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ARTICLE

Single-nucleotide conservation state annotation of
the SARS-CoV-2 genome
Soo Bin Kwon 1,2 & Jason Ernst 1,2,3,4,5,6,7✉

Given the global impact and severity of COVID-19, there is a pressing need for a better

understanding of the SARS-CoV-2 genome and mutations. Multi-strain sequence alignments

of coronaviruses (CoV) provide important information for interpreting the genome and its

variation. We apply a comparative genomics method, ConsHMM, to the multi-strain align-

ments of CoV to annotate every base of the SARS-CoV-2 genome with conservation states

based on sequence alignment patterns among CoV. The learned conservation states show

distinct enrichment patterns for genes, protein domains, and other regions of interest. Certain

states are strongly enriched or depleted of SARS-CoV-2 mutations, which can be used to

predict potentially consequential mutations. We expect the conservation states to be a

resource for interpreting the SARS-CoV-2 genome and mutations.
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W ith the urgent need to better understand the genome
and mutations of SARS-CoV-2, multi-strain sequence
alignments of coronaviruses (CoV) have become

available1 where multiple sequences of CoV are aligned against
the SARS-CoV-2 reference genome. Sequence alignments provide
important information on the evolutionary history of different
genomic bases. Such information can be useful in interpreting
mutations, as for example bases with strong sequence constraint
or accelerated evolution have been shown to be enriched for
phenotype-associated variants2,3. While existing systematic
annotations that quantify sequence constraint from alignments4,5

are informative, they reduce the information in the underlying
alignment to a single univariate or binary value and thus are
limited in the information they convey. Additional information
about patterns of which sequences align to and match the SARS-
CoV-2 genome at each base may be useful in analyzing the SARS-
CoV-2 genome and mutations.

As a complementary approach to sequence constraint scoring
methods, ConsHMM was recently introduced to systematically
annotate a given genome with conservation states that capture
combinatorial and spatial patterns in a multi-species sequence
alignment6. ConsHMM specifically models whether bases from
non-reference sequences align to and match each base in the
reference genome. ConsHMM extends ChromHMM, a widely
used method that uses a multivariate hidden Markov model
(HMM) to learn patterns in epigenomic data de novo and
annotate genomes based on the learned patterns7. Apart from the
input alignments which were generated using phylogenetic trees,
ConsHMM does not explicitly use any phylogenetic information
and therefore does not make any strict assumptions on the
phylogenetic relationship among sequences. This allows
ConsHMM to be more flexible in capturing various patterns
within alignments than the more commonly used comparative
genomics approaches that define a single constraint score or
binary calls of constrained elements based on phylogenetic
modeling. Previous work applying ConsHMM to multi-species
alignment of other genomes have shown that the conservation
states learned by ConsHMM capture various patterns in the
alignment overlooked by previous methods and are useful for
interpreting DNA elements and phenotype-associated variants6,8.

Motivated by the current need to better understand the SARS-
CoV-2 genome and mutations, here we apply ConsHMM to two
multi-strain sequence alignments of CoV that were recently made
available1 and learn two sets of conservation states. The first
alignment consists of Sarbecoviruses, a subgenus under genus
Betacoronavirus in the family of Coronavirdae9. This alignment
consists of SARS-CoV and other Sarbecoviruses that infect bats
aligned to the SARS-CoV-2 genome. The second alignment
consists of CoV that infect various vertebrates (e.g. human, bat,
pangolin, mouse, birds) aligned to the SARS-CoV-2 genome.

Given the two sets of conservation states learned by
ConsHMM from these two alignments, we annotate the SARS-
CoV-2 genome with the states and analyze the states’ relationship
to external annotations to understand their properties. We
observe that the states capture distinct patterns in the input
alignment data. Using external annotations of genes, regions of
interest, and mutations observed among SARS-CoV-2 sequences,
we observe that the states also have distinct enrichment patterns
for various annotated regions. We generate genome-wide tracks
that score each nucleotide based on state depletions and enrich-
ments for observed mutations, which can be used to prioritize
bases where mutations are more likely to be consequential.
Overall, our analysis suggests that the ConsHMM conservation
states highlight genomic bases with distinct evolutionary patterns
in the input sequence alignments and potential biological sig-
nificance. The ConsHMM conservation state annotations and

tracks of state depletion of mutations are resources for inter-
preting the SARS-CoV-2 genome and mutations.

Results
Annotating SARS-CoV-2 with conservation states learned
from the alignment of Sarbecoviruses. First, we annotated the
SARS-CoV-2 genome with 30 conservation states learned from a
Sarbecovirus sequence alignment, labeled as states S1 to S30
(Figs. 1 and 2; Supplementary Table 1; “Methods”). The Sarbe-
covirus alignment consists of SARS-CoV and 42 other Sarbe-
coviruses that infect bats aligned to the SARS-CoV-2 genome
(Fig. 2c). The states capture distinct patterns of which Sarbe-
covirus strains align to and match the SARS-CoV-2 genome
(Fig. 2a) and show notable enrichment patterns for external
annotations of genes, proteins, and regions of interest within
them (Fig. 2b and Supplementary Fig. 1). State S17 corresponds
to bases where all strains align to and match SARS-CoV-2 with
high probability and appears in the genome most frequently,
covering 48% of the genome. Similarly, state S18 annotates bases
with high align and match probabilities except it has slightly
reduced probability of matching two strains that are most distal
from SARS-CoV-2 (SARS-related CoV strain BtKY72 and Bat
CoV BM48-31/BGR/2008). Unlike state S17, state S18 is strongly
enriched for a region in RNA-dependent RNA polymerase
(RdRp) that is known to interact with the antiviral drug remde-
sivir (tenfold; P < 0.0001). State S6 annotates bases where all
strains align to SARS-CoV-2 with high probability but only the
strain closest to SARS-CoV-2, bat CoV RaTG13, matches SARS-
CoV-2 with high probability, highlighting bases with alleles
unique to SARS-CoV-2 and bat CoV RaTG13 with respect to
other Sarbecoviruses. As expected, state S6 is enriched for the
third codon position (2.2-fold; P < 0.0001) where derived alleles
are less likely to alter the amino acid. In contrast to state S6, state
S28 corresponds to bases where bat CoV RaTG13 both aligns to
and matches SARS-CoV-2 with high probability but has a low
probability of aligning to other Sarbecoviruses. State S28 covers
1% of the genome and highlights bases unique to SARS-CoV-2
and bat CoV RaTG13 with respect to other Sarbecoviruses.
Notably, state S28 is highly enriched for human ACE2 binding
domain (22-fold; P < 0.0001), which is consistent with recent
work suggesting that this binding domain is under strong positive
selective pressure due to its critical role in host infection10,11.
State S28 also annotates a region, known as the PRRA motif, that
may have been inserted into the SARS-CoV-2 genome, potentially
resulting in increased infectiousness12,13. We note that state S28
also annotates the first five and the last seventeen bases of the
genome, which may reflect technical issues with sequencing the
genome ends in some strains14. A different state, state S13, cor-
responds to bases where all strains align to the reference with high
probability, but only a specific subset of the strains have the same
nucleotide as SARS-CoV-2 with high probability (Fig. 2a). This
subset of strains includes Sarbecoviruses that are relatively distal
to SARS-CoV-2 while excluding strains that are closer to SARS-
CoV-2, corresponding to a deviation along a specific branch of
the phylogenetic tree (Supplementary Fig. 2). State S29 shows
strong enrichment of intergenic bases (36-fold; P < 0.0001) and
gene ORF10 (59-fold; P < 0.0001), which is consistent with recent
work suggesting that ORF10 may not be a protein-coding gene
based on gene expression15 and phylogenetic codon modeling9.

Annotating SARS-CoV-2 with conservation states learned
from the alignment of Coronaviruses infecting vertebrates. In
addition to the 30-state model learned from the Sarbecovirus
sequence alignment, we learned another 30-state model by
applying ConsHMM to the alignment of 56 CoV from vertebrate
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hosts against SARS-CoV-2 (states V1 to V30; Fig. 3 and Sup-
plementary Table 2; “Methods”). The vertebrate CoV alignment
consisted of a diverse set of CoV that included not only Sarbe-
coviruses, but also CoV that are evolutionarily more diverged
from SARS-CoV-2 than Sarbecoviruses (Fig. 3c). We therefore
applied ConsHMM separately to the vertebrate CoV alignment,
instead of combining the two alignments.

The resulting conservation states correspond to bases with
distinct probabilities of various strains of vertebrate CoV aligning
to and matching SARS-CoV-2 and exhibit notable enrichment
patterns for previously annotated regions within genes (Fig. 3a
and Supplementary Fig. 1). State V27 annotates bases in which all
56 CoV align to and match SARS-CoV-2, with a genome coverage
of 8%. State V19 corresponds to bases in which specifically the
four strains most closely related to SARS-CoV-2 based on
phylogenetic distance, which include two bat CoV (RaTG13 and
BM48-31/BGR/2008), pangolin CoV, and SARS-CoV, align to
and match SARS-CoV-2 with high probabilities. State V20 has

both high align and match probabilities for bat CoV RaTG13 and
pangolin CoV and is enriched for the spike protein’s receptor-
binding domain (RBD), where a recombination event between a
bat CoV and a pangolin CoV might have occurred12 (6.9-fold
enrichment; P < 0.0001). Additionally, state V29 with high align
and match probabilities specifically for bat CoV RaTG13
annotates the PRRA motif mentioned in the previous section,
which is consistent with the possibility that the motif was recently
introduced to the SARS-CoV-2 genome.

Since the input vertebrate CoV alignment includes several CoV
infecting human, the states learned from this alignment can be
used to investigate the varying pathogenicity among human CoV.
State V14 corresponds to bases shared among pathogenic human
CoV, including SARS-CoV-2, SARS-CoV, and Middle East
respiratory syndrome-related CoV (MERS-CoV), but not shared
among less pathogenic human CoV which are associated with
common cold (OC43, HKU1, 229E, and NL63). Bases annotated
by this state are candidates for contributing to the shared

Fig. 1 Genome browser view of ConsHMM input and output for a portion of the SARS-CoV-2 genome. Shown is an example portion of the Sarbecovirus
sequence alignment input to ConsHMM and ConsHMM’s conservation state annotation of the SARS-CoV-2 genome as viewed in the UCSC Genome
Browser1. The top row of the alignment shows the reference sequence, the SARS-CoV-2 genome. This is followed by 43 rows corresponding to different
Sarbecovirus sequences aligned against the reference, representing the 44-way Sarbecovirus sequence alignment. In each of these rows, a horizontal dash
is shown at a position if the row’s sequence has no base that aligns to the reference base at the position shown in the top row. A dot is shown if the
sequence has the same nucleotide as the reference. A specific letter is shown if for that particular base the row’s sequence has a different nucleotide than
the reference. Below the alignment are 30 ConsHMM conservation states learned from the alignment. Each row corresponds to a state. To demonstrate
how bases with similar alignment patterns in the input data are annotated with the same state, bases annotated with state S17 are highlighted in yellow
boxes, which have most Sarbecoviruses aligning to and matching the reference with high probabilities.
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Fig. 2 ConsHMM conservation states learned from the Sarbecovirus alignment. a State emission parameters learned by ConsHMM. The left half of the
heatmap shows for each state the probability of each CoV strain having a base aligning to a base in the reference, which is SARS-CoV-2. The right half
shows for each state the probability of each CoV strain having a base aligning to and matching (having the same nucleotide) a base in the reference. In
both halves, each row in the heatmap corresponds to a ConsHMM conservation state with its number on the right side of the heatmap. Rows are ordered
based on hierarchical clustering and optimal leaf ordering34. In both halves, each column corresponds to SARS-CoV or one of the 42 CoV that infect bats.
Columns are ordered based on each strain’s phylogenetic divergence from SARS-CoV-2 according to the phylogenetic tree shown in c, with closer strains
on the left. The column on the left shows the genome-wide coverage of each state colored according to a legend labeled “coverage” on the right. b State
enrichment for external annotations of mutations, codons, genes, and regions of interest. The first column of the heatmap corresponds to each state’s
genome coverage, and the remaining columns correspond to fold enrichments of conservation states for external annotations of intergenic regions,
mutations, position within codons, NCBI gene annotations31, and UniProt regions of interest19. Each row, except the last row, corresponds to a conservation
state, ordered based on the ordering shown in a. The last row shows the genome coverage of each external annotation. Each cell corresponding to an
enrichment value is colored based on its value with blue as 0 (annotation not overlapping the state), white as 1 to denote no enrichment (fold enrichment
of 1), and red as the global maximum enrichment value. Each cell corresponding to a genome coverage percentage value is colored based on its value with
white as the minimum and green as the maximum. All annotations were accessed through the UCSC Genome Browser1 except for nonsingleton mutations
from Nextstrain27 and homoplastic mutations from a prior study18. c Phylogenetic tree of the Sarbecoviruses included in the alignment. Each leaf
corresponds to a Sarbecovirus strain included in the 44-way Sarbecovirus alignment. This tree was obtained from the UCSC Genome Browser1 and plotted
using Biopython35. SARS-CoV-2/Wuhan-Hu-1, the reference genome of the alignment, is at the top.
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pathogenicity of SARS-CoV, SARS-CoV-2, and MERS-CoV
(Supplementary Table 3). We compared bases annotated by this
state to positions identified in a previous study that located indels
differentiating pathogenic CoV from common-cold-associated
CoV using an alignment of 944 human CoV sequences under a
supervised learning framework16. State V14 overlapped with two
insertions identified in that study, one of which is in the
nucleocapsid protein and was suggested to contribute to the
virus’s pathogenicity by enhancing its nuclear localization
signals16 (overlapping positions: 29116–29124). Moreover, using
state V14 we identify additional loci potentially unique to
pathogenic CoV that were not reported in the previous study
(Supplementary Table 3). While this could be explained mostly
by the different sequences included in the alignments used here
and in the previous study, we find among the additional loci those
that are shared among all pathogenic sequences, but missing in all

common-cold-associated sequences according to the previous
study’s human CoV alignment (Supplementary Table 3; “Meth-
ods”). Among such additional loci that are unique to pathogenic
sequences, but not previously reported, is an 8-bp region
(positions 28416–28423) in the nucleocapsid protein. This
protein was shown to enrich for indels specific to pathogenic
CoV in the previous study. Overall, this demonstrates the
conservation state annotations learned using an unsupervised
approach identified additional genomic bases that may contribute
to the pathogenicity of CoV infecting humans.

Conservation states’ relationship to standard sequence con-
straint annotations. To establish that conservation states contain
additional information relative to standard sequence constraint
scores, we compared to constraint scores generated by
PhastCons4 and PhyloP5 and binary constrained elements called
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by PhastCons using the same alignments provided to ConsHMM
in their ability to predict genes and regions of interest (“Meth-
ods”). When predicting bases overlapping genes or regions of
interest within them, in most cases at least one of the conserva-
tion states achieves substantially greater precision at the same
recall levels than PhastCons and PhyloP annotations (Supple-
mentary Fig. 3). This suggests that when compared to existing
constraint annotations based on the same alignments, ConsHMM
conservation states capture additional biologically relevant
information. Consistent with this, while some states have distinct
distributions of PhastCons and PhyloP scores and fractions of
constrained bases, many states have largely overlapping dis-
tributions of them (Supplementary Fig. 4).

Conservation states’ relationship to nonsingleton SARS-CoV-2
mutations observed in the pandemic. We next investigated how
the learned conservation states relate to nonsingleton SARS-CoV-
2 mutations observed in the current pandemic (Fig. 4a, c). Spe-
cifically, we analyzed the state enrichment patterns for mutations
observed at least twice in about 4000 SARS-CoV-2 sequences
from GISAID (Global Initiative on Sharing All Influenza Data)17.
To focus on reliable calls of mutations, we limited our analysis to
nonsingleton mutations and masked genomic positions with
known technical issues14 (“Methods”). In the Sarbecovirus model,
as expected, states with high probabilities that all strains align to
and match SARS-CoV-2 (S17, S18) are significantly depleted of
mutations observed in the current pandemic (0.6–0.7-fold
enrichment; P < 0.0001) while several states (S6, S12, S19, S26,
S28, S29) are significantly enriched for mutations (1.3–2.4-fold;
P < 0.001).

The vertebrate CoV model’s conservation states exhibit
additional enrichment patterns for nonsingleton SARS-CoV-2
mutations. The model learns several states that are depleted of
mutations with a minimum fold enrichment of 0.2 (P < 0.0001;
V11), which is a stronger depletion than the minimum
enrichment of 0.6 observed in the Sarbecovirus model. This is
expected as the vertebrate CoV alignment contains a more diverse
set of strains and is thus likely to capture deeper constraint than
the Sarbecovirus alignment (Fig. 3c). Moreover, while the states
significantly depleted of mutations in the Sarbecovirus model
have high align and match probabilities for all strains (S17, S18),
states significantly depleted of mutations in the vertebrate CoV
model include not only an analogous state with high align and
match probabilities for all vertebrate CoV (V27; 0.2-fold

enrichment; P < 0.0001), but also several states that have high
align and match probabilities for only a specific subset of
vertebrate CoV (0.2–0.4-fold; P < 0.0001; V10, V11). This subset
excludes strains in a specific subtree in the phylogeny of CoV,
largely consisting of CoV from avian hosts (Supplementary
Fig. 5). This indicates that bases constrained among a specific
subset of vertebrate CoV, which appear to have diverged in some
of the avian CoV genomes, may be as important to SARS-CoV-2
as those constrained across all vertebrate CoV. In addition, the
vertebrate CoV model learns states that are significantly enriched
for mutations (1.5–1.8-fold; P < 0.0001; V3, V13, V20, V30). The
enrichment patterns for nonsingleton mutations reported here
are largely consistent when we include all observed mutations or
control for the nucleotide composition of each base being
mutated (Supplementary Fig. 6). These patterns are also largely
consistent when we control for whether each mutation is
intergenic, synonymous, missense, or nonsense, indicating that
the observed state enrichment patterns are not simply driven by
mutation type (Supplementary Fig. 6).

To understand the state annotation’s relationship to positive
selection, we next examined state enrichment patterns for
homoplastic mutations (Fig. 4b, d). Specifically, we examined
198 stringently identified homoplastic mutations from a previous
study18. These mutations were independently and repeatedly
observed in separate SARS-CoV-2 lineages and are therefore
more likely to be under positive selection than other mutations.
State S6, which annotates bases with high align probability for all
Sarbecoviruses, but high match probability specifically for bat
CoV RaTG13 only, is enriched for homoplastic mutations (2.3-
fold; P < 0.001). Similarly, state V13 is significantly enriched for
homoplastic mutations (2.7-fold; P < 0.001), significantly more so
than for nonsingleton mutations (1.5-fold; binomial P < 0.05).
This state corresponds to bases that align to and match about a
third of the vertebrate CoV, which excludes CoV with avian hosts
and others. The state is also enriched for the nucleocapsid
protein, particularly its dimerization and RNA-binding regions
which are highlighted by UniProt19 (14-, 16-, and 17-fold,
respectively; P < 0.0001).

Notably, state S17, which has high align and match probabilities
for all Sarbecoviruses, is strongly depleted of nonsingleton
mutations and homoplastic mutations (0.7- and 0.6-fold enrich-
ment, respectively; P < 0.0001). Interestingly, specific mutations
that were previously suggested to be consequential to SARS-CoV-2
are also in this state. For example, in state S17 is a frequently

Fig. 3 ConsHMM conservation states learned from the vertebrate CoV alignment. a State emission parameters learned by ConsHMM. The left half of the
heatmap shows for each state the probability of each CoV strain having a base aligning to a base in the reference, which is SARS-CoV-2. The right half
shows for each state the probability of each CoV strain having a base aligning to and matching (having the same nucleotide) a base in the reference. In
both halves, each row in the heatmap corresponds to a ConsHMM conservation state with its number on the right side of the heatmap. Rows are ordered
based on hierarchical clustering and optimal leaf ordering34. In both halves, each column corresponds to one of the 56 CoV that infect vertebrates,
excluding SARS-CoV-2. Columns are ordered based on each strain’s phylogenetic divergence from SARS-CoV-2 according to the phylogenetic tree shown
in c, with closer strains on the left. Cells in the top row above the heatmap are colored according to the color legend on the bottom right to highlight
specific groups of CoV with common vertebrate hosts. The column on the left shows the genome-wide coverage of each state colored according to a
legend in the bottom right. b State enrichment for external annotations of mutations, codons, genes, and regions of interest. The first column of the
heatmap corresponds to each state’s genome coverage, and the remaining columns correspond to fold enrichments of conservation states for external
annotations of intergenic regions, mutations, position within codons, NCBI gene annotations31, and UniProt regions of interest19. Each row, except the last
row, corresponds to a conservation state, ordered based on the ordering shown in a. The last row shows the genome coverage of each external annotation.
Each cell corresponding to an enrichment value is colored based on its value with blue as 0 (annotation not overlapping the state), white as 1 to denote no
enrichment (fold enrichment of 1), and red as the global maximum enrichment value. Each cell corresponding to a genome coverage percentage value is
colored based on its value with white as the minimum and green as the maximum. All annotations were accessed through the UCSC Genome Browser1

except for nonsingleton mutations from Nextstrain27 and homoplastic mutations from a prior study18. c Phylogenetic tree of the vertebrate CoV included in
the alignment. Each leaf corresponds to a vertebrate CoV strain included in the vertebrate CoV. This tree was generated by pruning out SARS-CoV-2
genomes except the reference from the phylogenetic tree of the 119-way vertebrate CoV alignment obtained from the UCSC Genome Browser1

(“Methods”) and was plotted using Biopython35. SARS-CoV-2/Wuhan-Hu-1, the reference genome of the alignment, is at the top.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02231-w

6 COMMUNICATIONS BIOLOGY |           (2021) 4:698 | https://doi.org/10.1038/s42003-021-02231-w | www.nature.com/commsbio

www.nature.com/commsbio


observed missense mutation (position 14408) in the coding region
of RdRp that was previously suggested to contribute to worsening
the virus’s proofreading mechanism, making it easier for the virus
to adapt and harder for its hosts to gain immunity20. The D614G
mutation in the spike protein that was implicated to disrupt a
Sarbecovirus-conserved residue9 and result in increased
infectivity21 is also annotated by state S17. These occurrences of
potentially consequential mutations in a state depleted of
mutations are consistent with the notion that the state is
experiencing negative selection and new mutations that do occur
in the state are more likely to have stronger consequences than
mutations introduced elsewhere. This depletion of potentially
more consequential mutations is also seen with mutation type
annotations, where 4% of all possible synonymous mutations are
observed as nonsingleton mutations whereas only 0.3% of all
possible nonsense mutations are observed as nonsingletons,
reflecting their well-established difference in deleteriousness,
though as noted above the conservation states show distinct
enrichments for observed mutations even when conditioned on
mutation type.

Genome-wide tracks based on state depletion of SARS-CoV-2
mutations. We next generated genome-wide tracks that reflect

state depletion of mutations to highlight bases where new
mutations are more likely to be consequential (Fig. 4e). Specifi-
cally, for each ConsHMM model, we generated a track that scores
each genomic base by its state’s statistically significant depletion
or enrichment of nonsingleton mutations, reflecting the mutation
frequency among bases that likely share a common evolutionary
history. To merge distinct information captured by the two
ConsHMMmodels, we also generated an integrated genome-wide
track, where given two states from different ConsHMM models
annotating a base of interest that are both either depleted or
enriched for nonsingleton mutations we annotated the base with
the state with stronger depletion or enrichment (“Methods”).

We analyzed these tracks based on state depletion of mutations
with respect to experimentally measured mutational effect on
RBD from a previous study that conducted a deep mutational
scanning of RBD22. The study specifically measured changes in
RBD expression and binding affinity due to each possible amino
acid change within RBD, where a positive value denoted
increased expression or affinity and a negative value denoted
decreased expression or affinity. We observe that all three tracks
based on state depletion of mutations are negatively correlated
with measured expression changes caused by single nucleotide
mutations (Pearson’s r: −0.24~−0.18, P < 0.0001; Fig. 4g and
Supplementary Fig. 7c), which is consistent with our expectation
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that mutations at bases depleted of observed mutations in general
are likely to be more deleterious than other mutations.
Furthermore, we observe significant negative correlation between
the track based on the vertebrate CoV state annotations and
binding affinity changes (Pearson’s r: −0.12; P < 0.0001; Supple-
mentary Fig. 7d).

We further compared the state-based tracks to four sequence
constraint scores that were learned from either alignment
provided to ConsHMM using PhastCons4 or PhyloP5 (“Meth-
ods”). Specifically, we examined the constraint scores’ correlation
with our tracks based on state depletion of mutations and also
with measured mutational effect on RBD expression and binding
affinity. The constraint scores are moderately correlated with our
state-based genome-wide tracks (Fig. 4f and Supplementary
Fig. 7a, b; Pearson’s r: 0.25–0.63). For the evaluation on measured
mutational effect on RBD expression, we see a statistically
significant difference with constraint scores, with two out of four
constraint scores having statistically significantly weaker correla-
tion than our tracks’ correlations with the mutational effect
(Fig. 4g and Supplementary Fig. 7c; P < 0.004; “Methods”).

Overall, our genome-wide tracks based on significant depletion
of mutations in conservation states show expected agreement
with measured mutational effect. This suggests that our genome-
wide tracks based on depletion of mutations could help prioritize
mutations with strong impact on the virus’s protein expression
and binding affinity or potentially other functionalities, but we
note that this analysis does not provide direct evidence for other
parts of the genome or other phenotypes of the virus.

Discussion
Here we applied a comparative genomics method ConsHMM to
two sequence alignments of CoV, one consisting of Sarbecoviruses
that infect human and bats and the other consisting of a more

diverse collection of CoV that infect various vertebrates. The
conservation states learned by ConsHMM capture combinatorial
and spatial patterns in the multi-strain sequence alignments. The
states show associations with various other annotations not used
in the model learning. The conservation state annotations are
complementary to constraint scores, as they capture a more
diverse set of evolutionary patterns of bases aligning and match-
ing, enabling one to group genomic bases by states and study each
state’s functional relevance. Identifying patterns of conservation
across different strains can be important potentially for under-
standing the relative pathogenicity of different coronaviruses and
cross-immunity from prior infections23–25. It should be noted,
however, that ConsHMM does not consider where bases in the
reference strain align to in non-reference strains and is therefore
not expected to capture large-scale rearrangements.

We showed that certain conservation states are strongly enri-
ched or depleted of nonsingleton SARS-CoV-2 mutations. Based
on this information, we generated three genome-wide tracks that
can be used to prioritize mutations of potentially greater con-
sequence based on evolutionary information of the Sarbecovirus
and vertebrate CoV alignments. We note that these tracks are
generated in a transparent way directly from the fold enrichment
values for nonsingleton mutations observed in the conservation
states. Overall, we expect the two sets of conservation state
annotations along with these tracks based on state depletion of
mutations to be resources for locating bases with distinct evolu-
tionary patterns and analyzing mutations that are currently
accumulating among SARS-CoV-2 sequences.

Methods
Sequence alignments. We obtained the 44-way Sarbecovirus sequence alignment
from the UCSC Genome Browser1 (http://hgdownload.soe.ucsc.edu/goldenPath/
wuhCor1/multiz44way/). We obtained the vertebrate CoV sequence alignment by
first downloading the 119-way vertebrate CoV sequence alignment from the UCSC

Fig. 4 State enrichment patterns for nonsingleton mutations in the current pandemic and their relation to other annotations. a Bar graph showing
enrichment values of states S1–S30 learned from the Sarbecovirus sequence alignment for nonsingleton mutations (n= 2201; “Methods”). Red and blue
bars correspond to states that enriched and depleted, respectively, with statistical significance after Bonferroni correction (“Methods”). Above each red or
blue bar is the state ID. Grey bars correspond to states for which the enrichment was not statistically significant. Nonsingleton mutations were identified
from Nextstrain mutations27. b Similar to a but showing state enrichment values for homoplastic mutations (n= 198) instead of nonsingleton mutations in
states S1–S30. Homoplastic mutations are mutations independently and repeatedly observed in separate SARS-CoV-2 lineages and were previously
stringently identified through maximum parsimony tree reconstruction and homoplasy screen using thousands of SARS-CoV-2 sequences18. c Similar to a
but showing state enrichment values of states V1–V30 learned from the vertebrate CoV sequence alignment instead of states S1–S30. d Similar to b but
showing state enrichment values of states V1–V30 learned from the vertebrate CoV sequence alignment instead of states S1–S30. e Genome browser view
of gene S with an integrated score of depletion of nonsingleton mutations in conservation states derived from both ConsHMM models and annotations of
states from which the score is generated. Top row with black and grey vertical bars corresponds to the score, which is a negative log2 of the fold
enrichment value of a state selected from one of the ConsHMMmodels that annotates a given base and is statistically significantly enriched or depleted of
nonsingleton mutations at a genome-wide level (“Methods”). The following rows correspond to the states with significant enrichment or depletion. f Bar
graph showing correlation between our genome-wide (GW) score of state depletion of mutations shown in e and four sequence constraint scores listed
along the y-axis. The sequence constraint scores were based on either the Sarbecovirus or vertebrate CoV sequence alignment provided to ConsHMM
using either PhastCons or PhyloP as the scoring method (“Methods”). Similar plots using scores of mutation depletion in states from each ConsHMM
model separately instead of both models together are shown in Supplementary Fig. 7a, b. g Bar graph showing correlation between measured mutational
effect on RBD expression and five scores which include our genome-wide score based on state depletion of mutations and the four sequence constraint
scores from f. Correlation computed with our state-based score is shown in orange. Correlations computed with sequence constraint scores are shown in
grey. All correlations were statistically significant after Bonferroni correction (“Methods”). Asterisk is shown next to a grey bar if its corresponding
correlation was statistically significantly different than the correlation with our state-based score based on Zou’s confidence interval test32 with Bonferroni
correction (“Methods”). The null hypothesis is rejected if the confidence interval (99.6% after correction) of a difference between two correlations
excludes 0. The confidence intervals corresponding to the top and bottom asterisks are (−0.18, −0.01) and (−0.22, −0.05), respectively. Mutational
effect on RBD expression was measured by a study that conducted a deep mutational scanning of 3,819 nonsynonymous mutations in RBD22. To compute
the correlations, we restricted to the 1,215 mutations that were caused by single nucleotides and free of experimental measurements that were not
determined (n.d.). A positive value indicates increased expression due to mutation and a negative value indicates decreased expression. An extended
version of this plot that includes two genome-wide scores based on mutation depletion in states from each ConsHMM model separately is shown in
Supplementary Fig. 7c.
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Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/
multiz119way/) and then removing SARS-CoV-2 sequences from the alignment,
except the reference sequence, wuhCor1. This resulted in 56 CoV aligned against
the reference. Both sequence alignments were generated by the alignment tool
Multiz26.

External annotations. Mutations found in SARS-CoV-2 sequences were point
mutations identified by Nextstrain27 (accessed on Sept 7, 2020) from sequences
available on GISAID17. For our analysis, to minimize putative false calls we filtered
out mutations if their ancestral alleles did not match the reference genome used by
Nextstrain, MN908947.3, such as C > T at a base where T is the reference allele. All
the other annotations, including the annotations of genes, codons, and UniProt
protein products and regions of interest, were accessed through the UCSC Genome
Browser (accessed on Sept 7, 2020)1.

Learning ConsHMM conservation states and choice of number of states.
Given the two input sequence alignments, we first learned multiple ConsHMM
models from each alignment with varying numbers of states ranging from 5 to 100
with increments of 5 and then chose a number of states that is applicable to both
alignments. Specifically, we aimed to find a number of states that results in states
few enough to be relatively easy to interpret, but specific enough to capture distinct
patterns in the alignment data.

To do so, for each model, we considered whether the model’s states had
sufficient coverage of the genome to avoid having states that annotate too few
bases. We additionally considered whether the model’s states exhibited distinct
emission parameters to ensure that they were different enough to capture distinct
patterns in the alignment data. Lastly, we considered whether the model’s states
showed distinct enrichment patterns for external annotations of genes, protein
domains, and mutations in SARS-CoV-2 to ensure that the different states
annotate bases with potentially different biological roles. As a result, we chose 30 as
the number of conservation states for both the Sarbecovirus and vertebrate CoV
ConsHMM models because the resulting states were sufficiently distinct in their
emission parameters and association with external annotations and most of the
states covered more than 0.5% of the genome.

PhastCons and PhyloP scores. We obtained the 44-way PhastCons and PhyloP
scores learned from the Sarbecovirus sequence alignment from the UCSC Genome
Browser (http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/). We additionally
used the PHAST software28 to learn PhastCons and PhyloP scores from the vertebrate
CoV sequence alignment that we generated from the 119-way alignment as described
above. To do so, we first ran ‘tree_doctor’ to prune out SARS-CoV-2 sequences except
the reference from the phylogenetic tree generated for the 119-way alignment. We
then followed the procedure used to generate the 44-way and 119-way scores as
described on the UCSC Genome Browser. Specifically, to learn the vertebrate CoV
PhastCons score, we used the following arguments to run ‘phastCons’: --expected-
length 45 --target-coverage 0.3 --rho 0.3. To learn the vertebrate CoV PhyloP score,
we used the following arguments to run ‘phyloP’: --wig-scores --method LRT --mode
CONACC.

Masking bases. For all but one downstream analysis, we masked problematic
genomic positions listed in the UCSC Genome Browser track ‘Problematic Sites’
(accessed on Sept 7, 2020) as they are likely affected by sequencing errors, low
coverage, contamination, homoplasy, or hypermutability14,29,30. As a result, we
masked 228 bases, analyzing 29,675 out of 29,903 bases (99.2%). The one exception
was when we computed state enrichment for homoplastic mutations from a prior
study18. For this analysis only, we masked all problematic positions except for those
described as homoplastic or highly homoplastic. As a result, we masked 175 bases
instead of 228 bases, analyzing 29,728 bases (99.4%).

Fold enrichments for external annotations. When computing fold enrichments
for annotations of genes, positions within codons, and regions of interest, we
considered whether a genomic base is annotated or not by the external annotations.
To compute the fold enrichment for each external annotation and each state, we
divided the fraction of the state’s bases in the external annotation out of all bases in
the state by the fraction of bases in the external annotation genome-wide. Because
multiple mutations could be observed in the same genomic base, when computing
fold enrichments for mutations, we first generated all possible point mutations in
the SARS-CoV-2 genome and then considered whether each of the possible
mutations was observed or not. Thus, to compute fold enrichment for mutations in
an external annotation for each state, we divided the fraction of observed mutations
in the external annotation among possible mutations occurring at bases in the state
by the fraction of observed mutations in the external annotation out of all possible
mutations genome-wide. We defined nonsingleton mutations as mutations
observed in at least two SARS-CoV-2 sequences. For homoplastic SARS-CoV-2
mutations, we used all 198 mutations reported in a prior study18. For all fold
enrichment values, we also conducted a two-sided binomial test to report statistical

significance. We applied a Bonferroni correction by setting the significance
threshold to 0.05 divided by 30, the number of states.

Correction of state enrichments for SARS-CoV-2 mutations by nucleotide
composition or mutation type. To show that the conservation state fold enrich-
ment values for nonsingleton mutations are not simply driven by nucleotide
composition or mutation type (i.e. intergenic, synonymous, missense, nonsense),
we corrected state enrichment values by nucleotide composition or mutation type
as follows. To control for nucleotide composition, for each nucleotide i, we first
computed the genome-wide fraction fi of observed nonsingleton mutations out of
all possible mutations with nucleotide i as the reference base. Then for each state
and for each nucleotide i, we multiplied the genome-wide fraction fi and the
number of possible mutations in the state with nucleotide i as the reference base.
For each state, we summed up these values across the nucleotides to obtain the
expected number of nonsingleton mutations based on nucleotide composition.
Finally, the enrichment corrected by nucleotide composition for each state was
computed as the ratio of actual and expected number of observed nonsingleton
mutations.

Similarly, to control for mutation type, for each type j, we computed the
genome-wide fraction fj of observed nonsingleton mutations out of all possible
mutations belonging to mutation type j. Then for each state and for each mutation
type j, we multiplied the genome-wide fraction fj with the number of possible
mutations in the state belonging to mutation type j. We then followed the same
procedure as above.

Identifying bases unique to pathogenic human CoV and missing in less
pathogenic human CoV. We first identified bases annotated by state V14, which
corresponds to high align probability for pathogenic human CoV (SARS-CoV,
MERS-CoV) and low align probability for less pathogenic human CoV (OC43,
HKU1, 229E, and NL63) in the vertebrate CoV sequence alignment. Among these
bases, we then identified bases that appeared among all pathogenic human CoV but
missing in all less pathogenic human CoV in an alignment of 944 human CoV
sequences generated by a prior study. All the 944 sequences come from the seven
human CoV including SARS-CoV-216.

Precision-recall analysis for recovery of annotated genes and regions of
interest. For each NCBI gene31 or UniProt region of interest19, we predicted bases
in each state from both models to be in the gene or region and computed precision
and recall, resulting in 60 pairs of precision and recall values. Similarly, we pre-
dicted all bases annotated as a PhastCons element4 to be in each gene or region and
computed precision and recall. With PhastCons and PhyloP scores5, we computed
precision-recall curve for predicting the bases in each gene or region using
each score.

Generating browser tracks of depletion of nonsingleton SARS-CoV-2 muta-
tions. Based on the procedure of computing state enrichment of SARS-CoV-2
mutations, for each ConsHMM model, we selected states that exhibited statistically
significant enrichment or depletion of nonsingleton mutations at a binomial test
p-value threshold of 0.05 after Bonferroni correction. To generate a track for each
ConsHMMmodel, we scored each base overlapping any of the selected states in the
model with –log2(v) where v is the fold enrichment value of the state annotating the
base, such that stronger depletion of mutations corresponded to a higher score
above 0 and stronger enrichment to a lower score below 0. Bases not annotated by
any of the selected states were assigned a score of 0.

We generated an integrated track of mutation depletion in states from both
ConsHMM models as follows. If a base was annotated with two states with
statistically significant enrichment or depletion of nonsingleton mutations, each
from different ConsHMM models, and the two states agreed in the enrichment
direction (enriched or depleted), we annotated the base with the –log2(v) from the
state that had a higher absolute value of –log2(v). If a base was annotated with two
of the selected states, but the states disagreed in the enrichment direction, we
annotated the base with a score of 0. If a base was annotated by one state with
statistically significant enrichment or depletion of nonsingleton mutations, we
annotated the base with the –log2(v) value from that state. Bases not annotated by
any of the selected states were assigned a score of 0.

Comparing correlation to mutational effect on RBD expression and binding
affinity. For each of the three aforementioned genome-wide tracks based on state
depletion of mutations, we computed its Pearson’s r with mutational effect on RBD
expression measured by a previous study22. For each of the four sequence con-
straint scores, we also computed its correlation with mutational effect on RBD
expression and then compared it to the correlations computed using our genome-
wide tracks, using Zou’s confidence interval test32 implemented in the R package
cocor33. The four sequence constraint scores included PhyloP and PhastCons
scores learned from either the Sarbecovirus or vertebrate CoV alignment. When
reporting the significance of correlations, we applied a Bonferroni correction by
setting the significance threshold to 0.05 divided by 7, the total number of
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computed correlations. When comparing correlations using Zou’s confidence
interval test, we compared a state-based track’s correlation to a constraint score’s
correlation if at least one of the two correlations was negative and statistically
significant and applied a Bonferroni correction by setting the confidence level to
1 – 0.05/n where n is the total number of pairwise comparisons, which was at most
12. The same procedure was applied to compute correlations with measured
mutational effect on RBD binding affinity.

Statistics and reproducibility. All statistical tests performed are described in
detail above. In general, Bonferroni correction was applied and a threshold of 0.05
was used to discern statistical significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ConsHMM conservation state annotation based on the Sarbecovirus and vertebrate CoV
alignments are available at https://github.com/ernstlab/ConsHMM_CoV/. Track
annotations of depletion of mutations observed in conservation states from both
Sarbecovirus and vertebrate CoV ConsHMM models or each model are available from the
same URL. All annotations are also included in Supplementary Data 1. Source data for
Figs. 2a–b, 3a–b, 4a–d, f–g, and Supplementary Fig. 7 are provided in Supplementary
Data 2.

Code availability
We used ConsHMM v1.1 obtained from https://github.com/ernstlab/ConsHMM/.
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