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Abstract

In this paper, we report the synthesis of alkyl-tethered alkynes through ozone-mediated and FeII-

catalyzed dealkenylative alkynylation of unactivated alkenes in the presence of alkynyl sulfones. 

This one-pot reaction, which employs a combination of a catalytic FeII salt and L-ascorbic 

acid, proceeds under mild conditions with good efficiency, high stereoselectivity, and broad 

functional group compatibility. In contrast to our previous FeII-mediated reductive fragmentation 

of α-methoxyhydroperoxides, the FeII-catalyzed process was devised through a thorough kinetic 

analysis of the multiple competing radical (redox) pathways. We highlight the potential of 

this dealkenylative alkynylation through multiple post-synthetic transformations and late-stage 

diversifications of complex molecules, including natural products and pharmaceuticals.
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INTRODUCTION

Alkenes are seemingly ubiquitous in natural products and industrial chemicals. In fact, 

olefins are the second most frequently encountered functional group in natural products 

(39.85%).1 Although many synthetic transformations using alkenes rely on functionalization 

of their C(sp2)–C(sp2) π-bonds, generalized methods for functionalizing vicinal alkene 

C(sp2)–C(sp3) linkages remain elusive. Recently, we reported a series of synthetic 

transformations in which a combination of O3-mediated oxidation and stoichiometric 

FeII-mediated reductive fragmentation–radical capture allows functionalization of the 

seemingly inert C(sp2)–C(sp3) σ-bonds of feedstock olefins.2 These transformations include 

hydrodealkenylations,2b thiylations,2c oxodealkenylations,2d and alkenylations.2e The net 

result is replacement of the alkene C(sp3)–C(sp2) bond with C(sp3)–H, C(sp3)–S, C(sp3)–O, 

C=O, and C(sp3)–C(sp2) bonds. Our successes with these dealkenylative processes prompted 

us to investigate alkynyl radical donors3 as suitable substitution partners, thereby forging 

C(sp3)–C(sp) linkages, with consideration of the importance of chiral alkyl-substituted 

alkynes in drugs and pharmaceuticals (Figure 1A). Alkynes are highly versatile functional 

groups in chemical synthesis and commonly encountered as structural motifs in natural 

products, bioactive molecules, and organic materials.4 Apart from serving as intermediates 

for a diverse series of transformations,5 they find broad applications in the fossil fuel 

industry,6 materials science,7 and pharamceuticals.8 Moreover, aliphatic terminal alkynes are 

used widely as tags in selective bioconjugation9 and play a privileged role in Raman imaging 

spectroscopy.10

Over the past decade, the alkynylation of alkyl radicals using functionalized alkyne donors 

has emerged as an attractive route for the formation of C(sp3)–C(sp) bonds under mild 

conditions.3 Various methods, including thermal activation, transition metal catalysis, and 

photocatalytic approaches, have been used to generate suitable radicals (Figure 1B). In 

this context, alkynylative alkene difunctionalization (path a),11 hydroalkynylation (b),12 

deconstructive cross-couplings (c),13–15 and 1,5-hydrogen atom transfer (d)16 have been 

the most common and successful strategies. Notably, some of these methods require 

functionalized carboxylic acid or amine derivatives.13f,15 Despite these impressive advances, 

there is room for the development of other, more general, alkynylation strategies, 

particularly involving feedstock materials and earth-abundant metal catalysts. To the best 

of our knowledge, deconstructive strategies for the direct transfer of alkyne groups to 

the “inert” C(sp2)–C(sp3) σ-bonds of alkenes have not been described previously. When 
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using terpenes and terpenoids, members of Nature’s chiral pool, as precursors to alkyl 

radicals, this strategy would allow the synthesis and post-functionalization of a new class of 

terpenoid-tethered enantiopure alkynes. We suspected that dealkenylative alkynylation might 

occur through the following mechanism. The FeII-mediated one-electron reduction of the 

hydroperoxide A, generated through Criegee ozonolysis17 of the alkene 1 in MeOH, would 

afford the alkoxyl radical B together with an FeIII complex (Figure 1C). The intermediate 

B would undergo β-scission to yield the alkyl radical C, which would then react with 

the alkynyl radical donor through α-addition to give the intermediate D, which, upon 

β-elimination, would afford the desired product 2.

RESULTS AND DISCUSSION

To put this idea into practice, we performed a preliminary investigation of the reaction 

conditions by reacting (−)-isopulegol (1a) as a model alkene with various alkynyl donors 

in the presence of stoichiometric FeII, as we had used previously for dealkenylative 

alkenylation (Table 1).2e Among the range of structurally diverse alkynyl radicophiles 

that we tested, including the bromoalkyne 3,12b,18 phenylpropiolic acid (4),19 the 

(phenylethynyl)sulfone 5a,20 and the alkynyl triflone 6,21 we found that the sulfone 5a 
performed the best, providing the desired alkyne 2aa in 76% yield and 85:15 dr (Table 1a, 

bars 1–7). A slight increase in the yield of 2aa and a lower diastereoselectivity occurred 

when changing the alkyne radical acceptor to (phenylethynyl)benziodoxolone (7)22 under 

otherwise identical conditions (Table 1a, bars 8 and 9). The stereoselectivity, however, was 

poor (57:43 dr), presumably because of the lower steric bias resulting from the C–I bond 

(2.0 Å) being longer than the C–S bond (1.7 Å)23 of the sulfone 5a. Nevertheless, similar 

to our observations with the dealkenylative alkenylation, our attempts at radical alkynylation 

were mired by the formation of unavoidable byproducts: the ketone 2a′ (48%), the dimer 

2a″ (14%), and the alkene 2a‴ (6%) (bars 1, 3, 4, 6, and 8).

One of the advantages of our dealkenylative strategy is the rapid generation of alkyl radicals 

through the reductive fragmentation of α-alkoxyhydroperoxides. The rate constant (k1) for 

the bimolecular FeII-mediated decomposition of the hydroperoxide A to the oxyradical 

B is 1.2 × 107 M−1 s−1 (at 298 K)24 and that (k2) for the unimolecular β-scission of 

the oxyradical to the alkyl radical C is 6.2 × 108 s−1 (at 298 K) (Scheme 1).25 Other 

than (our desired) addition to the radicophiles, the alkyl radical C can undergo oxidation, 

disproportion, and/or recombination to give side products, such as the alkene E, the alkane 

F, and the dimer G. No noticeable byproducts were observed during hydrodealkenylation 

or aminoxylation, even when using stoichiometric FeII salts, because the rate constants 

for 1, 2, and 3° radicals abstracting a hydrogen atom from benzenethiol are 1.3, 1.0, 

and 1.4 × 108 M−1 s−1, respectively (at 298 K),26 and the rate constants for (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO) trapping of n-nonyl and tert-butyl radicals are 1.2 

× 109 and 7.6 × 108 M−1 s−1, respectively (at 298 K).27 These rate constants are comparable 

with the rates of the side reactions of the alkyl radical C, resulting in very speedy reactions 

(1–2 min) for our hydrodealkenylation and dealkenylative aminoxylation, with negligible 

side products (see the Supporting Information for a detailed discussion). We made a critical 

observation when we diverged from trapping the alkyl radical C with a hydrogen-atom 
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donor (thiol) or a stable aminoxyl radical to using a disulfide or nitroolefin. Not only did we 

have to increase the number of equivalents of the radicophile (1.5 equiv of thiol or TEMPO 

to 3.0 equiv of disulfide), but also we had to use the radical trap, the nitroolefin, as the 

limiting reagent (with up to 3.0 equiv of alkene) to maintain a high yield of the products 

and minimize the formation of the side products. The rate constants for the additions of the 

alkyl radical to the respective radicophiles for dealkenylative alkenylation and alkynylation 

are approximately 7.6 and 1.8 × 105 M−1 s−1, respectively.28 These rate constants are lower 

than those for FeIII-mediated oxidation of the radical C to the alkene E (kox < 4.0 × 109 M−1 

s−1),29 for disproportion of a pair of alkyl radicals C to the alkene E and the alkane F (kd 

= 1.8 × 108 M−1 s−1),30 and for combination of a pair of alkyl radicals C to the dimer G 
(kr = 1.7 × 108 M−1 s−1).29,30 The major byproduct ketone H can be formed either through 

FeII-mediated overreduction of the alkoxy radical B to the alkoxide or through abstraction of 

a hydrogen atom (>1.2 × 106 M−1 s−1)31 and hydrolysis.

Mechanistically, radical disproportion and combination could be minimized, relative to the 

reaction with the alkynyl sulfone, if the relative concentration of the intermediate radical 

C could be lowered. Furthermore, the formation of the ketone H and the alkene E would 

be inhibited if the concentrations of both the FeII and FeIII species were to be decreased. 

Thus, we were encouraged to devise conditions employing a catalytic amount of FeII (to 

decrease the concentration of alkyl radicals at any given moment) and recycle oxidized 

FeIII back to FeII (to decrease the concentrations of both species in lockstep). Thus, we 

performed our model reaction using a catalytic quantity of the FeII salt and a series of 

stoichiometric reductants (Table 1b). We were delighted to find that using L-ascorbic acid 

(vitamin C) as the stoichiometric reductant (2.0 equiv) and catalytic FeSO4·7H2O (20 mol 

%) increased the yield of the alkynylated product from 76 to 93% while decreasing the 

formation of the byproduct ketone (27%), alkene (7%), and dimer (trace amount) (Table 

1b, bars 1 and 2). Cu(I) salts, known to facilitate the decomposition of hydroperoxides,32 

delivered the desired product 2a, albeit in lower 73% yield (bars 3 and 4). Additional efforts 

at optimizing the reaction conditions using different stoichiometric reductants failed to offer 

better results (Table 1b, bars 5–13); see Table S1 in the Supporting Information for details. 

Reactions of ascorbate with Fe and Cu are central to metal-mediated antioxidant chemistry, 

and it is known to react overwhelmingly with the oxidized forms, FeIII and CuII, of these 

metals.33a Vitamin C can donate one electron to regenerate FeII and CuI from FeIII and CuII, 

respectively.33,33b Ultimately, this catalytic redox-based dealkenylative radical chemistry 

allowed us to employ readily available natural products (e.g., terpenes and terpenoids) as 

starting materials to streamline the chemical synthesis of terpene-derived chiral alkynes.

With the optimized reaction conditions in hand, we subjected a series of alkenes, 

including terpenes, terpenoids, and their derivatives, to dealkenylative alkynylation with 

(phenylethynyl)sulfonylbenzene (5a), affording a diverse range of substituted alkynes 2aa–
2zk (Scheme 2). The (−)-isopulegol-derived methyl ether 1b afforded the product 2b in 62% 

yield. Other monoterpenoids, including trans-(+)-dihydrocarvone (1c), (−)-dihydrocarveol 

(1d), cis-(+)-limonene oxide (1e), and (−)-limonene-1,2-diol (1f), were also suitable 

substrates, furnishing their corresponding alkyne products 2c–2f in yields of 57–85%, 

with good to moderate diastereoselectivities. Apparently, the epoxide in cis-(+)-limonene 
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oxide (1e) was opened diastereoselectively to give the trans-methoxy alcohol 2e. We 

found that the stereoselectivity of the radical addition was influenced by a combination 

of torsional and steric strains induced by the substituents at the α-, β-, and γ-positions of 

the alkene substrates.34 The dealkenylative cleavage of the sesquiterpenoid (+)-nootkatone 

(1g) cleanly gave the single diastereoisomeric alkynylated product 2g in 50% yield. The 

biologically active triterpenoid betulin (1h) was also a competent partner, generating 

the expected product 2h in a moderate yield of 45% as a single diastereoisomer. The 

bicyclic hydroxy ketone 1i provided its corresponding product 2i in 86% yield, with 

excellent diastereoselectivity (13:1 dr). The carvone-derived diol 1j gave the ester 2j in 

excellent yield. Notably, the primary OH group in the diol 1j underwent intramolecular 

trapping of the Criegee intermediate during ozonolysis, producing the acetylated product 

2j. Moreover, the reaction of the bridged bicyclic alkene 1l also worked well, providing 

the single diastereoisomer 2l, albeit in a slightly low yield (41%), presumably because 

of a known complication of bridged carbon radicals.35 The alkene derived from (−)-

perillyl alcohol 1m also reacted smoothly to afford the product 2m in 59% yield, with 

exclusive diastereoselectivity. Caprolactones are employed widely as monomers for polymer 

synthesis.36 We found that the alkene unit of the trans-(+)-dihydrocarvonederived lactone 1n 
gave the alkynylated product 2n in 50% yield, establishing a route toward biorenewable 

terpenoid-based caprolactone alkynes. The primary radical precursors 1o and 1p from 

α-ionone and (−)-sclareol, respectively, were also compatible, providing their fragmented 

products 2o (66%) and 2p (62%), respectively.

We also tested the reactivities of other readily accessible simple alkenes. As expected, 

isopropenylcyclohexane provided the alkynylated product 2q in excellent yield. Primary, 

secondary, and tertiary alkyl radicals all engaged efficiently in the dealkenylative 

alkynylation, generating their corresponding products in moderate to good yields (2r–2z, 

43–63%). Interestingly, the benzylic radical precursor 1za did not deliver the desired 

product 2za under our standard reaction conditions (see the Supporting Information for 

other incompatible substrates). We were delighted to find that methylenecycloalkanes 

and cycloalkenes were competent substrates, providing corresponding methyl esters 

(2zb–2zg) and alkynyl aldehydes (2zh–2zj), respectively. Methylenecyclohexane (1zb) 

and N-Boc-4-methylenepiperidine (1zc) gave the alkynylated esters 2zb (62%) and 2zc 
(65%), respectively. The fragmented coupling of methyleneadamantane (1zd) generated 

the phenylalkynyl ester 2zd exclusively as a single diastereoisomer in 61% yield. Upon 

fragmentation, the naturally occurring terpenes camphene (1ze) and sabinene (1zf) generated 

their corresponding esters 2ze (67%) and 2zf (59%), respectively. The cyclohexene 1zh and 

the cyclopentene 1zi both proved amenable to dealkenylative alkynylation, affording their 

respective aldehydes in moderate yields. (+)-p-1-Menthene (1zj) reacted to generate the 

desired aldehyde 2zj in 45% yield. The acyclic diterpene alcohol phytol 1zk, which has been 

used as a precursor for the manufacture of synthetic forms of vitamins E and K1, could also 

be alkynylated, giving 2zk in 65% yield. Notably, a wide range of functional groups were 

tolerated under these reaction conditions, including hydroxyl, ketone, α,β-enone, β-hydroxy 

ketone, epoxide, ester, amide, enone, carbamate, and phthalimide units.
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Using (−)-isopulegol (1a) as the radical precursor, we probed the scope of the 

alkynylsulfone37 component (Scheme 3). Arylethynyl sulfones, containing either electron-

donating or -withdrawing substituents, reacted smoothly, leading to the corresponding 

alkynes 2ab–2am in moderate to good yields. For example, substituted benzene (5b–5j), 
pyridine (5k), thiophene (5l), naphthalene (5n), and phenanthroline (5o) units were well 

suited, giving their corresponding alkynylated products 2ab–2am in yields of 42–83%. 

Notably, various functional groups, including siloxyl (5h), hydroxy (5i), halide (5d, 5g, 5j), 
and trifluoromethyl (5f) groups, were well tolerated. Alkyl- and silyl-substituted alkynyl 

sulfones engaged in the reaction smoothly, providing their internal alkynes (2ap–2as) 

in moderate yields (41–55%). We further demonstrated the utility of our methodology 

through the alkynylation of various complex bioactive compounds. For example, we 

synthesized drug-like alkynyl sulfones from complex substrates: dehydrocholic acid (a 

steroid), indomethacin (a nonsteroidal anti-inflammatory drug), and mestranol (a synthetic 

estradiol). Both the functionalized dehydrocholic acid (5t) and indomethacin (5u) proved to 

be suitable coupling partners for dealkenylative alkynylation, furnishing their products 2at 
(55%) and 2au (75%), respectively, in good yields. The sulfone derived from mestranol 5v 
could also be alkynylated, giving 2av in 36% yield.

We conducted standard control experiments to provide additional evidence for a radical 

pathway for this reaction (Scheme 4). The addition of 1.5 equiv of TEMPO, a radical 

scavenger, under our standard conditions, inhibited the alkynylation of 1a with 5c, yielding 

only 21% of the alkynylation product, accompanied by the alkyl-TEMPO adduct in 62% 

yield (5:1 dr). In addition, we employed (+)-3-carene (9a) in a radical clock experiment. 

When subjected to the standard dealkenylative alkynylation process, we isolated the ring-

opened product 10a in 52% yield, consistent with radical-induced ring opening of the 

transient cyclopropylcarbinyl radical, occurring with a rate constant of 1.2 × 108 s−1.

We performed the reaction of (−)-isopulegol (1a) and (phenylethynyl)sulfonylbenzene (5a) 

on a 20 mmol scale to exemplify its practicability and scalability. Under the standard 

conditions, we isolated the alkynylated product 2aa in 75% yield (Scheme 5A). The 

feasibility and operational simplicity of converting alkenes into synthetically versatile 

alkynes through this O3-mediated/FeII-catalytic system encouraged us to explore further 

chemical manipulations of the alkynylation products (Scheme 5B). Treatment of 2ar 
with ammonium fluoride removed the trimethylsilyl (TMS) group to afford the terminal 

alkyne 11 (95%), which we then subjected to Cucatalyzed Huisgen [3 + 2] cycloaddition, 

producing the triazole 12 and 1,2-oxazole 13 in 68 and 75% yield, respectively.38 

Hydroboration of 11 with pinacolborane (HBPin) in the presence of Schwartz’s reagent 

led to the vinylboronate ester 14.39 Furthermore, alkyne 11 could also undergo an 

annulation reaction to give the indole 15 in excellent yield.40 Oxidative cleavage of the 

TMS-alkynylated products 2ar/16 under Ru/periodate conditions gave direct access to 

the chiral carboxylic acids 17 (75%) and 18 (51%), respectively.37b Furthermore, the 

TMS-substituted alkyne 16, upon simple hydroboration/oxidation, furnished the carboxylic 

acid 19.41 Hydrogenation of 2aa afforded the enantiopure phenethylated product 20 in 

almost quantitative yield. The Au-catalyzed and acid-mediated hydration of 2aa enabled 

an atom-economical synthesis of the (−)-isopulegol-derived phenone 21 in excellent yield 
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(78%). γ-Alkynyl alcohols are valuable intermediates in organic synthesis, participating in 

a wide range of cascade cyclizations. Treatment of the alkynol 2aa with salicylaldehyde 

in the presence of TMSOTf gave the tetrahydrofuranochromene 22 (75%) through a 

cascade hydroalkoxylation–formal [4 + 2] cycloaddition.42 A novel cascade reaction 

forming the (−)-isopulegol-derived alkoxyquinoline 23 was achieved in 58% yield when 

using 1.2 equiv of o-azidobenzaldehyde and TMSOTf in CH2Cl2 at room temperature. 

The mechanism of this reaction involved a Lewis acid-promoted oxonium ion-driven 

carboamination of the alkyne.43 Furthermore, the alkynol 2aa was readily transformed 

into the tetrahydroquinoline 24 in excellent yield (85%) upon treatment with (E)-1-(4-

methoxyphenyl)-N-phenylmethanimine. This reaction proceeded through a Au-catalyzed 

hydroalkoxylation/Povarov cascade.44

CONCLUSIONS

In summary, we have developed an efficient dealkenylative alkynylation of feedstock 

olefins, using O3, vitamin C, and a catalytic FeII salt as reagents, providing access 

to a variety of synthetically useful functionalized alkynes under mild conditions. To 

minimize the extent of possible side reactions, the FeII-catalyzed reductive fragmentation 

of the α-alkoxyhydroperoxides was designed with a thorough kinetic analysis of the 

multiple competing radical (redox) pathways. Using this simple protocol, members of 

Nature’s chiral pool, including terpenes and terpenoids, could be employed as sources of 

radicals that are enantiopure for the synthesis of new classes of terpenoid-tethered chiral 

alkynes. Furthermore, we demonstrated the synthetic utility of the product alkynes through 

various post-alkynylation transformations. A wide range of cascade cyclizations furnished 

polycyclic natural product-like scaffolds, expanding the practicality of this method. The 

virtues of this reaction include the mild conditions; broad substrate scope; engagement 

of (hetero)aryl, alkyl, and silyl alkynes; and superb functional group compatibility. We 

anticipate that dealkenylative alkynylation will harness the untapped reactivity of abundant 

feedstock materials and renewable natural products, thereby facilitating the production of 

seemingly challenging synthetic intermediates for the functionalization of biomedically 

relevant molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Representative chiral alkyne natural products and biologically active drugs. (B) Known 

radical strategies for functionalized alkynes (RAE = redox-active ester; HE = Hantzsch 

ester). (C) Proposed dealkenylative alkynylation.
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Scheme 1. 
Key Reaction Pathways and Reaction Rates
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Scheme 2. Scope of Alkene Substratesa,b,c

aReaction conditions: alkene (1.0 mmol), MeOH (0.025 M with respect to 1), ozone 

(until the reaction solution turns pale blue), (ethynylsulfonyl)benzene (5a, 0.5 mmol), 

FeSO4·7H2O (0.1 mmol), L-ascorbic acid (1.0 mmol), 0 °C, 5 min. bIsolated yield. cUnless 

otherwise stated, the dr was calculated from the 1H NMR spectrum of the crude product or 

from the isolated yields of the major and minor isomers.
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Scheme 3. Scope of Benzenesulfonyl Alkyne Substratesa,b,c

aStandard conditions: alkene 1a (1.00 mmol), MeOH (0.025 M with respect to 1a), ozone, 

alkynylsulfone 5 (0.5 mmol), FeSO4·7H2O (0.1 mmol), L-ascorbic acid (1.0 mmol), 0 °C, 5 

min. bIsolated yield. cNMR spectral yield.
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Scheme 4. 
Reactions Performed to Verify the Intermediacy of Alkyl Radicals
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Scheme 5. Synthetic Utility of Dealkenylative Alkynylationa

aAll yields are isolated yields. See the Supporting Information for experimental details.

Swain et al. Page 18

J Am Chem Soc. Author manuscript; available in PMC 2023 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Swain et al. Page 19

Ta
b

le
 1

.

J Am Chem Soc. Author manuscript; available in PMC 2023 August 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Swain et al. Page 20

O
pt

im
iz

at
io

n 
of

 D
ea

lk
en

yl
at

iv
e 

A
lk

yn
yl

at
io

na,
b

J Am Chem Soc. Author manuscript; available in PMC 2023 August 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Swain et al. Page 21
a R

ea
ct

io
n 

pe
rf

or
m

ed
 o

n 
a 

0.
05

 m
m

ol
 s

ca
le

.

b Y
ie

ld
 d

et
er

m
in

ed
 u

si
ng

 1
H

 N
M

R
 s

pe
ct

ro
sc

op
y 

w
ith

 1
-c

hl
or

o-
2,

4-
di

ni
tr

ob
en

ze
ne

 a
s 

th
e 

in
te

rn
al

 s
ta

nd
ar

d.

c Is
ol

at
ed

 y
ie

ld
 w

as
 7

2%
.

d Is
ol

at
ed

 y
ie

ld
 w

as
 7

3%
.

e Is
ol

at
ed

 y
ie

ld
 w

as
 8

1%
. S

ee
 th

e 
Su

pp
or

tin
g 

In
fo

rm
at

io
n 

fo
r 

de
ta

ile
d 

pr
oc

ed
ur

es
.

J Am Chem Soc. Author manuscript; available in PMC 2023 August 17.


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Table 1.



