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Abstract 
High-income households are more likely to adopt rooftop solar photovoltaics 
(PV) than low- and moderate-income (LMI) households in the United States. 
Income-skewed adoption persists even as PV becomes more affordable and 
financially beneficial to LMI households. PV adoption inequity is an emerging 
energy justice issue, particularly considering that income-skewed deployment 
could increase LMI household electricity bills under typical rate structures. 
Further, PV adoption inequity could decelerate rooftop PV deployment. Here we 
show that policy and business model interventions could increase PV adoption 
equity. We find that LMI-specific financial incentives, PV leasing, and property-
assessed financing increase PV adoption equity. We find that these interventions 
increase equity in existing markets and drive more installations into previously 
under-served markets with lower incomes. By shifting deployment patterns, 
these interventions could also catalyze peer effects and installer marketing efforts 
that increase LMI adoption among households that do not directly benefit from 
the interventions.  
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Introduction 
 
Rooftop PV has, until recently, largely been a status good in the United States. 
Early PV adopters tended to be high-income households willing to buy 
innovative green products without expectations for near-term financial returns 
[1]. As PV prices have declined, PV has become an economical good that yields 
direct financial benefits [2]. However, high-income households remain more 
likely to adopt than LMI households [3-5]. In 2018, a household earning more 
than $200,000 per year was about 4 times more likely to adopt PV than a 
household earning less than $50,000 (based on data defined in Methods). PV 
adoption inequity in an era of affordable PV reflects engrained deployment 
patterns that funnel PV systems into high-income areas. PV deployment has 
clustered around nodes of early adoption [6] skewed toward high-income areas 
[5]. Income-skewed clustering is reinforced by local peer effects [7], customer 
referrals [8], and localized installer marketing [9]. LMI households face various 
adoption barriers that reduce deployment clustering in LMI areas, such as cash 
constraints, lower home ownership rates, and language barriers [3, 10-12].  
 
PV adoption inequity is an emerging energy justice issue [12]. Low-cost PV could 
reduce energy costs for LMI households who spend disproportionately more on 
energy [13]. However, historical deployment patterns limit LMI access to these 
benefits [2]. Further, under typical residential electricity rate structures there is a 
risk that income-inequitable PV adoption increases LMI energy bills [12]. Beyond 
questions of energy justice, PV adoption inequity may reduce or at least 
decelerate the realization of rooftop PV’s clean energy benefits. By one estimate, 
LMI housing accounts for 42% of PV-viable rooftop space in the United States 
[14].  
 
Numerous studies have documented trends in PV adoption income equity [2-4, 
15]. This literature shows that PV adoption equity has generally increased over 
time [2, 4], that subsidies do not improve adoption equity [2], and that the 
emergence of PV financing business models may have improved equity [16-19]. 
However, while these studies have explored how income affects adoption, the 
literature has yet to explore what factors explain local differences in PV adopter 
income equity. In this study, we fill this research gap by exploring how five 
policy and business model interventions may affect PV adoption equity. We 
frame our paper around two novel research questions: 1) What interventions are 
associated with more income-equitable PV deployment? and 2) Do those effects 
reflect changing income distributions within existing markets or shifting 
deployment patterns into under-served markets with different income 
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characteristics? In answering these research questions, we make three 
contributions to the literature. First, ours is the first study to our knowledge to 
leverage household-level PV adopter income data covering more than 70% of the 
U.S. residential PV market. Second, we provide novel analyses on several policy 
interventions, a number of which have received little attention in the literature to 
date. Third, our analyses yield relatively clear implications that could be used to 
design policy measures to increase PV adoption equity.  
 
PV policy and business model interventions 
 
We evaluate five PV policy and business model interventions that could affect 
PV adoption equity: financial incentives; LMI-targeted financial incentives; 
system leasing; property-assessed clean energy financing; and Solarize 
campaigns. Our study is not comprehensive in that some potentially relevant 
interventions—such as green bank loans—are excluded, largely due to data 
limitations. Further, our analysis is restricted to policies that affect residential 
rooftop PV systems. Community solar—a model where multiple customers 
subscribe to the PV output of a single PV array—is outside the scope of our 
study.  
 
Incentives. Financial incentives could increase adoption equity by reducing 
adoption costs. Most states and many local jurisdictions have offered up-front 
rebates or ongoing production-based incentives. These incentives have generally 
declined over time or, in some cases, expired [20]. Research to date suggests that 
PV incentives are ineffective at increasing adoption equity [12, 15, 21]. 
 
LMI incentives. Several states offer means-tested incentives to households under 
certain income thresholds, which we will refer to as LMI incentives. LMI 
incentive programs tend to be relatively small, generally on the order of 1% of all 
incentives distributed [22]. The effects of LMI incentives on adopter income 
distributions have not been studied. These potential effects are somewhat 
predictable and tautological. By definition, LMI incentives accrue to LMI 
households. Insofar as at least some incentive recipients would not otherwise 
have adopted, LMI incentives should increase LMI adoption. Nonetheless, an 
analysis of LMI incentives is still valuable for answering our second research 
question: whether LMI incentives increase LMI adoption in existing markets or 
shift deployment patterns into under-served LMI areas. 
 
Leasing. Prospective adopters in most states have the option to lease rather than 
buy PV (for simplicity, we use the term “leasing” to refer to any purchase where 
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a third party owns the system, including power purchase agreements). Leasing 
can significantly reduce the up-front adoption costs that impede LMI adoption 
[16-19]. While leasing is not a policy measure per se, it generally must be 
authorized through rules allowing non-utility companies to sell electricity to 
retail electricity customers. Further, not all installers offer leasing. Indeed, a 
relatively small number of high-volume installers account for the majority of 
leased systems in the United States [23]. 
 
Property Assessed Clean Energy Financing (PACE). PACE allows homeowners to 
finance PV through property tax payments. PACE is relatively accessible to LMI 
customers given that—compared to other loans—PACE has more lenient 
qualification criteria, PACE entails little or no up-front costs, and PACE loans can 
be transferred upon sale of the property. Some studies have shown that PACE 
increases PV adoption [24-26], though the studies did not test the effects on LMI 
adoption in particular. Residential PACE is only available in California, Florida, 
and Missouri at the time of writing, of which only California is a major 
residential rooftop PV market. 
 
Solarize. A Solarize campaign is a community initiative to recruit a coalition of 
prospective PV adopters. Solarize campaigners negotiate with one or a few 
installers to make bulk PV purchases on behalf of campaign participants. Bulk 
purchasing discounts—possibly on the order of 20-30% [27]—could make 
Solarize campaigns an effective model to increase adoption equity. Further, 
Solarize campaigns can overcome informational barriers associated with LMI 
adoption [27, 28].  
 
Estimating adoption income equity and bias 
 
We define PV adoption equity as the degree to which PV adopter incomes reflect 
the incomes of the broader local population. To estimate adoption equity, we 
compare modeled household-level income estimates for PV adopters with 
county household median incomes based on U.S. Census data (for details see 
Methods). We restrict the study period to 2010-2018 to identify relatively recent 
trends in PV adoption equity. The final cleaned data set represents 1,007,459 
residential rooftop PV systems installed on single-family homes in 18 states. We 
used the data to generate five variables representing the interventions (Table 1).  
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Table 1. Policy and Business Model Intervention Variables 

Variable Description Mean (SD) 
Incentives Value of all financial incentives ($/W) including up-

front rebates and the net present value of ongoing 
incentives, excluding federal investment tax credits 

$0.22/W (0.53) 

LMI incentive Dummy variable for LMI incentive-supported 
systems 

0.01 (0.1) 

Leasing Dummy variable for leased systems 0.42 (0.49) 

PACE Dummy variable for PACE-financed systems 0.03 (0.17) 

Solarize Dummy variable for Solarize systems 0.01 (0.08) 

 
Our primary metric is the difference between adopter incomes and county 
household median incomes, which we will refer to as adopter income bias. For 
robustness, we present results for income bias defined at the zip code (more 
granular) and state (less granular) levels in the Supplementary Information. As 
expected, adopter income bias is disproportionately positive: about 81% of 
adopters earned more than the county median income. The mean adopter 
income bias is about $64,000, meaning that PV adopters earned $64,000 more per 
year, on average, than county median incomes.  
 
The effects of the interventions on adopter income bias 
 
We test the effects of the various factors on adopter income bias through a fixed 
effects regression in the following form: 
 
 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐼𝐼𝐼𝐼 + 𝑋𝑋𝑋𝑋 + 𝑌𝑌 + 𝑆𝑆 (1) 

 
Where bias is PV adopter income bias, 𝐼𝐼 is a vector of the interventions defined in 
Table 1, X is a vector of control variables comprising market and demographic 
variables, Y is a year fixed effect, and S is a state fixed effect. We use county-
clustered robust standard errors. 𝛾𝛾 is the coefficient of interest; it represents the 
mean difference in bias between intervention-supported and other systems while 
controlling for other factors. These differences provide evidence of effects on 
adopter income bias under two assumptions. First, adopter usage of different 
interventions represents revealed preferences for those interventions. For 
instance, a negative coefficient on the leasing variable shows that lower-income 
adopters are more prone to leasing than higher-income adopters. The 
assumption, then, is that lower-income households have stronger latent 
preferences for leasing than higher-income households. Second, at least some 
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households that prefer intervention-supported systems would forego adoption in 
the absence of the interventions (for details, see Methods).   
 
We aim to distinguish the effects of the interventions on adoption equity in 
existing markets from the effects from shifting deployment into under-served 
markets with lower incomes. To distinguish these effects, we tested models with 
and without controls for zip code-level median household incomes. By 
controlling for local income levels, we isolate local effects on income bias. By 
removing these controls, we allow the model to capture effects generated due to 
the differential use of the interventions in areas with different income levels. 
Further, we identified conventional markets as zip codes in the top quartiles of 
cumulative per-capita adoption and median household income, both with 
respect to other zip codes in the respective states, and tested the model limited to 
data for systems installed in those markets. 
 
Table 2 presents the model results of the three model variations. Negative 
coefficients represent variables associated with less adopter income bias, that is, 
higher usage among adopters closer to county median incomes. The model 
suggests that LMI incentives, leasing, and PACE financing are associated with 
less adopter income bias in each variation. In contrast, incentives are associated 
with higher adopter income bias and the results for Solarize are not robust. The 
lacking or potentially perverse effect of incentives on adoption equity is 
consistent with previous results [2]. While we return to incentives and Solarize in 
the Conclusions, we focus the remainder of our analysis on LMI incentives, 
leasing, and PACE.  
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Table 2. Regression Results (Y=adopter income bias x$1,000) 

 (1) 
No local 
income 
control 

(2) 
Local 

income 
control 

(3) 
Conventional 
markets only 

Incentives 6.14* 5.44* 3.64 
 (1.04) (1.23) (2.66) 
LMI incentives -63.93* -43.64* -40.62* 
 (4.649) (3.41) (8.86) 
Leasing -14.75* -11.27* -11.15* 
 (1.124) (1.05) (1.47) 
PACE -14.79* -8.67* -8.77* 
 (2.406) (1.43) (1.25) 
Solarize 7.36* 1.43 -4.16 
 (2.92) (1.72) (2.83) 
Price -1.083 0.91 0.07 
 (1.47) (1.55) (2.99) 
Electricity rate 101.0* 155.4* 270.6* 
 (24.03) (46.6) (77.78) 
Market density -0.07 -0.242 0.11 
 (0.20) (0.30) (0.45) 
Installer density -4.51* -0.008 -14.65 
 (1.76) (2.80) (10.34) 
Local income (zip median)  0.86* 0.75* 
(x1000) 

 (0.04) (0.07) 
Income inequality (GINI) 194.5* 295.7* 180.9* 
 (42.12) (56.29) (84.91) 
Median home-ownership costs 12.02* -12.58* -15.07* 
 (2.56) (3.34) (5.99) 
% moved pre 1990 -0.79* -1.02* -1.09 
 (0.26) (0.40) (0.70) 
Year fixed effects X X X 
State fixed effects X X X 
R2 0.06 0.15 0.11 
N 1,007,459 1,007,459 193,229 

* p<0.05 
 
The models provide evidence that LMI incentives, leasing, and PACE increase 
adoption equity in existing markets. Model (2) suggests that the interventions 
increase adoption equity while controlling for local income. Model (3) suggests 
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that the three interventions increase adoption equity in relatively high-income 
conventional markets. At the same time, excluding the control for local income in 
Model (1) augments the estimated effects of all three interventions. The 
augmented results suggest that at least some of the effects derive from shifting 
deployment patterns. 
 
Shifting deployment patterns 
 
The shifting deployment hypothesis would be supported by evidence that 
adopters in under-served markets use the interventions more frequently than in 
conventional markets. To explore whether the data satisfy this condition, we 
identified under-served markets as zip codes in the bottom quartiles of cumulative 
per-capita adoption and median household income, each with respect to other 
zip codes in the respective states. The condition is sufficient for deployment 
shifting under two assumptions: 1) at least some intervention-supported systems 
would not have been installed without the interventions; and 2) the share of 
intervention-supported systems in under-served markets that would have been 
installed regardless is equal to or less than the share in conventional markets (for 
details, see Methods).  
 
Adopters in under-served markets use all three interventions more frequently 
than adopters in conventional markets (LMI incentives: t=27.0; leasing: t=35.4; 
PACE: t=9.2) (Figure 1). These results are robust to multiple variations on how 
we define conventional and under-served markets (see Supplementary 
Information). To illustrate how these results translate to shifting deployment 
patterns, we calculated the predicted number of systems that would have been 
installed in each market if intervention-supported systems followed the same 
deployment patterns as other systems. To emphasize how these shifts affect LMI 
adoption in particular, we limit the analysis to adopters that earned less than 
county median incomes. The numbers of intervention-supported systems 
consistently exceed predictions in under-served markets and fall below 
predictions in conventional markets (Figure 2). In the case of LMI incentives, the 
shift is strong enough to fully offset historic deployment patterns, such that more 
LMI incentives flowed to under-served than to conventional markets. In the case 
of PACE, this shift nearly equalizes deployment among customers earning less 
than county median incomes between under-served and conventional markets.  
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Figure 1. Shares of installs using interventions in conventional and under-served markets 

 

 
Figure 2. Predicted and actual number installs supported by interventions in conventional and 

under-served markets. Limited to customers earning less than county median income. For 
details, see Methods. 

 
Spillover impacts 
 
By shifting deployment patterns into areas with lower incomes, the interventions 
could catalyze peer effects and installer marketing to drive PV clustering in 
previously under-served markets. These effects could have spillover impacts by 
increasing LMI adoption even among households that do not directly benefit 
from the interventions. The spillover hypothesis is an area for further research. 
Here, we provide a brief exploratory analysis of potential spillover impacts from 
LMI incentives in Connecticut.  
 
Connecticut began offering LMI incentives in 2015, though the data suggest that 
the program began in earnest in 2016. These incentives have accrued 
disproportionately to LMI areas, especially to under-served urban areas. The 
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data suggest that non-recipient systems exhibit similar deployment shifts as 
recipients. The share of non-recipient systems installed in under-served markets 
increased from 3.6% before 2016 to 6.6% from 2016 to 2018 (t=8.5). About 66% of 
non-recipient systems in under-served markets were installed within 1 kilometer 
of an LMI incentive recipient household from 2016 to 2018, compared to 57% of 
non-recipient systems before 2016 (t=3.6). Further, adopter income bias declined 
more rapidly among non-recipients in under-served markets than in 
conventional markets after the incentive program began (Figure 3). It is difficult 
to isolate the role of LMI incentives in these results, and other factors could 
explain at least some of these trends, such as exogenous shifts in installer 
strategies or city-level programs to increase LMI adoption. Nonetheless, these 
trends accord with the spillover hypothesis. Spillover impacts—and how they 
could be leveraged—may be a rich area of future research. 
 

 
Figure 3. Mean adopter income bias among non-recipients in under-served and conventional 

markets in Connecticut, with 95% confidence intervals. 

 
Market and demographic factors 
 
The data also suggest several relationships between PV adoption equity and 
market and demographic factors (Table 3). We close our discussion by 
highlighting one potentially insightful result among the control variables. The 
model suggests that adopter income bias is higher in areas with greater income 
inequality. This result is partly mathematical: in areas with high income 
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inequality, the distance between median and high-income households is greater, 
creating more space for adopter income bias. However, we posit a second 
explanation. Areas with high income inequality also tend to have high levels of 
income segregation, i.e., geographic clustering of households by income levels 
[29]. Income segregation could increase adoption inequity by bolstering the 
forces that drive PV deployment clustering in high-income areas. For instance, 
peer effects may have shorter range in wealthy gated communities than in open 
neighborhoods with mixed income levels. We propose the effects of income 
segregation on PV deployment clustering as an additional area for future 
research. 
 

Table 3. Statistically Significant Market and Demographic Variable Results 
Based on model with local income control 

Variable Coefficient 
Sign 

Interpretation 

Electricity rate + Adopter income bias is higher in areas where adopters 
pay higher electricity rates. Electricity rates could have 
two divergent effects on LMI adoption: 1) Higher 
electricity rates correlate with higher living costs that 
impede LMI adoption; 2) Higher rates provide stronger 
incentives for adoption. This result suggests that the first 
effect dominates the second in the data. Another 
possibility is that LMI households in areas with high 
electricity rates are more likely to pay subsidized rates, 
which would reduce their incentives to adopt. 

Median income + Adopter income bias is higher in high-income zip codes 
than in low-income zip codes. This result is largely 
mathematical: adopters in high-income zip codes are 
more likely to earn more than the county median income 
than adopters in low-income zip codes, all else equal. 

Income inequality + Adopter income bias is higher in areas with greater 
income inequality. High income inequality creates 
conditions for greater adopter income bias. High income 
inequality also correlates with high income segregation, 
which may exacerbate adopter income bias in areas where 
LMI households are physically segregated from high-
income households. 

Home-ownership 
costs 

- Adopter income bias is lower in areas with higher home-
ownership costs. This result largely reflects the correlation 
between home-ownership costs and median incomes—
when excluding the income variable, the sign on this 
effect flips positive, suggesting that high home ownership 
costs hinder LMI adoption. Holding income constant, a 
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hypothesis for this negative coefficient is that LMI 
households in areas with higher home-ownership costs 
are more accustomed to making large capital investments 
in their homes. 

% moved before 
1990 

- Adopter income bias is lower in areas with more long-
term resident occupants. This result suggests that LMI 
adoption is higher in areas where LMI households are less 
likely to move and have to sell their home.  

  
Conclusions 
 
High-income households are more likely to adopt rooftop PV than LMI 
households in the United States. Persistent PV adoption inequity in an era of 
affordable PV reflects engrained patterns of deployment that funnel PV systems 
into high-income areas. PV adoption inequity is an emerging energy justice issue.  
Further, the under-utilization of LMI rooftop space could significantly reduce or 
at least decelerate the realization of the benefits of rooftop PV as a clean energy 
resource. 
 
We find evidence that LMI incentives, leasing, and PACE financing increase PV 
adoption equity. The results suggest that these interventions increase adoption 
equity in existing markets and shift deployment into under-served markets with 
lower income levels. By shifting deployment patterns, these interventions could 
potentially catalyze local peer effects and increase LMI adoption in under-served 
areas even among households that do not directly benefit from the interventions. 
In contrast, our results corroborate previous findings that incentives do not 
improve and indeed may exacerbate PV adoption inequity. Further, our results 
suggest that Solarize campaigns have, at least historically, had little impact on 
PV adoption equity. However, particularly in the case of Solarize, program 
design changes could yield adoption income equity benefits. For instance, 
Solarize campaigns could set minimum targets for LMI participation. 
 
Our findings have broad policy implications, but we posit that these implications 
can be synthesized as follows. Our results suggest that a variety of policy 
measures could disrupt traditional PV deployment patterns and increase PV 
adoption equity. Specifically, absent policy intervention, historical patterns of PV 
deployment will likely—to a degree, at least—continue to funnel PV systems into 
high-income areas. Policies that explicitly remove barriers to LMI adoption can 
break those historical patterns and shift PV deployment into under-served areas. 
By shifting deployment, these policies may also catalyze peer effects and installer 
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marketing to generate self-sustaining increases in adoption in previously under-
served areas.  
 
Methods 
 
Several studies have explored trends in PV adoption income equity [2, 3, 5, 15]. 
Our approach builds on the existing literature in three ways. First, similar to the 
references in [5, 15], our data comprise a relatively broad geographic area rather 
than focusing on a single state such as California. Second, we use modeled 
household-level income estimates rather than area-level income estimates used 
in the existing literature. Third, our methods go beyond describing PV adopter 
income distributions to evaluate factors that explain differences in income 
distributions across geographies.  
 
Our primary source for PV adopter income data is the U.S. Lawrence Berkeley 
National Laboratory’s Tracking the Sun (TTS) data set. TTS compiles system-level 
data collected through various state- and utility-level PV interconnection and 
incentive programs. The full TTS data set includes data for more than 70% of all 
residential PV systems installed in the United States [20]. Modeled PV adopter 
income data were obtained from household-level annual income estimates 
provided by Experian. Experian uses a proprietary algorithm to estimate 
household-level income. We validated the Experian data by establishing that the 
algorithm consistently modeled lower household incomes for adopters that 
received LMI incentives (see Supplementary Information). We derive general 
population income data from various 5-year U.S. Census American Community 
Survey data sets: Income in the Past 12 Months (ACS S1901); Gini Index of 
Income Inequality (ACS B19083); and Comparative Housing Characteristics 
(ACS CP04).  
 
Of the five interventions, the incentive, Solarize, and leasing variables were 
based on values provided in TTS. The LMI incentive variable was generated for 
the three states in the data that offered LMI incentives during the study period as 
follows: 

• California: LMI incentive data are published under the state’s Single-family 
Affordable Solar Housing program. According to those data, a single 
installer (Grid Alternatives) was responsible for all systems installed 
under the program. The number of records associated with Grid 
Alternatives in TTS during the study period (N=8,384) closely aligns with 
the number of records reported by the program over the same timeframe 
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(N=8,573). We therefore assume that all records associated with Grid 
Alternatives received an LMI incentive. 

• Connecticut: Over the study period, a single installer (Posigen) was eligible 
to install systems under the state’s Solar For All program. All systems 
installed by Posigen were assumed to have received an LMI incentive. 

• New York: LMI incentive data are published by the New York State Energy 
Research and Development Authority. These records were matched to 
TTS using unique program identifiers. 

 
We identified records potentially associated with PACE financing by matching 
data from the California Alternative Energy and Advanced Transportation 
Financing Authority with home addresses available from Zillow. 
 
To empirically estimate adoption equity, we calculated an adoption income bias 
metric equal to the difference between adopter incomes and county median 
incomes. Let 𝜌𝜌 denote the magnitude of some intervention and 𝔹𝔹 denote adopter 
income bias. Our goal is to establish a sign for 𝔹𝔹′(𝜌𝜌), where 𝔹𝔹′(𝜌𝜌) < 0 would 
provide evidence that an intervention reduces income bias. Ideally, we would 
identify this effect through some type of differencing model. However, there are 
no sharp intervention discontinuities to allow for such an approach. As a second-
best approach, we rely on the relative observed use of the interventions by 
adopters at different income levels. 
 
To motivate this approach, consider that the use of any intervention is 
discretionary: the adopting household either chooses to use the intervention or 
does not—though this decision may be assisted by installers and constrained by 
policy terms (e.g., income criteria for LMI incentives). We will show that the 
relationship between adopter income bias and the observed use of the 
interventions provides evidence of the latent effects of the interventions on 
adopter income bias under two assumptions: 

• Revealed preferences: An adopter’s use of an intervention 𝜌𝜌 accurately 
reveals an underlying preference of that household for the characteristics 
of adoption with 𝜌𝜌 rather than without.  

• Additionality: At least some households (not necessarily all) have 
sufficiently strong preferences for 𝜌𝜌 such that these households would 
forego adoption in the absence of 𝜌𝜌.  

 
Let 𝜌𝜌� denote latent unobserved preferences and 𝜌𝜌� denote the observed usage of 
interventions. Under the assumption of revealed preferences, an observed 
relationship between intervention usage and household income implies that both 



 15 

unobserved and observed preferences are functions of income, denoted 𝑖𝑖𝑖𝑖𝑖𝑖. 
Under the assumption of additionality, the expansion or retraction of an 
intervention 𝜌𝜌 would affect adoption equity by increasing or decreasing adoption 
in income brackets that prefer 𝜌𝜌. As a result, under these assumptions, an 
intervention 𝜌𝜌 reduces adopter income bias if lower-income households use 𝜌𝜌 
more frequently than higher-income households: 
 
 𝜕𝜕𝜌𝜌�

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 < 0  →   
𝜕𝜕𝜌𝜌�
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 < 0  →  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 < 0 

 

(2) 

Further, under the assumption of revealed preferences, it follows that an 
adopter’s use or non-use of an intervention is at least one determinant of the 
adopter’s income bias, that is 𝜌𝜌�′(𝑖𝑖𝑖𝑖𝑖𝑖) ∝ 𝔹𝔹′(𝜌𝜌�). From Condition (2), it follows that: 
 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜌𝜌� ∝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  (3) 

 
In words, under the assumptions of revealed preferences and additionality, the 
observed effects of intervention use on adopter income bias provide evidence of 
the latent effects of the intervention on adopter income bias. We leverage this fact 
to develop our regression model: 
 
 𝔹𝔹 = 𝜌𝜌�𝛾𝛾 + 𝑋𝑋𝑋𝑋 + 𝑌𝑌 + 𝑆𝑆 (4) 

 
Where 𝛾𝛾 = 𝔹𝔹′(𝜌𝜌�). Table 4 defines the control variables in 𝑋𝑋 and basic descriptive 
statistics. We use year fixed effects (𝑌𝑌) to control for declining adopter income 
bias over time and state fixed effects (𝑆𝑆) to control for unobserved geographic 
differences. We use county-clustered robust standard errors.  
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Table 4. Control Variable Definitions and Descriptive Statistics 

Variable Description [Source] Mean (SD) 
Market variables 

Installed price County-year level mean installed system price ($/W), 
dropping outlier systems <$1/W or >$25/W [TTS] 

$4.81/W (0.98) 

Electricity rate Average residential retail electricity rate ($/kWh) in 
the customer’s county [OpenEI Utility Rate 
Database] 

$0.17/kWh 
(0.03) 

Market density # of systems installed per 1,000 households in 
county-year [TTS/Census Data Set S1901] 

10.14 (7.07) 

Installer density # of installers that installed at least 1 system in the 
county-year per 1,000 households [TTS/Census Data 
Set S1901] 

0.46 (0.35) 

Demographic variables 

Median income Zip code-year level median household annual 
income (x1,000) [Census Data Set S1901] 

$75.9 (27.5) 

Income inequality (GINI) The GINI index is a measure of income inequality 
ranging from 0 (perfect equality) to 1 (perfect 
inequality) [Census Data Set B19083] 

0.46 (0.02) 

Home-ownership costs County-year level median monthly home-ownership 
costs (x1,000) [Census Data Set CP04] 

$2.2 (0.52) 

% moved pre 1990 County-year level % of housing where the owner 
moved in before 1990 [Census Data Set CP04 ] 

12.9% (3.9) 

 
Our second research question is the extent to which the interventions shift 
deployment patterns into under-served markets with lower income 
characteristics. Comparable to our approach for the regression, given the lack of 
sharp intervention discontinuities, as a second-best approach we explore the 
deployment shifting hypothesis by testing for differences in the relative use of 
the intervention in conventional and under-served markets. We defined 
conventional markets as zip codes in the top quartiles of PV adoption per capita 
(based on number of installations in TTS and Census population estimates) and 
zip code median incomes and under-served markets as zip codes in the bottom 
quartiles of both metrics. The deployment shifting hypothesis implies that the 
interventions increase the market share of under-served markets relative to 
conventional markets. Formally, an intervention 𝜌𝜌 shifts deployment into under-
served markets if: 
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 𝜕𝜕𝑁𝑁𝑢𝑢𝑢𝑢𝑁𝑁𝑐𝑐
𝜕𝜕𝜕𝜕 > 0 

 

(5) 

Where 𝑁𝑁𝑢𝑢𝑢𝑢 and 𝑁𝑁𝑐𝑐 are the numbers of systems installed in under-served and 
conventional markets, respectively. We will show that the deployment shifting 
effect in Condition (5) is satisfied if adopters in under-served markets use the 
interventions more frequently than adopters in conventional markets under the 
following assumption: 

• Stable additionality: At least some intervention-supported systems would 
not otherwise have been installed and the share of intervention-supported 
systems that would have been installed regardless does not vary across 
markets. 

 
To formalize this proposition, let 𝑁𝑁 represent the total number of systems 
installed without intervention support—including intervention-supported 
systems that would have been installed regardless. Let 𝜂𝜂(𝜌𝜌) denote the total 
number of additional systems installed due to the intervention. Let 𝛿𝛿𝑢𝑢𝑢𝑢 and 𝛿𝛿𝑐𝑐 
represent the shares of unsupported systems installed in under-served and 
conventional markets respectively, and let 𝜃𝜃𝑢𝑢𝑢𝑢 and 𝜃𝜃𝑐𝑐 denote the shares of 
intervention-supported systems in under-served and conventional markets, such 
that the total number of systems installed in under-served markets is 𝑁𝑁𝑢𝑢𝑢𝑢 =
𝛿𝛿𝑢𝑢𝑢𝑢𝑁𝑁 + 𝜃𝜃𝑢𝑢𝑢𝑢𝜂𝜂(𝜌𝜌) and likewise for conventional markets 𝑁𝑁𝑐𝑐 = 𝛿𝛿𝑐𝑐𝑁𝑁 + 𝜃𝜃𝑐𝑐𝜂𝜂(𝜌𝜌). Under 
this framework, Condition (5) is satisfied if: 
 
 𝜃𝜃𝑢𝑢𝑢𝑢

𝛿𝛿𝑢𝑢𝑢𝑢
>
𝜃𝜃𝑐𝑐
𝛿𝛿𝑐𝑐

 

 

(6) 

In words, condition (6) says that the intervention shifts deployment into under-
served markets if the ratio of intervention-supported to unsupported systems is 
greater in under-served than in conventional markets. This condition can be 
further simplified to: 
 
 𝜂𝜂𝑢𝑢𝑢𝑢

𝑁𝑁𝑢𝑢𝑢𝑢
>
𝜂𝜂𝑐𝑐
𝑁𝑁𝑐𝑐

 

 

(7) 

Where 𝜂𝜂𝑢𝑢𝑢𝑢 and 𝜂𝜂𝑐𝑐 are the numbers of intervention-supported systems in under-
served and conventional markets, respectively. Condition (7) states that 
deployment shifting occurs if intervention-supported systems compose greater 
shares of systems installed in under-served relative to conventional markets, 
given the assumption of stable additionality. Estimates for all four variables in 
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condition (7) are available from the data, allowing us to show that the data 
satisfy that condition, as depicted in Figure 1. We do not observe the number of 
systems that would have been installed absent the interventions. We therefore 
cannot directly test whether the data satisfy the assumption of stable 
additionality, though we have no strong priors that the assumption should not 
hold. If anything, it seems that the share of non-additional systems would be 
higher in conventional markets where higher-income customers rely less on the 
interventions. If so, 𝜂𝜂𝑐𝑐 is over-estimated in the data relative to 𝜂𝜂𝑢𝑢𝑢𝑢. Hence, if the 
assumption of stable additionality is violated, it is likely violated in a way that 
the measured deployment shifts are under- rather than over-estimated.   
 
We leverage the condition in Equation (7) to illustrate deployment shifting in 
Figure 2. We calculated predicted LMI deployment rates in under-served and 
conventional markets assuming that intervention-supported systems follow the 
same deployment patterns as unsupported systems, i.e., 𝜃𝜃 = 𝛿𝛿: 
 
 𝜂𝜂�𝑢𝑢𝑢𝑢 = 𝛿̂𝛿𝑢𝑢𝑢𝑢𝜂̂𝜂    ,    𝜂𝜂�𝑐𝑐 = 𝛿̂𝛿𝑐𝑐𝜂̂𝜂 

 
(8) 

Where 𝜂𝜂�𝑢𝑢𝑢𝑢 and 𝜂𝜂�𝑐𝑐 are the predicted number of intervention-supported systems in 
under-served and conventional markets, respectively, and 𝛿̂𝛿𝑢𝑢𝑢𝑢, 𝛿̂𝛿𝑐𝑐, 𝜂̂𝜂 are estimated 
from the data. The data support the deployment shifting hypothesis by showing 
that 𝜂̂𝜂𝑢𝑢𝑢𝑢 > 𝜂𝜂�𝑢𝑢𝑢𝑢 and 𝜂̂𝜂𝑐𝑐 < 𝜂𝜂�𝑐𝑐 where 𝜂̂𝜂𝑢𝑢𝑢𝑢 and 𝜂̂𝜂𝑐𝑐 are the observed number of 
intervention-supported systems in under-served and conventional markets, 
respectively, as illustrated in Figure 1.  
 
We note three data limitations. First, some TTS-generated variables differ in their 
geographic coverage based on how the various incentive programs report data. 
Specifically, the methods used to generate the PACE and Solarize dummy 
variables may not have yielded a complete identification of all systems 
associated with these programs, and the degree to which the methods 
comprehensively identified such systems may vary across the states. Second, the 
PV adopter incomes are modeled rather than observed. A data validation 
analysis suggests that the modeled estimates accurately capture household-level 
differences in income (see Supplementary Information). Details about the 
underlying structure of Experian's income model are proprietary and were not 
shared with the authors. However, we assume that the model uses local area 
incomes—among other inputs—to predict household incomes. Assuming the 
model accounts for area incomes, the model may tend to over-estimate the 
incomes of relatively low-income households in high-income areas and under-
estimate the incomes of relatively high-income households in low-income areas. 
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The data validation indicates that the role of area incomes—if any—is small 
relative to household-level predictors. Nonetheless, as a precaution, we avoid 
relying on metrics that could be sensitive to this modeling bias. Specifically, it 
would be helpful to compare per capita LMI adoption rates in under-served and 
conventional markets. However, given the potential modeling bias in high-
income areas, per capita LMI adoption rates could be under-estimated in 
conventional markets. For this reason, we based our analysis of deployment 
shifting on market shares estimated within the TTS data rather than income-
based per capita adoption rates. A third limitation is that the modeled incomes 
are bounded from above at $250,000/year. As a result, the modeled PV incomes 
may under-estimate the true degree of bias toward higher incomes among PV 
adopters.  
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