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Abstract

Mixed signal control techniques for Optical Frequency Synthesis

by

Akshar Jain

Beginning from their bulky and power-hungry implementations in the early 20th cen-

tury, microwave synthesizers have now progressed to occupying nearly every aspect of our

lives. Despite initially finding a place only in military and fringe scientific applications,

these synthesizers can now be found, in some shape or form, in every electronic device

we use.

Optical frequency synthesizers (OFS) find applications in the field of metrology,

molecular spectroscopy, navigation, optical communication, and LiDAR. These synthe-

sizers have the same technological disrupt potential that microwave synthesizers did in

the previous century, however, most demonstrations of frequency synthesizers often in-

volve unwieldy implementations that reside on expensive optical benches and consume

several Watts of power.

To increase their applicability, it is important to reduce their Size, Weight and Power

consumption (SWaP). Silicon Photonics technology, which is compatible with Comple-

mentary Metal Oxide Semiconductor (CMOS) foundry processes, offers a viable solution

to this problem of integration and mass production; however, miniaturizing these devices

also makes them prone to fabrication variation and environmental fluctuations during

operation.

This works focuses on the challenges faced during the design and implementation of

the electronics required to stabilize and control these intricate systems, and discusses

three specific implementations of OFS that involve varying degrees of integration. It first

vii



presents a Printed Circuit Board (PCB) prototype that demonstrates laser frequency

synthesis with parts-per-trillion stability. It then two Application Specific Integrated

Circuits (ASICs) designed in 130nm and 55nm CMOS processes, that attempt to tackle

the SWaP limitations of the board level prototype. Finally, it discusses the difficulties

that arise during the design and fabrication of these ASICs, and addresses the challenges

faced during the testing of these circuits in conjunction with complex optical systems

to achieve synthesis. Hardware and software solutions are presented at every level of

the system – beginning from the PCBs that house these ASICs, continuing through

the Digital Signal Processing (DSP) implemented on Field Programmable Gate Arrays

(FPGA) and finally to the Graphical User Interface (GUI) designed to make interfacing

with these systems easier.

The final part of this research then shifts focus to an alternative and novel method

of OFS that attempts to relatively stabilize two laser systems with offsets up to THz

in frequency, without the use of high-speed electronics. A board level prototype of

this system achieves this feat, accompanied by a software interface that allows turn key

operation of this system, enabling production of arbitrary microwave frequency signals

with the click of a button.
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Chapter 1

Optical Frequency Synthesis

1.1 Introduction

Few technological advancements have been as beneficial and disruptive to all aspects

of our daily lives as the ones ushered in by the development of microwave frequency (1GHz

to 1000GHz) synthesizers in the 1940s. These synthesizers can vary in size ranging from

a tiny integrated circuit (IC) used in mobile devices to full rack-mountable electronic

systems. Initially restricted to military applications, such as Radio detection and ranging

(Radar) and for communication, these systems are now omnipresent in our world - from

radios to bluetooth and WiFi devices. And with further deployment of “5G” technologies

and the Internet of Things (IoTs), they will only increase in number.

Despite the complexities involved in implementing these systems, they can be ab-

stracted to look like simple control systems with negative feedback as shown in Figure

1.1. We encounter control systems of this nature constantly in our everyday lives. Take

for instance a car’s cruise control setting. Relating this example to the blocks in Figure

1.1, at the center of the system is the plant - the car. The output of interest for this

plant is the car’s speed. This speed is compared against a reference: the target speed.
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Optical Frequency Synthesis Chapter 1

This difference or error is fed to the loop’s filter, the computer in the car, which responds

to the measured difference in speed and controls the accelerator or brakes accordingly.

Now, if this was a driver controlling the speed instead of relying on the cruise control,

they would be the filter and their reaction speed would be the time constant associated

with this filter. The “negative” part of the negative feedback loop comes from the fact

that the filter responds negatively to the difference in measured speed to the target speed

- when the car is above the target speed - it slows down and vice versa, when it is below

the target speed - it speed ups. In this discussion, the astute reader will notice that

the block labelled β was skipped over. β is commonly referred to as the feedback factor

and is the fraction of the output signal that is referred back to the error block. In this

example, β = 1, meaning the speedometer would show the actual speed of the car.

Figure 1.1: Generic Feedback system

Taking this example forward, let us look at the microwave frequency synthesizer

shown in Figure 1.2. Synthesizers like this can be found in FM/AM tuners, or in phones

and computers where they produce the clock signal for their processors. In this example,

our plant is a voltage controlled oscillator (VCO). Oscillators are electronic devices that

produce an electrical output that varies periodically with time. In this case, just like

a car’s accelerator and brake control its speed, the oscillator’s output period (or its

2



Optical Frequency Synthesis Chapter 1

frequency, which is mathematically the inverse of its period) can be changed using a

control voltage. The reference for the synthesizer here is typically a quartz crystal or

even an ultra pure Radio Frequency (RF) signal generated by a Cesium clock [1]. These

sources are chosen as the reference for the frequency synthesizer because of their spectral

purity, and how stable and periodic these clock sources can be (the Cesium fountain

atomic clock in [1] had an uncertainty about 1 × 10−15 in the year 2000, but as of the

year 2013, the uncertainty has been reduced to 3×10−16, meaning it will take more than

a 100 million years for it to gain or lose a second!). Unfortunately, the trade off made

for their purity is that they also have a fixed output frequency (in the order of 10s of

MHz). Synthesizer oscillators need to oscillate with frequencies much higher than that

(FM broadcasting stations in America are assigned to 101 channels, designated from 87.9

to 107.9 MHz and the clock frequencies in processors are in excess of a GHz). This is

where the feedback factor β comes into the picture. As shown in Figure 1.2, a divider is

used that divides the output frequency of the oscillator by a factor N which then brings

the frequency down to a value comparable to the reference frequency. Once the loop

has settled and reached a steady state (presuming everything worked correctly and in a

timely fashion), the output frequency will be an exact multiple of the reference frequency

by a factor N (FOUT = N.FREF ). By changing the divide value - N , the output frequency

of the loop can be changed. This is why these loops are called synthesizers, by changing

N , different frequencies can be synthesized.

Apart from making sure that the output frequency is a multiple of the reference, these

loops carry out another very important function. As mentioned earlier, the references

chosen for these systems are highly periodic and do not lose time over several years.

The VCO on the other hand is highly susceptible to noise sources (partly owing to its

tunability). Because of negative feedback, the loop can correct these frequency errors and

attempt to make the loop’s oscillator oscillate as perfectly as the reference. However, the

3
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ref(t)

div(t)

out(t)

Analog 

Loop 

Filter

Divider

(÷N)

VCO

v(t)e(t)

Phase

detect
+

- Fout = N.Fref

Figure 1.2: Generic Phase Locked Loop

amount of noise the loop can filter is limited by its response time and so, the output can

never be as pure as the reference. Since the loop only can correct errors that are slower

than its response time, errors that are too fast cannot be corrected (a more advanced

reader will recognize this as the loop’s bandwidth).

The synthesizers similar to the one shown in Figure 1.2 are referred to as “Phase

Locked Loops” (PLLs), since the quantity measured by the difference block shown in the

figure is the phase difference. In a PLL, an error signal is produced by measuring the

phase difference between the reference and the feedback signal and then fed to the loop

filter. Thus, when the loop has settled, the two phases are “locked” to each other and

thus, move together.

Optical frequency synthesizers (OFS) have the potential to create a technological

revolution in the same way microwave synthesizers did in the 20th century. They can be

applied in the fields of metrology [2, 3, 4, 5], spectroscopy [6, 7, 8], navigation [9, 10],

microwave photonics, and precision LiDAR [11, 12, 13]. Here, instead of the frequency of

an electrical output, the output of interest is that of a laser. For all the applications listed

in this manuscript, the lasers being used have a wavelength in the C-band (λ ≈ 1550 nm

and f = ∼193THz)

4



Optical Frequency Synthesis Chapter 1

Traditional electronics are only capable of processing signals up to few 10s of GHz

and so, the same method of frequency division that was used in the case of a PLL cannot

be used to bring the laser’s frequency down to the order of a few MHz. Thus, the most

demanding part of an optical frequency synthesizer is this “link” between the optical and

microwave domain. Several efforts were made in the 1960’s by Javan et al. to multiply

the microwave frequencies up using several non linear devices (diodes for a few THz and

then nonlinear crystals for 100s of THz). These devices, however, as one would expect,

were highly unreliable and quite bulky. Research interests in the early 1990s then shifted

to dividing the output frequency of the lasers (similar to PLLs) using higher-order optical

non-linearities. The real breakthrough in this field came in the late 90s when the Hänsch

group demonstrated stable Ti:sapphire mode-locked lasers for metrology applications.

These mode-locked lasers could produce “Optical Frequency Combs” that would finally

provide the missing link. Deeper discussions about how frequency combs operate and

can be produced [14] are beyond the scope of this manuscript, but the next section will

briefly discuss what an optical frequency comb is and how they can be used to finally

solve the problem of dealing with frequencies that are ∼193THz. There have been several

demonstrations of OFS using frequency combs, and some have even gone to the extent of

demonstrating synthesis at the chip scale on both native III-V and heterogeneous silicon

platforms.

Optical Frequency Combs

An optical frequency comb is an optical spectrum of equally spaced lines in the

frequency domain (shown in Figure 1.3) that often spans several THz. Each “comb” line

can be thought of as a source of laser light located at a fixed distance from its neighbors.

This distance is called the repetition rate of the comb, fr. The frequency of the nth comb

line can be given by the formula:

5
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fn = f0 + n.fr (1.1)

f0
frIn

te
n

si
ty

Frequency

f0
frIn

te
n

si
ty

Frequency

Figure 1.3: Optical Frequency Comb

where the term f0 is known as the carrier envelope offset frequency (this may also

be referred to as fceo). The source of this offset frequency is beyond the scope of this

discussion, however, there are several ways to calculate this offset frequency.

Before moving forward, a refresher on the concept of “heterodyning” is necessary. A

heterodyne (often called a “beat note”) is a signal frequency created by a process called

heterodyning. In most applications, this process involves mixing two signal frequencies

f1 and f2 such that the output of the mixer contains two signals - one containing the

sum of the individual frequencies f1 + f2 and the other containing the difference f1− f2.

These mixers are usually followed by a filter that filters out the higher frequency term

and leaving only the difference.

Now, if the span of the comb is more than an octave (the highest comb line has a

frequency greater than twice the smallest frequency), this offset can be calculated using

a non-linear device called a Second Harmonic Generator (SHG). An SHG, as the name

6
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suggests, doubles the frequency of the optical signal at its input. Once the second har-

monic of the frequency comb has been attained, an optical heterodyne can be performed

on it with the original frequency comb. This procedure is illustrated in Figure 1.4, where

the resulting beat note’s frequency is given below [5]:

fbeat = f2 − f1 (1.2)

= (n2fr + f0)− 2 ∗ (n1fr + f0) (1.3)

= (n2 − 2 ∗ n1)fr + f0 (1.4)

= f0 (for n2 = 2 ∗ n1) (1.5)

And so, the offset frequency fceo or f0 can be directly calculated from the beat note

[15] [16]. Once the offset frequency has been found, the value of each of the variables in

Equation (1.1) is known and the frequency of each comb tooth can be precisely calculated.

Apart from measuring f0, a substantial amount of work has been done to lock this offset

frequency to a microwave source and even to completely remove this offset frequency.

{ {f1 = n1 fr + f0 f2 = n2 fr + f0

fdouble = 2*(n1 fr + f0 )

f0
fr

beat frequency = f0

for n2 = 2*n1

SHG

Figure 1.4: Illustration of f0 calculation using f − 2f generation with an SHG

So how does this frequency comb and the precise knowledge of the frequency of each

comb tooth help us bring our tunable laser’s frequency down to the microwave regime?

7
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The answer is heterodyning, the technique introduced in the previous section. If a tunable

laser is optically heterodyned with a frequency comb and the frequency difference between

the laser and its nearest comb tooth is within the microwave regime, the instantaneous

frequency of the laser is calculable. This frequency can be given by the formula below:

flaser = f0 + n.fr + fbeat (1.6)

For Equation (1.6) to work, n needs to be known, i.e. what comb line the tunable

laser is close to. This can be easily achieved by generating a tuning map (Look up table)

for the laser and by having a rough idea of the laser’s frequency.

In this manuscript, Chapter 2 and Chapter 3 are dedicated to discussing two particular

hardware architectures that process the beat note resulting from the heterodyne mix of

the tunable laser and the frequency comb and use it to “lock” the laser’s instantaneous

frequency.

Wavemeter based frequency generation

While OFS with frequency combs demonstrates incredibly impressive performance,

it still involves the use of expensive lab instrumentation and high speed electronics. If

there were applications that did not require a laser to possess absolute stability but

rather wished to have two lasers locked to each other with offsets of more than 100s of

GHz, it would be inefficient to lock both these lasers to comb teeth. At the same time,

simply processing the beat note of these lasers directly would once again be obstructed

by the speed limitations of conventional electronics. The solution to this problem has

actually been available since the late 19th century, and is given by the field of optical

interferometry.

8
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Figure 1.5: Basic block diagram relating the effect of a path difference to the inter-
ference pattern at the output

Consider the block diagram shown in Figure 1.5. In it, a tunable laser’s output

power is split in half using a “50:50 coupler.” Half of this light is sent along an optical

fiber of path length, “L.” The second half is sent along an optical fiber of path length,

“L + ∆L.” At the end of both of these fibers is another 50:50 coupler which is used to

perform a heterodyne mix between the two lights. The resulting light is then converted

to a voltage using the photoreceiver circuit shown in the figure. Since the frequencies

of both lights are the same, the output will be at 0Hz (DC). This DC voltage, however,

displays a peculiar relationship with the wavelength of the light. As illustrated in 1.6(a),

if the wavelength of the laser stays constant, the voltage coming out of the photoreceiver

circuit remains constant. However, if the wavelength of the laser is ramped (1.6(b)), a

sinusoidal response to the change in wavelength is observed and this sinusoid has a fixed

repetition rate.

As the wavelength of the laser is changed while keeping the path difference between

the two couplers constant, the phase of the wave interfering inside the coupler changes

by the relation sin
(

2π
λlaser

∆L
)

- resulting in the sinusoidal variation. The argument of

the sine function also gives us an insight into the reason behind the repetition rate.

When the ratio
(

∆L
λlaser

)
is an odd multiple of 1

2
, the two waves meet destructively and

constructively, when it is an even multiple of 1
2
.

Chapter 4 describes an architecture and its board level implementation that uses this

9
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Figure 1.6: Output amplitude vs. Time (a) as the wavelength is held constant (b)
wavelength is varied over time

phenomenon to lock two lasers with GHz offsets without the use of Radio Frequency

(RF) electronics.

1.2 Thesis Organization

In Chapter 2, we first describe a board level implementation that uses off-the-shelf

components and achieves heterodyne locks that control a laser’s output frequency with

mHz precision. We then proceed to discuss an Application Specific Integrated Circuit

(ASIC) designed to shrink all the off-the-shelf components and integrate them on one

Complementary Metal Oxide Semiconductor (CMOS) chip. In Chapter 3, we improve

upon this Integrated Circuit (IC) with a chip that consumes less power and has a smaller

silicon footprint. In Chapter 4, we move on to discuss a completely different and novel

method of synthesizing microwave frequencies using low power lasers and low speed elec-

tronics. Finally, we conclude this work by comparing and contrasting all these techniques

and discuss the cost of these implementations versus the benefits they offer.

10



Chapter 2

Heterodyne-based controller for OFS

From the previous chapter, readers should broadly understand how a frequency comb can

help synthesize optical frequencies. This chapter will now look into further detail how

these synthesizers are implemented, and try to get a better sense of the loop dynamics and

some of the practical challenges involved in locking lasers. We start by giving an overview

of the locking architecture and discuss conventional Opto-Electronic Phase Locked Loop

(OEPLL) architectures. These architectures have a major drawback when utilized to

lock a laser to a frequency comb, and so we will look at a mixed signal solution to the

problem that uses both analog and digital circuitry to address this issue. We will finally

examine an ASIC implementation of this system and conclude the chapter by discussing

the locking results achieved using the ASIC.

2.1 Overview of Architecture

Figure 2.1 shows the optical spectrum of the tunable laser (shown in blue) and a

frequency comb as they are combined using a “50:50 coupler” (also sometimes referred

to as a “3dB coupler”). As the tunable laser moves close to one of the comb teeth, it

11
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produces a beat note with frequency equal to fbeat = fn−flaser, where fn is the frequency

of the nth comb tooth.

fr

In
te

n
si

ty

Frequency

fr – fbeat 

fbeat = fn – flaser 

flaser

fr

In
te

n
si

ty

Frequency

fr – fbeat 

fbeat = fn – flaser 

flaser

 = flaser – fn-1 

Figure 2.1: Tunable Laser lined up between two comb teeth. If fbeat ≈ fr
2 , we can

potentially lock to the wrong comb line, since flaser − fn−1 ≈ fn − flaser,

Figure 2.2, shows us a block diagram of a typical OPLL[17]. In this case, light is taken

from the frequency comb and combined with light from our tunable laser using a coupler.

This coupled light is then fed into a photoreceiver (Photo-diode (PD) + TransImpedance

Amplifier (TIA)) which converts light to a voltage. This voltage signal is then mixed with

an RF source whose frequency is equal to our targeted beat note frequency. The result of

this mixer is then passed through an appropriately designed loop filter (LF) to generate

the necessary servo signal for the laser’s current source. Under ideal operations, OEPLLs

designed using this architecture perform exceedingly well and can produce extraordinary

locking results.

A problem, however, arises when it is desirable to have continuous tuning across the

12
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f

f

50:50 coupler

Photoreceiver

fbeat 

ftarget 

Frequency Comb

Current 

Source

Tunable Laser

Loop Filter

Figure 2.2: Simplified block diagram of a conventional Optical Phase Locked Loop (OPLL)

entire range of the frequency comb. When the locked laser wishes to switch from a lower

comb tooth to a higher comb tooth and is exactly between two comb teeth, the beat

notes from the two comb lines are so close to each other that it can be impossible to

distinguish the two. In such a case, it is possible to make an error and lock to the wrong

comb tooth.

The solution to this problem is by using an In-phase and Quadrature Mixer (Demod-

ulator) at the receiver instead of just a single mixer. This method is similar to a “Costas

Loop”, which is a PLL commonly used in communication systems to recover the carrier

signal from an incoming signal. There’s been significant work done in this field, and

we even have a fully integrated OEPLLs that is used to implement a 40Gbit/s coherent

optical receiver.

The method described in [17], while highly effective, consumes ≈ 2 − 3W of power

and involves the design of complex high-speed electronics. The OEPLL also implements

a homodyne lock, which means that the beat frequency would only be equal to the Local

Oscillator (LO) frequency. These LOs are typically implemented on-chip as PLLs and

13
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are often integer-N PLLs. The result of that is that PLLs can only change their output

frequencies as integer multiples of their own reference clock. To get non-integer multiples

(or as they’re called in literature fractional multiples), they need to be Fractional-N

PLLs. Fractional-N PLLs involve the implementation of highly complex sub-parts and

have several noise limitations of their own.

To ease the constraints placed on the electronics, as well as to reduce the power

consumed, this work implements a heterodyne lock with the receiver. This means that

the beat note is going to be locked at a frequency that is not equal to the LO frequency.

The implementation described in the next section is done in such a way that the frequency

difference between the beat note and the LO can be of a fractional value, while the LO

can be an integer-N PLL.

90° 
LO 

Photoreceiver

sin(ωbeatt)

cos(ωLOt)

sin(ωLOt)

sin(ωbeatt - ωLOt)

cos(ωbeatt - ωLOt)
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Analog Front End

sinQ(ωbeatt - ωLOt)

cosQ(ωbeatt - ωLOt)
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-1

(.)

ADC

ADC

(ωbeat - ωLO)t

Digital Phase 

Calculation

Figure 2.3: Simplified block diagram illustrating the Analog Front-End and phase
calculation using the I-Q outputs of the demodulator

Figure 2.3 shows a simplified block diagram of the front end of the receiver. Similar to

a Costas Loop, it produces Inphase and Quadrature components using two mixers with

LO signals that are 90◦ apart in phase. However, instead of adding the two components
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and relying on a small-angle approximation to determine the phase, these outputs are

digitized using 2 Analog to Digital Converters (ADCs) and the phase rotation is measured

simply by calculating the tan−1 of these two components.

There’s two advantages of this implementation over a Costas loop implementation:

First, the output phase measurement is completely independent of the photoreceiver’s

output power. If the laser or the comb output power changes and produces a commen-

surate change in the beat note power, the tan−1 operation cancels out these amplitude

changes. The second advantage is better explained pictorially using Figure 2.4.
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Figure 2.4: Plots demonstrating how the instantaneous phase unwraps when the laser
frequency is (a) higher than a comb line (b) lower than a comb line. In situations
when the laser is between two comb teeth, it now becomes easy to differentiate the
beat note from the lower tooth vs. the higher one.

Figure 2.4 shows the instantaneous phase measured by the tan−1 block in Figure 2.3,
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when the laser frequency is higher than the comb line (Figure 2.4(a)) and when it is lower

(Figure 2.4(b)). As can be clearly seen from the plots shown in green, the measured phase

rotation of the beat note is different in sign. The consequence of this is that it is now

possible to differentiate between the beat notes that the laser produces with a higher and

a lower comb line.

The next section discusses a board level implementation of this system. The sys-

tem described uses off-the-shelf components for processing the laser beat note, and then

sample it using a high speed Analog to Digital Converter (ADC). This sampled signal is

used for Digital Signal Processing (DSP) and is used to control the laser and lock it to a

reference.

2.2 Board Level Prototype

The work presented here was previously published in Optics Express [18]. In this

testing setup, a stable bench-top commercial laser is used as the optical reference instead

of using a frequency comb. As depicted in Figure 2.5, the light resulting from the

mixture of this reference with the tunable laser is fed to a “light-wave converter”, the

Agilent 11982a, which converts this optical light to an RF voltage signal. This RF

signal is divided down using two frequency dividers - a prescale-by-2 divider and then a

divide-by-8. Previous synthesis experiments showed that the RF beat note demonstrated

extraordinary frequency jitter that would often be too fast for the loop bandwidth and

its magnitude would be greater than the loop’s acquisition range. Using dividers has an

additional benefit of averaging the beat note’s phase noise and improving the beat note

linewidth seen by the synthesizer’s receiver.

The divided down signal is then input to an I-Q Demodulator (Analog Device’s

ADRF6820). This demodulator IC features a local oscillator capable of outputting fre-
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Figure 2.5: Block diagram depicting all the parts required to lock a laser to an optical
reference

quencies ranging from 695 MHz to 2700 MHz [19]. This board also produces the I-Q

signals described in the previous section to determine the laser’s location with respect

to a comb line (in this case, a reference laser that will be emulating a comb line). These

I-Q signal’s are then sampled using a high-speed ADC - the ADC of choice was Texas

Instrument’s ADS4449 [20]. This dual channel pipeline ADC was capable of sampling

the demodulator signals at an astonishing rate of 250MSPs. Once sampled, these signals

were then fed to a Field Programmable Gate Array (FPGA) [21], that performed as the

“brains” of the loop and calculated the laser’s instantaneous phase and implemented a

loop filter that produced a response that would stabilize the laser and keep it locked.

This signal is output through a high speed Digital to Analog Converter (DAC) that is

fed to the servo input of a commercial laser driver. Through extensive experimentation

and after countless conversations with our fellow colleagues, we believe that in the case of

low noise locking experiments, no other current source offers a noise performance better

than Vescent Photonics’ D2-105 [22]. We use this laser driver to control the gain section

of the laser, which in turn controls the laser’s output frequency.
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The next section covers all the Digital Signal Blocks (DSP) implemented inside the

FPGA, followed by a discussion of some notable results that were obtained.

2.2.1 Digital Signal Processing (DSP)
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Figure 2.6: Digital Signal Processing (DSP) blocks required to process the sampled
demodulator outputs and to generate the control signal for the Digital to Analog
Converter (DAC)

Figure 2.6 outlines all the steps that are required to use the digitized version of the

demodulated outputs and determine the control word necessary to stabilize the laser.

During our measurements, we noticed random glitches at the output of the ADC that

were not necessarily present coming out of the mixer. These glitches do not provide

any information necessary to the system, rather they add external errors to the system

that may not otherwise be present. Luckily, these glitches could be simply filtered out

as higher frequency terms using a high order digital low pass filter. The filter outputs

are then fed to a COordinate Rotation DIgital Computer (CORDIC) [23] block that

calculates the tan−1 of the two signals. These hardware implementations have been

around for a long time and were often used in calculators in the late 20th century. The
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primary novelty of these blocks is that they compute the result of complex trigonometric

functions iteratively and without the use of expensive multiply or divide operations. The

output of the CORDIC block, which is our measured phase, is then compared to the ideal

phase that we want our laser to rotate with. The phase error block generates this error

block which is finally fed to a loop filter. To filter the error signal, a simple Proportional-

Integral-Differentiator (PID) controller is implemented. This PID has filter coefficients

that are strictly limited to powers of 2. This limitation ensures that every multiplication

or division operation in the filter is now a left shift or right shift operation.

50th Order Low Pass Filter (LPF)

All the DSP required for our loop is carried out on a Zedboard which features a Xilinx

Zynq-7000 All Programmable SoC and 7 series programmable logic [21]. To synthesize

the filter for this FPGA, we use a commercially available Computer Aided Design (CAD)

software called “Vivado” [24]. One of the benefits of this software is that it allows the

user to easily drag and drop Intellectual Property (IP) that implement a Finite Impulse

Response (FIR) Filter and the only input it requires is a Xilinx Coefficient File containing

the filter coefficients. We use Matlab’s Filter Designer Tool to generate this filter and

use it in the Vivado Tool.
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Figure 2.7: Filter Designer tool used in MATLAB to create a Low Pass - Equiripple
Filter with a stop frequency of 20MHz, a pass frequency of 15MHz, and a sampling
frequency of 100MHz.

Figure 2.7 shows the Filter Designer tool available through MATLAB. As can be

seen from the figure, to generate the desired Filter coefficients, one has to simply choose

the Filter topology they desire and fill in the prompts available through the interface to

implement a filter with the intended specifications.
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Figure 2.8: Screenshot of Vivado Window that allows us to import the Filter coeffi-
cients generated using MATLAB to implement them in Hardware

Figure 2.8 shows the Vivado Graphical User Interface (GUI), where the Xilinx Co-

efficient File created using MATLAB is entered. As can be seen by comparing the two

plots in Figs 2.7 and 2.8, the filter coefficients have been imported successfully, and the

“pass” and “stop” frequencies of the two Bode plots match perfectly.

CORDIC implementation for tan−1 computation

To compute the instantaneous phase of the IF signal, the I and Q signals are used

as two arguments for the CORDIC. This block, used in the vectoring mode, is a slight

variation of the architecture used in the seminal work done by Volder et al. [25]. Instead

of using expensive multiplication and division operations to compute the arctangent, the

algorithm in Figure 2.9 formulates the problem in such a way that it can be computed
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iteratively with the use of simultaneous shift and add blocks, thereby substantially re-

ducing area and power consumption. The traditional implementation of the CORDIC

algorithm has a latency of 16 cycles and a throughput of 1 output (instantaneous phase)

every 16 cycles. This implementation can further be improved by pipelining the com-

putation. The pipelined architecture still has a latency of 16 clock cycles but has an

improved throughput of 1 output (instantaneous phase) every clock cycle.

Figure 2.9: Digital Implementation of the CORDIC block that is used to calculate
the instantaneous phase of the laser beat note [25]
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Figure 2.10 shows a functional diagram depicting the DSP that is used to calculate

the phase and frequency error between the tunable laser and the microwave source. The

ideal reference for the system is generated using an extremely stable RF clock reference.

This RF source is used to clock an accumulator that accumulates a desired ∆Φideal. The

difference between this accumulated phase and the measured phase (output of the tan−1

block), yields the phase difference. However, as mentioned earlier, laser beat notes tend

to have a lot of frequency jitter, and can make large frequency jumps. In such a case, it is

desirable to have a loop with a large acquisition range. In conventional PLLs, when trying

to implement synthesizers, these constraints require one to move from a simple Phase

Detector (PD) to a Phase Frequency Detector (PFD). Highlighted in green in Figure 2.10

is the approach taken to convert the PD to a PFD. Two extra counters called “Rotation

Counters” (labelled as RC in the figure) are also used. These counters count every time

the phase of either the measured or the actual phase rolls over (2π =⇒ 0 transition).

A difference of how often these roll over gives us a sense of the frequency difference

between the two signals. Readers should note that even though these are implemented

as two separate counters in the figure, in reality, this functionality is implemented as an

UP/DOWN counter. When the ideal phase rolls over, the counter is incremented, and

vice versa, when the measured phase rolls over, the counter is decremented.
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Figure 2.11: Loop Filter implementation. IIR: Infinite Impulse Response

The loop filter for the system is implemented as shown in Figure 2.11. Here, the

36 bits coming out of the phase error block are taken and scaled up by using a left

shift operation (<<< 12) to align the MSB to be in the 48th bit position. The reason

to do this is so as to have sufficient bit space in the LSBs and MSBs, and so that no

quantization errors are encountered during the filtering operations. Apart from the re-

scaling, a gain/attenuation block is added in the signal chain. This block is necessary

to increase or decrease the overall loop gain of the loop. The scaled input is then fed to

two Infinite Impulse Response (IIR) filters whose outputs are summed together to get

the final output. Once the filtering operations have been completed, the output is scaled

back down to 16 bits. The reason it needs to be 16 bits is because that is the resolution

of our DAC, but this output can easily be quantized to support a different resolution by

appropriately choosing the right shift value.
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Figure 2.12: Infinite Impulse Response (IIR) Filter Implementation of (a) Proportional
Control (b) Integrator (c) Differentiator (d) Low Pass Filter

Figure 2.12 shows the four options that are available to configure the IIR filter as.

These filters can be set to be: (a) a proportional block, (b) an integrator, (c) a differentia-

tor, or (d) a low pass filter. The outputs of each of these filters can be taken and summed

together at the output to get a desirable frequency response. The novelty of these filter

implementations is that all the filter coefficients involved in the various topologies are

restricted to powers of 2. This restriction makes it so that every multiplication or division

operation in the filter can be implemented as a simple shift left or shift right operation.

For the Integrator depicted in Figure 2.12(b), the Z-transform is given by Equation

(2.1), and its magnitude response is shown in Figure 2.13. As is clear from the figure,

the 0dB point for the filter moves to a lower location as the right shift value is changed
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from 0→ 5.

HINT (z) =
1

2TI
1

1− z−1
(2.1)

Figure 2.13: Magnitude Response of an Integrator as we change the filter coefficient TI

Similar to Integrator, the Differentiator’s (Figure 2.12(c)) Z-transform is given by

Equation (2.2), and its magnitude response is given by Figure 2.14. The 0dB point for

this filter also moves to a lower location as the right shift value is changed from 0→ 5.

HDIFF (z) = 2TD(1− z−1) (2.2)
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Figure 2.14: Magnitude Response of a Differentiator as we change the filter coefficient TD

Similar to the previous cases, the Z-Transform the Low Pass Filter (Figure 2.12(d))

is given by Equation 2.3, and its magnitude response is given by Figure 2.15. One thing

to note with the LPF, is that its magnitude at DC is 0dB, and by changing the value of

the coefficient TLPF , the location of its dominant pole (or 3-dB point) is pulled in.

HLPF (z) =
1

2TLPF

1(
1− z−1

(
1− 1

2TLPF

)) (2.3)
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Figure 2.15: Magnitude Response of a Low Pass Filter as we change the filter coeffi-
cient TLPF

2.2.2 Measurement Results

We will now present the measurement results obtained from the board level synthe-

sizer with parts arranged as shown in Figure 2.5. During the measurements, the laser’s

beat note with the comb tooth (in this case, it is a reference laser emulating a comb tooth)

was the measurement of primary interest. The beat note is converted to an electrical sig-

nal via a photoreceiver and further divided down for reasons mentioned earlier.The output

of the frequency dividers is measured using a Frequency counter (Keysight 53230A). The

first measurement to be made is the absolute stability of the laser. To measure this,the

laser is set to a constant frequency set-point and its frequency deviations are observed

over time. Figure 2.16 shows a measured made for a span of 20,000 secs (slightly more

than 5.5 hours). The gate time for the frequency counter during this measurement was

set to be 1 sec. As can be seen from the figure, the frequency deviation here is less a
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100mHz and the standard deviation from the mean is 626µHz. The readers should note

that the data presented in Figure 2.16 is the measurement made by the frequency counter

after being multiplied by a factor of 16. This is done to account for the deviations divided

by the frequency dividers in the path. Figure 2.17 shows the power spectrum of this beat

note as measured by an electrical spectrum analyzer.

Figure 2.16: Current synthesizer output fout deviation for 1-s gate time shows a
maximum deviation of +/-100mHz
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Figure 2.17: Power spectrum of the locked beat note

A frequency synthesizer would not be called so without its ability to ‘synthesize’

frequencies. Figure 2.18 shows the synthesizer stepping its output frequency in steps of

less than 1 Hz. Readers are reminded that the absolute frequency of the laser at this

point is 193,137,199,825,231.4 Hz and so, this is precision in the order of 1 part in nearly

200 billion!
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Figure 2.18: Bidirectional linear ramp of the synthesizer via step control of the laser
offset PLL setpoint (100-ms gate)

2.3 ASIC Integration
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Figure 2.19: (a)Simplified schematic of signal chain (b) Photograph taken of the
Integrated Circuit (IC) after fabrication
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To reduce our size, weight, area, and power (SWAP), it was decided to implement

the prototype circuit from the previous section as an Integrated Circuit (IC). The IC

implementation offers several benefits over the board level implementation: apart from

the obvious miniaturization benefit, a substantial boost in our power efficiency is also

attained. Since the mixer, local oscillator (LO) and analog to digital converters (ADCs)

are all integrated in the same chip, several of the power-hungry Low Noise Amplifiers

(LNAs) that were present in the board level implementation can now be gotten rid of.

The trans-impedance amplifier (TIA) used in the design also gives ability to sense photo

currents that are in the order of nAs and improves the overall sensitivity of the system.

Figure 2.19 illustrates the signal chain implemented in the IC. The first circuit in the

chain is the TIA which senses the photo-current coming out of the photo-diode whose

job it is to convert the light coming from the beat note of the tunable laser with the

reference laser into a current. This TIA converts the photo-current to voltage which can

then be mixed down using two I-Q mixers who get their LO signals from an on-chip

Phase Locked Loop (PLL). This PLL was designed to generate RF frequencies ranging

from 600 MHz - 4.2 GHz, and generates two outputs that are 90◦ apart in phase.

Once mixed down by the mixer and filtered by two 1st order RF filters, the Inter-

mediate Frequency (IF) signals are then fed to two 12-bit 100 Mega Samples per sec

(MSPs) ADCs. In order to meet the bit resolution and the sampling frequency require-

ments, these were implemented as pipeline ADCs. This was similar to the case at the

board level with the only difference being in the sampling frequency of the off-the-shelf

component (250MSPs, in that case). Once digitized, the outputs of these ADCs are then

fed to an FPGA where they are digitally processed the same way as in case of the board

level implementation.

A majority of the design and layout for this chip was carried out jointly by Sean

McCotter and me. The TransImpedance Amplifier was designed and laid out by our
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colleague Robert Costanzo at the University of Virginia, and the PLL was designed by

our Professor Luke Theogarajan.

The following sections will describe how these blocks were implemented in further

detail and discuss some of the trade-offs that were made in the design process.

2.3.1 Trans-impedance Amplifier (TIA)

The transimpedance amplifier used in the signal chain has been designed by our

colleague Robert Costanzo and is the same as the one referenced in [26]. This can be

seen in Figure 2.20, and consists of a common emitter amplifier with a negative feedback

amplifier. This amplifier stage is then followed by a CMOS amplifier and active balun

that generates differential signals for on-chip processing.

Figure 2.20: Circuit level schematic of the TIA. Biasing and output buffer circuitry omitted.

2.3.2 Phase Locked Loop (PLL)

The PLL used for this application requires a very wide tuning range of ≈ DC−4 GHz.

One way to support this range, is to fabricate several LC-tank oscillators in parallel and
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multiplex between them depending on the frequency range you’re operating in. Owing

to their large inductor size, LC-tank oscillators consume a lot of area (especially at lower

frequencies), and so this alternative would consume a lot of area. An added disadvantage

of this topology would be that as oscillator is changed, it would also be required to

multiplex between different loop filter configurations, which would mean that our design

would require a lot of calibration time and would not be as robust, and susceptible to

Process, Voltage and Temperature (PVT) variation.

Figure 2.21: PLL Voltage Controlled Oscillator (VCO) - 4 stage pseudo-differential
ring oscillator

All of these design considerations lead to the use of the ring oscillator structure shown

in Figure 2.21. While not truly differential, this structure offers a very wide tuning range

and a very linear frequency response to the applied input voltage. We can tune the output

frequency of this oscillator by modulating the supply voltage to the pseudo-differential

inverter pair. However, since the control voltage to the oscillator is now applied to a

current hungry low-impedance node, using this ring oscillator necessitates the use of a

voltage regulator after the loop filter (shown in Figure 2.22). This is different from the
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case of a conventional PLL topology, where the output of the loop filter could be directly

fed to the Voltage controlled oscillator (VCO). The linear regulator used in this case, in

conjunction with the large PMOS driver driving the VCO input behaves as a two-stage

amplifier, and is inherently unstable. This inherent instability needs to be compensated

and its output pole needs to be adjusted in such a way that to the overall PLL loop,

these poles are practically invisible. The loop filter and linear regulator compensation is

carried out in such a way that their output poles are derived automatically based on the

PLL’s output frequency.
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Figure 2.22: Simplified schematic of PLL topology

Closed Loop Response of a generalized PLL

The frequency response of a PLL can be analyzed using continuous time approxima-

tions as long as the loop bandwidth is a decade or more below the operating frequency

of the loop. This bandwidth constraint has an added benefit that high-order poles that
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exist due to the delay around the sampled feedback loop are virtually invisible to the

loop, thereby ensuring the loop’s stability.

Since there are two integrators present in the loop (charge pump current integrated

by the loop filter and the frequency integration at the VCO output to get the phase

response), the PLL is a second order system. The input output relationship of this

feedback loop is given by:

PO(s) =

(
PREF (s)− PO(s)

N

)
ICP

(
RLF +

1

sCLF

)
KV

s
(2.4)

Where, ICP is the charge pump current (A), RLF and CLF are the loop filter resistor

and capacitors respectively, and KV is the VCO gain (Hz/V). The closed loop response

is then given by:

PO(s)

PREF (s)
=

(
1

N
+

s

ICP (RLF + 1/(CLF ))KV

)−1

(2.5)

PO(s)

PREF (s)
=

N(1 + sRLFCLF )

1 + sRLFCLF + s2/(ICP/CLF .KV /N)
(2.6)

Comparing this to a second order system:

PO(s)

PREF (s)
= N.

1 + 2ζ(s/ωN)

1 + 2ζ(s/ωN) + (s/ωN)2
(2.7)
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we get the damping factor, ζ:

1

2
.

√
1

N
ICPKVR2

LFCLF (2.8)

and the loop bandwidth, ωN :

2ζ

RLFCLF
(2.9)

For a second order system, when ζ = 1, it is said to be critically damped and when

this factor much greater than 1, the system is said to be over-damped.

For a typical PLL, ICP , RLF ,CLF , and KV are all constant and so the loop bandwidth

and damping factors are constant as well. As mentioned before, for the loop filter to be

stable the loop filter needs to be set at least a decade or more below the operating

frequency. This means that if the loop bandwidth is fixed, it needs to be fixed for the

worst case condition i.e. the slowest PLL operating frequency (lowest divide).

A PLL adjusts its output frequency when it is disturbed. What this means is that

when the output frequency is varied, the phase error that results from this variation

accumulates for several cycles till the loop corrects this change. The number of cycles this

error accumulates is equal to the operating frequency divided by the loop bandwidth. For

this reason, it is desirable to have loop bandwidth be as close to the reference frequency

as possible. However, this becomes a problem when the loop bandwidth is fixed and

has to be conservatively set a decade below the lowest operating frequency, which can

oftentimes be as low as the reference frequency itself.

In the seminal work done by [27], the author proposed a method to keep both ζ, and

the ratio of ωn/ωREF constant so as to have the best possible jitter performance.

To get a constant ζ across different operating frequencies, the authors proposed to
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change the charge pump current ICP proportional to the bias current to the delay element.

Similarly, if we can set RLF to vary inversely to the square root of the bias current, we

can have a constant ζ across operating regions.

In the same way, since the output frequency is proportional to the square root of the

bias current, we have a constant tracking bandwidth that is directly proportional to the

ratios of the delay bias current and the bias current producing the RLF .

Voltage controlled oscillator gain, KV

For an inverter in the VCO shown in Figure 2.21, the propagation delay through a

delay cell is given by:

tpd =

∫ t2

t1

dt =

∫ Vctrl/2

0

Cload(V out)

ids(V out)
dV out (2.10)

Assuming a constant load capacitance and an average current between constantly

flowing between t = 0 and t = tPLH

tpd =
Cload∆V

Iinv
(2.11)

where Iinv = 0.5 ∗ (ids(0) + ids(tPLH))

Defining this delay with respect to the supply voltage, Vctrl:

tpd =
Cload.Vctrl

2.Iinv(Vctrl)
(2.12)

Here, the average current, Iinv is a function of the supply.

With this definition of propagation delay we can calculate the operating frequency of
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the VCO as:

Fop =
1

2.n.tpd
=

Iinv(Vctrl)

Cload.Vctrl.n
=

Ireg(Vctrl)

Cload.Vctrl.n2
(2.13)

where n is the number of stages in the VCO.

To get the VCO gain, KV from this we need to differentiate Fop w.r.t. Vctrl

KV =
dFop
dVctrl

(2.14)

KV =
d

dVctrl

(
Ireg(Vctrl)

Cload.Vctrl.n2

)
(2.15)

=
dIreg
dVctrl

1

n2VctrlCinv
− Ireg
n2V 2

ctrlCinv
(2.16)

=
gm.reg

n2VctrlCinv
− Ireg
n2V 2

ctrlCinv
(2.17)

Thus, the VCO gain, KV is given by:

KV = γ
gm,regVctrl − Ireg

V 2
ctrlCinv

(2.18)

where the constant γ is related to the number of VCO stages by:

γ =
1

n2
(2.19)
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Loop Filter Resistor, RLF

𝑽𝑹

𝑽𝑪 𝑽𝑪 𝑽𝑹

𝑰𝑪𝑷 𝑰𝑪𝑷
𝑽𝑪𝑷

𝑽𝑪𝑷

𝑰𝑪𝑷𝟏 𝑰𝑪𝑷𝟐𝑽𝑪

𝟏/𝒈𝒎𝑶𝑷

Figure 2.23: Implementing the stabilizing zero

Figure 2.23(a) shows a simplified schematic of how a typical second order loop filter is

implemented in a conventional PLL. The first capacitor integrates the current output by

the charge pump. Since this capacitor adds an additional pole at DC (and thus, makes

the PLL loop unstable), we need a zero-ing resistor as shown in the figure to improve

the phase margin right before the unity gain frequency. The voltage drops across both,

the capacitor, and the resistor are then fed to the linear regulator which then drives the

VCO.

Figure 2.23(b) shows an alternate way to generate this control voltage, VC . Instead

of using one charge pump to push/pull current across a resistor-capacitor pair, one can

use two separate charge pumps to generate the potential drops across the resistor and

the capacitor separately, and then add them up.

In [27] and [28], the authors first showed how the schematic in Figure 2.23(c) can be

used to generate this control voltage. If s unity gain amplifier with an output resistance

of 1/gm,LF was used to buffer the capacitor voltage, and an appropriately sized charge

pump copy at the output of this amplifier was added, the second charge pump can be

used to control the location of this zero. An important detail that is often omitted from

this discussion, however, is that this unity gain amplifier has to be a single-stage amplifier
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for the output voltage to truly vary as 1/gm,LF when a current is applied at the output.

This is important because using a single stage amplifier then limits the drive capability,

and output swing of the amplifier; which in turn, limits the size and tuning range of the

VCO.

RLF =
1

gm,LF
= α

1

gm,reg
(2.20)

Figure 2.24: Circuit implementation of the charge pump and loop filter

Figure 2.24 shows the actual circuit implementation of the charge pump and loop

filter. Both, the UP/UP and DOWN/DOWN signals are used to drive differential

loads and the current is mirrored to create the charge pump. Using both signals allows

the current from the tail current sources to always flow and the mirror circuitry avoids

any possible coupling from the sharp edges of the UP/UP and DOWN/DOWN signals.
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As shown in Figure 2.23(c), the first charge pump integrates the current onto a capacitor

which is then fed to an amplifier configured as a unity gain buffer. In this amplifier,

the input nmos, N2 provides the 1/gm resistor. An important point to note here is

that the vnbias and vpbias voltages are common between the charge pump biases and

the amplifier bias, in addition to this, all the transistors used as current sources here

are integral multiples of the same unit transistor. What this means is that the current

sourced by all the current sources are all integral multiples of the same current.

Linear Regulator

The linear regulator used here is similar to the topology used in [29]. A simplified

schematic of this Regulator can be seen in Figure 2.25. As can be seen from the figure,

the amplifier driving the PMOS driver with a resistive load, is effectively a 2-stage am-

plifier. As with the other second order systems mentioned previously, this is inherently

an unstable system, and needs to be compensated. Conventionally, this 2-stage amplifier

is compensated as shown in Figure 2.25(a). Adding a large compensation capacitor, CC

creates a ‘dominant pole’ and the compensation resistor, RC provides a left-half plane

(LHP) zero that provides a phase bump right before the open loop unity gain frequency.

As shown by Figure 2.25(b), the same technique can be used in the loop filter to

implement RC by buffering the voltage across CC and forcing a mirrored fraction of the

driver current into the output of the buffering amplifier.

A detailed analysis of the loop gain transfer function can be found in [29]. It shows

that the we can show that the damping of the loop is independent of the unity-gain

bandwidth and only depends on geometrical ratios of the devices and capacitors used.
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𝑽𝑪

𝑽𝑪_𝑩𝑼𝑭𝑭

𝑽𝑪

𝑽𝑪_𝑩𝑼𝑭𝑭

𝑷𝒅𝒓𝒊𝒗𝒆𝒓 𝑷𝒅𝒓𝒊𝒗𝒆𝒓𝜶𝑷𝒅𝒓𝒊𝒗𝒆𝒓

𝑪𝑪 𝑹𝒍

𝑹𝑪

𝑪𝑪 𝑹𝒍

Figure 2.25: Simplified schematic of the linear regulator used in the PLL

Figure 2.26: Circuit implementation of the linear regulator and its compensation
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Bias Generator

Start-up circuit Bias Network

VP_LDO

VNBIAS

Figure 2.27: Circuit implementation of the Bias Generator

Figure 2.27 shows how the biases for the charge pump and loop filter are generated.

The bias generator uses a β-multiplier topology to generate an initial bias during startup,

which prevents the bias generator from collapsing. However, the majority of the current

used to generate the output ‘vnbias’ is generated by using the LDO output voltage. This

ensures that the same amount of current flows through the nmos generating the bias

current as through the VCO.

These bias voltages are then used to generate the charge pump current, ICP , which

is given by:

ICP = βIreg (2.21)

Level Shifter

The control voltage for our oscillator is the supply for the delay cells, and so the

output voltage of the oscillator varies from 0 to Vctrl. However, all subsequent circuits
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that use the output of this oscillator expect a full scale signal going from 0 to Vsupply.

The circuit shown in Figure 2.28 is used to complete this function.

𝒗𝒊𝒏𝒑𝒗𝒊𝒏𝒏 𝒗𝒐𝒖𝒕𝒑

𝒗𝒐𝒖𝒕𝒏

Figure 2.28: Circuit implementation of the Level Shifter

The circuit is a two stage amplifier with a low gain first stage and high gain output

stage with “infinite” differential load resistors. The first stage is a fully differential version

of the self biased amplifier first introduced in [30].

Adaptive Bandwidth PLL - Analysis

Putting all the pieces together, it can now be shown how the bandwidth of the loop

tracks the PLL’s output frequency. Before beginning, a few facts need to be reiterated.

The bias generator generates the bias for all analog circuits in the design using the supply

current to the VCO. This means that the current flowing through the charge pump and

loop filter amplifiers are proportional to the VCO supply current.

45



Heterodyne-based controller for OFS Chapter 2

Inserting values from Equations 2.21, 2.18, and 2.20 into 2.8, and 2.9, we get:

ζ =
1

2

√
1

N
βIregγ

gm.regVctrl − Ireg
V 2
ctrl

α2
1

g2
m,reg

CLF
Cinv

(2.22)

ζ =
1

2

√√√√√√y

(
gm.reg

Vctrl
Ireg
− 1
)

(
gm,reg

Vctrl
Ireg

)2 (2.23)

Where y is a constant given by:

y = α2βγ
CLF
NCinv

(2.24)

The gm,reg will be larger than the load resistor given by RLoad = Vctrl
Ireg

. Therfore

gm,reg
Vctrl
Ireg
� 1, which yields

ζ ∼=
1

2

√
y

Ireg
gm,regVctrl

(2.25)

Similarly,

ωN
ωREF

=
N

2πF
.

2ζ

RLFCLF
(2.26)

=
Nn2VvctrlCinv

2πIreg
.

2ζ

CLFRLF

(2.27)

=
1

2π
.
Nn2Vvctrl
Ireg

Cinv
CLF

gm,reg
α

.

√
α2βγ

CLF
NCinv

Ireg
gm,regVctrl

(2.28)

=
1

2π

√
NCinv
CLF

β

γ

gm,regVctrl
Ireg

(2.29)

=
1

2π

√
z
gm,regVctrl

Ireg
(2.30)
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Where z is a constant given by:

z =
NCinv
CLF

β

γ
(2.31)

In the analysis above, we assume that the PLL has locked to the correct frequency

and so the operating frequency is N times the reference frequency.

ωref = 2π

(
Fop
N

)
(2.32)

Here, Fop is the same as defined in eq. 2.13

Adaptive Bandwidth PLL - Case Study

In the case of the PLL implemented on chip,

RLF =
1

gm,follower
= α

1

gm,reg
→ α =

64

4

ICP = βIreg → β =
1

64

CLF
Cinv

∼= 1000

For our case, we have a stage VCO,

γ =
1

22
=

1

4
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For a divide value with N = 30, ζ will be given by:

y = α2βγ
CLF
NCinv

y =

(
64

4

)2

.

(
1

64

)
.

(
1

4

)
.

(
1000

30

)
∼= 33.34

z =
NCinv
CLF

β

γ

z =
30

1000
.

4

64
= 1.875× 10−3

Thus, for our PLL the damping factor and Bandwidth ratio are given by:

ζ ∼=
1

2

√
33.34

Ireg
gm,regVctrl

;
ωN
ωREF

=
1

2π

√
1.875× 10−3

gm,regVctrl
Ireg

Figure 2.29(a) and (b) show how these values vary with the control voltage. The

function Ireg
gm,regVctrl

is extracted using a SPECTRE simulation.
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Figure 2.29: (a) Damping Factor variation as a function of control voltage, Vctrl (b)
Bandwidth ratio variation as a function of control voltage, Vctrl

As can be seen from 2.29(a), the damping factor ζ never goes below 0.7 and even

though the bandwidth ratio is not constant, as it would be with older technologies, it

does not vary wildly with different operating voltages.

2.3.3 Mixer - Gilbert Cell

The mixer topology used in the heterodyne receiver is shown in Figure 2.30. This

commonly used topology has been analyzed extensively in [31], and works by effectively

multiplying the incoming Radio Frequency (RF) and Local Oscillator (LO) voltages -

equivalent to a convolution in the frequency domain.As described in [31], these active

mixers perform the mixing operation in three steps: they convert the incoming RF voltage

to a current, they steer the RF current using the LO and then convert the Intermediate

Frequency (IF) current to a voltage. Here, the conversion gain can be given by the ratio

of the Current-Voltage (I/V) gain at the output (output resistor) to the Voltage-Current

(V/I) gain at the input (transconductance of the input stage).
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V/I

 Converter

Current 

switch

I/V

 Converter

VRF

IRF

VLO

VIF

IIF

LO - 

RF - 

LO + 

RF + 

vnbias

IF +IF -

(a) (b)

Figure 2.30: (a) Functional description of Mixer cell (b) Circuit implementation of
the double balanced mixer

Mathematical description

Let us assume that the incoming RF signal is a single tone sine wave and is given by:

VRF = cos(ωRF t) (2.33)

For ideal operation, we want an LO signal that is a square wave which can be described

as:

VLO =

 +1 if mod(t, 1
fLO

) < 1
2∗fLO

−1 otherwise
(2.34)
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The fourier transform for this function is given by:

VLO =
4

π

+∞∑
n=1,3,5,..

1

n
sin(nωLOt) (2.35)

As mentioned before, a mixer performs a convolution operation in the frequency

domain and multiplies these two voltages together. And so the output can be described

as:

VIF =
4

π

+∞∑
n=1,3,5,..

1

n
(sin(nωLOt).cos(ωRF t)) (2.36)

=
2

π

+∞∑
n=1,3,5,..

1

n
(sin(nωLOt+ ωRF t) + sin(nωLOt− ωRF t)) (2.37)

The desirable term from Equation (2.37) - sin(ωLOt+ωRF t), can easily be separated

from the other terms by using a low pass filter with a corner frequency appropriately

placed much lower than ωLO and ωRF . An additional benefit of using the topology given

in Figure 2.30(b) has an added benefit of having a fully differential output. This kind of

output minimizes unwanted non-linearities and switching effects (coupling capacitances,

common-mode gain).

2.3.4 12-bit 100MSPs Analog to Digital Converter (ADC)

From the board level prototype of the overall system, it was known that to get Hz

level precision at least 12 bits of resolution was needed. At the same time, because

the Intermediate Frequency (IF) signal coming out of the mixer has a max frequency of

25MHz, the sampling frequency needs to be at least 100MHz.

Given these specifications, and the technology available, the ADC was decided to be

a pipeline ADC. The sampling frequency is too high for an over-sampled data converter

51



Heterodyne-based controller for OFS Chapter 2

such as a Delta-Sigma ADC. And while there have been demonstrations of 100MSPs

Successive Approximation ADCs (SAR ADCs), it was not a feasible option to design in

the process available(BiCMOS8HP - 130nm).

Design Overview

1.5 bits 1.5 bits

9 stages

1.5 bits
3-bit

Flash

Error Correction and Output Reconstruction

2 2 2 3

12

Figure 2.31: Overall Architecture of 12 bit Pipeline ADC

Figure 2.31 shows the overall architecture of the pipeline ADC implemented. The

ADC consists of nine successive 1.5-bit stages followed by a final stage which is a 3-bit

Flash ADC. The results of each of these stages is directly output off-chip where they are

combined to give a 12-bit output which corresponds to the digital representation of the

analog input sampled by the ADC.

Figure 2.32 shows a block diagram representation of the various parts of the 1.5-bit

stage. The input to each stage is fed to both a sample and hold block and to a 3-level

quantizer. The outputs from both of these blocks are fed to the heart of the pipeline

ADC, the mDAC.
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The mDAC uses these inputs and gives an output corresponding the following formula:

VOUT = 2 ∗ VIN +B.VREF (2.38)

where B depends on the output of the 3-level quantizer, and is given by:

B =


+1 if X = 1

0 if Y = 1

−1 if Z = 1

This Equation can be easily derived by analyzing the circuit implementation of the

mDAC (shown in Figure 2.33; single ended version shown for simplicity). The entire

operation takes two non-overlapping phases of a clock φS and φres. During the sampling

phase, φS, the two sampling switches close and sample the input on two capacitors given

by CS and CF .

In the next phase of the clock, the residual amplification phase, φres, the capacitor CF

is put in feedback and due to the conservation of charge, the charge from the capacitor CS

is transferred to it. The amount of charge transferred depends on the quantizer decision

and so, it is proportional to VIN + VREF , VIN or VIN − VREF .
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Sample 

& Hold

DAC

x2vin vout

2 mDAC

Figure 2.32: 1.5 bit per stage implementation

Each of these stages has an extra 0.5-bit of redundancy built into them which relaxes

the requirements of each stage’s quantizer and opamp by half an LSB. Figure 2.34 [32]

shows the sources of some of these non-idealities and shows how they might affect the

quantizer decision correspondingly.

-VREF+VREF 0

X Y Z

Vin

Vout

CFCS

ɸSɸS ɸres

Figure 2.33: Circuit implementation of 1.5 bit stage mDAC
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Figure 2.34: 1.5 bit per stage non-idealities

The idea behind this redundancy is essentially to defer decisions about signals that

are not too small or too big to the next stage. [32] illustrates this very clearly in Figure

2.35. Figure 2.35 (a) shows ideal operation with an input of 0.1V. In this case the correct

decision is made in each stage of the pipeline and follows the behavior described in

Equation 2.38. Figure 2.34 (b) shows what happens when there is an incorrect quantizer

decision made in the second stage. Here, as long as the error is less than 1
2
LSB = VREF

4
,

as illustrated by the output bits, we still get the correct answer.
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Figure 2.35: Digital Error Correction (a) Ideal Operation (b) Operation with an error
present in the quantizer [32]

Design Methodology

For the ADC, the first stage has the strictest requirements if we intend to hit the

required Effective Number of Bits (ENOB). For our design, we operate using a 2.5V

supply and have a VREF = 1V . This sets the quantization noise floor as Vn,rms = VLSB√
12

=

70.48uV .

If we want this noise to be our dominant noise source, this sets the capacitor size.

kT

CS
< 70.48uV =⇒ CS = 972fF (80◦C) (2.39)

The drawback with capacitors this big is that it restrains our operating frequency.

We still need the output of the mDAC to settle within half a clock period. It also restricts

the maximum allowed switch resistance given by:

R =
TS

2CS(N + 1)ln(2)
=⇒ 515Ω (2.40)
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The maximum tolerable error (as mentioned in the previous section) is VLSB

2
. This

determines the gain required for our amplifier. The minimum error is given by:

VLSB
2

>
1

1 + A
=⇒ A > 78dB (2.41)

Similar to the case with the switch resistance, we would like the amplifier output to

settle within half an LSB. This gives us the bandwidth requirement:

BW >
2(N + 1)ln(2)

2πTS
= 575MHz (2.42)

Operational Transconductance Amplifier (OTA)

As mentioned in the previous section, it was required to design an amplifier with a

DC Gain of at least 78dB and a Gain Bandwidth Product (GBP) of at least 575MHz.

Even though in the previous section we demonstrated mDAC operation using a single

ended amplifier, in practice, a fully differential amplifier was preferred. This is because

fully differential amplifiers have the ability to reject any common-mode noise present in

our circuit.
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Folded Cascode Amplifier

Figure 2.36: (a) Circuit Implementation of Folded Cascode Amplifier (b) Small signal
model of half-circuit with output shorted to ground (c) Equivalent circuit with output
open

Figure 2.36(a) shows the circuit implementation of a folded cascode amplifier. This

topology has the small signal gain of a telescopic cascode amplifier but does not suffer

from the same voltage swing and headroom limitations as it. To determine the small

signal voltage gain of this amplifier, Figs 2.36(b) and (c) need to be analyzed. Figure

2.36(b) helps determine the equivalent Gm, while Figure 2.36(c) demonstrates a way
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to calculate the output resistance ROUT . Combining these two, the overall gain of the

amplifier |AV | = Gm ∗ROUT can be determined.

As can be seen from Figure 2.36(b), most of the output current, IOUT flows through

the drain of the input transistor, M3. This is because the impedance looking into the

transistor M7 (gm−1
7 ||ro7) is less than ro3||ro5. And so, Gm ≈ gm3.

Similarly, analyzing 2.36(c), gives the output resistance of the circuit.

ROUT = Rcas|| ((ro3||ro5)(1 + gm7ro7)) (2.43)

where Rcas is the resistance seen in to the drain of M9. This resistance is the cascode

resistance, which is the drain resistance of the transistor M11 amplified by the gain of

the transistor M9.

Rcas = ro11(1 + gm9ro9) (2.44)
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Gain Boosting

Figure 2.37: (a) Circuit implementation of gain boosting stage (b) Small signal model
of the circuit

Figure 2.37(a) shows a commonly used technique used to boost output impedance of

a cascode device. Figure 2.37(b) is the equivalent small signal model of the same circuit.

Applying Kirchhoff’s Current Law (KCL) to the VX node, we get the following relation:

VX
ro1

= gm2 ∗ V2 +
VOUT − VX

ro2
(2.45)

V2 = −VX(A+ 1) (2.46)

Substituting Eq 2.46 into Eq 2.45, we get:

VOUT
ro2

= VX

(
1

ro1
+

1

ro2
+ gm2(1 + A)

)
(2.47)
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VOUT = VX

(
ro2
ro1

+ 1 + gm2ro2(1 + A)

)
(2.48)

The current flowing through ro1 is the same as the output current:

IOUT =
VX
ro1

(2.49)

Thus,

ROUT =
VOUT
IOUT

= ro1

(
ro2
ro1

+ 1 + gm2ro2(1 + A)

)
(2.50)

Since ro1 is very close in magnitude to ro2 the increase in output resistance is close to

ROUT = ro1 (2 + gm2ro2(1 + A)) ≈ ro1(gm2ro2(1 + A)) (2.51)

As can be seen from Eq 2.51, the output resistance of the cascode amplifier is increased

even further by the gain of the feedback amplifier biasing the cascode device.
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Figure 2.38: Circuit Implementation of OTA stages (a) First stage - Regulated cascode
(b) Second stage - Fully differentially common source amplifier
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Figure 2.39: AC Simulation Results: Bode Plots showing Gain and Phase Response
of the OTA

Comparator for Three-Level Quantizer

Figure 2.40: Circuit implementation of comparator used to make quantizer decisions
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The comparator used to make quantizer decisions in the pipeline stage is shown in

Figure 2.40. This design was first used in [33], and is a variation of the comparator used

in [34] without a preamplifier. This comparator is ideal for use in low resolution pipeline

stages (1.5 bit/stage). The bottom four input transistors operate in the triode region,

and adding the inner transistors allows us to vary the comparator threshold.

2.3.5 Measurement Results

S
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Figure 2.41: (a) Simplified schematic of Test PCB used for testing (b) Photograph of
Test PCB

Figure 2.41(a) shows a simplified schematic of the layout of the Test PCB used to

test the ASIC. The board was manufactured using the Chip-on-board (CoB) method

where the ASIC was wire-bonded directly to the circuit board. All the analog biases for

the ASIC were externally provided using a low noise 16-bit Digital to Analog Convertor

(DAC) (LTC2656) programmed using a 4 pin Serial Peripheral Interface (SPI). The
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outputs of the ADC are provided by low voltage (1.2V) devices inside the ASIC, while

the Field Programmable Gate Array (FPGA) requires LVCMOS signalling (2.5V), we use

level shifters (SN74AVC16T245) at the output of the ADC that sufficiently level-up the

outputs of the ADC. The ASIC requires one 1.5V Digital supply, while it also requires

a 2.5V digital and analog supply. To ensure low noise performance and to minimize the

number of external power supplies required, we use several Low Drop-out (LDO) voltage

regulators (LT1763) that supply these power supplies to the ASIC.

To test the ASIC’s ability to be used as a synthesizer, it is used in the same config-

uration as shown in Figure 2.5. However, this integrated IC completely replaces the I-Q

demodulator board (ADRF6820) and the high speed ADC (ADS4449). The output of

our ASIC is a 21 bit dual date rate output and a clock signal, with results from each

ADC written out on opposite edges of the clock. This data is processed by an FPGA

which applies error correction and interprets the output as 12 bit words corresponding

to the outputs sampled by the ADC.

Figure 2.42: Current synthesizer output fout deviation for 30 mins at 10-ms gate time shows

Figure 2.42(a) shows the frequency vs. time output of the laser when measured for

30 mins. This output is directly measured by the frequency counter (Keysight 53230A).
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The maximum deviation seen in this case is +/-20kHz, orders of magnitude worse than

the measurements made using board level components, where our deviation was in the

order of mHz. However, a look at Figure 2.42(b), which shows the Allan deviation of our

locked beat note, still shows a 1/τ slope over longer averaging times. Please note that

for the purpose of measuring the Allan Deviation, we multiply the deviations measured

by the frequency counter by a factor of 16, since in this case, it is important to calculate

the absolute stability of the laser.

Figure 2.43: Bidirectional linear ramp of the synthesizer via step control of the laser
offset PLL setpoint (10-ms gate time)

Similarly to case with the board level prototype, it is also important to demonstrate

a synthesizer’s ability to produce arbitrary frequencies. Figure 2.43 shows how the syn-

thesizer can take steps of <100kHz and these steps are bidirectional.
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2.4 Summary

Figure 2.44: Table comparing the performance results between the Board-Level and
Integrated Implementations

The table shown in Figure 2.44 succinctly summarizes all the trade-offs that we

make when we fabricated our ASIC implementation. As can be seen from the first

two rows of the table, we obtain tremendous benefits from integrating our Heterodyne-

based controller as an ASIC. However, due to complexities involved in Analog Design

and an ADC’s susceptibility to noise, we are only able to get an Effective Number Of

Bits (ENOB) of 9 bits. This reduction in bit resolution greatly affects the final frequency

stability we are capable of achieving.

Equation (2.52) gives a rough first-order estimate of the frequency deviation we expect

with an N -bit ADC and an overall loop bandwidth, floop, where Tavg is gate-time of the

Frequency Counter.
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∆f ∝
45◦

360◦∗2N ∗ fIF√
floop ∗ Tavg

(2.52)

As can be seen from Equation (2.52), as we drop N , we increase the frequency de-

viation we observe. At the same time, reducing the sampling frequency of our ADC,

indirectly reduces our loop bandwidth, floop, further increasing our frequency deviation.

A major shortcoming of this architecture is the fact that we have two use two power

hungry and area intensive ADC’s for our I-Q demodulation scheme. This results in us

occupying twice the area and twice the power. Figure 2.19 clearly shows that a majority

of the area inside the chip is occupied by our two ADCs.

The second short coming of this architecture is that we are required to use Frequency

Dividers in our loop. Laser beat notes typically move by several 10s of MHz, and so

if they were directly fed to input to ADC, we would violate the Nyquist Criterion that

avoids aliasing of our input. By adding frequency dividers, we guarantee that the sampled

version of our signal is truly the signal that is applied to our Front End. While these

frequency dividers improve our stability, they also divide down a wide bandwidth of white

noise within our loop bandwidth.

In the next chapter, we will address some of these shortcomings and work to imple-

ment an All-Digital design that requires very little calibration, and is very robust to noise

sources within the circuit.
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Frequency Detection using Time to

Digital convertor (TDC)

While the ASIC in the previous section offers several benefits, and offers extremely small

resolutions, its cost is the area taken and power dissipated by the Analog to Digital

Converter (ADC). As described in the previous section, the noise requirements of the

system necessitated the use of large on chip capacitors for sampling at every stage of

the ADC. This resulted in the use of larger currents to drive these capacitors, which

increased the power dissipated by the system.

This motivated us to find a solution to measure the instantaneous phase of the Inter-

mediate Frequency (IF) signal without the use of a power-hungry ADC. The inspiration

for our solution was found in All-Digital Phase Locked Loops (ADPLLs) which solve a

very similar problem using a Time to Digital Converter (TDC). Instead of digitizing the

IF signal and computing the instantaneous phase off-chip using the CORDIC block, it is

possible to directly measure the phase difference between the IF signal and the reference

signal and send it out of the ASIC. This is similar to the case of Phase Frequency De-

tector (PFD) in a Phase Locked Loop (PLL), where the time difference between the two
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clock edges is converted directly to voltage using a current that stays ‘ON’ for that time

duration and integrated onto a capacitor. In the case of a TDC, that time is directly

reported as a digital value.

The TDC offers several benefits over the ADC approach to measuring phase. It

consumes a fraction of the area that is occupied by the ADC, owing to the lack of any

large capacitors and current sources in its design. It is also much more robust to process

and temperature variations compared to an ADC. The only process-sensitive part in the

entire design is the delay ring, which consists of simple current starved inverters tied in a

ring fashion. The effect of process variation on these circuits is very easy to characterize

and calibrate. As will be described in a later section, the calibration mechanism for the

TDC is also a lot simpler compared to the ADC. Adjusting the current biases for the

current starved inverters can get the delay that is desired. Finally, a TDC is an all digital

design, which means that it can be completely synthesized and can be much more readily

adopted to other technologies, and for future designs.

Even though this IC is discussed after the ADC chip in this manuscript, chronologi-

cally it was actually designed and fabricated first. A major part of this IC’s architecture

and schematic design was done by colleague Aaron J Bluestone and this IC is discussed

comprehensively in his dissertation [35]. The TIA design and layout were completed

by our colleague Robert Constanzo from the University of Virginia [36]. The PLL used

in this chip was designed by our advisor Prof. Theogarajan, and Aaron and I worked

together to complete the layout of this chip. We both worked together on the initial

testing of this chip, and work was continued after Aaron’s graduation to lock a laser

using this chip. In the next section, we will discuss the various design blocks employed in

this chip for completeness (for a detailed explanation of all the functional blocks readers

are encouraged to refer to [35]), and then discuss the locking results that were obtained

using this chip.
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3.1 ASIC Integration
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Amplifier
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21

(b)

4mm

2.3mm

Figure 3.1: (a)Simplified schematic of signal chain (b) Photograph taken of the Inte-
grated Circuit (IC) after fabrication

Figure 3.1(a) shows the signal chain present on the signal chain on the Integrated

Circuit (IC). Similar to the IC fabricated using Global Foundries’ BiCMOS8HP process,

it has a Radio-Frequency (RF) front end consisting of a Trans-Impedance Amplifier

(TIA), Mixer and a Phase Locked Loop (PLL) that generates the Local Oscillator (LO)

signal for the mixer.

The TIA converts the beat note photo current emitted by the photo diode to a voltage.

This RF signal can range anywhere from DC-8GHz, and so it needs to be down-converted

to an Intermediate Frequency (IF) signal for processing by the Time to Digital Convertor

(TDC). This is done by a purely CMOS double balanced mixer which receives its LO

signal directly from the on-chip PLL.

The next few sections will describe each of these parts in further detail, and finally

show measurements results from them, and the final locking results.
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3.1.1 Trans-impedance Amplifier

Just as in the case of the IC in the previous chapter, the TIA used in our design

was designed by our colleague Robert Costanzo at the University of Virginia, and is

described in detail in [36]. The TIA design, shown in Figure 3.2, consists of a current

reuse path that is applied to a conventional Regulated Cascode (RGC) TIA in order to

offer improvements in transimpedance performance.

Figure 3.2: Left: full schematic of the implementation of the CRRGC TIA, including
active balun and open-drain output buffer. The biasing circuits and references for the
current tails are omitted. All devices are minimum length. Right: microphotograph
of the CRRGC TIA on a 65-nm GP CMOS chip.

3.1.2 Phase Locked Loop

The phase locked loop (PLL) in this IC is almost identical to the one implemented in

the previous chapter. The only few differences between the two structures are the Voltage

controlled oscillators (VCO), the level shifters, and the divider. The only difference

between the two VCO’s is the fact that instead of a 2 stage VCO implemented in the

previous case, we implement a 3 stage VCO. The next few subsections will describe the

level shifters, and the divider in more detail. For all other blocks used in the PLL,

we encourage the readers to refer to the “Phase Locked Loop” section in the previous

chapter.
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Level Shifter

IN

IN#

OUT

Figure 3.3: Circuit implementation of the Level Shifter

The level shifter for the PLL needs to operate from DC-8GHz, and the two stage

level shifter topology used in Figure 2.28 does not work at higher frequencies. For the

level shifter, the topology used is shown in Figure 3.3. Since the VCO output frequency

is modulated using its supply voltage, the output swing of the VCO output at lower

frequencies can potentially be much lower than an inverter threshold. In those cases,

the current mirror that uses the IN# input generates a very small current that slowly

charges the capacitor at the input of the inverter which in turn generates the OUT signal.

Divider

The PLL designed for this IC has an operating range from DC-8GHz. This means

that the divider has to divide signals with frequencies up to 8GHz down to the reference

frequency (typically 10-100 MHz). A simple solution to this is to use a prescale divide-by-

N (usually, N=2 or 4), where the input is first divided down to manageable frequencies

and ease the constraints on the programmable divider. The drawback of this approach

is that the smallest frequency step that the PLL can now take is N.fref , where N is the
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prescale divide value. For PLLs where finer frequency steps are needed, or frequency

steps at least equal to fref , another approach is to use a “Pulse-swallow counter” or a

“Dual-Modulus divider”. The topology for this type of divider can be seen in Figure

3.4(a). Instead of using a fixed divide-by-N prescale divider at the input, the core idea

behind this divider is to switch between using an N or N+1 divider (labeled as M/M + 1

in the figure, where M stands for Modulus in that case). As illustrated in Figure 3.4(a),

in these types of implementations, there are two counters that count up to A and B

respectively, where A < B. So, for A cycles of the divided clock, a prescale divide value

of M + 1 is used, and for the remaining cycles (B−A) the prescale value is M . The final

number of divide cycles for the input clock can be given by Equation (3.2).

Divide cycles = A ∗ (M + 1) + (B − A) ∗M (3.1)

= B ∗M + A (3.2)

Thus, by appropriately choosing the values of A and B, integer values for the final

divide can now be achieved.

Figure 3.4: (a) Traditional implementation of a dual modulus divider (b) Current
Implementation of a dual modulus divider

Our contribution to this divider is to use one counter instead of two and simply count up
to B. When this counter value hits the programmable value of A, we use it to generate
a control signal that switches the modulus (Figure 3.4(b)).
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Figure 3.5: Circuit Implementation of 4/5 Dual Modulus Divider

For our IC, our modulus of choice was to use M = 3. Figure 3.5, shows the circuit

implementation of our 4/5 Dual Modulus Divider. This divider then feeds its scaled

output clock to a Programmable 6-bit counter to give us the divide value we desire.
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3.1.3 CMOS Gilbert Cell Mixer

LO - 

RF - 

LO + 

RF + 

vnbias

Figure 3.6: Circuit implementation of the double balanced mixer

Figure 3.6 shows a CMOS implementation of a double balanced mixer. An astute

reader will observe that this mixer has the same circuit topology as the mixer used in the

previous chapter, with CMOS transistors replacing the BJTs. For further information on

how this topology mixes the RF signal of interest to baseband, the reader is encouraged

to refer to the “Mixer - Gilbert Cell” section of the previous chapter.

3.1.4 Baseband Amplifier and Limiting Amplifier

After the mixer,two operations on the IF signal need to be accomplished. Post-

mixing, the IF signal could be in the order of several hundred µV s and contain several

harmonics of the IF signal. This small signal needs to be amplified, and made into a full
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CMFB

vip vin

vnbias
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Figure 3.7: Circuit implementation of the double balanced mixer

swing signal. At the same time, the higher order harmonics need to be filtered so that

they do not interfere with the signal processing.

This is accomplished in two stages. For the first stage, a tunable bandwidth (BW)

differential amplifier is used. This differential amplifier not only provides the gain that is

needed after the mixer, but also helps filter the undesirable high frequency components

coming out of the mixer.

The gain of this first stage tunable amplifier, A is given by:

A = gm

(
rop||ron||

Rlin

2

)
If it is ensured that the Rlin

2
<< rop, ron, then this gain term becomes

A = gm

(
Rlin

2

)
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Similarly, the Bandwidth (BW) of this tunable amplifier is given by:

f3dB =
1

πRlinCload

IN IN#

OUT

Figure 3.8: Circuit implementation of the Chappell Amplifier

After sufficient pre-amplification and filtering, the baseband signal in this case is

converted to a rail-to-rail digital signal that is sent to the Time to Digital Convertor

(TDC). For this, a simple Chappell Amplifier shown in Figure 3.8 is used that was first

seen in [30]. The reason to choose this amplifier is because it is self biased, and has the

versatility to operate at different temperatures and supply voltages.

3.1.5 Time to Digital Converter

A Time to Digital Converter (TDC) is an electrical circuit that measures the time

difference between two clock edges that arrive at different times. Figure 3.9(a) illustrates

an example where two clock edges arrive at different times. The circuit shown in Figure
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3.9(b) would be a simple but inefficient implementation of a TDC, which would help find

the difference between the arrival times of the two clock signals. Let the first arriving

clock edge be called the “faster edge” and the later arriving one the “slower edge”. In

the TDC implemented in Figure 3.9(b), the faster edge is passed through a delay line

with uniformly spaced buffers and it is ensured that each buffer has a constant delay of

τ . The output of each of the buffer along the delay line is tapped and fed to the D input

of D-Flipflop (DFF). Using the slower edge as the clock input for all of these flip flops

would then give the requested TDC measurement every clock cycle. The system yields

the TDC value in the form of a thermometer code which can be converted to a binary

value that would give the solution. To understand how the TDC works, one can imagine

the measurement operation as a race between the two rising edges. As the faster edge

propagates through the delay line, it flips each of the buffer outputs to a “1”. However,

if the slower edge arrives before the faster edge can propagate through the entire delay

line, it will sample a series of 1s followed by 0s. These 1s correspond to the distance the

faster edge travelled along the delay line before it was sampled by the slower edge. Here,

the resolution of our TDC is the delay of buffer cell in the delay line and our dynamic

range is the number of buffers and DFFs in our system. A consequence of this is that if

an N -bit TDC was wanted, the number of these cells required would be 2N .

Instead of using a linear delay line Yu et al. [37] increased the dynamic range of their

TDC by configuring their delay line as a ring. As opposed to simply counting the number

of delay cells it took for the slower edge to catch up with the faster edge, the number of

laps it takes for the slower edge to catch the faster edge can be counted. The resolution

of the TDC is further increased by transmitting the slower edge through another ring

and configuring the delay of its buffers to be slightly faster than the buffers in the delay

line transmitting the faster edge. A consequence of this adjustment is that the resolution

of the TDC is now the difference of the propagation delay of the two buffer cells, which

79



Frequency Detection using Time to Digital convertor (TDC) Chapter 3

Figure 3.9: (a) Illustration of two rising edges arriving at different times (b) Block
diagram of a simple Time to Digital Converter (TDC) that could measure the time
difference between the two edges with a timing resolution equal to the delay of each
inverter

can be tuned to be much smaller than the propagation delay of the buffer cells. TDCs

implemented in this fashion are often referred to as Vernier Ring TDCs (VRTDCs). The

TDC implemented in this IC is a VRTDC and was greatly inspired by the work done

in [37], and an extensive analysis of this specific VRTDC and its implementation can be

found in [35].

Conventional implementations of TDCs expect the two input frequencies at its input

to have the same frequency. However, as discussed in Chapter 2, a laser’s beat note can

often jump by multiple MHz. Our solution to this problem is illustrated in Figure 3.10.

We make two changes to our system’s architecture: 1. We no longer expect the reference

clock and the feedback clock to be the same frequency, we ensure that the feedback clock
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is always faster than the reference clock; 2. Instead of arbitrating which signal arrived

first, we always have the reference clock edge enter the fast ring. We place a counter

at the input of the feedback input and count the number of edges before a feedback

edge arrives. Control circuitry only lets the feedback clock enter the slow ring after the

reference clock has entered the fast one. These two alterations now free us from the

restriction that the feedback frequency needs to be close to the reference frequency and

increase our acquisition range. In the next section, we will discuss how we use the output

of this counter in conjunction with our TDC output to get a measure of our beat note

frequency.

Frequency Error Calculation

As mentioned in the previous section, to facilitate a wider range of operation, a

counter is used instead of a frequency divider before the input of the TDC (illustrated in

Figure 3.10). Figure 3.11 shows a timing diagram of the TDC under normal operating

conditions. The TDC yields a result, τN every reference cycle, TREF . In addition, it also

measures the beat count, B, which is the number of “Intermediate Frequency” cycles

between each reference cycle. This counter is reset every rising edge of the reference

clock.

Figure 3.10: Simplified circuit diagram of extended range TDC
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Based on all the information we receive from the TDC, the time period, TIF of the

incoming IF signal is easily calculable.

TIF ∗B = (TREF + τN+1 − τN) (3.3)

TIF =
TREF + τN+1 − τN+1

B
(3.4)

TIF ∗B − TREF = τN+1 − τN (3.5)

However, careful examination of Equation (3.4) reveals that correct calculation of the

IF time period requires the use of an expensive divider operation - these operations on

the FPGA not only require a lot of resources but also have a high latency.
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Figure 3.11: Timing diagram illustrating TDC operation

For the loop, it is required to produce an error signal that is proportional to the

difference in the time period of the IF signal and our reference signal. An ideal version
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of this signal would be given by:

(Terror)ideal = TIF − TREF (3.6)

However, as mentioned before, calculating the TIF is expensive. So, instead of calcu-

lating the error exactly, an error term that is proportional to the ideal error by a constant

is used.

This error can be acquired by subtracting (B − 1) ∗ TREF from Equation 3.5.

(Terror)actual = τN+1 − τN − (B − 1) ∗ TREF (3.7)

(Terror)actual = TIF ∗B − TREF − (B − 1) ∗ TREF (3.8)

(Terror)actual = B ∗ (TIF − TREF ) (3.9)

(Terror)actual = B ∗ (Terror)ideal (3.10)

(Terror)actual ∝ (Terror)ideal (3.11)

tN

B

TREF

ClkFPGA

tN-1z
-1

TError 

Figure 3.12: Block diagram of the Digital Signal Processing required to calculate the
time error
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Figure 3.13: (a) Simplified schematic of Test PCB used for testing (b) Photograph of
Test PCB

3.1.6 Test PCB

Figure 3.13(a) shows a simplified schematic of the layout of the Test PCB used to

test the ASIC. The board was manufactured using the Chip-on-board (CoB) method

where the ASIC was wire-bonded directly to the circuit board. All the analog biases for

the ASIC were externally provided using a low noise 16-bit Digital to Analog Convertor

(DAC) (LTC2656) programmed using a 4 pin Serial Peripheral Interface (SPI). The

outputs of the ADC are provided by low voltage (1.2V) devices inside the ASIC, while

the Field Programmable Gate Array (FPGA) requires LVCMOS signalling (2.5V), level

shifters (SN74AVC16T245) are used at the output of the ADC that sufficiently level-

up the outputs of the ADC. The ASIC requires one 1.2V Digital supply, while it also

requires a 2.5V digital and analog supply. To ensure low noise performance and to

minimize the number of external power supplies required, several Low Drop-out (LDO)

voltage regulators (ADM7154) are used that supply these power supplies to the ASIC.

Finally, to test the functionality of the TDC, and calibrate the fast and slow delay lines

a programmable delay IC (NB6L295M) is used.
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3.2 Measurement Results

Full loop frequency synthesis by bypassing RF front end

To test the ASIC’s ability to be used as a synthesizer, it is used in the same config-

uration as shown in Figure 2.5. However, as shown in Figure 3.14, instead of using an

I-Q Demodulator and an ADC, a single mixer is used to mix down the beat note to a

manageable Intermediate Frequency (IF) and a Time to Digital Converter (TDC) is used

to calculate the frequency of this IF signal. For an initial experiment just to prove that

a TDC can be used in a locking experiment, the TDC inside the ASIC is employed and

the RF Front End (TIA, Mixer and PLL) is completely bypassed.

÷ 𝟒 ÷ 𝟖
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Figure 3.14: Block diagram of Full loop used for frequency synthesis

An actual photograph of this setup can be seen in Figure 3.15. This figure illustrates

all the extra RF components that are required to process the RF beat note before being

mixed down to an IF signal.
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Frequency Dividers

LNA

LNA

LNA

GF55nm ASIC

FPGA

Laser

Driver

Figure 3.15: Photograph of Full loop used for frequency synthesis

Figure 3.16(a) shows the frequency vs. time output of the laser when measured for

300 secs. This output is directly measured by the frequency counter (Keysight 53230A).

The maximum deviation seen in this case is +/-64Hz. Note that the frequency deviation

already includes a factor of 32. The power spectrum associated with this beat note can

be seen in Figure 3.17.

128 Hz

Figure 3.16: Current synthesizer output νout deviation for 300s at 10-ms gate time shows
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Figure 3.17: Power spectral density of the locked tunable laser plotted on an ESA
(Resolution bandwidth of 1 Hz and span of 100 MHz)

3.2 kHz

Figure 3.18: Bidirectional linear ramp of the synthesizer via step control of the laser
offset PLL setpoint (100-ms gate)

To demonstrate the synthesizer capabilities of the loop, the set-point is moved by

changing the Local Oscillator (LO) signal in steps of 3.2kHz (this is the signal used to

mix down the beat note to IF). Figure 3.18 shows frequency counter measurements that

measure this beat note vs. time.
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Full loop frequency synthesis

Now that it has been demonstrated that it is possible to use a TDC instead of the

ADC-based architecture to lock a laser to an optical reference, we now present the results

of our synthesis efforts when we use the RF signal chain inside the ASIC, without the help

of external RF components such as frequency dividers, Low Noise Amplifiers (LNAs),

and mixers. Figure 3.19 is a simplified block diagram of our entire signal chain. The

output from the Agilent Lightwave converter is now directly fed to the IC which mixes

the beat note down to baseband frequencies using internal RF electronics.
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Tunable Laser

Reference Laser

Optical 

Spectrum 

Analyzer

Frequency Counter

Phase

Detection

+

Loop 

Filter Computer Interface

GF 55nm IC

PLL

TIA

TDC

Figure 3.19: Block diagram of Full loop used for frequency synthesis

An actual photograph of this setup can be seen in Figure 3.20. This figure illustrates

how all the extra RF components that are required to process the RF beat note before

being mixed down to an IF signal are no longer required for frequency synthesis.
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Tunable Laser

GF55nm ASIC

FPGA

Laser

Driver

Figure 3.20: Photograph of Full loop used for frequency synthesis. Note the absence
of LNAs, Frequency Dividers, and an external RF Mixer

Figure 3.21(a) shows the frequency vs. time output of the laser when measured for

3600 secs. This output is directly measured by the frequency counter (Keysight 53230A).

The maximum deviation seen in this case is +/-4kHz. We use this frequency data to

calculate the Allan Deviation of our synthesizers output (shown in Figure 3.21(b)).

Figure 3.21: Current synthesizer output νout deviation for 3600s at 10-ms gate time shows

As with previous synthesizer experiments, we now demonstrate the synthesis ability

of the ASIC. Figure 3.22(a) shows bidirectional control of the output frequency. There

are two mechanisms that use to alter the output frequency. The first way is to step the

LO frequency used to down-mix the beat note, these step sizes are equal to the frequency
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of our PLL’s reference clock (for our ASIC’s PLL, this reference was set to 25MHz). The

second technique is to alter the expected beat note in our frequency calculation algorithm.

This moves the output with step sizes equal to the TDC’s reference frequency. Figure

3.22(a) shows both these steps and demonstrates our ability to move the beat note in

both directions. Figure 3.22(b) shows the synthesizers ability to generate beat notes over

a wide frequency range. Here, we move the beat note from 3GHz to 4GHz.

Figure 3.22: Bidirectional linear ramp of the synthesizer via step control of the laser
offset PLL setpoint (100-ms gate)

Finally, to prove the synthesizers ability to generate arbitrary frequencies we use

the loop to move the laser in way that spells out “UCSB” when we plot the laser’s

instantaneous frequency vs. time.
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Figure 3.23: Synthesizer setpoint varied over time to display ”UCSB” Logo

3.3 Summary

Figure 3.24: Table comparing the performance results between the Board-Level and
Integrated Implementations of the ADC-based approach vs. the TDC-based approach

As demonstrated by the table shown in Figure 3.24, the ASIC implemented in this

chapter outperforms the GF130nm ASIC in nearly every respect. One of the primary
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benefits of this design is the All-Digital nature of the Time to Digital Converter (TDC).

Being a digital circuit, it is extremely robust to noise sources within the IC and process

variations during the fabrication process. The only calibration required with this circuit

is to tune the delay cells within the Vernier-Ring TDC core.

Compared to ADC based implementation, we also reduce the total area and power

consumed by our circuit. As can be seen in Figure 3.25, the TDC covers only a fraction

of the total area covered by one ADC.

Figure 3.25: Comparison of the area covered by the ADC vs. the area covered by the TDC

The price we pay, however, to get rid of I-Q demodulation is that we now lose the

ability to differentiate between the desirable beat note and undesirable beat note from

Figure 2.1. Without I-Q demodulation, if the laser moves too quickly to a different comb

tooth, we can inadvertently lock to the wrong comb-line.

The final drawback of this system is that similar to a conventional OEPLL, our

minimum step size is now limited to integral multiples of our TDC. If we wanted smaller

steps, we would have to implement a Fractional-N PLL on chip that would increase the

complexity and noise of our design.

Despite the drawbacks relating to the minimum step size, the gains accomplished by

eliminating the frequency dividers in our system are tenfold. This omission not only

reduces the overall power and area of our system, but also removes the noise the dividers
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would normally divide within the bandwidth of our system.

Offset locking to a comb offers absolute laser stability and we have demonstrated

some spectacular results in the previous two chapters; however, this architecture also

involves the use of locked combs using two resonators (SiN and SiO2 based) that need

to be stabilized and locked to each other, before a laser being locked to one of them. In

the next chapter, we will deal with a synthesizer that is not concerned with the absolute

stability of our lasers but is rather interested in locking two lasers with >100GHz offsets

between them.
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Chapter 4

Frequency detection using a 3x3

wavemeter

As mentioned at the beginning of this manuscript, the architectures described in Chap-

ter 2 and Chapter 3 are incredibly efficient solutions for applications that demand optical

light with “absolutely” stable frequencies, however, if an application cared only about

the relative stability of two lasers locked together - the solution described in the previous

chapters would perhaps be superfluous. In this chapter, we look at a novel new way of

generating microwave signals of arbitrary frequencies first described by T. Komljenovic

et al.[38] and further add to this body of work by leveraging some of the tricks and

techniques we have used in the previous chapters.

While the work done in [38], demonstrates stable locking results and the ability to

create arbitrary frequencies, it still falls shy of its promise of delivering multiple GHz fre-

quencies. The work done in this chapter aims to offer an alternative locking architecture

that uses DSP to calculate the wavelength of the laser and aims to address some of the

pitfalls of using a purely analog approach to laser locking.

The next section will start by explaining how the “wavemeter” was constructed and
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motivate the reasons behind the design choices. The locking technique used in [38] will

then be described followed by a discussion of some of its shortcomings. We will finally

discuss our locking architecture and end the discussion by showcasing some of our results

and review important observations made over the course of the experiment.

4.1 System Overview

The architecture shown in Figure 1.5 offers a viable solution to the problem of locking

a laser’s wavelength. As can be seen from Figure 1.6(a), in the ideal case where the

laser’s wavelength does not change with time, the output of the interferometer also does

not change with time. Moreover, a linear change in the laser’s wavelength results in a

sinusoidal change in the interferometer’s output. This fact can be used to lock the laser’s

wavelength to a particular value by monitoring the interferometer output. As with the

other negative feedback loops discussed in the previous chapters, if the output of the

interferometer moves in a direction, the laser needs to be controlled in such a way that

the output moves back to its original set-point. Thus, by locking this output voltage, the

laser’s wavelength will be indirectly locked. This lock however, is completely dependent

on the fact that the laser’s output power stays constant and does not change with time.

If the laser’s power changes, it will inadvertently change the output of the interferometer

and will incorrectly be interpreted as a change in laser’s wavelength.

The solution to this problem is to use a 3x3 light coupler instead of a 2x2 coupler and

use the topology used in Figure 4.1. If designed correctly, 3x3 couplers provide a phase

shift of 120◦ between the outputs of its arms [39].

Figure 4.2 shows the wavemeter output as the wavelength is varied linearly with time.

The phase shift between these arms makes it possible to generate quadrature signals,

which can then be used to unwrap the phase. This calculation provides robustness
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Figure 4.1: Interferometer created similar to 1.5 but made using a 3x3 coupler instead
of a 2x2 coupler

against any variations in the output power of the laser. This is because an increase in

laser power will affect all the channels equally and so the phase calculation from the

quadrature signals should then nullify the effect of these variations.

Figure 4.2: The output of the wavemeter as (a) the wavelength is held constant (b)
Wavelength is changed linearly with time. Using a 3x3 coupler now gives us access to
three sinusoidal outputs that have a phase difference of 120◦ between each other

Figure 4.3 shows this unwrapped phase and its relationship with the laser frequency.

Phase response as the one shown in Figure 4.3 helps precisely determine the laser’s

frequency and its direction of drift. As is already deducible from the figure, if two servo

loops with different time constants are employed, it is possible to potentially lock the

laser with MHz-level resolution but at the same time possess GHz level offsets without

the use of any high-speed or Radio-Frequency (RF) electronics.
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As mentioned in Chapter 1, the interferometer response repeats itself periodically

with a period determined by the ratio ∆L
λlaser

. This period is called the Free Spectral

Range (FSR) of the Wavemeter. With prior knowledge of the wavemeter FSR, the “slow

loop” keeps track of the number of rotations in the phase and makes it possible to move

the laser to GHz offsets with respect to the reference set point. Once the slow loop

has brought the laser to the correct set-point, the “fast loop” can be used to lock the

laser to a specific phase value with an extremely high degree of accuracy, thereby giving

MHz-level resolution.

Figure 4.3: Tuning laser frequency using the Free Spectral Range of a 3x3 wavemeter

4.2 Controller Architecture

As mentioned in the preceding section, the frequency control system consists of two

feedback loops with differing time constants. The loop with the larger time constant is

dubbed the “slow loop” and can be seen in Figure 4.4. The slow loop actively measures

the instantaneous phase of the wavemeter output and at the same time keeps track of its

rotation history using a binary counter. The counter increments or decrements every time

it encounters a phase rotation based on its direction. The output of this rotation counter
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Figure 4.4: Block Diagram of Controller Architecture

determines the large signal set point for the laser and thus it drives a Current Digital

to Analog Converter (DAC) with a very wide output range (50mA-300mA). With the

large frequency offset taken care of, a traditional Proportional-Integral (PI) controller

is used to tightly lock the instantaneous phase output of the wavemeter to a specific

phase value. The aim is to have the bandwidth of this loop > 1MHz, thereby providing

exceptionally high long-term stability and potentially kHz-level stability. All the digital

signal processing (DSP) for the loop will be carried out using Digilent’s Zedboard FPGA

evaluation board which features a Xilinx Zynq 7000 FPGA/ARM SoC. To keep other

noise factors to a minimum custom laser drivers are employed and a 12-bit Analog to

Digital Converter (ADC) to measure the instantaneous phase.

4.3 Digital Signal Processing

All the digital signal processing (DSP) for the control loop is implemented using the

Xilinx Zynq-7000 all programmable SoC (AP SoC). Although this FPGA features 100

DSP slices which can carry out up to 18x25 bit multiply and accumulate operations, a

multiplication operation is carried out only once and all the multiplication and division

operations have been replaced with left shift and right shift operations respectively.
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4.3.1 Wavelength calculation from 3x3 coupler outputs

Once the coupler outputs are sampled by the Analog to Digital Converters (ADCs), a

few simple trigonometric manipulations can be implemented to calculate the In-Phase (I)

and Quadrature (Q) components as shown below. The In-Phase component is calculated

as shown in Eq. (1) and the quadrature component is calculated by simply multiplying

the sin(θmeas) term with sin(120). These I-Q components are used to calculate the in-

stantaneous phase using an FPGA implementation of the CORDIC algorithm. Instead

of using expensive multiplication and division operations, the CORDIC algorithm itera-

tively computes the arc tangent using shift and add blocks, and with the help of a look

up table. Figure 4.5 illustrates the implementation of this algorithm in our FPGA.

sin(θmeas + 120◦) = sin(θmeas)cos(120◦) + cos(θmeas)sin(120◦)

=⇒ sin(θmeas + 120◦)− sin(θmeas)cos(120◦) = cos(θmeas)sin(120◦)

=⇒ θmeas = tan−1

(
sin(θmeas)sin(120◦)

cos(θmeas)sin(120◦)

)
The I-Q computation is the only time a multiplication operation is used in the control

loop. The multiplication with sin(120◦) can be reduced to a right shift of 1 bit, however,

multiplication with cos(120◦) will still use one DSP slice.

4.3.2 Proportional Integral (PI) Controller

Fig.4.6 shows the implementation details of the Proportional-Integral controller. Sim-

ilar to the filters implemented in Chapter 2, all the filter coefficients are limited to powers

of 2. Implementing the filter in this manner converts all the multiplication and division
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Figure 4.5: Block Diagram of Instantaneous Phase Calculation

Figure 4.6: Block Diagram of Proportional Integral Controller

operations to simple shift operations, which avoids using the expensive DSP slices men-

tioned earlier.
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4.3.3 Fast loop simulation using MATLAB

Figure 4.7: Simplified Block Diagram of the Fast Loop

Figure 4.7 shows a simplified block diagram of the simulation setup used to determine

the PI coefficients that will stabilize the loop. A first-order low pass filter with a corner

frequency of 10MHz emulates the laser modulation upper limit in the lock setup. This

limitation comes from us using discrete components and cables to power the laser. A

linear gain block models the laser phase output response and incorporates all other gain

terms arising from the DAC within the same block. In practice, a calibration step needs

to be run and the DAC output needs to be ramped to precisely measure this gain value.

However, by adjusting the gain of the PI controller, the contribution of this term can be

cancelled out. Finally, a block modelling the output response of our PI controller itself is

added which will contribute to a pole and a zero in the loop. For the simulation, the PI

coefficients are set so that the loop bandwidth is 2MHz (12.56M rad/s) while at the same

time it is designed to posses a healthy phase margin . For the PI Filter (shown in Figure

4.6), the coefficients are set as P=-6, I=22, and G=5. Figure 4.8 shows the frequency

response of the Fast loop for these settings and its corresponding transient response is

shown in Figure 4.9. It can be seen that the loop has a bandwidth of 1.59MHz (11M

rad/s) with a healthy phase margin of 75◦. The transient simulation of the model shows

a settling time close to 150ns with a transient response that would be consistent with a
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phase margin > 45◦.

Figure 4.8: Fast loop Frequency Response

Figure 4.9: Fast loop Transient Response
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4.4 Graphical User Interface and ARM Cortex A-9

processor
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Figure 4.10: Graphical User Interface (GUI) written using Visual Basic interacts with
the ARM Cortex A-9 processor which controls low level RTL hardware written in
Verilog

In addition to its programmable logic core, the Zynq-7000 SOC also has a dual-core

ARM Cortex A9 processor. The processor allows interface with lower-level Verilog code

using an interface written in C and all the I/O periphery is treated as register mapped IO.

As illustrated in Figure 4.10, the Graphical User Interface (GUI) communicates to the

ARM processor using a JTAG cable which in turn controls the lower-level Verilog code

using the AXI interface. The Verilog code interfaces with various I/O peripherals that

enables the FPGA to carry out the digital signal processing we discussed in the preceding

section. For Analog to Digital conversion (ADC), the MAX 11192 Eval board is used

which houses a MAX 11192 IC. This ASIC consists of two 2MSPS SAR ADCs which have

a resolution of 12 bits each. On the other end, a custom board is being used as the laser

driver. This board features the MAX 5885 for its Digital to Analog Conversion (DAC).

This 16-bit 100MSPS DAC generates the feedback signal to the laser, but also debug
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various other signals along the signal chain. To conceal the complexities of the underlying

code and to make the system easier to operate, a Graphical User Interface (GUI) designed

using Visual Basic communicates with the FPGA and associated peripherals. As can be

seen in Figure 4.11, the GUI can be used to change various laser biases and alter the

Proportional-Integral-Differential (PID) coefficients of the overall servo loop. The GUI

makes it possible to bypass the loop filter and view intermediate signals along the signal

chain. This feature is used in the next section to ensure that the internal Verilog code is

correctly calculating the phase difference between the arms of the wavemeter.

Figure 4.11: Graphical User Interface (GUI)
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4.5 Custom Photo Receiver Board - version 1

To get a precise estimate of the phase difference between the wavemeter arms is, the

output power of each wavemeter arms need to be converted to its voltage equivalent.

Figure 4.12(a) shows a simplified schematic of the photo-receiver circuit being employed.

The circuit consists a photodiode-TIA combination that then drives an opamp buffer.

The Printed Circuit Board (PCB) also consists an optional path that utilizes a tunable

potentiometer instead of the TIA. This enables us to change the transimpedance gain of

the circuit should the need arise to do so. Finally, in order to measure the power output

of 3 wavemeter arms, the PCB uses the same circuit thrice – one for each arm of the

wavemeter.
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Figure 4.12: (a)Simplified schematic of photo receiver circuit (b) 3D render of the PCB
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4.6 Custom Photo Receiver Board - version 2
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Figure 4.13: (a)Simplified schematic of photo receiver circuit (b) 3D render of the PCB

Based on measurements from the first version of the board, new version of the pho-

toreceiver board was designed. The new schematic for this board can be seen in Figure

4.13(a). A Transimpedance amplifier (TIA) with a 330kOhm resistor as the feedback is

used to convert the photocurrent to a voltage. On the positive terminal of the TIA, a

voltage bias now sets our photodiode bias. This is an improvement over the previous

implementation as the negative feedback now ensures that the voltage bias is now fixed

and does not change with the photocurrent. In addition to the TIA there is another

amplifier which adjusts the common mode of the TIA output. The reason to add this is

that the Analog to Digital Converter (ADC) has reference voltage of 2V, which means

that any input greater than 2V is not correctly sampled by the ADC. The final board
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can be seen in Figure 4.13(b), where we have 4 copies of the same circuit shown in Figure

4.13(a).

4.7 Measurement Results

4.7.1 Instantaneous Phase Measurement
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Figure 4.14: Schematic of test setup used to measure the instantaneous phase differ-
ence through the wavemeter

Figure 4.14 shows the experimental setup used to ensure correct hardware operation

and to verify that the digital signal processing is calculating the instantaneous phase

accurately. An Arbitrary Waveform Generator generates two sine waves that have a

phase difference of 120°, which are then sampled by the MAX 11192, which consists of

two 12-bit 2MSPS ADCs. The digitized versions of these two signals are then processed

to generate the quadrature signals required by the CORDIC algorithm to calculate the

instantaneous phase. This 32-bit instantaneous phase is then truncated to a 16-bit value

which is then output by a high-speed DAC (MAX 5885) for viewing.
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Figure 4.15: Measured outputs verifying correct phase measurement operation

Figure 4.15 shows the various traces measured using an oscilloscope and verify correct

operation. The traces shown in red and blue are emulating the outputs of the wavemeter

that are then fed into the ADC. The trace plotted in orange is the output of the CORDIC

block which, as you would expect, is a ramp function.
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4.7.2 Incorrect Phase Measurement due to non idealities

Laser Frequency

Laser Frequency

Laser Frequency

Laser Frequency

0

-180

180

0

-180

180

0

-A0

A0

0

-A0

A0

0

-A0

A0

0

-A0

A0

0
-A0

A0

U
n

w
ra

p
p

ed
 P

h
as

e

U
n

w
ra

p
p

ed
 P

h
as

e

W
av

em
et

er
O

u
tp

u
ts

W
av

em
et

er
O

u
tp

u
ts

(a) (b)

Figure 4.16: Simulation results (a) Under Ideal operation the wavemeter has a con-
stant DC common mode across multiple FSRs (b) The DC common mode in this case
has a frequency dependence which introduces an error in our phase unwrapping

Figure 4.16(a) shows simulation results when the phase unwrapping DSP block re-

ceives two ideal sine waves that are perfectly 120◦ apart. Here, the two sine waves are

perfectly centered at a DC common mode of 0 and both sinewaves have the same ampli-

tude. The output of the DSP block is shown below the sine waves. As can be seen from

the figure, the block perfectly unwraps the phase from the two sine waves and gives the

graph shown in green.

Unfortunately, this is not what the output of the wavemeter looks like coming out of

the integrated wavemeter. The integrated wavemeter’s output power has a dependency

on the laser’s frequency and so, as the laser’s frequency is swept, the DC common mode

of the wavemeter’s output moves over time (Figure 4.16 (b)). This change in common

mode introduces an error in the phase measurement and causes the output of the DSP

block to have a “swiggly” nature to it.
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Figure 4.17: Measurement Results showing the wavemeter output and the unwrapped phase

4.7.3 Long Term Stability

Figure 4.18 is a simplified schematic of the setup used to lock two lasers to the

wavemeter. The setup used here is very similar to the previous experiment, however,

instead of using a function generator to generate inputs to the ADC, the outputs of the

wavemeter are fed to the photoreceiver board. The voltages from the board are then used

to calculate the instantaneous phase of the lasers through the wavemeter. A simple PID

control loop tries to control this instantaneous phase and lock it to a specified set-point.

To verify the quality of the lock, a 3dB coupler is used to mix the light coming out of

each laser and the beat note is observed.
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Figure 4.18: Simplified schematic of Full Loop

Figure 4.19 shows the actual setup for the synthesizer set up in the lab.
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Figure 4.19: Photograph of Full Loop

Figs 4.20(a) and (b) display the beat note of the synthesizer after it has locked
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the amplitudes coming out of the wavemeter. The wavemeter has been sealed inside a

cardboard box filled with packing peanuts to isolate it from temperature variations from

the surroundings. However, peculiar behaviour is observed from the beat notes during

different parts of the day. The laser’s being used for our lock have a linewidth in the

order of a MHz and so expect MHz level variations in the beat note is to be expected.

However, earlier in the morning, as lab ambient temperatures were increasing, it was

noticed that the locked beat note was increasing and this linear increase was >10MHz.

Similarly at night, when temperatures were decreasing, the beat note would follow a

downward trajectory.

Figure 4.20: Frequency vs. Time plot of beat note between the lasers measured with
wavemeter placed inside a box during (a) day time when lab temperatures were rising
(b) night time when lab temperatures were falling

To ameliorate the variations caused due changes in ambient temperature, the pack-

aged wavemeter is mounted on a heat sink attached to a ThermoElectric cooler (TEC).

An illustration of this new setup can be seen in Figure 4.21.
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Figure 4.21: Illustration of setup used to stabilize the integrated wavemeter’s temperature

As a result of this temperature stabilization, a marked improvement is seen in the

drift of synthesizer output. Figure 4.22 shows a Frequency vs. Time plot of the syn-

thesizer output after it has been locked to a fixed point along the wavemeter and the

wavemeter’s temperature has been stabilized using a TEC. As can be seen from the fig-

ure, the wavemeter output no longer drifts by 10s of MHz over an hour and stays centered

around a fixed mean.
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Figure 4.22: Frequency vs. Time plot of beat note between the lasers measured for
3000 secs with wavemeter resting on a temperature controlled stage (Gate time for
the frequency counter = 10ms)

Figure 4.23 shows a histogram of this long term measurement. Looking closer at

Figure 4.22 from 0 to 1000 secs, it can be seen that the beat note is locked to a higher

frequency than its later set point. This can also be seen in our histogram in Figure 4.23,

which appears as if a Gaussian Bell curve has been dragged lower.
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Figure 4.23: Histogram of beat note between the lasers measured for 3000 secs with
wavemeter resting on a temperature controlled stage (Gate time for the frequency
counter = 10ms)

While our temperature controlled stage works to stabilize the wavemeter’s temper-

ature, there is still a large time constant associated with the temperature loop as the

wavemeter is still separated from the TEC (where the thermistor is mounted) by a large

heat sink and the wavemeter’s package itself.

4.7.4 Large Frequency Steps

This section illustrates the real advantage of this locking scheme. By utilizing the

same low speed electronics that give MHz offset frequencies between the two lasers, it is

possible to use them to separate the lasers precisely with an offset of 100s of GHz (even

THz). Figure 4.24 shows the instantaneous beat note between the two lasers as one of

them is moved 2 FSRs away from their set point in steps of 5◦. However, the laser does

frequency does not move linearly proportional to our input stimulus. The reason for

this non-linearity is the error introduced to the phase measurement algorithm due to the

115



Frequency detection using a 3x3 wavemeter Chapter 4

varying DC common mode of the wavemeter outputs (shown in Figure 4.17). It can be

seen that the shape of the frequency graph precisely matches the shape of the measured

phase and that is because they are both inverse operations of each other.

(a) (b)

Figure 4.24: (a) Frequency counter data measuring the instantaneous beat note of the
two lasers as they are moved multiple Free Spectral Ranges (FSRs) away from each
other (b) Zoomed in view displaying individual step sizes

There are several solutions to address this problem, and one of them is to simply run

an initial calibration run and create a Look Up Table (LUT) of all the indices and their

corresponding beat frequencies. Once stored,this LUT can be used to step through the

desired output frequencies. For the results shown in Figure 4.24 we are stepping through

2 FSRs of the wavemeter by taking small steps of size equal to 5◦ and storing their

corresponding frequencies in a LUT. This LUT can then be used to go to the desired

output frequency as is illustrated in Figure 4.25 where we are now taking linear steps

through the entire range of the wavemeter.
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Figure 4.25: (a) Frequency counter data measuring the instantaneous beat note of the
two lasers as they are moved multiple Free Spectral Ranges (FSRs) away from each
other based on values from a Look Up Table (LUT)

4.8 Summary

In this chapter, we showed us how using a 3x3 coupler helps us generate quadrature

components that can then be used to calculate the phase difference through our waveme-

ter. We show that by locking this phase difference to a constant value, we can lock our

lasers to each other.
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Figure 4.26: Table comparing the performance results with respect to the other syn-
thesizers mentioned in this work

The table shown in Figure 4.26 might make it seem that the synthesizer we have

implemented here does not perform as well as our previous implementations. However,

one of the reasons our locked stability looks so much worse, is that the laser used in this

implementation has a Lorentzian linewidth that is three orders of magnitude larger than

our other lasers. And so we expect to see the deviation that we do.

However, the real strength of this implementation is the wide tuning range that

this wavemeter based approach has to offer. Using the same low-speed electronics, we

can move the lasers multiple FSRs away from each other and potentially get >100GHz

offsets. The only drawback from this implementation is the wavemeter’s susceptibility to

temperature variations.

If we compare our implementation to the commercial bench-top source sold by [40],

we provide orders of magnitude better frequency stability, while providing potential to

demonstrate the same tuning range.

In the next chapter, we will look at some ways that this implementation can be

improved upon in the future. We will also compare and contrast our various implemen-

tations, and discuss the trade-offs that need to be made when we design a synthesizer

for a particular application.
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Conclusion

5.1 Future work

As with most scientific endeavors, there is always more work to be done and any

system can always be improved upon. This section will discuss some of the work that

has been left unfinished, and list some of the ways to improve upon the results that have

been achieved thus far.

5.1.1 Fully integrated frequency synthesizer

The work done in this manuscript was funded by the Defense Advanced Research

Projects Agency (DARPA) project named Direct On-Chip Digital Optical Synthesizer

(DODOS). The aim of this project was to fabricate a fully integrated Optical Frequency

Synthesizer capable of producing an optical output with Hz-level precision in a package

with a volume less than 1cm3.
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Figure 5.1: Simplified block diagram of DODOS Optical Synthesizer with Final DO-
DOS PCB

Figure 5.1 shows a simplified block diagram of the final system package. This package

includes an optical package that interfaces with an electrical PCB via flex cables. The

optical package consists of three lasers, two micro-ring resonators required to generate

two optical frequency combs with a repetition rate of 1THz and 15GHz respectively. The

assembly also includes the Second Harmonic Generator and all the couplers required to

generate our beat notes.

This optical assembly was directed wirebonded to a Printed Circuit Board (PCB)

with the two ASICs (from Chapter 2 and Chapter 3) directly wirebonded to the board in

a CoB package. The final PCB is a 6-layer Rigid-Flex PCB consisting of all the electronic

circuitry that is necessary to drive the two pump lasers, and the widely tunable laser that

produces the system output. In addition to the laser drivers, the PCB also features two

custom ASICs (GF130nm and GF55nm) designed to process the photo-diode outputs

generated by the optical package. The PCB also features a Field Programmable Gate

Array (FPGA) that carries out all the control loop digital signal processing and facilitates

an interface to communicate with the ASICs. Finally, the PCB provides a means to

120



Conclusion Chapter 5

provide an ultra-stable Radio Frequency (RF) system clock, which can be then used as

reference the entire system locks to.

Figure 5.2: Actual Photograph of Final Assembly (Photographs taken by David
Kinghorn [41])

The laser driver ICs used to drive the lasers is Linear Technology’s LTC2662. This

IC is a five-channel 16/12-bit current Digital to Analog Converter (DAC). The IC can be

configured to have output ranges from a list of values (300mA, 200mA, 100mA, 50mA,

25mA, 12.5mA,6.25mA and 3.125mA). This makes it ideal to drive the tunable laser

which needs five bias currents – gain section, SOA, phase section, and 2 rings. The

area required by these ICs is still smaller than using two separate single-channel current

DACs, and so use another IC to drive the two pump lasers.

While the system has been fully assembled, further testing is still required to demon-

strate all the pieces working together in unison.

5.1.2 Wavemeter based lock

In the experiments with the wavemeter, it was attempted to stabilize the wavemeter’s

temperature by mounting a packaged version of it on a temperature controlled stage. As

can be seen from Figure 4.22, this provided some stabilization to the frequency beat
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note. However, if the Photonic IC (PIC) housing the wavemeter structure was directly

mounted on a Peltier cooler or a Thermo-Electric Cooler (TEC) along with a thermistor

right next to it, it might be possible to obtain results that could potentially be several

orders of magnitude better.

(a) (b)(a) (b)

Figure 5.3: (a) Current setup used to stabilize the wavemeter’s temperature. The
packaged Photonic IC (PIC) is mounted on heat sink which sits on a ThermoElectric
Cooler (TEC) (b) Better stabilization can be achieved by packaging the PIC directly
on a TEC with a thermistor mounted nearby for precise temperature control

5.1.3 Using a Delta-Sigma ∆− Σ ADC

To measure the outputs of the wavemeter, the optical light is converted a voltage

using the TIA on photoreceiver board. This voltage is then digitized using a Successive

Aproximation ADC (SAR ADC). Once digitized, these signals are digitally processed to

calculate the phase difference through the wavemeter. This signal is processed inside the

FPGA and the digital output of the loop filter is then converted to an analog value using

a high precision DAC.

For the system described here, the sampled analog values are very close to DC and

do not require high speed Nyquist data converters. In this case, a Delta Sigma ADC

would actually be the perfect candidate for data conversion. Moreover, a lot of work has

been recently done to use Delta Sigma streams directly for Logical [42] and Algebraic

operations [43]. Using these one can directly use the stream for feedback error calculation
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and then use the output stream to directly drive a laser using a 1-bit current DAC.

1612SAR

ADC

FPGA 

Digital Signal 

Processing

DAC
To Laser1612SAR

ADC

FPGA 

Digital Signal 

Processing

DAC
To Laser

S-D

ADC

1 FPGA 

Bit Stream 

Processing
Current sensing 

ADC

1 1-bit

DAC

To LaserS-D

ADC

1 FPGA 

Bit Stream 

Processing
Current sensing 

ADC

1 1-bit

DAC

To Laser

(a)

(b)

1612SAR

ADC

FPGA 

Digital Signal 

Processing

DAC
To Laser

S-D

ADC

1 FPGA 

Bit Stream 

Processing
Current sensing 

ADC

1 1-bit

DAC

To Laser

(a)

(b)

Figure 5.4: (a) Current setup used for wavelength stabilization (b) By replacing our
12-bit SAR ADC, we can simplify our DSP and also eliminate the need for a TIA and
high resolution output DAC

Apart from simplifying the signal processing, the Sigma Delta ADC can be imple-

mented as current sensing ADCs. These ADCs have been shown to have sensitivities

down to 100pAs [44], and thus can fully eliminate the need for a TransImpedance Am-

plifier (TIA), further reducing the power consumed.
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5.1.4 Using ultra low linewidth lasers

Figure 5.5: Linewidth of the laser being used for the locking experiment (138kHz)

Figure 5.5 shows the Lorentzian fit of the Linewidth spectrum of the laser being used

for the lock described in Chapter 4. Comparing the histogram of the steady state lock

shown in Figure 4.23 to this plot demonstrates that the linewidth of the laser is another

area that is limiting the precision of the locking setup. Remarkable advances have recently

been in made in the development of ultra linewidth lasers that display continuous tuning

across the C-band [45] [46]. Using these lasers with integrated wavemeters of longer

delays are the next step towards achieving higher levels of stability. Since the laser beat

note is not part of the full loop in this system, any improvement to our loop gain or

improvements in measurement, do not improve the beat note stability and thus, the
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only direct way to improve this stability to use Ultra-low linewidth lasers, that correlate

directly to a more stable beat note.

5.2 Conclusion

In this work, we have described the design and implementation of four different syn-

thesizers. There are several ways we can classify them and their performance. In Chap-

ter 2 and Chapter 3, we discussed synthesizer topologies that used an optical frequency

comb as their reference. These combs are used to bring laser frequencies that are typ-

ically nearly 200 THz down to microwave frequencies, and enables us to translate the

stability of microwave references to the optical domain. In Chapter 2, we began by

building our first prototype using off-the-shelf board level components that allowed us to

optimize every single part of the signal chain for maximum performance. As a result of

these optimizations, we restricted the laser frequency deviations to a standard deviation

of 626µHz from the mean. This implementation allowed us to control the laser’s output

frequency with Hz-level precision, thereby providing us with a stepping accuracy of one

part in nearly 200 billion!

Motivated by the success of our board level implementation, we then attempted to

reduce the ‘Size, Weigh And Power’ (SWaP) of our system. The entire system was taken

and integrated into a 2mm*2mm Integrated Circuit (IC). The IC fabricated using Global

Foundries 130nm BiCMOS process, and featured a fully integrated Radio Frequency (RF)

front end. Designed to operate from frequencies starting from 50MHz to 2.5GHz, these

front end featured a TransImpedance Amplifier, an RF Mixer and a Phase Locked Loop

(PLL) that generates the Local Oscillator (LO) signal for the mixer. In this architecture,

we require both the InPhase and Quadrature (I-Q) components of the mixed down beat

note, the PLL was designed to produce two outputs that were phase shifted by 90◦ with
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respect to each other, and the mixer was implemented as an I-Q demodulator.These I-Q

Intermediate Frequency (IF) signals were fed to two pipeline Analog to Digital converters

(ADCs) that were designed to operate at a sampling frequency of a 100MHz and with

a resolution of 12-bits each. To test the system, we assembled the test Printed Circuit

Board (PCB) with the ASIC wirebonded directly to the board. While the results from

this integrated system are not at par with our board level synthesizer, they still offer

stabilities comparable to other state of the art synthesizers [47].

In Chapter 3, we describe an alternate electronic synthesizer, that does not require

the use of an I-Q demodulator, and a high speed and high resolution ADC. This purely

digital IC uses a Time to Digital Converter and a digital counter to make an estimate of

the beat note’s IF frequency and uses that information to lock it to an optical reference.

We present a novel algorithm that does the error measurement in the time domain and

manages to achieve lock without using a digital divider. This architecture was first tested

by bypassing our RF signal and only using a TDC. The results from this experiment were

quite encouraging and showed great promise for the fully integrated version. The results

from the fully integrated version (locking experiment carried out using integrated TIA,

Mixer and PLL) once again failed to reach the highs demonstrated by our board level

implementation, but still performed as well as commercial synthesizers. This IC also did

not depend on any external RF Low Noise Amplifiers (LNAs) or Frequency Dividers to

process the laser’s beat note and so, had a substantially lower energy footprint than the

board level implementation. The tradeoff made for low power operation, however, was

that we were no longer capable of stepping the laser with Hz level precision. The smallest

step size of the synthesizer is now restricted to be an integral multiple of either the PLL’s

step frequency or the TDC’s reference frequency.
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Figure 5.6: A relative comparison between the four synthesizers described using a
Frequency Stability vs. Power Consumed plot

Finally in Chapter 4, we address a completely different and novel way of generating

THz optical frequencies without the use of complex frequency combs or other high speed

electronics. Introduced in [38], these synthesizers generate arbitrary microwave frequency

signals by locking two lasers to the wavemeter. As the delay through the wavemeter

changes, the two lasers move together with the wavemeter thereby keeping the beat note

frequency constant. We improved on this system by implementing the loop digitally

and allowing us to now provide a viable path to move the lasers away from each other

by multiple wavemeter Free Spectral Ranges (FSRs), thereby providing offsets equal to

multiple GHz. Ultimately, the stability of this beat note was limited by the temperature
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of the wavemeter. The wavemeter is extremely sensitive to temperature variations, and

its sensitivity was found to be the biggest hurdle in achieving stabilities similar to the

synthesizers mentioned in the previous chapters.

Figure 5.6 is a graphical representation of the tradeoffs between all four implemen-

tations discussed in this manuscript. The figure plots the relative stabilities of these

implementations as a function of the power they consume. We start off by placing the

board level implementation we described in Chapter 2 in the top right corner. Here in

this corner, we place the synthesizer that consumes the most power while providing the

best results. We next place the ASIC implementation of this synthesizer somewhere in

the middle of this chart, as it consumes lower power than the board implementation,

but offers substantially lower stabilities. We improve on this ASIC implementation with

the IC from Chapter 3, which consumes even lower power while offering an order of

magnitude better performance. Finally, we place our wavemeter based synthesizer at the

bottom left of the chart, since this implementation consumes lower power than all of the

other implementations.
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Appendix Title

In the appendix, we include all the design files that were used to fabricate the Test

Printed Circuit Boards (PCBs). We include the Layer stackup for each of these PCBs as

well as their schematics.
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A.1 BiCMOS8HP Test PCB Design Files
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A.3 NASA Photoreceiver version 1 - PCB Design
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measurement of the cesium d1 line with a mode-locked laser, Phys. Rev. Lett. 82
(May, 1999) 3568–3571.

[5] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and
S. T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers
and direct optical frequency synthesis, Science 288 (2000), no. 5466 635–639,
[https://www.science.org/doi/pdf/10.1126/science.288.5466.635].

[6] F. Keilmann, C. Gohle, and R. Holzwarth, Time-domain mid-infrared
frequency-comb spectrometer, Opt. Lett. 29 (Jul, 2004) 1542–1544.

[7] I. Coddington, N. Newbury, and W. Swann, Dual-comb spectroscopy, Optica 3
(Apr, 2016) 414–426.

[8] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Broadband cavity
ringdown spectroscopy for sensitive and rapid molecular detection, Science 311
(2006), no. 5767 1595–1599,
[https://www.science.org/doi/pdf/10.1126/science.1123921].

[9] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf,
J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J.
Kippenberg, and C. Koos, Ultrafast optical ranging using microresonator soliton
frequency combs, Science 359 (2018), no. 6378 887–891,
[https://www.science.org/doi/pdf/10.1126/science.aao3924].

157

https://www.nist.gov/pml/time-and-frequency-division/time-realization/primary-standard-nist-f1
https://www.nist.gov/pml/time-and-frequency-division/time-realization/primary-standard-nist-f1
http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.288.5466.635
http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.1123921
http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.aao3924


[10] W. Guanhao, L. Lei, X. Shilin, L. Guoyuan, C. Zhijian, and Z. Zebin, Synthetic
wavelength interferometry of an optical frequency comb for absolute distance
measurement, Scientific Reports (2018).

[11] E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and
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