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Electromagnetic particle-in-cell (PIC) codes are widely used to perform computer simulations of a 
variety of physical systems, including fusion plasmas, astrophysical plasmas, plasma wakefield particle 
accelerators, and secondary photon sources driven by ultra-intense lasers. In a PIC code, Maxwell’s 
equations are solved on a grid with a numerical method of choice. This article focuses on pseudo-spectral 
analytical time-domain (PSATD) algorithms and presents a novel hybrid PSATD PIC scheme that combines 
the respective advantages of standard nodal and staggered methods. The novelty of the hybrid scheme 
consists in using finite-order centering of grid quantities between nodal and staggered grids, in order 
to combine the solution of Maxwell’s equations on a staggered grid with the deposition of charges and 
currents and the gathering of electromagnetic forces on a nodal grid. The correctness and performance of 
the novel hybrid scheme are assessed by means of numerical tests that employ different classes of PSATD 
equations in a variety of physical scenarios, ranging from the modeling of electron-positron pair creation 
in vacuum to the simulation of laser-driven and particle beam-driven plasma wakefield acceleration. 
It is shown that the novel hybrid scheme offers significant numerical and computational advantages, 
compared to purely nodal or staggered methods, for all the test cases presented.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electromagnetic particle-in-cell (PIC) codes [1,2] are widely used to perform computer simulations of a variety of physical systems, 
including turbulent plasmas in nuclear fusion devices [3–7], relativistic astrophysical plasmas [8–12], particle acceleration based on laser-
plasma interactions [13–16], high-order harmonic sources based on laser-solid interactions and their applications [17–20].

In a PIC code, Maxwell’s equations, which describe the dynamics and evolution of the electromagnetic fields, are solved on a grid and 
the plasma is modeled with a collection of macro-particles, each representing many real particles of the modeled system. Macro-particles 
move according to the electromagnetic fields on the grid. Charged macro-particles generate charge and current densities on the grid, which 
are used as sources for Maxwell’s equations. The finite-difference and pseudo-spectral algorithms are the common numerical methods of 
choice for the numerical solution of Maxwell’s equations.

Finite-difference algorithms [21–24] typically approximate both spatial and time derivatives with finite differences (generally second-
order), which usually lead to spurious numerical dispersion. On the other hand, pseudo-spectral methods [25–30] help mitigate such 
numerical artifacts by approximating spatial derivatives with high-order discrete expressions that use larger stencils of grid points [31,32].
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This article focuses in particular on pseudo-spectral analytical time-domain (PSATD) algorithms [25,26,29], which help mitigate the 
spurious numerical dispersion of finite-difference methods even further, by integrating Maxwell’s equations in Fourier space analytically 
in time, instead of approximating time derivatives by finite differences.

More precisely, a novel PSATD PIC method is proposed that combines the respective advantages of standard nodal and staggered PIC 
algorithms. The novel scheme, which will be referred to as hybrid, combines the solution of Maxwell’s equations on a staggered grid with 
the deposition of charges and currents on a nodal grid as well as the gathering of electromagnetic forces from a nodal grid, using finite-
order interpolation, based on the coefficients first introduced by Fornberg [33], to center grid quantities between nodal and staggered 
grids.

The correctness and performance of the novel hybrid method are assessed by means of numerical tests that employ different classes 
of PSATD equations (standard PSATD [25,29], standard Galilean PSATD [34–36], and averaged Galilean PSATD [37]), adapted to staggered 
grids, in a variety of physical scenarios, ranging from the modeling of electron-positron pair creation in vacuum to the simulation of 
laser-driven and particle beam-driven plasma wakefield acceleration.

This article is organized as follows. Section 2 presents the general idea and motivations for the novel hybrid method. Section 3 describes 
how to perform finite-order interpolation between nodal and staggered grids by means of the Fornberg coefficients. Section 4 presents 
the equations for three classes of PSATD schemes of interest, adapted to staggered grids. Section 5 presents a variety of numerical tests, 
assessing the correctness and performance of the novel hybrid method. Section 6 presents the conclusions of this work. Finally, three 
appendices have been added to derive or illustrate in more detail some of the mathematical results presented in the article. The Zenodo 
archive associated with this article is available at [38].

2. Motivations

This section presents the general idea and motivations for the novel hybrid PSATD PIC method proposed in this article, starting with a 
brief review of the structure of a time step of a standard PSATD PIC algorithm, illustrated by the following cycle:

standard PSATD PIC cycle

push particles by updating x, p

deposit ρ , J on nodal/Yee grid

solve Maxwell’s equations
on nodal/Yee grid in Fourier space

gather E , B from nodal/Yee grid

Here, x and p denote the positions and momenta of the macro-particles, ρ and J the charge and current densities generated by charged 
macro-particles, E and B the electromagnetic fields. The deposition of ρ and J usually includes a smoothing of the quantities using one 
pass (or more) of the bilinear filter [2]. In general, the grid used for charge and current deposition, field gathering, and for the solution of 
Maxwell’s equations, can be a nodal grid or a staggered Yee grid [21–23]. In the case of a nodal grid, all grid quantities (electromagnetic 
fields, charge and current densities) are evaluated at the cell nodes in each direction. In the case of a staggered Yee grid, instead, the 
various grid quantities are evaluated at various cell nodes and centers, depending on the quantity itself and on the direction considered. 
More precisely, the charge density ρ is still evaluated at the cell nodes in each direction, while the positions of the electromagnetic fields 
E and B and the current density J are illustrated by the following three-dimensional schematics of a single cell:
2
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The hybrid PSATD PIC method proposed in this article differs from the standard PSATD PIC algorithm summarized above and entails the 
main steps illustrated by the following cycle:

hybrid PSATD PIC cycle

push particles by updating x, p

deposit ρ , J on nodal grid

finite-order centering of J
from nodal grid to Yee grid

solve Maxwell’s equations
on Yee grid in Fourier space

finite-order centering of E , B
from Yee grid to nodal grid

gather E , B from nodal grid

There are two main differences with respect to the standard PSATD PIC cycle. First, charge and current densities are deposited on a 
nodal grid and the electromagnetic forces acting on the macro-particles are gathered from a nodal grid, while Maxwell’s equations for 
the electromagnetic fields are solved on a staggered Yee grid. Secondly, finite-order interpolation based on the Fornberg coefficients [33]
is used to center data between the nodal grid used for deposition and gathering and the staggered Yee grid used for the solution of 
Maxwell’s equations. The details of such finite-order centering are discussed in Section 3.

Gathering the electromagnetic forces acting on the macro-particles from a nodal grid, after linear interpolation from the staggered Yee 
grid used to solve Maxwell’s equations, has been employed in many standard finite-difference electromagnetic PIC simulation codes for 
decades, as well as described in the literature where it is referred to as the momentum-conserving gather [2]. The hybrid PIC cycle proposed 
in this article differs from this, in that (i) a nodal grid is used also for the deposition of charge and currents and (ii) interpolation of order 
typically higher than linear is employed to center data between nodal and staggered Yee grids.

The rationale behind the novel hybrid PIC method is summarized in the following few paragraphs.
On the one hand, solving Maxwell’s equations on a staggered grid, instead of a nodal grid, presents several numerical and compu-

tational advantages (for example, more local stencils, lower levels of numerical dispersion, better stability at short wavelengths), which 
are discussed in more detail in this section. On the other hand, purely staggered PIC schemes sometimes need much higher resolution in 
space or time to produce correct physical results, depending on the specific physics application under study. This is true in particular for 
the modeling of relativistic plasmas, where staggering of quantities in space or time can lead to unacceptably large numerical errors from 
interpolation [39,40]. An example where a purely staggered PIC scheme exhibits difficulties in producing correct physical results is given 
by the simulation of vacuum electron-positron pair creation illustrated in Section 5.1. Another example occurs with physics applications 
that exhibit numerical Cherenkov instability (NCI) [41–47], such as in electromagnetic simulations of relativistic flowing plasmas, where 
fast particles may resonate unphysically with electromagnetic waves or aliases of matching phase velocity. More precisely, with regard 
to one specific class of PSATD methods that have been shown to mitigate such instability, namely the Galilean algorithms [34–37], it is 
observed that purely nodal PIC cycles mitigate the instability more effectively than purely staggered PIC cycles. Examples of such behavior 
are illustrated in Sections 5.2 and 5.3, Figs. 10 and 13, respectively, for two cases of laser-driven and particle beam-driven plasma wake-
field acceleration. A few heuristic arguments on the role of staggering and finite-order centering in relation to NCI mitigation are given in 
Appendix C.

The hybrid PIC scheme proposed here represents an intermediate approach that combines the respective advantages of standard nodal 
and staggered PIC methods. More precisely, the main idea is to construct a PIC cycle where, on the one hand, Maxwell’s equations are 
solved on a staggered grid (in order to benefit from the locality of the stencils, lower levels of numerical dispersion, and better stability 
at short wavelengths, as discussed in more detail below) and, on the other hand, the resulting cycle is as close as possible to a fully nodal 
PIC cycle (in order to avoid numerical errors coming from low-order interpolation of grid quantities that are defined at different locations 
on the grid). Hence the idea of depositing charges and currents on a nodal grid as well as gathering the electromagnetic forces acting 
on the macro-particles from a nodal grid, while keeping the solution of Maxwell’s equations on a staggered grid. Within this context, the 
finite-order interpolation of fields and currents represents a way to center grid quantities between the two sets of grids, with the aim of 
3
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Fig. 1. Numerical Dispersion. Numerical dispersion relation, phase velocity and dispersion error in vacuum for the standard PSATD equations at finite spectral order 16 for 
nodal and staggered solvers (solid lines), in a one-dimensional case. With the staggered equations, the dispersion relation is closer to linear and the phase velocity remains 
consequently closer to c, reducing the slowdown of high-frequency waves, which is instead relatively strong in the nodal case.

balancing numerical accuracy and locality by an appropriate choice of the finite order of interpolation, which can vary depending on the 
specific physics application under study.

As already mentioned, there are several numerical and computational advantages of solving Maxwell’s equations on a staggered grid, 
instead of a nodal grid, which are detailed here:

(i) Staggered solvers usually exhibit less numerical dispersion than nodal solvers. Fig. 1 shows the numerical dispersion relation, phase 
velocity and dispersion error in vacuum for the standard PSATD equations [25,29], namely equations (14a)-(14b) without sources, 
at finite spectral order 16 (quite typical for simulations of plasma wakefield acceleration) for nodal and staggered solvers, in a one-
dimensional case. The vacuum dispersion relation in this case is given by equation (B.7), derived in Appendix B. Fig. 1 shows that 
in the case of the staggered equations, the dispersion relation is closer to linear and the phase velocity remains consequently closer 
to c, reducing the slowdown of high-frequency waves, which in the nodal case is so strong that it leads to standing waves at the 
Nyquist wavelength at any finite order, producing in turn undesirable effects [48] that need to be suppressed.

(ii) Staggered solvers offer a more local stencil than nodal solvers, at a given finite order. This can be illustrated by measuring the extent 
of the stencil of a given term in Maxwell’s equations in Fourier space [32,36]. For example, for a given quantity ĝ in Fourier space 
(which can be, for instance, a coefficient in the update equations for E and B), a measure of its stencil extent along a given direction, 
say x, can be computed as

�ĝ(x) =
∣∣∣∣ 1

N y Nz

∑
ky

∑
kz

[F−1
x (̂g)]ky ,kz (x)

∣∣∣∣ , (1)

and similarly for the stencil extents along y and z, by cyclic permutation. In other words, the inverse Fourier transform of ĝ along 
the given axis is computed and the result is averaged over the remaining axes in Fourier space. An example of such stencils is shown 
in Fig. 2 for a two-dimensional case with 512 cells in each direction and c �t = �x = �z ≈ 0.39 μm, at finite spectral order 64 (quite 
typical for simulations of high-order harmonic sources) as well as infinite spectral order. More precisely, Fig. 2 shows the stencil 
along x of the coefficient C appearing in the standard PSATD equations (14a)-(14b), computed as prescribed in (1). The idea is to 
look at how quickly such stencils fall off to machine precision, with respect to their extension in units of grid cells, and identify 
consequently the number of cells after which the stencils will be truncated, again with the aim of balancing numerical accuracy 
and locality. In practice, when the computational domain is decomposed in parallel subdomains, the number of ghost cells used to 
exchange fields between neighboring subdomains is chosen based on the extent of such stencils. In the limit case of infinite spectral 
order, nodal and staggered solvers produce the same result: the stencil extends over the entire grid and the evolution of the fields on 
the grid is not local. Other examples of such stencils are shown in Sections 5.2 and 5.3, Figs. 9 and 12, respectively, for two cases of 
laser-driven and particle beam-driven plasma wakefield acceleration. In general, the greater locality of the finite-order stencil offered 
by staggered solvers results in shorter runtimes and smaller computational costs overall, thanks to the fact that the number of ghost 
cells used to exchange fields between neighboring subdomains is smaller.
4
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Fig. 2. PSATD Stencils. Stencil extent along x of the coefficient C appearing in the standard PSATD equations (14a)-(14b), computed as prescribed in (1), for a two-dimensional 
case with 512 cells in each direction and c �t = �x = �z ≈ 0.39 μm. At finite spectral order, staggered solvers offer a more local stencil than nodal solvers. In the limit case 
of infinite spectral order, nodal and staggered solvers produce the same result: the stencil extends over the entire grid and the evolution of the fields on the grid is not local.

(iii) Staggered solvers exhibit better behavior than nodal solvers at short wavelengths. Another feature of staggered solvers is that they 
exhibit better behavior than nodal solvers at short wavelengths, in particular at the Nyquist cutoff [48]. Fig. 3 shows an example of 
this phenomenon for a two-dimensional rectangular electric pulse, initialized at the center of a two-dimensional periodic domain. 
More precisely, the only non-zero initial electric field component is

E y(x, z) =
{

1 (x, z) ∈ [−0.5 μm,0.5 μm] × [−0.5 μm,0.5 μm] ,
0 otherwise ,

(2)

and a snapshot of the component E y of the electric field is shown after 200 iterations, with c �t = �x = �z ≈ 0.39 μm, with a 
nodal solver (left) and a staggered solver (right). Both cases used spectral order 64 and 8 ghost cells along (x, z) (first row) or infinite 
spectral order and again 8 ghost cells along (x, z) (second row). The domain was decomposed in 256 subdomains, with 32 × 32 cells 
per subdomain. The nodal solver exhibits much stronger short-wavelength noise than the staggered solver, both at finite spectral 
order and at infinite spectral order, in agreement with previous observations [48]. When using parallel domain decomposition with 
a finite number of guard cells that involves a truncation of the spatial stencil [31], this leads, with the nodal solver, to a strong 
non-physical growth over time of the electromagnetic field energy W = 1

2

∑
cells(ε0|E|2 + |B|2/μ0) �V , which instead grows much 

more slowly in the staggered case, as shown in Fig. 3. In conclusion, in addition to offering a more local stencil, staggered solvers are 
inherently more stable than nodal solvers. The fundamental reasons for this and the optimization of the number of ghost cells for a 
given spectral order are being studied and will be reported in future work.

3. Finite-order centering with Fornberg coefficients

In this section, we seek to find an algorithm that shifts the data between a nodal and a staggered representation. Such a shift can be 
handled readily in k-space by multiplying the data to be shifted by an appropriate amount, for example e−ik�x/2 for a shift by �x/2 along 
x. Such an operation is, however, computationally expensive. Furthermore, it is non-local, complicating domain decomposition. We present 
below a method to recenter data from one grid representation to another, based on finite-order discrete sums, which converges toward a 
shift in k-space as the order of the finite sum goes to infinity.

As mentioned in the introduction, PSATD algorithms help mitigate the spurious numerical dispersion of finite-difference algorithms by 
approximating spatial derivatives with high-order discrete expressions that use large stencils of grid points and by integrating Maxwell’s 
equations, in Fourier space, analytically in time, instead of approximating time derivatives by finite differences.

This section shows that the coefficients originally introduced by Fornberg [33] for the high-order approximation of spatial derivatives 
can be employed also to perform finite-order centering of fields and currents between nodal and staggered grids, within the context of 
the hybrid PSATD PIC scheme outlined in Section 2.

We first review how spatial derivatives can be approximated with high-order expressions using the Fornberg coefficients. Since the 
goal is to show how the same coefficients can be used for finite-order centering of grid quantities from a staggered grid to a nodal grid 
(or vice versa), we consider here the case of staggered finite differences applied to a function f : � � x �→ f (x) ∈R, evaluated on the cell 
centers of a one-dimensional domain � := {x j+ 1

2
:= j�x + �x/2, j ∈Z}, for a given cell size �x ∈R. “Staggered finite differences” means 

that we are interested in providing an approximation of the derivative of f on a cell node (rather than a cell center), say x j . In this case, 
the approximation of d f /dx in x j at order 2m, for N � m > 0, reads(

d f

dx

)
j
=

m∑
n=1

αs
m,n

f j+n−1/2 − f j−n+1/2

(2n − 1)�x
+ O (�x2m+1) , (3)

where αs
m,n denote the staggered Fornberg coefficients
5
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Fig. 3. Nyquist Noise. Example of short-wavelength noise with a nodal Maxwell solver (left) and a staggered Maxwell solver (right) for a two-dimensional rectangular electric 
pulse (with unitary amplitude) initialized at the center of a two-dimensional periodic domain, for parallel runs using domain decomposition with 256 subdomains. The nodal 
solver exhibits much stronger short-wavelength noise than the staggered solver and leads to a strong non-physical growth over time of the electromagnetic field energy W , 
which instead grows much more slowly in the staggered case. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

αs
m,n := (−1)n+1

[
(2m)!
22mm!

]2 4

(2n − 1)(m − n)! (m + n − 1)! . (4)

Here and in the following, f� := f (��x), for a given integer or half-integer index �. The following one-dimensional schematic helps 
understand the geometric meaning of the indices used in (3):

| | | | | | | | |

| | | | | | | | |

j − n + 1
2 j + n − 1

2

j

x x x x x x x x

• • • • • • • • •
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A Taylor expansion of the right-hand side of (3) around x j = j�x yields(
d f

dx

)
j
=

2m+1∑
k=1

(
dk f

dxk

)
j

�xk−1

k!
m∑

n=1

αs
m,n

(n − 1/2)k − (−n + 1/2)k

2n − 1
+ O (�x2m+1)

=
m∑

k=0

(
d2k+1 f

dx2k+1

)
j

�x2k

(2k + 1)!
m∑

n=1

αs
m,n(n − 1/2)2k + O (�x2m+1) ,

(5)

where even values of k canceled out in the first line and the first partial sum was re-indexed over the index k. This implies

m∑
n=1

αs
m,n(n − 1/2)2k =

{
1 k = 0 ,

0 k = 1, . . . ,m .
(6)

Thanks to this property of the Fornberg coefficients, the same coefficients αs
m,n can also be used to perform finite-order interpolation. 

More precisely, the function f can be interpolated in x j via

f j =
m∑

n=1

αs
m,n

f j+n−1/2 + f j−n+1/2

2
+ O (�x2m+2) . (7)

This can be shown by performing a Taylor expansion of the right-hand side of (7) around x j = j�x,

m∑
n=1

αs
m,n

f j+n−1/2 + f j−n+1/2

2

= f j

m∑
n=1

αs
m,n +

2m+1∑
k=1

(
dk f

dxk

)
j

�xk

k!
m∑

n=1

αs
m,n

(n − 1/2)k + (−n + 1/2)k

2
+ O (�x2m+2)

= f j

m∑
n=1

αs
m,n +

m∑
k=1

(
d2k f

dx2k

)
j

�x2k

(2k)!
m∑

n=1

αs
m,n(n − 1/2)2k + O (�x2m+2) = f j + O (�x2m+2) ,

(8)

which proves (7), thanks to the property (6).
Equation (7) is the type of finite-order method that is used for the centering of fields and currents between nodal and staggered grids, 

within the context of the hybrid PSATD PIC scheme outlined in Section 2. Fig. 4 shows an example of one-dimensional interpolation of a 
smooth function f (x) := cos5(4πx) (left) as well as a delta function (right), where the interpolated values converge to the exact values 
by increasing the interpolation order 2m. The delta function on the right is chosen to be a Kronecker pulse extending over a single cell, 
followed by one pass of binomial filter, so effectively a triangular hat function representing a unit of charge, current or field on the grid. 
I2m
n [ f ] and I2m

s [ f ] denote the centering of f at order 2m to a nodal and staggered grid, respectively. It is remarkable that the centering 
of data from a nodal grid to a staggered grid (top-right) and back to the nodal grid (bottom-right) recovers the original nodal signal as 
the order of interpolation goes to infinity. The panels on the right of Fig. 4 also show the curves obtained by shifting in k-space the 
hat function (forth and back in the case of the bottom-right panel, which results in the identity), towards which the interpolated values 
converge as the order of the finite sums increases.

4. PSATD algorithms of interest on staggered grids

This section summarizes the equations for the update of the electromagnetic fields in Fourier space, for three PSATD algorithms of 
interest that are considered in this paper to test the novel hybrid scheme. These are:

• the standard PSATD PIC algorithm [25,29,47];
• the standard Galilean PSATD PIC algorithm [34–36];
• the averaged Galilean PSATD PIC algorithm (for large time steps) [37].

The derivation of these solvers, previously performed only for the nodal case, is extended to the staggered case, to be used with purely 
staggered or hybrid PIC cycles. In particular, the derivation of the Galilean equations required extra care because of the presence of the 
Galilean coordinate transformation for which the new update equations on staggered grids cannot be obtained trivially by replacing all 
nodal quantities with staggered quantities in the old update equations valid on nodal grids [34–37].

A thorough mathematical derivation is presented in Appendix A for the case of the standard Galilean PSATD algorithm. The case of the 
standard PSATD algorithm can be derived trivially as a limit of the standard Galilean PSATD results with zero Galilean velocity. Similarly, 
the case of the averaged Galilean PSATD algorithm requires simply to perform an additional averaging in time of the standard Galilean 
PSATD results, as described in [37].

4.1. Notation

Common notations are introduced that will be used from here on, starting with the modified wave numbers used to express finite-
order spatial derivatives in Fourier space. Considering a one-dimensional domain with cell size �x for which kx denotes the wave numbers 
7
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Fig. 4. Finite-order Centering. One-dimensional interpolation of a smooth function f (x) := cos5(4πx) (left) as well as a delta function (right). The delta function on the right 
is chosen to be a Kronecker pulse extending over a single cell, followed by one pass of binomial filter, so effectively a triangular hat function representing a unit of charge, 
current or field on the grid. The crosses represent the discrete values of f used to compute the interpolated values, represented by the colored bullets. The interpolation is 
performed using the Fornberg coefficients as prescribed in (7), at increasing interpolation orders 2m = 2, 4, 8, 16. I2m

n [ f ] and I2m
s [ f ] denote the centering of f at order 2m

to a nodal and staggered grid, respectively. The panels on the right also show the curves obtained by shifting in k-space the hat function (forth and back in the case of the 
bottom-right panel, which results in the identity), towards which the interpolated values converge as the order of the finite sums increases.

of the corresponding dual grid in Fourier space, centered and staggered finite differences at order 2m are expressed in Fourier space by 
means of centered and staggered modified wave numbers defined as

[kx]c :=
m∑

n=1

αc
m,n

sin(k n �x)

n �x
, (9a)

[kx]s :=
m∑

n=1

αs
m,n

sin(k (n − 1/2)�x)

(n − 1/2)�x
, (9b)

where αc
m,n and αs

m,n denote the centered and staggered Fornberg coefficients [33]

αc
m,n := (−1)n+1 2(m!)2

(m − n)! (m + n)! , (10a)

αs
m,n := (−1)n+1

[
(2m)!
22mm!

]2 4

(2n − 1)(m − n)! (m + n − 1)! . (10b)

For the Galilean PSATD and averaged Galilean PSATD algorithms, we denote the Galilean velocity by vgal and define the additional 
quantities 
c := vgal · [k]c, ωc := c [k]c and ωs := c [k]s, where the centered and staggered modified wave vectors [k]c and [k]s are defined 
as vectors with components defined as in (9a)-(9b), and [k]c and [k]s denote their magnitudes, respectively. We also define the additional 
quantities C := cos(ωs �t), S := sin(ωs �t), θc := ei
c�t/2 and θ∗

c := e−i
c�t/2, as well as the coefficient

χ1 := ω2
c

ω2
s − 
2

c

(
θ∗

c − θc C + i 
c θc
S

ωs

)
. (11)

In the case of the standard PSATD algorithm, vgal = 0, 
c = 0, θc = θ∗
c = 1, and lim χ1 = (1 − C)ω2

c /ω2
s , assuming ωs �= 0.

c→0

8
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4.2. Standard PSATD algorithm

In the case of the standard PSATD algorithm [25,29,47], Faraday’s and Ampère-Maxwell’s equations in physical space read

∂ B

∂t
= −∇ × E , (12a)

1

c2

∂ E

∂t
= ∇ × B − μ0 J . (12b)

Their expressions in Fourier space read

∂ B̂

∂t
= −i [k]s × Ê , (13a)

1

c2

∂ Ê

∂t
= i [k]s × B̂ − μ0 Ĵ . (13b)

By integrating (13a)-(13b) analytically in time, along with the continuity equation, the update equations for the electromagnetic fields 
Ê and B̂ from time n�t to time (n + 1)�t , read

B̂
n+1 = C B̂

n − i
S

ωs
[k]s × Ê

n + i X1 [k]s × Ĵ
n+ 1

2 , (14a)

Ê
n+1 = C Ê

n + i c2 S

ωs
[k]s × B̂

n + X4 Ĵ
n+ 1

2 + i
(

X3 ρ̂ n − X2 ρ̂ n+1) [k]s , (14b)

where the coefficients X1, X2, X3 and X4 are defined as

X1 := 1 − C

ε0 ω2
s

, X2 := c2

ε0 ω2
s

(
1 − S

ωs �t

)
, X3 := c2

ε0 ω2
s

(
C − S

ωs �t

)
, X4 := − S

ε0 ωs
. (15)

The update equations (14a)-(14b) contain quantities related only to the staggered modified wave vectors, as one might intuitively 
expect, and they can be obtained also by trivially replacing standard wave numbers with (staggered) modified wave numbers in the 
update equations valid at infinite spectral order [29]. A thorough derivation of (14a)-(14b) is given in Appendix A.

4.3. Standard Galilean PSATD algorithm

In the case of the standard Galilean PSATD algorithm [34–36], Faraday’s and Ampère-Maxwell’s equations in physical space read(
∂

∂t
− vgal · ∇

)
B = −∇ × E , (16a)

1

c2

(
∂

∂t
− vgal · ∇

)
E = ∇ × B − μ0 J . (16b)

Their expressions in Fourier space read(
∂

∂t
− i 
c

)
B̂ = −i [k]s × Ê , (17a)

1

c2

(
∂

∂t
− i 
c

)
Ê = i [k]s × B̂ − μ0 Ĵ . (17b)

While a thorough mathematical derivation of (17a)-(17b), along with the results shown in the following, is presented in Appendix A, 
it is important to note that, because of the presence of the Galilean coordinate transformation, a new term involving derivatives of the 
electromagnetic fields appears on the left hand side of both equations. This, in turns, results in having quantities related to both centered 
and staggered modified wave vectors, because the finite differences acting on E and B need to be defined differently, according to the 
spatial staggering of the two fields.

By integrating (17a)-(17b) analytically in time, along with the continuity equation, the update equations for the electromagnetic fields 
Ê and B̂ in Fourier space, from time n�t to time (n + 1)�t , read

B̂
n+1 = θ2

c C B̂
n − i θ2

c
S

ωs
[k]s × Ê

n + i X1 [k]s × Ĵ
n+ 1

2 , (18a)

Ê
n+1 = θ2

c C Ê
n + i c2 θ2

c
S

ωs
[k]s × B̂

n + X4 Ĵ
n+ 1

2 + i
(
θ2

c X3 ρ̂ n − X2 ρ̂ n+1
)

[k]s , (18b)

where the coefficients X1, X2, X3 and X4 are defined as
9
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X1 := θc χ1

ε0 ω2
c

, (19a)

X2 := c2

θ∗
c − θc

(
θ∗

c X1 − θc
1 − C

ε0 ω2
s

)
, (19b)

X3 := c2

θ∗
c − θc

(
θ∗

c X1 − θ∗
c

1 − C

ε0 ω2
s

)
, (19c)

X4 := i 
c X1 − θ2
c

ε0

S

ωs
. (19d)

Unlike the standard PSATD algorithm, the update equations (18a)-(18b) contain quantities related to both centered and staggered 
modified wave vectors. Moreover, the update equations (14a)-(14b) for the standard PSATD algorithm can be obtained by taking the limit 
of (18a)-(18b) for 
c → 0. As expected for consistency, (18a)-(18b) correspond to equations (4a)-(4b) of [36] when considering the purely 
nodal case where all staggered quantities are replaced by the corresponding centered quantities. A thorough derivation of (18a)-(18b) is 
given in Appendix A.

4.4. Averaged Galilean PSATD algorithm

In the case of the averaged Galilean PSATD algorithm [37], the update equations for the electromagnetic fields Ê and B̂ in Fourier 
space, from time n�t to time (n + 1)�t , are the same as for the Galilean PSATD algorithm, namely (18a)-(18b).

Moreover, the update equations for the averaged electromagnetic fields 〈Ê〉 and 〈B̂〉 in Fourier space, from time n�t to time (n + 1)�t , 
are obtained by performing an additional averaging in time, as described in [37], which yields

〈B̂〉n+1 = �1 B̂
n + i �2 [k]s × Ê

n + i Y1 [k]s × Ĵ
n+ 1

2 , (20a)

〈Ê〉n+1 = �1 Ê
n − i c2 �2 [k]s × B̂

n + Y4 Ĵ
n+ 1

2 + (Y3 ρ̂ n + Y2 ρ̂ n+1) [k]s , (20b)

where the coefficients �1 and �2 are defined as

�1 := θ3
c (ωs S3 + i 
c C3) − θc (ωs S1 + i 
c C1)

(ω2
s − 
2

c )�t
, (21a)

�2 := θ3
c (C3 − i 
c S3/ωs) − θc (C1 − i 
c S1/ωs)

(ω2
s − 
2

c )�t
, (21b)

with Cm = cos(m ωs �t/2) and Sm = sin(m ωs �t/2), for m = 1, 2, 3, and the coefficients Y1, Y2, Y3 and Y4 are defined as

Y1 := 1 − �1 − i 
c �2

ε0 (ω2
s − 
2

c )
, (22a)

Y2 := i c2 ε0 ω2
s Y1 − �3 + �1

ε0 ω2
s (θ2

c − 1)
, (22b)

Y3 := i c2 �3 − �1 − ε0 θ2
c ω2

s Y1

ε0 ω2
s (θ2

c − 1)
, (22c)

Y4 := i 
c Y1 + �2

ε0
, (22d)

with �3 := −i θc (θ2
c − 1)/(
c �t).

As for the standard Galilean PSATD algorithm, all update equations contain quantities related to both centered and staggered modified 
wave vectors. As expected here again for consistency, (20a)-(20b) correspond to equations (10)-(11) of [37], when considering the purely 
nodal case where all staggered quantities are replaced by the corresponding centered quantities.

5. Numerical tests

This section presents various physics applications to test the novel hybrid scheme, with the different PSATD PIC algorithms described in 
Section 4. All simulations and results have been performed and obtained with the open-source electromagnetic PIC code WarpX [49–51].

5.1. Standard PSATD algorithm: vacuum electron-positron pair creation

A first example where it is advantageous to use the novel hybrid scheme presented here is the modeling of electron-positron pair cre-
ation in vacuum. This effect, known as the Schwinger effect [52–55], is among the most fundamental predictions of strong-field quantum 
electrodynamics. It consists in the generation of electron-positron pairs from the fluctuations of the quantum vacuum in the presence of a 
sufficiently strong background electromagnetic field and it is sometimes referred to as “vacuum breakdown” [55]. Observing the Schwinger 
10
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process experimentally would shed light on the profound properties of the quantum vacuum, and is a major scientific goal for several 
research fields, including quantum field theory, high-energy astrophysics, and the design of future particle colliders. The Schwinger effect 
is expected to occur for electric fields approaching the Schwinger field, E S = 1.32 × 1018 V/m, which is more than 3 orders of magnitude 
greater than the most intense fields produced by femtosecond lasers to date [56].

It was recently proposed [19] that the Schwinger field E S could be approached by focusing a multi-Petawatt laser pulse on a so-called 
plasma mirror, i.e., a solid-density plasma with a sharp density gradient on its front surface. As the laser field is reflected by the plasma, 
it is periodically compressed in time by the relativistic oscillation of the plasma surface (induced by the laser itself). As a result, the 
reflected field is emitted as a train of attosecond pulses. In the frequency domain, this corresponds to the generation of high-harmonics 
by Doppler upshift. Since the reflected harmonic beam is made of higher frequency components than the incident laser, it can be focused 
to much tighter focal spots. In fact, the focusing of the harmonics does not even require additional optical elements and can be achieved 
through the curvature of the plasma mirror, which is induced by the incident laser itself. The combination of temporal compression and 
tighter focusing results in multiple orders of magnitude intensity gains and, under optimal conditions, could be sufficient to bridge the 
gap towards the Schwinger limit [57].

Accurate modeling of vacuum electron-positron pair creation is crucial to the design of future experiments at the Schwinger limit. In 
particular, it is important to determine the exact intensity thresholds for pair creation, the number of pairs generated as a function of the 
harmonic beam parameters, and the new physics that is expected to come at play in these extreme regimes.

We have therefore performed two-dimensional PIC simulations of the generation of Schwinger pairs at the focus of a very intense 
harmonic beam. For these test simulations, we have considered an idealized harmonic beam with a fundamental wavelength λ = 800
nm. Its spectrum contains more than 100 harmonic orders and has been obtained from a one-dimensional PIC simulation of a 20 fs, 
1022 W/cm2 laser impinging with 55◦ incidence on a plasma mirror [57]. Each of these harmonics has a Gaussian transverse spatial 
profile and is focused down to diffraction limit (w0,n = λ/n, where w0,n is the beam waist at focus of the harmonic of order n) [58]. 
Finally, the peak intensity of the harmonic beam has been manually set to approximately 10 times the Schwinger limit. Although this 
value is currently unrealistic, it is convenient for test purposes because it leads to the generation of a very high number of pairs, which 
smooths out statistical fluctuations between different simulations. In the test case, the harmonic beam is injected by an antenna 5 μm
before focus. It propagates in the z direction and its magnetic field is directed towards the y direction, which is perpendicular to the 
simulation plane. Since this harmonic beam contains about 100 harmonic orders, it can be subject to strong numerical dispersion and it 
is therefore absolutely necessary to use a spectral Maxwell solver to mitigate this effect [59]. We use here the standard PSATD algorithm, 
with stencils of order 16 and 8 ghost cells in each direction, both with and without the new hybrid scheme.

The Schwinger process is implemented in the PIC code WarpX through the PICSAR library [60]. Modeling this effect requires to compute 
for each grid cell the pair production rate per unit volume [61]

d2N

dt dV
= q2

e E2
S

4π2h̄2c
ε η coth

πη

ε
e−π/ε , (23)

where qe is the elementary charge and h̄ is the reduced Planck constant. Moreover, ε and η are given by the following expressions:

ε =
√√

F2 + G2 +F
E S

, η =
√√

F2 + G2 −F
E S

, (24)

where F and G are the Lorentz invariant of the electromagnetic field,

F = 1

2

(
E2 − c2 B2

)
, G = c E · B . (25)

Given a time step �t and a cell volume V , the expected number of generated Schwinger pairs N can be computed. If N 
 1, an electron 
macro-particle and a positron macro-particle with a weight corresponding to N are generated. Otherwise, the number of generated pairs 
N is drawn from a Poisson’s distribution, and macro-particles are generated only if N > 0. Schwinger pairs are generated at rest. In order 
to separate the effect of pair creation in vacuum from further self-consistent effects, the generated electrons and positrons do not deposit 
neither their charge nor their current on the grid for this test case. Therefore, they do not influence the propagation of the harmonic beam 
in vacuum and only serve as probes of the Schwinger effect. Finally, in order to convert the Schwinger pair production rate (which is a 
number of pairs per unit volume per unit time) into an estimated number of particles generated per cell per time step, a transverse cell 
size of 20 nm, which corresponds to the typical transverse size of the harmonic beam at focus, is used.

To understand the results of these numerical tests, it is instructive to consider the most important features of the Schwinger pair 
production rate. As stated above, this rate only depends on the invariants of the electromagnetic field F = 1

2

(
E2 − c2B2

)
and G = c E · B. 

Close to the pair generation threshold, F is the most important of the two invariants, and it is in fact the only one that is non-zero in the 
two-dimensional simulations presented here, in which the magnetic field is perpendicular to the simulation plane. The pair production 
rate is extremely sensitive to small changes of F and becomes significant when F is positive and approaches a few percent of E2

S . This 
can occur for a very strong electrostatic field or for two counterpropagative plane waves (near the nodes of the magnetic field). On the 
other hand, for a single plane wave, the E and B fields have the same amplitude everywhere, which means that F , and thus the pair 
production rate, is zero regardless of the field amplitude. Our test case, with a single harmonic beam, is closer to that of a single plane 
wave. However, due to the tight focusing of the harmonics, the E and B fields do not have the same amplitude everywhere and pair 
creation can still occur in regions with stronger E field. Yet, since the invariant F is computed by subtracting two numbers that are very 
close in amplitude, great care must be taken to avoid numerical errors. In particular, it is absolutely necessary that all field components 
used in the calculation of F be located at the same points in the grid as the difference is then otherwise easily dominated by interpolation 
errors.

A natural solution to achieve this could be to solve Maxwell’s equations on a nodal grid. However, as shown in Fig. 3, the nodal solver 
is subject to strong noise at the Nyquist wavelength. While this noise does not significantly change the amplitude of the fields, it can 
heavily affect the amplitude of the invariant F . This is particularly true when the noise at the Nyquist wavelength is counterpropagative 
11
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Table 1
Spatial resolutions used in the vacuum pair creation convergence scans. Each row 
corresponds to a simulation of the convergence scan. �x and �z denote the cell 
sizes in the transverse and longitudinal directions, respectively. Note that �x has 
been set to the same value in the last two simulations to save computational time. 
This should not affect the results presented here since it was observed that �z has, 
by far, the most significant impact on the calculation of the invariant. In all cases, 
the time step satisfies c �t = �z.

Simulation # Longitudinal resolution �z Transverse resolution �x

1 2.44 nm 13.3 nm
2 1.22 nm 6.64 nm
3 0.610 nm 3.32 nm
4 0.305 nm 1.66 nm
5 0.153 nm 1.66 nm

Fig. 5. Magnetic Field. Snapshots of the B y field at the focus of the most intense attosecond pulse with field centering of order 2 (a)-(e) or order 8 (f)-(j). The longitudinal 
resolution is given in the top row and the peak absolute value of the B y field is written in red above each snapshot.

with the harmonic beam – which is similar to the case of two counterpropagative plane waves. As a result, it is observed that using the 
nodal solver results in spurious Schwinger pair creations, which can increase the total number of generated pairs by several orders of 
magnitude, or lead to pair creation at intensities where there should be none. This issue effectively makes it infeasible to solve Maxwell’s 
equation on a nodal grid in simulations that include the Schwinger effect.

Therefore, it is necessary to solve Maxwell’s equations on a staggered Yee grid and then interpolate all field components on the cell 
nodes to compute the invariant F . This precisely corresponds to the novel hybrid scheme presented in this article. In order to evaluate 
the impact of interpolation errors in the computation of the invariant, two convergence scans of the test case presented in this section 
were performed, with field centering of order 2 and 8, respectively. The resolutions used in the convergence scan are given in Table 1. In 
each case, the peak intensity is adjusted so that the same total field energy is used in all simulations.

Fig. 5 shows snapshots of the component B y of the magnetic field at the focus of the most intense attosecond pulse, for all simulations 
of the convergence scan. The attosecond pulse looks similar in all cases. Yet, the peak amplitude of the electromagnetic field substantially 
increases with resolution. This is likely due to the combination of two factors: (i) the peak of the attosecond pulse is better resolved in 
time and space at higher resolution, and (ii) the highest harmonic orders are absent or do not propagate well at the lowest resolutions. It 
is expected that this effect will tend to increase the number of pairs generated when increasing the resolution.

Fig. 6 shows snapshots of the invariant F at the same time and position as in Fig. 5. With field centering of order 2, the spatial 
shape of the invariant changes with resolution, until it starts converging from �z = 0.305 nm. This is because, until that resolution, the 
computation of the invariant is dominated by errors in the interpolation of the different field components on the nodes. Consequently, the 
peak values of F are much higher at lower resolution, even though the peak intensity is smaller at lower resolution. With field centering 
of order 8, the behavior is radically different: the spatial shape of the invariant is the same regardless of resolution, meaning that the 
computation of the invariant is never affected by interpolation errors. This time, the peak values attained by the invariant F increase with 
resolution, which is expected since the harmonic beam intensity itself increases with resolution. To cancel out these intensity variations, 
Fig. 7(a) shows the ratio between the peak invariant F and the peak intensity. This ratio is virtually constant for all resolutions with field 
centering of order 8. This result shows that the computation of the invariant is always accurate when using high-order field centering, 
and that the changes in the invariant amplitude are simply driven here by the peak intensity variations.

Fig. 7(b) shows the total number of Schwinger pairs as a function of resolution. The general trends are the following: with field 
centering of order 2, interpolation errors in the computation of F lead to non-physical pair creation at lower resolution, which can 
12
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Fig. 6. Field Invariant. Snapshots of the invariant F , normalized by the square of the Schwinger field, at the focus of the most intense attosecond pulse with field centering 
of order 2 (a)-(e) or order 8 (f)-(j). The longitudinal resolution is given in the top row and the peak positive value of the invariant F is written in red above each snapshot.

Fig. 7. Convergence. (a) Normalized ratio between the peak invariant F and the peak intensity as a function of spatial resolution. (b) Total number of Schwinger pairs 
generated in the simulations as a function of spatial resolution. The upper-right inset is a zoom over the rectangle marked by the dashed lines (note the change from 
logarithmic to linear scale in the y-axis).

quickly increase the number of pairs by several orders of magnitude. With field centering of order 8, the number of pairs increases with 
resolution, following the increase of the harmonic beam intensity. To obtain a correct order of magnitude for the number of Schwinger 
pairs, a longitudinal resolution �z = 1.22 nm is sufficient with field centering of order 8, whereas a longitudinal resolution �z = 0.305 nm 
is required with field centering of order 2. Even at the highest resolution (�z = 0.153 nm), field centering of order 2 still results in a 
9% overestimation of the number of pairs created, approximately. For comparison, field centering of order 8 is already more accurate for 
�z = 0.305 nm, with a 2% underestimation of the number of generated pairs, approximately.

Fig. 8 shows that increasing the field centering order results in a steady decrease of spurious pair generation coming from interpolation 
errors, up until the point where non-physical pair creation becomes comparable to the statistical fluctuations inherent to the Schwinger 
process. In our case, this typically occurs near field centering of order 8. Table 2 shows the runtimes of the simulations shown in Fig. 8, 
obtained on the NVIDIA GPU nodes of the Summit supercomputer. The runtimes are mainly driven by the resolution and are also moder-
ately affected by the amount of pair creation (which results in slightly load imbalanced simulations). On the other hand, the choice of the 
field centering order appears to have no sizeable effect on the simulation runtimes: the field centering with a finite sum is a simple and 
fast operation, hence the increase in computational cost due to the choice of higher orders for the finite sum is negligible compared to all 
other PIC operations combined together. These results indicate that any field centering order greater or equal to 8 (and compatible with 
the number of ghost cells used with domain decomposition) is perfectly appropriate for this test case.

Overall, the novel hybrid scheme has proven very useful for simulations of the Schwinger effect. Compared to a fully nodal scheme, it 
is much less sensitive to noise at the Nyquist frequency, which suppresses severe non-physical pair creation. Moreover, the ability to use 
high-order field centering entirely removes spurious pair creation coming from interpolation errors in the computation of the invariant 
F . This feature significantly accelerates convergence and allows to reduce the resolution by a factor 3 to 4 in simulations of vacuum pair 
generation.
13
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Fig. 8. Effect of Centering Order. Relative difference between the number of pairs created with a given field centering order and the number of pairs created with field 
centering of order 16, for a longitudinal resolution of �z = 0.610 nm (blue curve) and �z = 0.305 nm (orange curve). The dashed-red line shows the standard deviation of 
the number of generated Schwinger pairs for identical simulations, estimated from the number of pairs obtained with �z = 0.305 nm and field centering of order 16.

Table 2
Runtimes of the vacuum pair creation test case as a function of the field centering order for �z = 0.610 nm and �z = 0.305 nm.

Simulation 
Runtime

hybrid, 
order 2

hybrid, 
order 4

hybrid, 
order 6

hybrid, 
order 8

hybrid, 
order 10

hybrid, 
order 12

hybrid, 
order 14

hybrid, 
order 16

�z = 0.610 nm (192 GPUs) 634 s 610 s 602 s 596 s 604 s 604 s 604 s 600 s

�z = 0.305 nm (768 GPUs) 1111 s 1024 s 1022 s 1048 s 1046 s 1046 s 1052 s 1049 s

5.2. Standard Galilean PSATD algorithm: laser-driven plasma wakefield acceleration

This section presents a test of the novel hybrid scheme with the standard Galilean PSATD algorithm in a Lorentz-boosted frame [62,44,
63], on the numerical simulation of laser-driven plasma wakefield acceleration (LWFA) [64]. A laser beam propagating through an under-
dense plasma displaces electrons, creating a plasma wakefield that produces very high electric fields, which can be used to accelerate 
a short charged particle beam to high energy. Plasma wakefield acceleration represents a novel accelerator technology, alternative to 
traditional particle accelerators (where the accelerating fields are produced by radio-frequency electromagnetic waves shaped by metallic 
cavities), and holds the promise of smaller and cheaper particle accelerators, making these machines more accessible for uses in many 
fields of science and technology, ranging from fundamental physics to medicine, security, and industrial applications.

This section reports on simulations of a laser propagating through a column of pre-ionized plasma that were performed on a three-
dimensional computational domain, parametrized by the Cartesian coordinates (x, y, z) ∈ [−200 μm, 200 μm] × [−200 μm, 200 μm] ×
[−160 μm, 0 μm].

The plasma is made of electrons and protons, injected in the simulation with 1 particle per cell in each direction. The plasma transverse 
density profile is parabolic, with a flat longitudinal profile terminated by cosine-like ramps at each end. The density for both electrons 
and protons reads n(x, y, z) = n0 n(x, y) n(z), where

n(x, y) = 1 + 4
x2 + y2

k2
p R4

c
, (26a)

n(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2

[
1 − cos

(
π z

L+

)]
0 � z < L+ ,

1 L+ � z < L+ + Lp ,

1

2

[
1 + cos

(
π(z − L+ − Lp)

L−

)]
L+ + Lp � z < L+ + Lp + L− ,

(26b)

with n0 = 1.7 × 1023 m−3, kp = (q/c)
√

n0/(m ε0), Rc = 40 μm, L+ = 20 mm, L− = 3 mm, and Lp = 0.297 m. Both electrons and protons 
are injected assuming zero momentum (cold plasma) in the laboratory frame.

The laser propagates in the longitudinal direction after injection using a virtual antenna [63] located at x = y = 0 and z = −1.0 nm
in the laboratory frame, and it is polarized in the y direction. The peak amplitude of the laser field is Emax ≈ 6.82 × 1012 V/m. The 
peak intensity is reached at t ≈ 0.14 ps and the laser pulse has a duration of τ ≈ 73.4 fs. The laser profile is Gaussian along both the 
transverse and longitudinal directions, with a transverse waist w = 50 μm. The laser wavelength is λ = 0.8 μm and the distance between 
the antenna and the focal plane is δ = 8.75 mm in the laboratory frame.

The computational domain is divided in Nx × N y × Nz = 128 × 128 × 2052 cells and decomposed in 24 subdomains, with 64 × 64 × 342
cells per subdomain. Macro-particles use cubic splines as particle shape factors for current deposition and field gathering and the Vay 
scheme [39] for the velocity and position updates. To minimize the number of time steps and speed up the runtime, the simulation 
is performed using a Lorentz boosted frame of reference in the longitudinal direction, with a Lorentz factor γ = 30. For stability, the 
simulation grid follows the plasma with longitudinal Galilean velocity vgal = vgal ẑ that is then set to vgal/c = −√1 − 1/γ 2, where c
denotes the speed of light. With the Maxwell solver, stencils of order 16 are used in each direction, with the following numbers of ghost 
cells for the nodal and staggered or hybrid cases, respectively:
14
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Fig. 9. PSATD Stencils. Stencil extent of the leading coefficient θ2
c C along x, y, z for the LWFA test case, computed as prescribed in (1).

Table 3
Runtimes of the nodal, staggered and hybrid simulations shown in Fig. 10.

Simulation nodal staggered hybrid, 
order 2

hybrid, 
order 4

hybrid, 
order 6

hybrid, 
order 8

Runtime 289 s 157 s 157 s 155 s 156 s 157 s

• nodal case: 16 ghost cells in (x, y) and 16 ghost cells in z;
• staggered or hybrid case: 8 ghost cells in (x, y) and 16 ghost cells in z.

These choices of ghost cells are based on the measurements of the stencil extents along x, y and z shown in Fig. 9 for this test case, with 
the curves obtained as prescribed in (1).

More precisely, we measure the stencil of the leading coefficient θ2
c C in the update equations (18a)-(18b). Fig. 9 shows that the number 

of ghost cells can be safely reduced in the transverse directions (x, y) in the staggered or hybrid case, as compared with the nodal case. 
This is not the case in the longitudinal direction z. What makes the longitudinal direction z special is the fact that it is the direction of the 
Galilean coordinate transformation. The coefficient θ2

c C keeps memory of such coordinate transformation through θ2
c = exp(i vgal · [k]c �t).

The time step �t satisfies c �t = �x, �y < �z′ , where �z′ denotes the cell size along z in the boosted frame. More precisely, �x =
�y ≈ 3.125 μm, �z ≈ 0.078 μm, �z′ = (1 + β) γ �z ≈ 4.677 μm and �t ≈ 10.42 fs.

The choice of a Lorentz boosted frame of reference that travels at a speed close to the speed of light in the direction of the laser makes 
it possible to simulate the propagation of a laser with a wavelength of a fraction of a micron by using cells that span over a few microns: 
in the boosted frame of reference the laser beam is elongated by roughly (1 + β)γ , while the plasma contracts by roughly γ . This results 
in a total speedup of the simulation by (1 + β)γ 2 ≈ 1800 with γ = 30, compared to the same simulation using a laboratory frame of 
reference [62].

Fig. 10 shows plots of the component Ex of the electric field, at y = 0, after 1600 iterations, for:

• a fully nodal simulation (first row, left column);
• a fully staggered simulation (first row, right column);
• hybrid simulations with finite-order centering of fields and currents at order 2m = 2, 4, 6, 8 in each direction (second to third row, 

both columns).

While the fully nodal simulation is stable, as expected based on previous work [35,30], the fully staggered simulation develops a strong 
numerical Cherenkov instability. As anticipated in Section 2, the increased stability of the fully nodal case can be recovered with the new 
hybrid solver, provided that the order of the finite-centering operation is sufficiently high. The required order is as low as 6 in the present 
case, based on the results of Fig. 10, enabling the hybrid scheme to reach the stability of the fully nodal scheme while using half the 
number of ghost cells in the transverse directions, thanks to the use of a staggered PSATD Maxwell’s solver, resulting in shorter runtimes 
and smaller computational costs overall. In fact, the total runtime of the hybrid simulation at order 6 in Fig. 10 (the lowest order that 
reproduces the nodal results correctly) is approximately 156 s on 24 NVIDIA GPUs of the Summit supercomputer (thus, with 1 subdomain 
per GPU), while the total runtime of the nodal simulation is approximately 289 s, leading to a speed-up of approximately 1.9. Table 3
shows the total runtimes of all the simulations shown in Fig. 10. Here again, the choice of the field centering order has no sizeable effect 
on the simulation runtimes.

To give a more quantitative comparison between the nodal and hybrid results, the L2 norm of error was computed for all electromag-
netic field components. More precisely, denoting by Fn a given electromagnetic field component from a nodal simulation and by Fh the 
corresponding data from a hybrid simulation, the L2 norm of error is given by

‖Fn − Fh‖L2

‖Fn‖L2
:=

√∫
d3x [Fn(x) − Fh(x)]2√∫

d3x [Fn(x)]2
. (27)
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Fig. 10. LWFA Simulations. Plots of the component Ex of the electric field, at y = 0, after 1600 iterations, obtained with the standard Galilean PSATD algorithm with a 
nodal PIC cycle (first row, left column), a staggered PIC cycle (first row, right column), and the hybrid PIC cycle with finite-order centering of fields and currents of order 
2m = 2, 4, 6, 8 in each direction (second to third row, both columns).

Fig. 11. Convergence. L2 norm of error, computed as prescribed in (27), for the electromagnetic field components measured from the nodal and hybrid simulations shown in 
Fig. 10 (with, in addition, the results from a hybrid simulation at order 10, confirming that the results have indeed converged).

The errors measured from the nodal and hybrid simulations shown in Fig. 10 are plotted in Fig. 11 for Ex as well as all other electromag-
netic field components (not shown in Fig. 10 for brevity).

The dependency of the L2 norm of error of the field components with respect to the order of the centering confirms the dramatic 
improvement of stability at order 6, which is reinforced further at higher orders.
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Fig. 12. PSATD Stencils. Stencil extent of the leading coefficient θ2
c C along x, y, z for the 3D PWFA test case, computed as prescribed in (1).

5.3. Averaged Galilean PSATD algorithm: beam-driven plasma wakefield acceleration

This section presents a test of the novel hybrid scheme with the averaged Galilean PSATD algorithm in a Lorentz-boosted frame [62], 
on the numerical simulation of particle beam-driven plasma wakefield acceleration (PWFA), where the electron plasma wave is created by 
a charged particle beam instead of a laser beam.

The simulation is performed on a three-dimensional computational domain, parametrized by the Cartesian coordinates (x, y, z) ∈
[−200 μm, 200 μm] × [−200 μm, 200 μm] × [−220 μm, 10 μm].

The plasma is made of electrons and hydrogen ions, injected in the simulation with 2 particles per cell in the transverse directions 
(x, y) and 1 particle per cell in the longitudinal direction z. The plasma profile is constant, with both electron and ion densities equal to 
n0 = 1023 m−3. Moreover, both species are injected assuming zero momentum (cold plasma) in the laboratory frame.

The beam is composed of 106 electrons with total charge Q = −1 nC. It is injected with a Gaussian distribution in space with means 
μx = μy = 0 and μz = −80 μm and standard deviations σx = σy = 5 μm and σz = 20.1 μm, and it follows also a Gaussian momentum 
distribution (normalized with respect to mc) with means μux = μu y = 0 and μuz = 2000.0 and standard deviations σux = σu y = 4.0 and 
σuz = 20.

The computational domain is divided in Nx × N y × Nz = 256 × 256 × 256 cells and decomposed in 24 subdomains, with 128 × 128 × 42
cells per subdomain (except for one single subdomain with 43 cells along z). Macro-particles use cubic splines as particle shape factors 
for current deposition and field gathering and the Vay scheme [39] for the velocity and position updates. To minimize the number of time 
steps and speed up the runtime, the simulation is performed using a Lorentz boosted frame of reference in the longitudinal direction, with 
a Lorentz factor γ = 10. For stability, the simulation grid follows the plasma with longitudinal Galilean velocity vgal = vgal ẑ that is then 
set to vgal/c = −√1 − 1/γ 2, where c denotes the speed of light. With the Maxwell solver, stencils of order 16 are used in each direction, 
with the following numbers of ghost cells for the nodal and staggered or hybrid cases, respectively:

• nodal case: 26 ghost cells in (x, y) and 16 ghost cells in z;
• staggered or hybrid case: 8 ghost cells in (x, y) and 16 ghost cells in z.

Here again, these choices of ghost cells are based on the measurements of the stencil extents along x, y and z shown in Fig. 12 for 
this test case, with the curves obtained as prescribed in (1). The same observations made in this regard for the test case presented in 
Section 5.2 hold here. We measure the stencil of the leading coefficient θ2

c C in the update equations (18a)-(18b). Fig. 12 shows again 
that the number of ghost cells can be safely reduced in the transverse directions (x, y) in the staggered or hybrid case, as compared with 
the nodal case. This is not the case in the longitudinal direction z. What makes the longitudinal direction z special is the fact that it 
is the direction of the Galilean coordinate transformation. The coefficient θ2

c C keeps memory of such coordinate transformation through 
θ2

c = exp(i vgal · [k]c �t).
The averaged Galilean PSATD scheme enables large time steps �t that satisfy c �t > �x, �y [37]. The simulation reported here used 

c �t = �z′/4 ≈ 2.87�x, �y, where �z′ denotes again the cell size along z in the boosted frame. More precisely, �x = �y ≈ 1.563 μm, 
�z ≈ 0.8984 μm, �z′ = (1 + β) γ �z ≈ 17.92 μm and �t ≈ 14.95 fs.

Fig. 13 shows plots of the component Ex of the electric field, at y = 0, together with a selection of beam particles, after 500 iterations, 
for:

• a fully nodal simulation (first row, left column);
• a fully staggered simulation (first row, right column);
• hybrid simulations with finite-order centering of fields and currents at order 2m = 2, 4, 6, 8 in each direction (second to third row, 

both columns).

Here again, the fully staggered simulation develops a significant numerical Cherenkov instability (even though slightly weaker than in 
the LWFA example), which is not present in the nodal case. In this case, the simulations with the new hybrid scheme are stable for an 
order of finite centering as low as 2 and reproduce accurately the shape of the field maps for a value as low as 4.

Thanks to the greater locality of the finite-order stencil of the staggered Maxwell solver used in the hybrid approach, compared 
to a nodal Maxwell solver, it is possible to use fewer ghost cells between neighboring subdomains, which results in shorter runtimes 
and smaller computational costs overall. In fact, the total runtime of the hybrid simulation at order 4 in Fig. 13 (the lowest order that 
17



E. Zoni, R. Lehe, O. Shapoval et al. Computer Physics Communications 279 (2022) 108457
Table 4
Runtimes of the nodal, staggered and hybrid simulations shown in Fig. 13.

Simulation nodal staggered hybrid, 
order 2

hybrid, 
order 4

hybrid, 
order 6

hybrid, 
order 8

Runtime 142 s 69 s 70 s 70 s 71 s 72 s

Fig. 13. PWFA Simulations. Plots of the component Ex of the electric field, at y = 0, together with a selection of beam particles, after 500 iterations, obtained with the 
averaged Galilean PSATD algorithm with a nodal PIC cycle (first row, left column), a staggered PIC cycle (first row, right column), and the hybrid PIC cycle with finite-order 
centering of fields and currents of order 2m = 2, 4, 6, 8 in each direction (second to third row, both columns).

reproduces the nodal results correctly) is approximately 70 s on 24 NVIDIA GPUs of the Summit supercomputer (thus, with 1 subdomain 
per GPU), while the total runtime of the nodal simulation is approximately 142 s, leading to a speed-up of approximately 2. Table 4 shows 
the total runtimes of all the simulations shown in Fig. 13. Just as with the two other cases, the choice of the field centering order has no 
sizeable effect on the simulation runtimes.

Since this test case involves a particle beam, we also compare the root mean square (RMS) values of the beam particle positions in the 
transverse plane (x, y) between the nodal and hybrid results. More precisely, we measure the averaged RMS quantity

δ := 1

2

√√√√∑p w p(xp − 〈x〉)2∑
p w p

+ 1

2

√√√√∑p w p(yp − 〈y〉)2∑
p w p

, (28)

where w p represents the particle weight, and then compute the error |δn − δh|/|δn|, where we denote by δn and δh the data from a nodal 
and hybrid simulation, respectively. The time evolution of the errors measured from the nodal and hybrid simulations shown in Fig. 13
are plotted in Fig. 14.

These confirm that in this case the hybrid simulations, while stable with a finite centering of order 2, need at least order 4 to be 
accurate.
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Fig. 14. Convergence. RMS errors computed as prescribed in (28) for the beam particle positions measured from the nodal and hybrid simulations shown in Fig. 13.

6. Conclusions

A novel hybrid PSATD PIC scheme was proposed that combines the advantages of standard nodal and staggered PIC methods. The 
novel hybrid scheme employs finite-order interpolation to combine the solution of Maxwell’s equations on a staggered grid with the 
deposition of charges and currents on a nodal grid as well as the gathering of electromagnetic forces from a nodal grid. The finite-order 
interpolation proposed to recenter quantities at the nodes or at staggered positions is based on the same coefficients originally introduced 
by Fornberg [33] for the high-order approximation of spatial derivatives.

The novel hybrid scheme retains the advantageous properties of staggered Maxwell’s solvers (such as lower levels of numerical dis-
persion, more local stencils resulting in smaller ghost regions for the exchange of fields between parallel subdomains and thus shorter 
runtimes overall, and better stability at short wavelengths), and avoids at the same time numerical errors coming from low-order interpo-
lation of grid quantities defined at different locations on the grid. Different classes of PSATD equations (standard PSATD [25,29], standard 
Galilean PSATD [35,36], and averaged Galilean PSATD [37]) were adapted to the novel hybrid scheme and numerical tests were performed 
in a variety of physical scenarios, ranging from the modeling of electron-positron pair creation in vacuum to the simulation of laser-driven 
and particle beam-driven plasma wakefield acceleration. Further exploration of the properties of the new scheme with regard to, for 
example, charge conservation, momentum conservation or energy conservation, is planned and will be reported in future publications.

Though presented here only in the context of PSATD methods, the novel hybrid scheme can be also adapted in a straightforward way 
to more common FDTD methods, upon which many electromagnetic PIC simulation codes are based. Therefore, the novel hybrid scheme 
has the potential to become a useful numerical tool for the simulation of the large variety of physical systems that can be modeled by 
means of PIC codes, including fusion plasmas, astrophysical plasmas, plasma wakefield particle accelerators, and secondary photon sources 
driven by ultra-intense lasers.
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Appendix A. Standard Galilean PSATD: equations on staggered grids

This section provides a detailed derivation of the equations for the update of the electromagnetic fields in Fourier space, valid on 
staggered grids, for the Galilean PSATD algorithm, which had been derived only for nodal grids so far [34–36].

We first recall that the electromagnetic fields E and B are evaluated on a three-dimensional Yee grid [21–23] as follows (please also 
refer to the schematic illustrated in Section 2):

• Ex is evaluated at the cell nodes y j = j�y and zk = k�z along y and z and at the cell centers xi+ 1
2

= i�x + �x/2 along x, and it is 
thus indexed as Ex

1 ;

i+ 2 , j,k
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• E y is evaluated at the cell nodes xi = i�x and zk = k�z along x and z and at the cell centers y j+ 1
2

= j�y + �y/2 along y, and it is 
thus indexed as E y

i, j+ 1
2 ,k

;

• Ez is evaluated at the cell nodes xi = i�x and y j = j�y along x and y and at the cell centers zk+ 1
2

= k�z + �z/2 along z, and it is 
thus indexed as Ez

i, j,k+ 1
2

;

• Bx is evaluated at the cell nodes xi = i�x along x and at the cell centers y j+ 1
2

= j�y + �y/2 and zk+ 1
2

= k�z + �z/2 along y and z, 
and it is thus indexed as Bx

i, j+ 1
2 ,k+ 1

2
;

• B y is evaluated at the cell nodes y j = j�y along y and at the cell centers xi+ 1
2

= i�x + �x/2 and zk+ 1
2

= k�z + �z/2 along x and z, 
and it is thus indexed as B y

i+ 1
2 , j,k+ 1

2
;

• Bz is evaluated at the cell nodes zk = k�z along z and at the cell centers xi+ 1
2

= i�x + �x/2 and y j+ 1
2

= j�y + �y/2 along x and y, 
and it is thus indexed as Bz

i+ 1
2 , j+ 1

2 ,k
.

Moreover, the current density J is evaluated on the same grid as the electric field E , while the charge density ρ is evaluated on a fully 
nodal grid.

A.1. Finite differences in Fourier space

Let us recall first how to express a one-dimensional finite difference in Fourier space in the continuum case. Given a function f : � �
x �→ f (x) ∈R, we define its Fourier transform f̂ :R � k �→ f̂ (k) ∈C as

f̂ (k) =
∫

dx f (x) e−ikx . (A.1)

The expression of the finite difference f (x + a) − f (x − b) in Fourier space, with a, b ∈ R, can be obtained by multiplying the finite 
difference by e−ikx and integrating over x, which yields

F [ f (x + a) − f (x − b)] (k) = 2 i eik(a−b)/2 sin

(
k

a + b

2

)
f̂ (k) , (A.2)

where F [·](k) denotes the Fourier transform of the expression in brackets as a function of k.

A.1.1. Nodal fields
We first consider a function f evaluated at N cell nodes x j = j�x of a one-dimensional periodic grid and thus indexed as f j . We define 

the Fourier transform of the sequence { f j} as the sequence { f̂k}, where f̂k reads

f̂k =
N−1∑
j=0

f j e−ikx j . (A.3)

The periodicity of the grid implies that f� = f�−N for any � > N − 1 and that f� = f�+N for any � < 0. As a consequence, the index 
j in (A.3) must be such that the sum takes into account all N values in the sequence { f j}, possibly by periodicity, and can be shifted 
arbitrarily. In other words, it behaves as the “mute” integration variable x in (A.1).

Let us consider first the centered finite difference f j+n − f j−n , which for n > 0 results in an approximation of the derivative of f at the 
cell node x j :

| | | | | | | | |

| | | | | | | | |

j − n j + n

j

• • • • • • • • •

• • • • • • • • •

Its expression in Fourier space can be obtained by multiplying the finite difference by e−ikx j and summing over j, which after some 
algebra yields

N−1∑
j=0

f j+n e−ikx j −
N−1∑
j=0

f j−n e−ikx j = 2 i sin(k n �x) f̂k . (A.4)

Let us now consider the staggered finite difference f j+ 1
2 +n− 1

2
− f j+ 1

2 −n+ 1
2

, which for n > 0 results in an approximation of the derivative 
of f at the cell center x 1 :
j+ 2
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| | | | | | | |

| | | | | | | |

j + 1
2 − n + 1

2 j + 1
2 + n − 1

2

j + 1
2

• • • • • • • •

x x x x x x x

Its expression in Fourier space can be obtained by multiplying the finite difference by e−ikx j and summing over j, which after some 
algebra yields

N−1∑
j=0

f j+ 1
2 +n− 1

2
e−ikx j −

N−1∑
j=0

f j+ 1
2 −n+ 1

2
e−ikx j = eik�x/2 2 i sin(k (n − 1/2)�x) f̂k . (A.5)

Note that the shift factor eik�x/2 in (A.5) is the mathematical consequence of the fact that f is evaluated at the cell nodes but we are 
looking for an approximation of its derivative at a cell center.

A.1.2. Cell-centered fields
We now consider a function f evaluated at N cell centers x j+ 1

2
= j�x + �x/2 of a one-dimensional periodic grid and thus indexed as 

f j+ 1
2

. We define the Fourier transform of the sequence { f j+ 1
2
} as the sequence { f̂k}, where f̂k reads

f̂k =
N−1∑
j=0

f j+ 1
2

e
−ikx

j+ 1
2 . (A.6)

The centered finite difference f j+ 1
2 +n − f j+ 1

2 −n , which for n > 0 results in an approximation of the derivative of f at the cell center 
x j+ 1

2
, can be expressed in Fourier space as the corresponding nodal result (A.4).

Similarly, the staggered finite difference f j+n− 1
2

− f j−n+ 1
2

, which for n > 0 results in an approximation of the derivative of f at the cell 
node x j , can be expressed in Fourier space as the corresponding nodal result (A.5), but with an inverse shift factor e−ik�x/2.

A.1.3. Summary
Denoting by αc

m,n and αs
m,n the centered and staggered Fornberg coefficients [33]

αc
m,n := (−1)n+1 2(m!)2

(m − n)! (m + n)! , (A.7a)

αs
m,n := (−1)n+1

[
(2m)!
22mm!

]2 4

(2n − 1)(m − n)! (m + n − 1)! , (A.7b)

(introduced in Section 4), a finite-order centered finite-difference approximation of the derivative of a nodal field at a cell node is expressed in 
Fourier space by means of (A.4) and reads

F
[

m∑
n=1

αc
m,n

f j+n − f j−n

2 n �x

]
(k) = i

(
m∑

n=1

αc
m,n

sin(k n �x)

n �x

)
f̂k =: i [k]c f̂k . (A.8)

A finite-order staggered finite-difference approximation of the derivative of a nodal field at a cell center is expressed in Fourier space by 
means of (A.5) and reads

F
[

m∑
n=1

αs
m,n

f j+ 1
2 +n− 1

2
− f j+ 1

2 −n+ 1
2

2 (n − 1/2)�x

]
(k) = i eik�x/2

(
m∑

n=1

αs
m,n

sin(k (n − 1/2)�x)

(n − 1/2)�x

)
f̂k . (A.9)

Similarly, a finite-order centered finite-difference approximation of the derivative of a cell-centered field at a cell center is expressed in 
Fourier space by means of (A.8), and a finite-order staggered finite-difference approximation of the derivative of a cell-centered field at a cell 
node is expressed in Fourier space by means of (A.9), but with an inverse shift factor e−ik�x/2. Finally, for later convenience, we introduce 
also the staggered modified wave numbers

[k]s :=
m∑

n=1

αs
m,n

sin(k (n − 1/2)�x)

(n − 1/2)�x
. (A.10)

A.2. Faraday’s law

In the Galilean coordinates x = x′ − vgalt , Faraday’s law reads(
∂ − vgal · ∇

)
B = −∇ × E , (A.11)
∂t
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where ∇ denotes spatial derivatives with respect to the Galilean coordinates x on the spatial grids where E and B are defined, respectively.
The component of (A.11) along x reads

∂ Bx

∂t
− vx

gal
∂ Bx

∂x
− v y

gal
∂ Bx

∂ y
− vz

gal
∂ Bx

∂z
= −

(
∂ Ez

∂ y
− ∂ E y

∂z

)
. (A.12)

At finite order 2m, (A.12) reads

∂ Bx
i, j+ 1

2 ,k+ 1
2

∂t
− vx

gal

m∑
n=1

αc
m,n

Bx
i+n, j+ 1

2 ,k+ 1
2

− Bx
i−n, j+ 1

2 ,k+ 1
2

2n �x

− v y
gal

m∑
n=1

αc
m,n

Bx
i, j+ 1

2 +n,k+ 1
2

− Bx
i, j+ 1

2 −n,k+ 1
2

2n �y

− vz
gal

m∑
n=1

αc
m,n

Bx
i, j+ 1

2 ,k+ 1
2 +n

− Bx
i, j+ 1

2 ,k+ 1
2 −n

2n �z

= −
⎛⎝ m∑

n=1

αs
m,n

Ez
i, j+ 1

2 +n− 1
2 ,k+ 1

2
− Ez

i, j+ 1
2 −n+ 1

2 ,k+ 1
2

2 (n − 1/2)�y

−
m∑

n=1

αs
m,n

E y

i, j+ 1
2 ,k+ 1

2 +n− 1
2

− E y

i, j+1/2,k+ 1
2 −n+ 1

2

2 (n − 1/2)�z

⎞⎠ .

(A.13)

The expression of (A.13) in Fourier space can be obtained by multiplying both sides of the equation by e−ikx xi e
−iky y

j+ 1
2 e

−ikz z
k+ 1

2 and 

sum over i, j, k = 0, . . . , N − 1. The factor e
−iky y

j+ 1
2 brings an additional factor e−iky�y/2 with respect to the factor e−iky y j that is needed 

to recover the Fourier transform of Ez along y (where Ez is nodal). Similarly, the factor e
−ikz z

k+ 1
2 brings an additional factor e−ikz�z/2 with 

respect to the factor e−ikz zk that is needed to recover the Fourier transform of E y along z (where E y is nodal). As a result, the Fourier 
expression of (A.13) reads(

∂

∂t
− i vgal · [k]c

)
B̂x = −i

([ky]s Ê z − [kz]s Ê y
)

. (A.14)

The components of (A.11) along y and z can be computed in a similar way, eventually resulting in the following expression of Faraday’s 
law in Fourier space:(

∂

∂t
− i vgal · [k]c

)
B̂ = −i [k]s × Ê . (A.15)

A.3. Ampère-Maxwell’s law

In the Galilean coordinates x = x′ − vgalt , Ampère-Maxwell’s law reads

1

c2

(
∂

∂t
− vgal · ∇

)
E = ∇ × B − μ0 J , (A.16)

where ∇ denotes spatial derivatives with respect to the Galilean coordinates x on the spatial grids where B and E are defined, respectively.
The component of (A.16) along x reads

1

c2

(
∂ Ex

∂t
− vx

gal
∂ Ex

∂x
− v y

gal
∂ Ex

∂ y
− vz

gal
∂ Ex

∂z

)
=
(

∂ Bz

∂ y
− ∂ B y

∂z

)
− μ0 J x . (A.17)

At finite order 2m, (A.17) reads

1

c2

(
∂ Ex

i+ 1
2 , j,k

∂t
− vx

gal

m∑
n=1

αc
m,n

Ex
i+ 1

2 +n, j,k
− Ex

i+ 1
2 −n, j,k

2n �x

− v y
gal

m∑
n=1

αc
m,n

Ex
i+ 1

2 , j+n,k
− Ex

i+ 1
2 , j−n,k

2n �y

− vz
gal

m∑
αc

m,n

Ex
i+ 1

2 , j,k+n
− Ex

i+ 1
2 , j,k−n

2n �z

)
(A.18)
n=1
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=
⎛⎝ m∑

n=1

αs
m,n

Bz
i+ 1

2 , j+n− 1
2 ,k

− Bz
i+ 1

2 , j−n+ 1
2 ,k

2 (n − 1/2)�y

−
m∑

n=1

αs
m,n

B y

i+ 1
2 , j,k+n− 1

2
− B y

i+ 1
2 , j,k−n+ 1

2

2 (n − 1/2)�z

⎞⎠− μ0 J x
i+ 1

2 , j,k
.

The expression of (A.18) in Fourier space can be obtained by multiplying both sides of the equation by e
−ikxx

i+ 1
2 e−iky y j e−ikz zk and sum 

over i, j, k = 0, . . . , N − 1. The factor e−iky y j brings an additional factor eiky�y/2 with respect to the factor e
−iky y

j+ 1
2 that is needed to 

recover the Fourier transform of Bz along y (where Bz is cell-centered). Similarly, the factor e−ikz zk brings an additional factor eikz�z/2

with respect to the factor e
−ikz z

k+ 1
2 that is needed to recover the Fourier transform of B y along z (where B y is cell-centered). As a result, 

the Fourier expression of (A.18) reads

1

c2

(
∂

∂t
− i vgal · [k]c

)
Êx = i

([ky]s B̂ z − [kz]s B̂ y
)− μ0 Ĵ x . (A.19)

The components of (A.16) along y and z can be computed in a similar way, eventually resulting in the following expression of Ampère-
Maxwell’s law in Fourier space:

1

c2

(
∂

∂t
− i vgal · [k]c

)
Ê = i [k]s × B̂ − μ0 Ĵ . (A.20)

A.4. Continuity equation

In the Galilean coordinates x = x′ − vgalt , the continuity equation reads(
∂

∂t
− vgal · ∇

)
ρ + ∇ · J = 0 , (A.21)

where ∇ denotes spatial derivatives with respect to the Galilean coordinates x on the spatial grids where ρ and J are defined, respectively.
At finite order 2m, (A.21) reads

∂ρi, j,k

∂t
− vx

gal

m∑
n=1

αc
m,n

ρi+n, j,k − ρi−n, j,k

2n �x

− v y
gal

m∑
n=1

αc
m,n

ρi, j+n,k − ρi, j−n,k

2n �y
− vz

gal

m∑
n=1

αc
m,n

ρi, j,k+n − ρi, j,k−n

2n �z

=
m∑

n=1

αs
m,n

J x
i+n− 1

2 , j,k
− J x

i−n+ 1
2 , j,k

2 (n − 1/2)�x

+
m∑

n=1

αs
m,n

J y

i, j+n− 1
2 ,k

− J y

i, j−n+ 1
2 ,k

2 (n − 1/2)�y
+

m∑
n=1

αs
m,n

J y

i, j,k+n− 1
2

− J y

i, j,k−n+ 1
2

2 (n − 1/2)�z
.

(A.22)

The expression of (A.22) in Fourier space can be obtained by multiplying both sides of the equation by e−ikxxi e−iky y j e−ikz zk and sum 

over i, j, k = 0, . . . , N −1. The factor e−ikxxi brings an additional factor eikx�x/2 with respect to the factor e
−ikxx

i+ 1
2 that is needed to recover 

the Fourier transform of J x along x (where J x is cell-centered). The same argument applies to J y and J z with circular permutation of the 
indices. As a result, the Fourier expression of (A.22) reads(

∂

∂t
− i vgal · [k]c

)
ρ̂ + i [k]s · Ĵ = 0 . (A.23)

A.5. Update equations

We now combine equations (A.15) and (A.20) together with the continuity equation (A.23), in order to obtain the finite-order update 
equations for Ê and B̂ similar to equations (4a)-(4b) of [36]. The notation introduced in Section 4 is used for the rest of the derivation, in 
particular for the frequencies 
c := vgal · [k]c, ωc := c [k]c and ωs := c [k]s, where [k]c and [k]s denote the magnitudes of the centered and 
staggered modified wave vectors [k]c and [k]s, respectively.

Taking the time derivative of (A.15) yields

∂2 B̂

∂t2
− i 
c

∂ B̂

∂t
= −i [k]s × ∂ Ê

∂t

= i 
c
∂ B̂ + 
2

c B̂ − ω2
s B̂ + c2 ([k]s · B̂) [k]s + i c2μ0 [k]s × Ĵ ,

(A.24)
∂t
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which, by setting [k]s · B̂ = 0 thanks to magnetic Gauss’ law, reads(
∂

∂t
− i 
c

)2

B̂ + ω2
s B̂ = i

ε0
[k]s × Ĵ . (A.25)

Taking now the time derivative of (A.20) yields

∂2 Ê

∂t2
− i 
c

∂ Ê

∂t
= i c2 [k]s × ∂ B̂

∂t
− c2 μ0

∂ Ĵ

∂t

= i 
c
∂ Ê

∂t
+ 
2

c Ê + i c2μ0 
c Ĵ + c2 ([k]s · Ê) [k]s − ω2
s Ê − c2μ0

∂ Ĵ

∂t
,

(A.26)

which, by setting [k]s · Ê = −i ̂ρ/ε0 thanks to Gauss’ law and ∂ Ĵ/∂t = 0 (from the assumption that Ĵ is constant over a single time step), 
reads (

∂

∂t
− i 
c

)2

Ê + ω2
s Ê = i

ε0

c Ĵ − i

c2

ε0
ρ̂ [k]s . (A.27)

Before integrating (A.25) and (A.27) over one time step, we integrate the continuity equation (A.23). In terms of the variable 
c, this 
reads (

∂

∂t
− i 
c

)
ρ̂ + i [k]s · Ĵ = 0 . (A.28)

This equation is of the general form

∂ρ̂

∂t
+ α ρ̂ + β = 0 , (A.29)

with α = −i 
c and β = i [k]s · Ĵ . Integrating (A.29) between n�t and t yields

ρ̂(t) = κ e−α(t−n�t) − β

α
. (A.30)

The constant κ can be determined by setting t = n�t and ρ̂(n�t) = ρ̂ n:

κ = ρ̂ n + β

α
. (A.31)

Moreover, the constraint ρ̂((n + 1)�t) = ρ̂ n+1 requires that

κ e−α�t − β

α
= ρ̂ n+1 , (A.32)

which, thanks to (A.31), yields

β

α
= ρ̂ n+1 − ρ̂ n e−α�t

e−α�t − 1
. (A.33)

Inserting the values of α and β finally yield

ρ̂(t) = ρ̂ n+1 − ρ̂ n

ei
c�t − 1
ei
c(t−n�t) − ρ̂ n+1 − ρ̂ nei
c�t

ei
c�t − 1
. (A.34)

We remark that (A.34) corresponds to equation (9) of [35]. We now insert the solution (A.34) into (A.27) and obtain the new system(
∂

∂t
− i 
c

)2

B̂ + ω2
s B̂ = i

ε0
[k]s × Ĵ , (A.35)

(
∂

∂t
− i 
c

)2

Ê + ω2
s Ê = i

ε0

c Ĵ + i

c2

ε0

ρ̂ n+1 − ρ̂ nei
c�t

ei
c�t − 1
[k]s

− i
c2

ε0

ρ̂ n+1 − ρ̂ n

ei
c�t − 1
[k]s ei
c(t−n�t) .

(A.36)

Equations (A.35) and (A.36) correspond to equations (A1a) and (A1b) of [35], respectively. Both equations can be cast into the general 
form (

∂

∂t
− i 
c

)2

f + ω2
s f = α + β ei
c(t−n�t) , (A.37)

where the coefficients α and β are given by
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α = i

ε0
[k]s × Ĵ , β = 0 , (A.38)

in the case of equation (A.35), and

α = i

ε0

c Ĵ + i

c2

ε0

ρ̂ n+1 − ρ̂ nei
c�t

ei
c�t − 1
[k]s , β = −i

c2

ε0

ρ̂ n+1 − ρ̂ n

ei
c�t − 1
[k]s , (A.39)

in the case of equation (A.36). A solution f0 of the homogeneous equation associated to (A.37) is

f0(t) = κ1 cos(ωs(t − n�t)) ei
c(t−n�t) + κ2 sin(ωs(t − n�t)) ei
c(t−n�t) . (A.40)

Moreover, a specific solution f̄ of (A.37) is

f̄ (t) = α

ω2
s − 
2

c
+ β

ω2
s

ei
c(t−n�t) . (A.41)

The general solution f of (A.37) is then obtained by combining f0 and f̄ , which yields

f (t) = κ1 cos(ωs(t − n�t)) ei
c(t−n�t) + κ2 sin(ωs(t − n�t)) ei
c(t−n�t)

+ α

ω2
s − 
2

c
+ β

ω2
s

ei
c(t−n�t) .
(A.42)

The integration constants κ1 and κ2 can be determined by the initial conditions f (n�t) and ∂ f /∂t(n�t):

κ1 = f (n�t) − α

ω2
s − 
2

c
− β

ω2
s

, (A.43)

κ2 = 1

ωs

(
∂ f

∂t
(n�t) − i 
c f (n�t) + i 
c

α

ω2
s − 
2

c

)
. (A.44)

Evaluating the solution (A.42) at t = (n + 1)�t finally yields

f ((n + 1)�t) = κ1 cos(ωs�t)ei
c�t + κ2 sin(ωs�t)ei
c�t + α

ω2
s − 
2

c
+ β

ω2
s

ei
c�t , (A.45)

which can be rewritten as

f ((n + 1)�t) = θ2
c C f (n�t) + θc

χ1

ω2
c

α + θ2
c

(1 − C)

ω2
s

β + θ2
c

S

ωs

(
∂ f

∂t
(n�t) − i 
c f (n�t)

)
, (A.46)

where C , S , θc, θ∗
c and χ1 are defined as in Section 4. Equation (A.46) corresponds to equation (A7) of [35], with χ1 defined in (11)

replacing the corresponding definition in equation (12c) of [35]. By inserting (A.38)-(A.39) in (A.46) we then obtain (18a)-(18b), after 
some algebra.

Appendix B. Standard Galilean PSATD: vacuum dispersion relation

This section presents the derivation of the dispersion relation for the update equations (18a)-(18b) in vacuum:

B̂
n+1 = θ2

c C B̂
n − i θ2

c
S

ωs
[k]s × Ê

n
, (B.1a)

Ê
n+1 = θ2

c C Ê
n + i c2 θ2

c
S

ωs
[k]s × B̂

n
. (B.1b)

For this purpose it is useful to first rewrite (B.1a)-(B.1b) by taking advantage of the fact that these equations result from the analytical 
integration of Maxwell’s equations and are therefore time-reversible. More precisely, we can rewrite (B.1a)-(B.1b) by performing the fol-
lowing time-reversal operations: interchange n and n + 1, change sign to the magnetic field components, and change sign to the Galilean 
velocity (that is, replace θc with θ∗

c ). This results in the following equations:

B̂
n = θ∗2

c C B̂
n+1 + i θ∗2

c
S

ωs
[k]s × Ê

n+1
, (B.2a)

Ê
n = θ∗2

c C Ê
n+1 − i c2 θ∗2

c
S

ωs
[k]s × B̂

n+1
. (B.2b)

Subtracting (B.2a)-(B.2b) multiplied by θc from (B.1a)-(B.1b) multiplied by θ∗
c then yields

(1 + C)
(
θ∗

c B̂
n+1 − θc B̂

n
)

= −i
S

ωs
[k]s ×

(
θ∗

c Ê
n+1 + θc Ê

n
)

, (B.3a)

(1 + C)
(
θ∗

c Ê
n+1 − θc Ê

n
)

= i c2 S

ωs
[k]s ×

(
θ∗

c B̂
n+1 + θc B̂

n
)

. (B.3b)
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We now look for electromagnetic modes of the form B̂
n = B̂ e−i(ω−
)n�t and Ê

n = Ê e−i(ω−
)n�t , with 
 := vgal · k, and the same for 
n + 1. Equations (B.3a)-(B.3b) then yield

(1 + C) sω B̂ = S

ωs
cω [k]s × Ê , (B.4a)

(1 + C) sω Ê = −c2 S

ωs
cω [k]s × B̂ , (B.4b)

where sω := sin((ω − δ
)�t/2), cω := cos((ω − δ
)�t/2), with δ
 := 
 − 
c. The two equations can be decoupled by taking the cross 
product with [k]s, which finally yields

tan2
(

(ω − δ
)�t

2

)
= S2

(1 + C)2
= tan2

(
ωs�t

2

)
, (B.5)

leading to the vacuum dispersion relation

ω = ωs + δ
 = c [k]s + vgal · (k − [k]c) . (B.6)

In the case of the standard PSATD equations, vgal = 0, 
 = 
c = 0, and the vacuum dispersion relation reads

ω = ωs = c [k]s . (B.7)

As expected for consistency, the vacuum dispersion relation (B.6) corresponds to equation (12) of [36], when considering the purely nodal 
case where all staggered quantities are replaced by the corresponding centered quantities.

Appendix C. Standard Galilean PSATD: staggering, finite-order centering, and NCI

This section presents a few heuristic arguments that help understand the role of staggering and finite-order centering in relation to 
NCI mitigation. In order to fix the ideas, in the following we refer to the dispersion analysis presented in [35], for the two-dimensional 
case on nodal grids, at infinite spectral order (in which case the finite-order modified wave vectors [k]c and [k]s coincide and are both 
simply equal to k).

As mentioned in Section 2 as well as observed with the test cases presented in Sections 5.2 and 5.3, fully nodal PIC cycles mitigate 
NCI more effectively than fully staggered PIC cycles. With regard to the derivation of the dispersion analysis presented in [35], the net 
effect of staggering a given grid quantity F (that is, a component of the electromagnetic fields E and B or the current density J ) is that 
its Fourier transform F̂ gets multiplied by a coefficient ζF , which depends on the staggering of the grid quantity with a certain functional 
dependency. More precisely, F̂ is replaced by ζF F̂ , where ζF is of the form ζF = (−1)�·ε , where � represents the vector of alias numbers 
associated with different Brillouin zones of the k space and the components of the vector ε can be either 0 or 1, depending on whether 
the grid quantity F is nodal or staggered in that direction, respectively. We remark that the staggering that matters here is the one of the 
grids used for current deposition and field gathering in the PIC cycle.

The effect, in terms of NCI mitigation, of the new coefficient ζF , which appears in front of the Fourier transforms of the various 
grid quantities, is explained briefly in the following. By taking the ultra-relativistic and low-density limits of the final dispersion relation 
derived in [35], for the optimal case where the Galilean velocity matches the plasma velocity (vgal = v0 = v0uz), and considering a small 
frequency perturbation δω around the relativistic plasma mode kz v0, the dispersion relation reduces to the simpler form

δω2 ∝
∑

�

g(k�)

([
1 −

(
kz

k

)2
]

ζEx +
(

kz

k

)2

ζ J z ζEx − ζ J z ζB y

)
. (C.1)

The key observation here is that the right hand side of (C.1) happens to vanish in the nodal case, where ε = (0, 0) and ζF = 1 for all 
grid quantities, while it is non-zero and can be negative for some alias numbers in the staggered case, where ζF �= 1 for some grid 
quantities, eventually leading to instability. In other words, the instability observed in the case of fully staggered PIC cycles is driven by 
the fact that ζF can deviate from unity and possibly become negative for some of the grid quantities. This information is key in helping 
us understand what happens in the case of a hybrid PIC cycle, and how finite-order centering improves stability with respect to fully 
staggered simulations.

As mentioned above, the staggering that matters here, in the sense of being responsible for the terms (−1)�·ε appearing in front of the 
Fourier transforms of the various grid quantities, is the staggering of the grids used for current deposition and field gathering in the PIC 
cycle. In the case of a hybrid PIC cycle, the current is deposited on a nodal grid and the electromagnetic forces are gathered from a nodal 
grid. This observation alone could lead us to the erroneous conclusion that the hybrid PIC cycle, per se, should guarantee full stability, as 
in the nodal case, irrespective of the order 2m of the finite centering of fields and currents. However, this is not the case, as we show in 
the following.

In order to understand what role the order of the finite centering of fields and currents plays in terms of NCI mitigation, it is necessary 
to express the centering of a given grid quantity F , from a nodal grid to a staggered grid (or vice versa), in Fourier space.

For this purpose, let us consider, for instance, a staggered finite sum of the form F j−n+ 1
2

+ F j+n− 1
2

, for a grid quantity F collocated on 
the cell centers of a one-dimensional periodic grid. By means of the same type of algebraic manipulations described in Appendix A, its 
expression in Fourier space can be obtained by multiplying the finite sum by e

−ikx
j+ 1

2 and summing over j = 0, . . . , N − 1, which yields

N−1∑
F j+n− 1

2
e
−ikx

j+ 1
2 +

N−1∑
F j−n+ 1

2
e
−ikx

j+ 1
2 = e−ik�x/2 2 cos(k (n − 1/2)�x) F̂k . (C.2)
j=0 j=0

26



E. Zoni, R. Lehe, O. Shapoval et al. Computer Physics Communications 279 (2022) 108457
Fig. C.15. Finite-order Centering and NCI. ζF as a function of kx�x: the higher the order 2m of the finite centering, the smaller the deviation of ζF from unity (or, in other 
words, the smaller the region in units of kx�x where 0 < ζF < 1).

Therefore, the expression in Fourier space of a finite-order interpolation of the form

F n
j =

m∑
n=1

αs
m,n

F s
j+n−1/2 + F s

j−n+1/2

2
, (C.3)

which is used for the centering of fields and currents as described in Section 3 (with a slight difference in the notation used here, which 
emphasizes the fact that the function on the right hand side is collocated by definition on the cell centers of the grid, while the function 
on the left hand side, which represents the result of the interpolation, is collocated by definition on the cell nodes), can be obtained by 
multiplying both sides of the equation by e−ikx j and summing over j = 0, . . . , N − 1, which after some algebra yields

F̂ n
k =

N−1∑
j=0

F n
j e−ikx j =

m∑
n=1

αs
m,n

2

⎛⎝N−1∑
j=0

F s
j−n+ 1

2
e−ikx j +

N−1∑
j=0

F s
j+n− 1

2
e−ikx j

⎞⎠

=
m∑

n=1

αs
m,n

2
eik�x/2

⎛⎝N−1∑
j=0

F s
j−n+ 1

2
e
−ikx

j+ 1
2 +

N−1∑
j=0

F s
j+n− 1

2
e
−ikx

j+ 1
2

⎞⎠
=

m∑
n=1

αs
m,n cos(k (n − 1/2)�x) F̂ s

k .

(C.4)

As a consequence, the net effect of the finite-order centering of a given grid quantity F (that is, a component of the electromagnetic fields 
E and B or the current density J ) is that its Fourier transform F̂ gets multiplied by a coefficient ζF , which this time reads

ζF =
m∑

n=1

αs
m,n cos(kx (n − 1/2)�x) , (C.5)

considering centering only along one direction, say x, for simplicity (in the general case, different grid quantities will be centered along 
different directions, depending on their staggering). As mentioned in the discussion following (C.1), the deviation of ζF from unity is the 
factor that determines how well NCI is mitigated in this particular case. A plot of ζF as a function of kx�x, as illustrated in Fig. C.15, 
shows that the higher the order 2m of the finite centering, the smaller the deviation of ζF from unity (or, in other words, the smaller the 
region in units of kx�x where 0 < ζF < 1), which confirms the stability patterns observed with the test cases presented in Sections 5.2
and 5.3.
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