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Abstract

When humans learn to categorize multidimen-
sional stimuli, they learn which stimulus dimen-
sions are relevant or irrelevant for distinguishing
the categories. Results of a category learning ex-
periment are presented, which show that cate-
gories defined by a single dimension are much eas-
ier to learn than categories defined by the combi-
nation of two dimensions. Three models are fit to
the data, aALcove (Kruschke 1990a,b, in press),
standard back propagation (Rumelhart, Hinton
& Williams 1986), and the configural-cue model
(Gluck & Bower 1988). It is found that ALCOVE,
with its dimensional attention learning mecha-
nism, can capture the trends in the data, whereas
back propagation and the configural-cue model
cannot. Implications for other models of human
category learning are discussed.

Introduction

Imagine learning to classify mushrooms as “poisonous”
or “edible.” You are shown one mushroom after an-
other and told which category it belongs to. After see-
ing many examples, your accuracy of classifying new
examples improves. One of the key aspects of such
learning is the determination of which features of the
mushrooms are relevant to the categorization. For ex-
ample, it might be that all red mushrooms are poi-
sonous, but red mushrooms occur in the same range
of sizes as edible mushrooms. In that case it would
be wise to weigh information about about color more
heavily than information about size. On the other
hand, it might be that more than one dimension is rele-
vant to the categorization; e.g., perhaps red or spotted
mushrooms are poisonous. In that case, one should
pay attention to both dimensions of color and texture.

Posner (1964) called situations in which there was
a single relevant dimension gating tasks, since the ir-
relevant dimension(s) could be gated out of considera-
tion, and he called situations in which more than one
dimension was relevant condensation tasks, since the
information from multiple dimensions had to be con-
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densed into a single categorization decision. Posner
and others (e.g., Garner 1974) have established that
gating tasks are generally easier to learn than conden-
sation tasks. In this article I show that standard back-
propagation (Rumelhart, Hinton & Williams 1986) and
the configural-cue model (Gluck & Bower 1988) cannot
capture that basic result, while another connection-
ist model called ALcOVE (Kruschke 1990a,b, in press)
can. I report results of a category learning experiment
and fits of the models to the data. The key difference
between the models is that ALCOVE incorporates con-
straints to reflect the dimensional attention learning
abilities of people, whereas the other models do not.

The ALCOVE Model

ALCOVE is a feed-forward network that learns by gra-
dient descent on error, but it is unlike standard back
propagation (Rumelhart et al. 1986) in its architec-
ture, its behavior, and its goals. Unlike the stan-
dard back-propagation network, which was motivated
by generalizing neuron-like perceptrons, the architec-
ture of ALCOVE was motivated by a molar-level psy-
chological theory, Nosofsky’s (1986) generalized con-
text model (GeM). The psychologically constrained
architecture results in behavior that captures the de-
tailed course of human category learning in many situ-
ations where standard back propagation fares less well
(Kruschke 1990a,b, in press). And, unlike many ap-
plications of standard back propagation, the goal of
ALCOVE is not to discover new (hidden-layer) repre-
sentations after lengthy training, but rather to model
the course of learning itself, by determining which di-
mensions of the given representation are most relevant
to the task, and how strongly to associate exemplars
with categories.

Like the GcM, ALCOVE assumes that input pat-
terns can be represented as points in a multi-
dimensional psychological space, as determined by
multi-dimensional scaling algorithms (e.g., Kruskal
1964; Shepard 1962). Each input node encodes a sin-
gle psychological dimension, with the activation of the
node indicating the value of the stimulus on that di-
mension. Figure 1 shows the architecture of ALCOVE,
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Figure 1: The structure of ALcovE. The pyramids
in the hidden layer indicate the activation profile of
hidden nodes, as determined by Equation 1, with r =
g=1.

illustrating the case of just two input dimensions.

Each input node is gated by a dimensional attention
strength «;. The attention strength on a dimension re-
flects the relevance of that dimension for the particular
categorization task at hand, and the model learns to
allocate more attention to relevant dimensions and less
to irrelevant dimensions.

Each hidden node corresponds to a position in the
multi-dimensional stimulus space, with one hidden
node placed at the position of every training exem-
plar. Each hidden node is activated according to the
psychological similarity of the stimulus to the exem-
plar represented by the hidden node. The similarity
function comes from the Gcm and the work of Shepard
(1962; 1987): Let the position of the j'» hidden node
be denoted as (hjy, h;j,,...), and let the activation of

the j** hidden node be denoted as a}*¢. Then

( - (Zﬂ Iy = a:i"r)q,r) M

where ¢ is a positive constant called the specificity of
the node, where the sum is taken over all input dimen-
sions, and where r and g are constants determining the
similarity metric and similarity gradient, respectively.
For separable psychological dimensions, the city-block
metric (r = 1) is used, while integral dimensions might
call for a Euclidean metric (r = 2; ¢f. Garner 1974,
Shepard 1964). A city-block distance metric (r = 1)
with exponential similarity gradient (¢ = 1) is used
here (Shepard 1987).

The dimensional attention strengths adjust them-
selves so that exemplars from different categories be-

a;"“ = exp
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Figure 2: Top panel shows that increasing atten-
tion to the horizontal dimension and decreasing at-
tention to the vertical dimension causes exemplars of
the two categories (denoted by filled and open cir-
cles) to have greater between-category dissimilarity
and greater within-category similarity (after Nosofsky
1986, Fig. 2). Lower panel shows that ALCOVE cannot
differentially attend to diagonal axes.

come less similar, and exemplars within categories be-
come more similar. Consider a simple case of eight
stimuli that form the corners of an octagon in input
space, as in Figure 2. The stimuli are mapped to one
of two categories, as indicated by filled or open circles.
When only one dimension is relevant, as in the top
panel of Figure 2, ALCOVE learns to increase the at-
tention strength on the relevant dimension, and to de-
crease the attention strength on the irrelevant dimen-
sion. By contrast, ALCOVE cannot stretch or shrink
diagonally, as suggested in the lower panel of Figure 2.
Two points made in this article are (1) to demonstrate
that this constraint is an accurate reflection of human
performance, in that categories separated by a diago-
nal boundary take longer to learn than categories sep-
arated by a boundary orthogonal to one dimension,
and (2) to show that standard back propagation and
configural-cue model do not capture this fact.

Each hidden node in ALCOVE is connected to out-
put nodes that correspond to response categories. The
connection from the j** hidden node to the k** cate-
gory node has a connection weight denoted w,;, called
the association weight between the exemplar and the
category. The output (category) nodes are activated
by the linear rule used in the ccM and the network
models of Gluck and Bower (1988):

af* = Z wy;ard. (2)
hid
b

In ALCOVE, unlike the GcM, the association weights



Figure 3: Stimuli used in category learning experiment.
The rectangle could have one of four heights (the short-
est rectangle is shown with a solid line) and the interior
vertical segment could have one of four lateral positions
(the leftmost position is shown with a solid line).

are learned and can take on any real value, including
negative values. Category activations are mapped to
response probabilities using the same choice rule (Luce
1963) as was used in the GcM and network models.
Thus,

Pe(K) = exp(6ai) [ Sexpoar) (9

out
k

where ¢ is a real-valued scaling constant. In other
words, the probability of classifying the given stimu-
lus into category K is determined by the magnitude
of category K'’s activation relative to the sum of all
category activations.

The dimensional attention strengths, «;, and the as-
sociation weights, w;;, are learned by gradient descent
on sum-squared error, as used in standard back prop-
agation (Rumelhart et al. 1986) and in the network
models of Gluck and Bower (1988). Space constraints
prohibit further discussion of the model; details can be
found in Kruschke (1990a,b, in press).

In fitting ALCOVE to human learning data, there are
four free parameters: the fixed specificity ¢ in Equa-
tion 1; the probability mapping constant ¢ in Equa-
tion 3; the association weight learning rate; and, the
attention strength learning rate.

A Human Learning Experiment

To test the implications of attention learning in AL-
COVE, human subjects were trained on the category
structures shown in Figure 2. The stimuli were ge-
ometric forms, as shown in Figure 3. Each stimulus
consisted of a rectangle with one of four heights, and
an interior vertical segment at one of four lateral posi-
tions. Only 8 of the 16 possible combinations of height
and position were used, corresponding to the abstract
structure in Figure 2.

Scaling the stimulus space

The first step in modelling this situation is to deter-
mine the psychological coordinates of the stimuli. To
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Figure 4: Locations of stimuli in psychological simi-
larity space. Dashed lines suggest the four category
boundaries used in the learning experiment.

do this, one obtains similarity ratings of pairs of stim-
uli, and determines the coordinate values in psycholog-
ical space that best predict those similarities (Kruskal
1964; Shepard 1962). This process is analogous to gen-
erating a spatial map of cities when all you are told is
the distances (dis-similarities) between cities.

Procedure: The two stimuli of each pair were pre-
sented sequentially on a computer screen for 1.75 sec-
onds each, separated by a 0.75 second blank screen.
The subject then entered a similarity rating from 1
to 9 on the computer keyboard. Each pair was pre-
sented four times in each order, for each of 50 subjects,
yielding 400 similarity ratings for each pair.

The best-fitting psychological coordinates of the
stimuli accounted for over 98% of the variance in sim-
ilarity ratings, and are shown in Figure 4. Notice that
while the physical values of height and horizontal posi-
tion were equally spaced (see Figure 3), the psychologi-
cal values were not. Note also that the two dimensions
are about equally salient, in that the total range is
about the same on the two dimensions, but the middle
interval on the horizontal-position dimension is big-
ger than the middle interval of the height dimension.
That implies that a category boundary indicated by
the horizontal dashed line in Figure 4 should be easier
to learn than a category boundary indicated by the ver-
tical dashed line. This will be confirmed in the learning
data.

Category learning results

The strong prediction of ALCOVE is that the four al-
ternative category disctinctions indicated in Figure 4
should not be equally easy; rather, the distinctions for
which only a single dimension is relevant (the vertical
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Figure 5: Human learning data. Filled markers cor-
respond to single-dimension categories (filled circle is
horizontal position relevant, filled square is height rel-
evant); open markers show diagonal categories.

and horizontal dashed lines in Figure 4) should be eas-
ier than the diagonal distinctions, because attention
learning cannot differentially accentuate diagonal di-
rections. The four category distinctions were given to
different groups of subjects. For example, one group
learned the position-relevant distinction, for which the
stimuli marked 1, 2, 3 and 4 in Figure 4 were given one
category label, with the remaining stimuli (numbered
5-8) were given a different category label.

Procedure: Subjects were given instructions that in-
cluded exposure to the eight stimuli without any cat-
egory feedback. Each training trial consisted of a pre-
sentation of a stimulus, which was terminated when the
subject pressed a response key. The subject was then
given feedback indicating whether the response was
correct or incorrect, and the correct response. Each
of the four groups saw the same fixed sequence of 64
stimuli. All that varied between groups was the cat-
egory labels given to the stimuli. A total of 160 sub-
jects were run, 40 in each group. Category labels were
counter-balanced within groups.

Results are summarized in Figure 5. Each datum
shows the mean percent correct for the preceding 8
trials (one epoch). Two effects are clear: The single-
dimension categories are learned much faster than the
diagonal categories; and, the horizontal-position di-
mension 1s learned faster than the height dimension.

Modelling the learning
Fit of ALCOVE

ALCOVE was applied to this situation by using two in-
put nodes, corresponding to the two stimulus dimen-
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Figure 6: Best fit of ALCOVE to human learning data
in Figure 5.

sions, eight hidden nodes, corresponding to the eight
training exemplars, and two output nodes, correspond-
ing to the two categories. The task for the model was
to fit the learning curves from the four category types
using a single set of parameter values. The discrep-
ancy of ALCOVE from the human data was measured
as the squared difference between observed category
choice probabilities and predicted choice probabilities,
summed across the 64 individual trials in each cate-
gory type, across both category choices within each
type, and across the four types.

The best fit of ALCOVE is shown in Figure 6. The fit
produced a root mean squared deviation (RMSD) of
0.116, with parameter values of ¢ = 1.568, ¢ = 1.662,
association weight learning rate of 0.08431 and atten-
tion learning rate of 0.6593. ALCOVE clearly shows the
two main trends seen in the human data: The single-
dimension categories are learned much faster than the
diagonal categories, and the horizontal-position dimen-
sion is learned faster than the height dimension. AL-
COVE learns the single-dimension categories faster by
virtue of attention learning — the attention strength
on the relevant dimension increases rapidly, while the
attention strength on the irrelevant dimension de-
creases rapidly. ALCOVE learns the position dimension
faster than the height dimension because the exemplar
nodes reflect the greater distinctiveness of the middle
interval of the position dimension.

Fit of back propagation

Standard back propagation (henceforth “backprop”)
was also applied. Two input nodes and two output
nodes were used, as in the application of ALcOVE. In
order to equilibrate the backprop architecture with the
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Figure 7: Best fit of standard back propagation to hu-
man learning data in Figure 5.

ALCOVE architecture as much as possible, the two out-
put nodes were linear, with response probabilities com-
puted using Equation 3, and eight hidden nodes were
used (with standard linear-sigmoid activation func-
tions; Rumelhart ef al. 1986).

The backprop network was given five free param-
eters: The learning rate on the output weights; the
learning rate on the hidden weights; the learning rate
on the hidden node thresholds; the response mapping
constant ¢ in Equation 3; and, the value of a fixed
gain parameter in the sigmoidal activation function
(see Kruschke & Movellan 1991). Initial values of hid-
den weights and thresholds were drawn from a uniform
distribution over the interval [—1,+1].

For any choice of parameter values, the fit was mea-
sured in the same way as for ALCOVE, but choice pre-
dictions of backprop were computed by first averaging
over 200 different random initializations of the hidden
weights and thresholds.

The best fit of backprop to the learning data is
shown in Figure 7. It yielded an RMSD of 0.152, using
¢ = 0.6636, output weight learning rate of 0.2049, a
hidden weight learning rate of 1.091, a hidden thresh-
old learning rate of 0.04159, and a gain of 2.249. The
fit of backprop is much worse than that of ALCOVE,
and the qualitative behavior of backprop departs badly
from the data. Indeed, backprop learns the single-
dimension and diagonal categories at essentially the
same pace. The best backprop can do is try to match
the mean learning curve across all four category types.

Why does backprop do so poorly? To explain why,
first I'll define a hidden node’s weight vector as the or-
dered list of connection weights fanning into the node.
The weight vector of a hidden node specifies the direc-
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Figure 8: Best fit of the configural-cue model to human
learning data of Figure 5. All four curves are exactly
superimposed.

tion in stimulus space that causes the biggest change
in the node’s activation value, and thereby indicates
the underlying dimension in stimulus space to which
the node is responding. The weight vectors can, po-
tentially, point in any direction in stimulus space. In
particular, they can align with the diagonal axes of the
stimulus space just as easily as they can align with the
canonical axes. Standard back-propagation learning is
isotropic in that sense, unlike human learning.

Fit of the configural-cue model

The configural-cue model (Gluck & Bower 1988) was
originally proposed for stimuli with binary-valued di-
mensions, and therefore is not directly applicable to
the present situation. However, it can be reasonably
extended as follows: Each value on each dimension is
encoded by a separate input node, and each combina-
tion of values from the two dimensions is encoded by
a separate node, yielding 4 + 4 + 16 = 24 input nodes.
A given stimulus activates a subset of 3 of the 24 in-
put nodes. The input nodes are connected directly to
the output nodes, which are governed by Equations 2
and 3. The configural-cue model has two parameters,
the learning rate for the connection weights and the
mapping constant in Equation 3.

The best fit is shown in Figure 8 (¢ = 0.9289,
connection weight learning rate was 0.1591, yielding
an RMSD of 0.150). Figure 8 shows that all four
learning curves are exactly superimposed, quite unlike
the human data. The reason is that the (extended)
configural-cue model makes no structural distinction
between the category types in its input representation;
the model has no representation of the fact that some



values lie on the same dimension but other values come
from different dimensions.

Discussion

It is possible that back propagation or the configural-
cue model could be modified to include some form of
dimensional attention learning; this awaits future re-
search. The results reported here pose a challenge for
other models of category learning that do not incor-
porate attention learning, such as Hanson and Gluck’s
(1991) Cauchy-node model. It remains to be seen if
such models can fit the data reported here, without
extending them to include some form of dimensional
attention learning. Other models that do include at-
tention learning, such as J. R. Anderson’s (in press) ra-
tional model, or Hurwitz’s (1990) hidden pattern unit
model, could, no doubt, capture the difference between
single-dimension and diagonal categories.

All of these models, however, would probably fail
to match one other prominent aspect of the data: the
extreme rapidity with which the single-dimension cate-
gories are learned, very early in training (see Figure 5).
Some subjects, in fact, made virtually no errors after
the first two or three trials. There is little hope that
learning algorithms that take small incremental steps
on each trial could accomplish that.

What 1s needed, I believe, i1s a rule hypothesizing
system: Early in training the subject might guess the
right rule and make no more errors. Perhaps the pri-
mary question for such a rule generating system is,
Which rules should be hypothesized and tested first?
The behavior of ALCOVE suggests that one might gen-
erate and test rules using the dimension(s) with the
largest attention strength. The notion is that cate-
gory learners always employ an ALcCOVE-like system,
and simultaneously try to summarize, generalize, and
leap-frog the performance of that system by hypothe-
sizing and testing rules. The underlying ALcoVE-like
system steers the rule generating system and acts as a
fall-back when adequate rules are not yet found.
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