumption of each device.
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4.5 Benchmarks Discussion

The biggest benefit of an FPGA implementation of BERT over CPU and GPU is with power
consumption. From Table ??, we see about a 4× power benefit over CPU and 6× over GPU. This
difference in power consumption is especially important for NLP processing on edge devices.
While FTRANS and T-OPU both have comparable performance and power, FTRANS uses over
3× more resources than T-OPU since it uses a much larger FPGA. We attribute some difference
in resource consumption to the fact that FTRANS uses specialized modules for each transformer
and each nonlinearity, which leads to additional area and under-utilized components.

In this paper, we propose T-OPU, an FPGA-based overlay processor that is domain-specialized
for Natural Language Processing. T-OPU offers software-like programmability and provides a
unified framework to process arbitrarily complex nonlinear functions. If a new state-of-the-art
NLP model were to surpass transformers in the coming years, T-OPU is most likely flexible
enough to adapt to it without requiring reconfiguring the FPGA accelerator or adding specialized
processing modules. T-OPU can also meet the inference latency requirements for conversational
AI for the BERT language model. Relative to CPU and GPU, T-OPU has 4× and 6× lower power
consumption respectively. Our accelerator shows comparable performance to a transformer model
specialized FPGA accelerator, but T-OPU uses 3× lower FPGA resources. Overall, we find that
T-OPU is a promising solution for low-cost and low-power NLP network inference at the edge.
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CHAPTER 5

Conclusion

In this paper, we propose T-OPU, an FPGA-based overlay processor that is domain-specialized
for Natural Language Processing. T-OPU offers software-like programmability and provides a
unified framework to process arbitrarily complex nonlinear functions. If a new state-of-the-art
NLP model were to surpass transformers in the coming years, T-OPU is most likely flexible
enough to adapt to it without requiring reconfiguring the FPGA accelerator or adding specialized
processing modules. T-OPU can also meet the inference latency requirements for conversational
AI for the BERT language model. Relative to CPU and GPU, T-OPU has 4× and 6× lower power
consumption respectively. Our accelerator shows comparable performance to a transformer model
specialized FPGA accelerator, but T-OPU uses 3× lower FPGA resources. Overall, we find that
T-OPU is a promising solution for low-cost and low-power NLP network inference at the edge.
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