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Abstract

On the Computability of Immersions

by

Daniel Patrick Epelbaum

Suppose someone hands you a pair of smooth manifolds, and a smooth map between

them. Can you decide whether there is an immersion homotopic to this map? We will

reduce this to a question about lifting a certain bundle, and then use rational homotopy

theoretic techniques to provide an algorithm when the codimension of the manifolds is

odd.
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Chapter 1

Introduction

Given a pair of smooth manifolds, when can we immerse one in the other? A lot is known

in the case of immersibility into Rn. The Whitney immersion theorem tells us that any

manifold of dimension m can be immersed in R2m−1. In 1985, Cohen strengthened this

result proving the immersion conjecture: any manifold of dimension m can be immersed

in R2m−α(m) where α(m) is the number of 1s in the binary expansion of m [1]. This

bound is tight: for any m there are manifolds of dimension m that cannot be immersed

in dimension 2m− αm.

In smaller codimension, we can ask when questions of immersibility can be answered

by a computer algorithm. For example, [2] investigates immersibility of both smooth

and PL manifolds in Rn, and concludes that for smooth manifolds, immersibility of an

m-manifold into Rn is decidable when n−m is odd, and it is this result we will generalize

in this thesis.

More generally, we might be interested in the question of when M can be immersed

in N , for arbitrary smooth manifolds M,N . Here we might hope to compute the set

of immersions, up to regular homotopy (homotopy through immersions.) Here we will

end up with difficulties arising from the difficulty of studying homotopy classes of maps
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Introduction Chapter 1

between manifolds in general. To control this we will discuss a modification of the problem

in which we are looking for immersions with prescribed homotopy behavior. That is, we

will consider the following decision problem: given a pair of oriented closed smooth

manifolds (M,N) and a smooth map f : M → N , is there an immersion homotopic to

f? The main result of this thesis will be a generalization of the above result for this

problem. In particular we prove the following theorem:

Theorem 1.0.1. There is an algorithm that on input (M,N, f), where M,N are smooth

oriented manifolds of dimension m,n respectively and f : M → N is a smooth map

between them, decides whether there is an immersion g : M → N such that g ≃ f , as

long as n−m is odd.

This proof will have several steps. First, we use the h-principle of Hirsch and Smale

to reduce the question to a homotopy-theoretic lifting problem.

To decide on the existence of a lift then, we will use some tools from rational homotopy

theory. The idea here is that if we ignore finite homotopy group obstructions, we can put

an algebraic structure on the set of possible lifts on each stage of the relevant Moore-

Postnikov tower, and this allows us to construct a lift, if one exists, using obstruction

theory. The algorithm here is very much like that in [3].

In the next section, we will discuss briefly the notion of a decision problem and review

some of the building blocks of our homotopy-theoretic computation. Then, in chapter 2,

we introduce the tools we will need from rational homotopy theory, as well as define the

notion of a rational fibrewise HM-space. In chapter 3, we will use these tools to provide

an algorithm for a certain class of homotopy-lifting problem. Finally, in chapter 4, we

will see how to apply this to investigate the decidability of immersions.

2



Introduction Chapter 1

1.1 Computational Preliminaries

In this thesis, when we look at the question of what a computer can decide, we

are concerned only with the question of what is computable, not what is effectively

computable. This definition is quite robust under changes of computational model (see

[4]). In fact, in the algorithm of chapter 3, we will have several instances of choosing an

integer for which we know a choice exists but with no particular upper bound, and this

will make any attempt to discuss efficiency or runtime nearly impossible in principle. We

will therefore proceed in building our algorithm out of known algorithms without paying

attention to their runtimes.

We will use as building blocks for our algorithm the following results from computa-

tional homotopy theory. Proofs for each of these can be found in [2]

Theorem 1.1.1. (a) There is an algorithm which on input a simplicial complex X can

compute generators and relations for πk(X), as well as simplicial representatives for

each generator

(b) There is an algorithm which on input a map of simply connected finite simplicial

complexes Y → B computes the relative Moore-Postnikov tower to any finite stage,

as well as the cohomology of each stage, and the maps of cohomology induced by each

Pn → Pn−1.

(c) There is an algorithm such that given a diagram

A //� _

��

Pn

����

X //

<<

Pn−1,

where (X,A) is a finite simplicial pair and Pn ↠ Pn−1 is a Moore-Postnikov stage,

3



Introduction Chapter 1

computes the obstruction to filling in the dotted arrow (in Hn(X,A; πn(P
n))) and if

the obstruction vanishes, constructs a lifting extension.

We will also need to specify how we will model smooth manifolds algorithmically. In

general, it is not decidable whether a given n-dimensional simplicial complex is homeo-

morphic to a smooth manifold. Again following [2], we will input a manifold as a finite

simplicial complex together with a choice of polynomial map with rational coefficients to

RN for each top dimensional simplex, fixing some large N , and such that the derivatives

of each map are nonsingular and agree on the boundaries of adjacent simplices. This

gives a C1 triangulation, and since the category of C1-manifolds is equivalent to the

category of C∞-manifolds, and C1 immersions can be approximated by C∞ ones, this is

sufficient. We also note that given such a collection of data, whether or not it represents

a manifold is decidable.

We will need one more theorem from [2] which will help convert our geometric problem

into a homotopy theoretic one.

Theorem 1.1.2. Given a manifold M as above, there is an algorithm that computes the

classifying map of the tangent bundle. In particular, it is possible to compute a simplicial

complex structure on BSO(n), and a simplicial approximation of the classifying map.

4



Chapter 2

Rational Homotopy Theory

2.1 Relative Minimal Models

The main tools we will need from rational homotopy theory are the notion of a min-

imal model, and its relative version, developed by Sullivan in [5]. For a more thorough

introduction, see [6]. The key idea is that given a simply connected CW complex X, we

can construct a rational graded commutative differential algebra in a way that institutes

a duality between the category of simply connected CW complexes up to rational equiv-

alence and the category of 1-connected rational commutative differential graded algebras

(dgas) up to quasi-isomorphism. In particular, we construct the minimal model MX as

follows. We begin with a graded vector space W whose i(th) graded piece W (i) is given by

(πi(X) ⊗ Q)∗. Note that since we started with a simply connected space, the resulting

vector space is trivial below dimension 2, and the resulting dga is said to be 1-connected

or simply connected. Then as an algebra, the minimal model of X is ∧W , the free graded

commutative algebra generated byW . Then a differential on MX is determined by maps

di : W
(i) → M(i+1)

X , which can be constructed by dualizing the k-invariants of the Post-

nikov tower, after tensoring with Q. Crucially this will result in maps which land in the

5



Rational Homotopy Theory Chapter 2

subalgebra generated by elements of W (k) for k < i, and so for each w ∈ W (i) we have

d(w) ∈ ∧≥2 ⊕i−1
j=2 W

(j). Such a dga is said to be minimal.

A space is modelled by a minimal model, and a fibration is modelled by a relative

minimal model. Suppose we have a fibration of simply connected CW-complexes p : Y ↠

B, with fiber F which is also simply connected. Then we can construct a relative minimal

model. This consists of the following:

• MB = (∧WB, dB) a minimal model for the base space B

• A graded vector space WF where each ith graded piece is given by (πi(F )⊗Q)∗

• A differential d on MX ⊗Q∧WF which restricts to dB under the standard inclusion

MX → MX ⊗Q ∧WF given by x 7→ x⊗ 1.

Again this should be minimal which amounts to that d(W (i)) ⊂ MX ⊗Q ∧ ⊕i−1
j=2 W

(j)
F ,

and for this to be a model of the fibration the cohomology of the dga (MX ⊗ ∧WF , d)

should be the cohomology of Y . Similar to the minimal model, the differential can be

constructed by dualizing the Moore-Postnikov tower.

We prove a few lemmas.

Lemma 2.1.1. Let (A, d) be a minimal rational finitely generated simply connected dga.

Suppose we are given a set of k equations

dxi = ai +
k∑
j=1

aijxj

with each ai and a
i
j ∈ A and a prescribed sequence 2 ≤ n1 ≤ ... ≤ nk. Then there is an

algorithm to determine the (possibly empty) affine space of solutions with the condition

|xi| = ni, presented as a solution s = (s1, ..., sk) and a basis of a space W such that the

affine space s+W is the set of solutions in the Q-vector space V = ⊕k
i=1A

(ni).

6
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Proof. This is simply a matter of solving a matrix equation. Indeed, with V as given in

the statement of the lemma, we construct a pair of maps D,T : V → ⊕k
i=1A as follows:

on v = (v1, . . . , vk) define

Dv = (dv1, ..., dvk)

Tv = (
k∑
i=1

a1i vi, ...,
k∑
i=1

aki vi)

and set

C = (a1, ..., ak)

so that the system of equations is equivalent to

Dv = Tv + C

which we can now turn into a matrix equation. In particular, as each A(ni) can be

represented as a rational vector space, as can A itself, and since the differential is Q-

linear, so is D, as is T by construction. Then picking a basis for V and A as Q-vector

spaces, we have the above equation as a matrix equation, and the space of solutions can

be constructed via row reduction.

Given a square

MA MY

MX MB

and a relative minimal model (MB⊗∧W,d) with a differential d which is linear through

dimension n, where n is the cohomological dimension of a CW pair (X,A) for which MX

and MA are minimal models, and MX → MA models the inclusion A ↪→ X.
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Taking the pushout of bottom right triangle, and replacingMY with the given relative

model we arrive at the following triangle, for which we would like to construct the dashed

line:

MX ⊗ ∧W

MA MX

f∗
ϕ∗

i∗

Lemma 2.1.2. Given a diagram as above, there is an algorithm to determine whether

there exists a map ψ such that i∗ ◦ ψ = f ∗.

Proof. Fix a basis for W , written as a choice of elements w
(i)
j where i ranges over the

positive dimensional degrees, and j ranges from 1 to the dimension ofW (i). Constructing

a map for the dashed line as in the above diagram is simply a matter of picking a target

for each element w
(i)
j , as MX ⊗ ∧W is the free commutative graded MX-algebra. The

only conditions then to check on such a map ψ are dMX
◦ψ = ψ ◦d and f ∗ = i∗ ◦ψ. Then

for each w
(i)
j we have the equations dMX

(ψ(w
(i)
j )) = ψ(d(w

(i)
j )) and f ∗(w

(i)
j ) = i∗(ψ(w

(i)
j )).

By assumption, d is linear through the cohomological dimension of (X,A), and in

higher dimensions there is a unique lift of any element in MA. Then we have a fixed

ψ(w
(i)
j ) for i > n.

Otherwise we know that dw
(i)
j takes the form

mi
j +

∑
k<i,1≤k≤dim(W (i))

mi,k,l
j w

(k)
l

where each mi
j and m

i,k,l
j ∈ MX . Putting all of this together then, we obtain the set of

equations:

dMX
(ψ(w

(i)
j )) = mi

j +
∑

k<i,1≤k≤dim(W (i))

mi,k,l
j ψ(w

(k)
l )

8
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and by lemma 2.1.1 we can construct the affine space of solutions to these equations as

a subspace of V = ⊕i,jA
(i) (note that we have a copy of A(i) for each generator in W (i).)

We can call this space S.

We consider the affine space Ṽ ⊂ V given by:

⊕i,ji
∗−1(f ∗(w

(i)
j ))

and we simply have to compute S ∩ Ṽ , which is the intersection of two affine subspaces

of a Q-vector space, which can be computed.

2.2 Rational Fibrewise HM-Spaces

Before we are able to prove the lifting result, we will need two different generalizations

of the notion of an H-space.

Definition 2.2.1. A fibrewise H-space is a fibration p : Y ↠ B with a section e : B → Y

and a multiplication map m : Y ×BY → B which is associative up to fibrewise homotopy,

and for which the section acts as an identity, that is the maps m ◦ (id× (e ◦ p)) ◦∆ and

m◦((e◦p)× id)◦∆ are fibrewise homotopic to the identity on Y , where ∆ : Y → Y ×B Y

is the diagonal map.

We note that this is stronger than simply requiring an H-space structure on each

fiber—the fibers need to have an H-space in some strong uniform sense. We want to

weaken this definition slightly however, to include spaces which may not have a section.

A motivating example here is the Hopf fibrations. Given a map f : X → S4 from some

manifold X, the lifting algorithm we construct will decide whether the map f can be

lifted across the fibration p : S7 ↠ S4 with fiber S3, despite the fact that this doesn’t

9
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admit a fibrewise H-space structure. This fibration admits an H-space structure on each

fiber, and this choice is continuous in a precise sense: for any map f : X → S4 for which

the pullback of p across f admits a section, the H-space structures on each fiber can be

chosen on the pullback so that the section is the identity. We then want to think of this

Hopf fibration as a sort of group without identity. One way of looking at a group without

identity is to look at the notion of a heap.

Definition 2.2.2 (Heap). A Mal’cev operation on a set H is a ternary operation τ which

satisfies

• ∀a, b, c, d, e ∈ H, τ(τ(a, b, c), d, e) = τ(a, τ(b, c, d), e) = τ(a, b, τ(c, d, e))

• ∀a, b ∈ H, τ(a, a, b) = b = τ(b, a, a)

The first of these is a kind of associativity, and the second is often referred to as the

Mal’cev condition. A Heap is a set with a Mal’cev operation.

If (H, τ) is a heap, it is a straightforward exercise to check that for any e ∈ H, the

operation a ∗ b = τ(a, e, b) turns H into a group. On the other hand if we have a group

(G, ∗) the operation τ(a, b, c) = a ∗ b−1 ∗ c is a Mal’cev operation which turns the group

into a heap. It is natural then to consider a heap to be a group with a forgotten identity

element. The choice of any distinguished element recovers the structure of a group.

If an H-space is a ‘grouplike’ space, we want to look at something ‘heaplike.’ This

motivates the next definition.

Definition 2.2.3. A fibrewise HM -space (for Hopf-Mal’cev) is a fibration p : Y ↠ B

together with a fibrewise homotopy Mal’cev operation, i.e. a map τ : Y ×B Y ×B Y → Y

for which the following diagrams are commutative, up to fibrewise homotopy:

10
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Y ×B Y ×B Y ×B Y ×B Y Y ×B Y ×B Y

Y ×B Y ×B Y Y

τ×id×id

id×id×τ

τ

τ

Y ×B Y Y ×B Y ×B Y Y ×B Y

Y

id×∆

τ
π1

∆×id

π2

where πi denotes projection onto the i(th) coordinate. These are exactly the same axioms

as for a heap of sets, we simply require only that they commute up to fibrewise homotopy

rather than on the nose.

On sets, the choice of an identity element turns a heap into a group. An analogous

result holds here.

Lemma 2.2.4. Let p : Y ↠ B, τ be a fibrewise HM-space, and let e : B → Y be a section

of p. Then with multiplication map m : Y ×BY → Y given by τ ◦(id×(e◦p)×id)◦(id×∆),

p is a fibrewise H-space.

Proof. We begin by observing that sincem is defined on elements of the fibrewise product

(a, b) ∈ Y ×B Y , we have that p(a) = p(b) so that we have (id× (e ◦ p)× id) ◦ (id×∆) =

(id×(e◦p)×id)◦(∆×id). Then checking associativity of multiplication is a straightforward

calculation. Indeed we have:

m ◦ (m× id) =

τ ◦ (id× (e ◦ p)× id) ◦ (id×∆) ◦ ((τ ◦ (id× (e ◦ p)× id) ◦ (id×∆))× id) =

τ ◦ (τ × id× id) ◦ (id× (e ◦ p)× id× (e ◦ p)× id) ◦ (id×∆×∆)

simply by substitution, and then applying the commutativity of operations on different

copies of the product. Since the fibrewise Mal’cev operation has to also be homotopy

11
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associative, this is homotopic to

τ ◦ (id× id× τ) ◦ (id× (e ◦ p)× id× (e ◦ p)× id) ◦ (id×∆×∆)

Applying the equality above we have that this is equal to

τ ◦ (id× id× τ) ◦ (id× (e ◦ p)× id× (e ◦ p)× id) ◦ (∆× id×∆)

and finally this can be rewritten as

τ ◦ (id× (e ◦ p)× id) ◦ (∆× id) ◦ (id×m)

and again applying the above equality we have this is equal to

τ ◦ (id× (e ◦ p)× id) ◦ (id×∆) ◦ (id×m) = m ◦ (id×m)

To check that the section acts as an identity, we first observe that ((e ◦ p)× id) ◦∆ ◦

(e ◦ p) = ∆ ◦ (e ◦ p) = (id × (e ◦ p)) ◦∆ ◦ (e ◦ p) since (e ◦ p) ◦ (e ◦ p) = (e ◦ p) and for

any map f we have (f × f) ◦∆ = ∆ ◦ f .

Now we compute

m ◦ (id× (e ◦ p)) ◦∆ =

τ ◦ (id× (e ◦ p)× id) ◦ (id×∆) ◦ (id× (e ◦ p)) ◦∆ =

τ ◦ (id×∆) ◦ (id× (e ◦ p))×∆

and by the axioms of a fibrewise HM -space, τ ◦ (id × ∆) is fibrewise homotopic to π1

12
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and the above map is fibrewise homotopic to

π1 ◦ (id× (e ◦ p)) ◦∆ = id

An analogous argument shows that m ◦ ((e ◦ p)× id) ◦∆ is also fibrewise homotopic to

the identity, and hence p with section e and multiplication m is a fibrewise H-space.

When dealing with fibrations, we have two different ways of generalizing rationaliza-

tions. The first is to work with the rationalization of the base and total space. That

is, given a fibration p : Y → B we can construct a rationalization pQ : YQ → BQ. This

satisfies that for any commutative square

Y Y ′

B B′

where Y ′, B′ are rational spaces, there is a (unique up to homotopy) factorization

through the rationalization. If we take this fibration and pull back along the rationaliza-

tion p : B → BQ we get a fibration which we will denote pQ : Y Q ↠ B which is called

the ‘fibrewise rationalization’ of p. It satisfies a universal property in the category of

fibrations over B: given a map f : Y → R over B, where R ↠ B is a fibration with

fiber a rational space, f factors uniquely up to homotopy through the fibrewise ratio-

nalization. In particular, the homotopy groups of the fiber are rationalizations of the

homotopy groups of the fiber of p.

We will need the following lemma about fibrewise rationalizations.

Theorem 2.2.5. Let p : Y ↠ B be a fibration of simply connected spaces with simply

connected fiber, with a relative minimal model (MB ⊗ MF , d) which is linear through

dimension k. Then for any n ≤ k the nth Moore-Postnikov stage LQ
n of the fibrewise

13
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rationalization pQ : Y Q ↠ B is a fibrewise HM-space, and the maps LQ
n ↠ LQ

n−1 are all

fibrewise HM-maps, as are the classifying maps kn : Ln−1 → B ×K(πn(F )⊗Q, n+ 1).

Proof. We will proceed in two stages. We start by showing the rationalization pQ : YQ ↠

BQ is a fibrewise HM-space, and then we lift that structure to the fibrewise rationalization.

To see that the rationalization is a fibrewise HM-space is straightforward: starting with

the relative minimal model, we can construct a coMal’cev operation. In particular we

have the relative minimal model presented as MB⊗∧WF where WF is the graded vector

space built out of the rational homotopy groups of F . The linearity condition on the

differential ensures that the map MB ⊗ ∧WF → (MB ⊗ ∧WF )
⊗MB

3 induced by the map

sending w ∈ W to w⊗ 1⊗ 1− 1⊗w⊗ 1+ 1⊗ 1⊗w is a map of dgas. This map satisfies

properties dual to those of the Mal’cev operation, and so it gives us a fibrewise heap

structure on the rationalization. We want to first show that the k-invariants on each

Postnikov stage of the rationalization are HM -maps. The spaces K(πn(F ) ⊗ Q, n + 1)

are H-spaces, and so the operation (a, b, c) = a− b+ c endows it with the structure of an

HM -space. This gives the trivial BQ fibration BQ ×K(πn(F )⊗Q, n + 1) the structure

of a relative HM -space. A simple computation shows that the coMal’cev operation this

induces on the relative minimal model on this fibration is precisely the map sending α

to α ⊗ 1 ⊗ 1 − 1 ⊗ α ⊗ 1 + 1 ⊗ 1 ⊗ α, from which it follows that the k-invariant on the

corresponding stage of the Moore-Postnikov tower is an HM -map.

Ln,Q B × E(πn(F )⊗Q, n)

Ln−1,Q B ×K(πn(F )⊗Q, n+ 1)
kn,Q

⌟

Because the maps on the bottom and right of this pullback square are HM -maps, so

is the map Ln,Q → Ln−1,Q. Them we need to show that this structure pulls back appro-

priately to the fibrewise rationalization. In particular since the fibrewise rationalization

14
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is a pullback, we can define the Mal’cev operation on LQ
n by pulling back the operation

on the rationalization:

(LQ
n )

×B3 L
×BQ3

n,Q

LQ
n Ln,Q

B BQ

⌟

τn,Q
τn

The associativity and Mal’cev properties are satisfied trivially since this is a pullback

of a fibrewise HM -space structure on the rationalization.

Finally, we will need one more technical lemma about fibrewise H-spaces. This is a

fibrewise version of lemma 3.6 in [3] which tells us that the multiplication by r map on

a fibrewise H space kills torsion elements of cohomology.

Lemma 2.2.6. Let p : H → B be a fibrewise H-space of finite type, A a finitely generated

coefficient group, and α ∈ H(n)(H;A) a cohomology class with the property that tα ∈

p∗(Hn(B;A)) for some positive t. Then there is an r > 0 such that χ∗
rα ∈ p∗(Hn(B;A)),

where χr : H → H is the ‘multiplication by r map,’ i.e. χ2(a) = m(a, a), and χn(a) =

m(a, χn−1(a)).

Proof. Note that in the language of the Serre spectral sequence we can rewrite this

condition as saying that we have an element in α ∈
⊕

p+q=nE
p,q
∞ such that tα ∈ En,0

∞ for

some t. Then it suffices to show the following: suppose we have some torsion element

of β ∈ Ep,q
∞ where q ≥ 1, then there exists some r such that χ∗

rα = 0. Indeed, since the

direct sum above is finite, then we can take the direct sum decomposition of the element

α into a finite sum of terms βq in E∞
p,q, for which some rq will suffice, and then χr1...rn

15
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will kill all but β0 as desired. Recall that the E1 page of the Serre spectral sequence has

terms Ep,q
1 = Cp(B;Hq(F ;A)).

Suppose then that we have some torsion cohomology class β as above, there is some

corresponding cocycle γ which survives to Ep,q
∞ , but tγ does not survive. By lemma 3.5

of [3] we know that there is some s such that χ∗
s(H

q(F ;A)) ⊆ tHq(F ;A), from which we

can conclude that χ∗
s(C

p(B;Hq(F ;A))) ⊆ tCp(B;Hq(F ;A)), and hence χ∗
s(γ) does not

survive to Ep,q
∞ , as desired.

16



Chapter 3

The Lifting Algorithm

We are now ready to provide the algorithm for a specific collection of homotopy lifting

problems.

In particular, we have the following theorem:

Theorem 3.0.1. There is an algorithm that takes as input:

• simply connected finite type CW complexes X,B, Y

• a fibration p : Y ↠ B with simply connected fiber and a map f : X → B as in the

diagram below

Y

X B

p

f

• a relative minimal model (MB ⊗MF , dL) for p : Y ↠ B whose differential dL is

linear through the dimension of X

and decides whether there exists a lift g : X → Y of f .

17
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Proof. Let d be the dimension of X. To simplify the proof a bit, we pullback p across f

to obtain a fibration p̂ : Ŷ → X, for which we will determine if a section exists.

We will denote by Pn the n
th Moore-Postnikov stage of p̂ : Ŷ ↠ X. The linear relative

minimal model pulls back to model p̂ so we still have a relative minimal model for this

fibration which is linear through the dimension of X. Using this minimal model, we can

apply lemma 2.1.2 to construct a map of dgas dual to a lift. Here the algorithm might

fail to find a lift, in which case we know none exists. Indeed, if a lift existed, applying

the equivalence would produce a dual map on dgas, so that if no such map exists, no

section can exist.

We assume then that we found such a map. In particular we have ϵ : MX ⊗∧WF →

MX which is a map of dgas, whereMX⊗∧WF with differential d∗L is the relative minimal

model of p̂.

We will attempt to construct a section for p̂ inductively as follows: for each n through

dimension d we will construct a fibration hn : Ln ↠ X, as well as a section en and

rational equivalences ϕn : Ln → Pn, θn : Pn → Ln over X, where the composition θn ◦ ϕn

is multiplication by some integer sn under the fibrewise H-space structure on Ln with

the section en. In particular, these will be constructed so that each hn is a fibrewise

HM -space with operation τn, and there are maps rn : Ln → Ln−1 which commute with

the fibrewise HM -structure and form a Moore-Postnikov tower for hd. At each stage we

will also fix a fibrewise rationalization un to the corresponding Moore-Postnikov stage

LQ
n which is isomorphic to PQ

n . By lemma 2.2.5 each LQ
n has the structure of a fibrewise

HM -space, and we will ensure that the maps un are each HM -maps.

At each stage, in the construction of ϕn, it is possible for the construction to fail, and

this indicates that no section of p̂ exists. We will see why when we construct ϕn.

Since the space is simply connected, we set h1 : X ↠ X to the identity and the other

data is trivial.

18
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Then we assume we have constructed hn−1, en−1, ϕn−1,θn−1 and un−1. We start by

constructing the map hn. We do this by picking Ln ↠ Ln−1 as a K(πn(F ), n) fibration.

This will then serve as the top stage on the Moore-Postnikov tower for hn : Ln ↠ X. This

is equivalent to picking a classifying map in [Ln−1, K(πn(F ), n + 1)]B, or alternatively,

a cohomology class in Hn+1(Ln−1; πn(F )). By the universal coefficient theorem this is

isomorphic to

Hom(Hn+1(Ln−1), πn(F ))⊕ Ext1Z(Hn(Ln−1), πn(F ))

From the relative minimal model of p̂ we have a map

d∗L|W (n)
F

: W
(n)
F → Hn+1(Ln−1;Q)

and sinceW
(n)
F is simply (πn(F )⊗Q)∗ or equivalently Hom(πn(F ),Q) we have an element

of

Hom(Hom(πn(F ),Q), H(n+1)(Ln−1;Q))

which we will denote kn,Q.

Now since Ext(Hn(X),Q) is trivial, the universal coefficient theorem lets us view the

above as isomorphic to

Hom(Hom(πn(F ),Q),Hom(H(n+1)(Ln−1),Q))

by taking the dual map then, we obtain an element

Hom(H(n+1)(Ln−1)⊗Q, πn(F )⊗Q)

From this element d∗L|W (n)
F

∈ Hom(Hn+1(Ln−1) ⊗ Q, πn(F ) ⊗ Q) we will construct an

element of Hom(Hn+1(Ln−1), πn(F )). In particular, there is a natural mapHn+1(Ln−1) →
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Hn+1(Ln−1⊗Q) given by a 7→ a⊗1, and so by composing with this map we can construct

d̃∗L|W (n)
F

∈ Hom(Hn+1(Ln−1), πn(F )⊗Q). Next we fix a minimal generating set for both

Hn+1(Ln−1) and πn(F ). In particular, from the basis for W (n) we have a minimal set of

generators for the free part of πn(F ) so we simply adjoin a minimal generating set for the

torsion part. Next we consider d̃∗L|W (n)
F

(a) for each a in the generating set for Hn+1(Ln−1),

and we can write each of these as linear combinations of pure tensors b ⊗ p
q
for b in the

minimal generating set of πn(F ). Since the torsion part is killed in the tensor with Q we

know that only elements of the free part of πn(F ) show up in these linear combinations,

and these we can identify with basis elements for W (n). We consider the collection of all

p
q
arising as coefficients in these terms, and we can pick the least common multiple Q

of the qs. Then the subgroup QHn+1(Ln−1) lands in the image of πn(F ) under the map

πn(F ) → πn(F )⊗Q. Then precomposing with the multiplication by Q×N map gives us

a map which lifts to k̃n : Hn+1(Ln−1) → πn(F ), where N is an integer we will determine

shortly.

Since Hn+1(Ln−1; πn(F )) can be decomposed as

Hom(Hn+1(Ln−1), πn(F ))⊕ Ext1Z(Hn(Ln−1), πn(F ))

from the inclusion

Hom(Hn+1(Ln−1), πn(F )) ↪→ Hom(Hn+1(Ln−1), πn(F ))⊕ Ext1Z(Hn(Ln−1), πn(F ))

on k̃n we get an element kn ∈ Hn+1(Ln−1; πn(F )).

We now have a fibration hn : Ln ↠ X. We fix a choice of un, a rationalization along

the dashed line in the square below:
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Ln LQ
n

Ln−1 LQ
n−1

un

rn rQn

un−1

Next we construct the relative Mal’cev operation τn. To do this, we will consider the

following diagram.

L×X3
n LQ

n X × E(πn(F )⊗Q, n)

Ln X × E(πn(F ), n)

L×X3
n−1 LQ

n−1 X ×K(πn(F )⊗Q, n+ 1)

Ln−1 X ×K(πn(F ), n+ 1)

τQn ◦u×X3
n

τn

h
×X3
n

k̂Qn

⌟un

k̂n

hn

⌟

τn−1

kQn
un−1

kn

Our aim is to construct a τn along the dashed line making the diagram commute.

Essentially, we want to lift the Mal’cev operation from the fibrewise rationalization. We

note that if we construct a map τn making the above diagram commute, it will commute

with the map un.

Ln is a pullback, so we can build τn by constructing a map to X × E(πn(F ), n) that

commutes with the rest of the pullback square. Starting at Ln×XLn×XLn we can follow

along the map k̂Qn ◦ τQn ◦ u×X3
n . We want to lift this to a map to X ×E(πn(F ), n+ 1), in

such a way that it is also a lift of the map kn ◦τn−1 ◦h×X3
n : L×X3

n → X×K(πn(F ), n+1).

We note that X × E(πn(F ), n) is also an HM -space. Then we have a map τ̂n : X ×

E(πn(F ), n)
3 → X × E(πn(F ), n), and composing this with k̂×X3

n provides a map ψn :

L×X3
n → X × E(πn(F ), n). Since k̂Qn commutes with the fibrewise HM -space structure,

we know that ψn commutes with the diagram:
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L×X3
n LQ

n X × E(πn(F )⊗Q, n)

Ln X × E(πn(F ), n)

L×X3
n−1 LQ

n−1 X ×K(πn(F )⊗Q, n+ 1)

Ln−1

τQn ◦u×X3
n

τn

ψn

h
×X3
n

k̂Qn

⌟un

k̂n

hn

τn−1

kQn
un−1

and so it remains to show that it commutes with

L×X3
n

X × E(πn(F ), n)

L×X3
n−1

Ln−1 X ×K(πn(F ), n+ 1)

ψn

h
×X3
n

τn−1

kn

which is where we determine N as mentioned above. Commutativity of the diagram

above hinges on simply the two maps to X ×K(πn(F ), n + 1) agreeing, or equivalently

equality of the pair of cohomology classes in H(n+1)(L×X3
n ; πn(F )). One of these maps

factors through E(πn(F ), n) and so the corresponding cohomology class is trivial. Then

we only need to look at the cohomology class from the bottom path in the diagram. Since

the diagram commutes after rationalization, we know this class is a torsion element. If

we construct a k̃n with N = 1 then look at the corresponding torsion class, we set N to

be m times the order of this class, where m will be determined by an analogous argument

for extending the section. Then considering the classes κn and κ̃n in H(n+1)(Ln−1; πn(F ))
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represented by kn and κ̃n, we have κn = Nκ̃n, and so pulling back across the map

τn−1 ◦ r×X3
n we get that the torsion element from κ̃n will be killed by this multiplication.

Then the class we get pulling back kn is trivial, and so the above diagram commutes.

Then we can pull back ψn across kn and we have a τn as desired.

That τn satisfies the conditions for a fibrewise Mal’cev operation is a straightforward

consequence of the fact that we are defining τn by pulling back a Mal’cev operation across

a map that respects the fibrewise Mal’cev operation.

Now we construct the section.

Again we are looking for a map along the dashed line in the following diagram:

LQ
n X × E(πn(F )⊗Q, n)

Ln X × E(πn(F ), n)

X LQ
n−1 X ×K(πn(F )⊗Q, n+ 1)

Ln−1 X ×K(πn(F ), n+ 1)

k̂Qn

kQn

⌟

hn

kn

en−1

un

un−1

k̂n

⌟

eQn

en

and by an analogous argument to the one above, the obstructions to making such

a lift lie in the torsion part of Hn+1(X; πn(F )), and so constructing this diagram with

m = 1 above will give us such a torsion element, and setting m to be the order of this

element will kill the obstruction, allowing us to pick an en.

We are now ready to construct ϕn : Ln → Pn. By construction, Ln is fibrewise

rationally equivalent to Pn, since the fibers are rationally equivalent, and the k-invariants

are the same up to torsion. Then it remains only to show that we can actually compute

such a rational equivalence. Suppose we try to build a map along the dashed line in the
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following diagram, making it commute:

Ln Pn E(πn(F ), n)

Ln−1 Pn−1 K(πn(F ), n+ 1)

rn

ϕn−1

⌟

ϕn

Since the map ϕn−1 is a rational equivalence, and rn followed by kn is 0, we know that

the obstruction to lifting ϕn−1 ◦ rn is torsion. With the choice of section, we can endow

Ln with a fibrewise H-space structure, and then an application of lemma 2.2.6 tells us

that if we precompose rn in the above diagram with χk for some integer k, we can push

the obstruction to lifting to an element of Hn+1(B; πn(F )), which will in particular be

an obstruction to lifting ϕn−1 ◦ rn ◦ en to Pn. We claim here that either this obstruction

vanishes, or there is no section to Pn.

Indeed, suppose there is a section γ : X → Pn. Then consider the following diagram.

X

Ln Pn Ln

Ln−1 Pn−1 Ln−1

K(πn(F ), n+ 1) K(πn(F ), n+ 1) K(πn(F ), n+ 1)

γ γ̃

rn pn rn

ϕn−1

kn

θn−1

kpn kn

α β

We want to show that the map γ lifts to a section γ̃. First, we note that we have yet

to define the maps α and β. These can be described by maps on πn(F ), and in order

to make the diagram commute, we simply have to make sure we pull back the correct

cohomology classes on Ln and Pn in each spot. In particular, by construction of kn we

can set α to be the map which kills torsion elements and multiplies the free part by

QN . Similarly, β can be the map which kills torsion and multiplies the free part by sn
QN

.
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Since rn is a pullback of the universal K(πn(F ), n) fibration, whether θn−1 ◦ pn ◦ γ lifts

to Ln depends only on the map to K(πn(F ), n+1), but by commutativity, this is simply

β ◦kPn ◦pnγ and since this factors through the homotopically trivial map kPn ◦pn we know

it is homotopically trivial. Then we have a section γ̃ : X → Ln. An identical argument

on the other side of the diagram allows us to lift ϕn−1 ◦ rn ◦ γ̃ to Pn, and create a section

γ′ : X → Pn. Then we have the following commutative diagram:

X

Ln Pn

Ln−1 Pn−1

γ̃ γ′

ϕn

rn pn

ϕn−1

Using the same argument above, this time endowing Ln with a fibrewise H-space

structure with the section γ̃, lemma 2.2.6 together with the existence of γ′ guarantees

that the obstruction to lifting rn ◦ϕn−1 to ϕn vanishes. This contradicts that en−1 ◦rn ◦en

does not lift since en ◦ ϕn now provides a lift.

Finally then it remains to construct θn. In particular we want to construct a θn so

that θn ◦ ϕn is χsn on Ln for some integer sn. For each such integer then we have a

diagram:

Ln Ln

Pn Pn−1 Ln−1 Ln−1

K(πn(F ), n+ 1) K(πn(F ), n+ 1)

χsn

ϕn
θn

pn θn−1
χS

kn kn

χS

In particular, the obstruction to lifting θn−1 ◦ pn is given by the cohomology class

kn ◦ θn−1 ◦ pn and since θn−1 is a rational equivalence, the obstruction to such a lift is

torsion. Then for some S the obstruction vanishes, and we can produce a lift θn.
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Having completed our induction then, we can simply compose the final section en and

rational equivalence ϕn to obtain a section for p̂ as desired.
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Chapter 4

Immersions as a Lifting Problem

With the main algorithm for lifting problems provided, we now turn to the decision

problem discussed in the introduction. In particular we want investigate when we can al-

gorithmically reduce the question of manifold immersibility to a lifting extension problem

which can be plugged into the algorithm from the previous chapter.

4.1 Reducing Immersibility to Lifting

The first step is to use the h-principle of Hirsch and Smale—the existence of an

immersion homotopic to f : M → N is equivalent to the existence of a tangent bundle

monomorphism F : TM → TN sitting over f :M → N [7].

To convert this to a lifting problem, we will construct a bundle, which we will denote

by π : Mono(TM, TN) ↠M ×N , for any given manifolds M,N of dimension m,n. The

fibers of this bundle will be homotopic to the real Stiefel manifolds V (m,n), the space

of orthonormal m-frames in Rn. Over each (p, q) we want to think of this as the space of

immersions (we use here heavily the fact that GL(n) deformation retracts onto O(n) to

speak of an orthogonal structure and simplify some computation) of Tp(M) into Tq(N).
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To construct this space explicitly we will describe a system of transition maps on local

trivializations.

Here we have to set up some notation. We will consider the tangent bundle over M

constructed as a collection of charts with transition maps, in particular a collection of

opens U overM with transition maps φij on (Ui∩Uj)×V (m,n) ≃ π−1(Ui∩Uj) satisfying

that φjk ◦ φij = φik on π−1(Ui ∩Uj ∩Uk). Similarly we have the tangent bundle over N ,

with local trivializations V and transition maps ψij. Then we construct a V (m,n)-bundle

on M ×N as follows: we construct an open cover W on M ×N by taking the open sets

W = U×V for each U, V in U ,V respectively. An intersection Wi∩Wj can be written as

(Ui1∩Uj1)×(Vi2∩Vj2) and then the transition map can be defined on orthogonal frames O

by ζi,j(O) = ψ∗
i2j2
Oφi1,j1 , which provides a linearly independent frame. A straightforward

calculation shows that for any triple intersection we have ζjkζij = ζik. It is here that we

use that we can, for example by singular value decomposition, retract GL(n) onto O(n)

to consistently create orthonormal frames from linearly independent ones. Then we have

constructed an open cover onM×N and described a coherent system of transition maps

between the trivialization at each open, and hence we have a V (m,n) bundle on M ×N .

It remains to show that it correctly parametrizes the tangent bundle monomorphisms.

Lemma 4.1.1. Fix a smooth map f :M → N . The set of homotopy classes of orthogonal

tangent bundle monomorphisms TM → TN over f is in bijective correspondence with

homotopy classes of lifts of the triangle:

Mono(TM, TN)

M M ×N
id×f

Proof. Fix open covers U and V of M and N admitting orthonormal frames.

Let [ϕ] be a homotopy class of tangent bundle monomorphism containing a specific
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monomorphism ϕ. Then pick some ϕ ∈ [ϕ] and we will construct a lift ψ : M →

Mono(TM, TN). Then for each u ∈ U and each v ∈ V with f(u) ∩ v nonempty ϕ

provides, for each p ∈ u with f(p) ∈ v, an m-frame O over (p, f(p)) viewed as a point

in the local trivialization over u× v, and again using a retraction to O(n) we can make

the frame orthonormal. If we had some u′ such that p ∈ u′ and v′ such that f(p) ∈ v′

then we would produce a frame O′, and these would be related precisely by O′ = ψ∗Oφ

where φ is the transition map from u to u′ for the tangent bundle on M and ψ is the

transition map from v to v′ for the tangent bundle on N . This is exactly the transition

map from u× v to u′ × v′ for Mono(TM, TN) on M ×N , so this produces a lift. If we

had picked a different ϕ′ ∈ [ϕ] they would be related by a homotopy, and again reducing

to coordinates over U × V , we could produce a homotopy of lifts.

Conversely, given a homotopy class [g] of lift of the above diagram, we pick some lift

g in the class and produce a tangent bundle monomorphism. Again, for each p in M ,

each u ∈ U containing p and each v ∈ V containing f(p) the lift g provides an m-frame

over (p, f(p)) which we can view as a map from TpM to Tf(p)N in the coordinates of u

and v. Again that this is a coherent choice of frame across all choices of u, v follows from

the fact that the transition maps agree. Finally, a different g′ ∈ [g] would be related by

a homotopy to g, and this can again be written out in coordinates.

We want to take this a step further however, as we would like to produce a lifting

problem where the fibration is uniform over all N , once dimensions are fixed. To do this,

we construct a bundle, in the same way as Mono(TM, TN) over BSO(m) × BSO(n),

which we will denote pm,n : Mono(m − planes, n − planes) ↠ BSO(m) × BSO(n). In

particular, we can again start with the universal bundles ESO(m) ↠ BSO(m) and

ESO(n) ↠ BSO(n), written out in coordinates over some systems of local trivializations.

We prove the following theorem.
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Lemma 4.1.2. There is a bundle pn.m : Mono(m − planes, n − planes) ↠ M × N such

that for all smooth manifoldsM,N of dimension m,n respectively, there is a commutative

diagram:

Mono(TM, TN) Mono(m− planes, n− planes)

M ×N BSO(m)×BSO(n)

pm,n

κm×κn

where κm, κn are the classifying maps for the tangent bundles of M,N respectively. Fur-

thermore, the above diagram is a pullback square.

Proof. Again we pick a covering collection of opens U on BSO(m) and V on BSO(n)

admitting local trivializations, and consider the open cover W of BSO(m) × BSO(n)

by taking sets of the form W = U × V . Then over each of these sets we have a trivial

V (m,n) bundle and we construct transition maps from U × V to U ′ × V ′ as before: if φ

is the transition map from U to U ′ and ψ is the transition map from V to V ′ then over

each point in (U × V ) ∩ (U ′ × V ′) = (U × U ′) ∩ (V × V ′) we have the transition map

ζ(O) = ψ∗Oφ.

The map Mono(TM, TN) → Mono(m− planes, n− planes) works as follows: we can

pull back the collection U on BSO(m) across κm to form a collection of opens on M ,

and the local trivializations of ESO(m) ↠ BSO(m) pull back to trivializations of the

tangent bundle ofM . Similarly, the collection of opens V pulls back across κn along with

the trivializations of ESO(n) ↠ BSO(n). Then for any point (p, q) ∈ M × N we can

pick some κ−1
m (u) × κ−1

n (v) containing (p, q) and we can use this choice of trivialization

to map the fiber over (p, q) to the fiber over κm(p) × κn(q). That this describes a map

coherently over all choices of trivialization of BSO(m) and BSO(n) follows from the

fact that the tangent bundles of M and N are pullbacks of ESO(m) ↠ BSO(m) and

ESO(n) ↠ BSO(n) respectively.

Finally, this is a pullback square because firstly it would factor through the pullback,
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and the map to the pullback would be a map of fiber bundles with the same base, and

hence a projection of fibers, and since the fiber is the same it is hence a homeomorphism.

We can put this together with lemma 4.1.1 to get the following theorem:

Theorem 4.1.3. Given M,N, f where M is a smooth m-dimensional manifold, N is

a smooth n-dimensional manifold and f is a smooth map between them, with pm,n :

Mono(m− planes, n− planes) ↠ BSO(m)×BSO(n) as in lemma 4.1.2, then there is a

bijective correspondence between homotopy classes of lifts of the diagram:

Mono(m− planes, n− planes)

M BSO(m)×BSO(n)
(κm×κn)◦(id×f)

pm,n

and homotopy classes of tangent bundle monomorphisms over f .

4.2 Immersibility in Odd Codimension

We prove the following:

Theorem 4.2.1. There is an algorithm that on input (M,N, f), where M,N are smooth

oriented manifolds of dimension m,n respectively and f : M → N is a smooth map

between them, decides whether there is an immersion g : M → N such that g ≃ f , as

long as n−m is odd.

Proof. Suppose then we are given the triple (M,N, f) as in the statement of the theorem.

Then applying theorem 4.1.3 we want to prove that the existence of such a lift is decidable.

There are two obstructions to using theorem 3.0.1 then, firstly we need to construct a

relative minimal model of the bundle Mono(m−planes, n−planes) ↠ BSO(m)×BSO(n)
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which has linear differential and secondly need to address the possibility that M is not

simply connected, (preventing the use of any of the lifting algorithms.)

To construct the relative minimal model the first step is to determine a minimal

model for both the base and the fiber. We consider two cases, based on the parity of n.

In the case that n is even then, the rational cohomology of BSO(n) has a generator for

each Pontrjagin class, and one for the Euler class which squares to the top Pontrjagin

class. Since the codimension is odd, so is m and hence BSO(m) has rational cohomology

generated only by the Pontrjagin classes. Then we have for the base the minimal model

B = Q⟨α(4i)
i , β

(4j)
j , ε(n)⟩

where i ∈ {1, ..., n
2
− 1}, j ∈ {1, ..., m−1

2
}.

The fiber is the Stiefel manifold Vm(Rn) which is a homogeneous space SO(n)/SO(n−

m). To find the minimal model of this we will use the Cartan-Weil model for a homo-

geneous space, as in [8]. In particular this allows us to model Vm(Rn) up to homotopy

via a fibration SO(n) ↪→ Vm(Rn) ↠ BSO(n − m), which is given by the pullback of

the universal SO(n) fibration across the map BSO(n −m) → BSO(n) induced by the

inclusion SO(n−m) ↪→ SO(n). Putting this together the underlying graded vector space

generating the minimal model for the fiber is

VF = Q{γ(4k−1)
k , σ(n−1)}

with k ∈ {n−m+1
2

, ..., n
2
− 1}.

Then the relative minimal model (B⊗∧VF , d̃) is determined by the restriction of the
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differential to VF . In order to compute this, we start by constructing a map

ESO(m)× ESO(n) Mono(m− planes, n− planes)

BSO(m)×BSO(n)

f

which we will define as follows. Over a particular local trivialization Ui of ESO(m) ×

ESO(n) → BSO(m)×BSO(n) we consider a point (p,Om, On) where p ∈ Ui, Om is an

orthogonal m ×m matrix and On is an orthogonal n × n matrix. Then the columns of

OmIm,nO
†
n will provide an orthogonal frame, where Im,n is the m× n matrix sending the

standard basis of Rm to the first m elements of the standard basis of Rn. To check that

this defines a coherent map is simply a matter of checking that it behaves the same on

an intersection of local trivializations, but this follows immediately from the definition

of Mono(m− planes, n− planes).

In the world of Q-dgas then this map is dual to a map over B

(B ⊗ ∧VF , d̃)
f∗→ B⟨a(4i−1)

i , e(n−1), b
(4j−1)
j |dai = αi, dbi = βi, de = ε⟩

and since this is a DGA map over B, it is determined by its action on elements of VF .

We then have to determine both f ∗(γk) and f
∗(σ).

γk is an element of (π(4k−1)(Vm(Rn)) ⊗ Q)∗ and in this context f ∗ is the dual of the

map induced by f , π(4k−1)(SO(m)× SO(n)) → π(4k−1)(Vm(Rn)). To understand what f

does to the fiber SO(m)× SO(n) we decompose it as a sequence of steps:

SO(m)× SO(n)
include×−1−→ SO(n)× SO(n)

multiply−→ SO(n)
project−→ Vm(Rn)

and dualizing this allows us to write
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f ∗(γk) =


ak − bk k ≤ m

ak otherwise

and

f ∗(σ) = ε

which allows us to determine f ∗. Because this map has to commute with the differential,

we can conclude that for k ≤ m

f ∗(d̃(γk)) = βk − αk

but the only preimage of βk − αk under f ∗ is βk − αk and so d(γk) = βk − αk. Similarly

for k > m we conclude d̃(γk) = ak and d̃(σ) = ε. Then we have computed a relative

minimal model (B ⊗ ∧VF , d̃) for the bundle in our lifting problem.

In the case where n is odd, and so m is even, we have for the base

B = Q⟨α(4i), β(4j), ε(m)⟩

with i ∈ {1, . . . , n−1
2
}, j ∈ {1, . . . m

2
− 1}. For the fiber we have the vector space

VF = Q{γ4k−1
k }

where k ∈ {n−m+1
2

, . . . , n−1
2
} (the argument is the same as the other case, we simply don’t

have any Euler class in the fiber since both n and n −m are odd.) Again we construct

the map f as before, and it still dualizes a map which decomposes on the fiber in the

same way.

Finally, we address the case where M is not simply connected. Essentially we are
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going to replace M by a simply connected complex and create a lifting problem so that

a lift exists exactly when one exists over M . Since the construction is nearly identical to

the plus construction introduced in [9], we will call this space M+ (the only difference is

that for the plus construction we want a space with perfect fundamental group so we get

a space with actually identical cohomology).

We constructM+ in two steps, following fairly directly the idea for the plus construc-

tion. First, we pick a generating set for π1(M), (for instance choosing the complement of

a spanning tree of the 1-skeleton.) We then add 2-cells with attaching maps along each

such generator. We call this space M̃ , and note that it is simply connected. We then

consider the homology long exact sequence of the pair (M̃,M). In particular since the

space M̃/M is a bouquet of 2-spheres we have the sequence

0 → H2(M) → H2(M̃) → H2(M̃,M)
δ→ H1(M) → 0

Which gives the short exact sequence

0 → H2(M) → H2(M̃) → ker δ → 0

Since H2(M̃,M) is free abelian, so is ker δ. Then H2(M̃) decomposes as a direct

sum H2(M)⊕ F for a free abelian group F . Since M̃ is simply connected, the Hurewicz

homomorphism gives us that each element of H2(M) is represented by a map S2 → M̃ .

Then to obtainM+ we attach 3-cells with attaching maps representing a basis of F . Since

the attaching maps form a basis of a subgroup of the free part of H2(M̃) when we look at

the homology sequence of the pair (M+, M̃) the map H3(M
+, M̃) → H2(M̃) has trivial

kernel, and so the homology groups above degree 2 are all isomorphic. In particular then

we have a spaceM+ which is simply connected but in degree 2 and higher has isomorphic
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homology to M .

Then consider the following diagram:

Mono(m− planes, n− planes)

M BSO(m)×BSO(n)

M+

f
f̃

g

We construct the lifting problem according to lemma 4.1.3, and we want to decide

if an f exists. Note that since BSO(m) × BSO(n) is rationally an H-space, we can

use the main result of [3] to construct an extension. We can pick a g and then look

for a lift f̃ and if such a lift exists we are done since restricting to M provides a lift

f . Then suppose no such lift exists. Then in particular no such lift exists rationally,

and the first obstruction to finding such a lift lies in Hn(M+; πn−1(F ) ⊗ Q) where F is

the fiber Vm(Rn) of the fibration over BSO(m) × BSO(n). By the universal coefficient

theorem, Hn(M+; πn−1(F )⊗Q) ∼= Hom(Hn(M
+), πn−1(F )⊗Q) and since the inclusion

i :M ↪→M+ induces an isomorphism between Hn(M
+) and Hn(M) above degree 2 (and

H1(M
+) is trivial) we can conclude that the obstruction is an obstruction to lifting f as

well.

To conclude then we summarize the steps of the algorithm:

Input:

• A pair of closed oriented smooth manifolds, M ,N as a pair of simplicial complexes

with C1-triangulations with dimN − dimM odd.

• A smooth map f :M → N

Output: ‘YES’ if there is an immersion homotopic to f , ‘NO’ otherwise.

Steps:
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1. Using the algorithms in section, compute simplicial approximations of the classi-

fying maps κM : M → BSO(M) and κN : N → BSO(N) for the corresponding

tangent bundles.

2. Construct the map ϕ :M → BSO(M)×BSO(N) where ϕ = (κM ×κN) ◦ (id× f).

3. Construct M+ and pick an extension ϕ+ of ϕ to M+ (we note here that we have to

include this step in general not only in the case thatM is simply connected because

it is not in general decidable if M is simply connected.)

4. Using the relative minimal model for the appropriate codimension, use the algo-

rithm from theorem 3.0.1 to decide if the map ϕ+ lifts to Mono(m − planes, n −

planes).

5. Output the result of the algorithm from the previous step.
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