
UC Irvine
ICS Technical Reports

Title
A spill code minimization algorithm for loops

Permalink
https://escholarship.org/uc/item/9rb045mv

Authors
Kolson, David J.
Nicolau, Alexandru

Publication Date
1992-06-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rb045mv
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A Spill Code Minimization Algorithm for Loops*
---- -

David J. Kolson and Alexandru Nicolau
Department ofinfor~ation and Computer Science

University of California, Irvine
Irvine, CA 92717-3425

Technical Report #92-110

29 June 1992

Abstract

Loops are the main source of parallelism in applications. The issue of
finding an optimal register allocation to loops has been an open issue for some
time. In this case optimal refers to the minimization of spills from registers
to memory. In this paper we address this issue and present an optimal, but
exponential algorithm which allocates registers to loop bodies such that the
spill code is minimal. We also show heuristic modifications to the algorithm
which perform in practice as well as the exponential approach. Finally, we
examine this algorithm's feasibility in production compilers.

•This work supported in part by NSF grant CCR8704367 and ONR grant. N0001486K0215.

tJ I). 1

,, ,,i

·.1

1 Introduction

Modern high-performance architectures rely on the exploitation of temporal and spatial paral­

lelism in order to achieve high throughputs. Advanced compiler techniques such as basic block

enlargement and trace scheduling [11, 10] provide the longer instruction streams necessary to keep

these machines operating at or near peak performance. In fact, recent research indicates that basic

block enlargement is a key component in achieving high degrees of parallelism in superscalar ma­

chines [19). Due to the increased basic block size effective register allocation for these instruction

streams becomes more complex.

Due to the importance of register allocation, optima/ solutions have been extensively studied

[14, 16, 6, 15). Because register allocation is an NP-Hard problem in the general case (1], attempts

at optimal solutions have either simplified the problem to index registers [14], or have used a

brute-force exponential method for general purpose registers with heuristics to prune the search

space [6, 7, 15).

This approach does yield an effective strategy for straight-line code, but the key to increased

performance in applications comes from speeding up loop bodies. Hence, we wish to minimize the

number of loads and stores, due to spill code, that will be repeatedly executed within the loop. In

order to extend the methods in [6, 7, 15, 14] to handle loops we must overcome the fundamental

difficulty in dealing with loops-that of matching loop entry and exit register usage. In order

for the loop body code to remain correct, the register usage at the loop's entry and exit must

be equivalent so that correct results are obtained. While (16] provided a technique for handling

simple loops, optimality was lost in the process.

The focus of this paper is to show the viability of extending the techniques in [15, 16] to deal

with loops by incorporating loop unrolling techniques into the algorithm. Previously it was not

known whether optimal register allocation for a loop could be accomplished, regardless of efficiency

of the algorithm. The difficulty was due to the fact that in order to ensure optimality for the overall

loop, matching of registers at the top and bottom of the loop body may require additional spills. To

optimally minimize these spills, loop unwinding with different register allocation in each unwound

iteration may be needed. Furthermore, it was not known whether any limited unwinding can be

guaranteed to converge and result in an optimal allocation.

In this paper we demonstrate that the algorithms for register allocation to basic blocks given

m [15, 16] can be extended to allocate registers to simple l<;>ops. We also present a heuristic

which, in practice, seems to perform as well as the exponential algorithm. In Section 2 we discuss

1

related work and the framework for our work. In Section :3 we present our algorithm and Section 4

details the theoretical aspects of our algorithm. Section 5 presents heuristics and Section 6 gives

results. Finally, we discuss the possibility of using our heuristic technique in production compilers

in Section 7.

2 Related Work

The general problem of register allocation is inherently NP-Hard and, as such, heuristic algorithms

have been commonly utilized to determine some sub-optimal "acceptable" solution. One of these

heuristic approaches is graph coloring (6, 5]. In allocating registers by graph coloring, the live

ranges of the variables in a basic block are examined. When two variable's lifetimes overlap they

are said to interfere. A graph is then constructed wherein the nodes represent the variables and

the edges joining nodes represent the interference of the two particular nodes being joined. The

task is then to "color" the graph nodes with the same number of colors as physical registers. If

no coloring of the graph is found, some variable is heuristically selected and spilled. As the key to

good register allocation in this scheme is the selection of a particular variable to spill, heuristics

for selection have received attention (4, 12] along with methods of coloring the graph (7, 2, :3].

Once the original code has been updated with the spill code, a new graph is then constructed to

reflect the new interferences. This process' is then repeated until some colorable graph is found.

However, many researchers have felt that for particularly critical code segments, such as the

innermost loops of time-sensitive applications, an optimal allocation is necessary. In a seminal

work on register allocation by Horwitz et al. (14], a method is presented for obtaining an optimal

register allocation to index registers which minimizes the number of loads and stores. Further work

was done which improved the efficiency of the Horwitz algorithm (18]. Further enhancements,

including extension of the basic algorithm to deal with simple loops was proposed by Kennedy in

(16]. More recent research has extended the basic idea in Horwitz's algorithm to include register

allocation for general purpose registers (15].

The algorithm presented in (15] in its most general form, which we shall call BB-OPT, explores

every possible register allocation at each virtual register access point in a basic block and produces

an allocation which contains the minimal memory traffic. That is, the allocation produced is

optimal with respect to the cost of memory loads and stores clue to spill code.

Briefly the algorithm is as follows. The register access pattern is the sequence of virtual register

2

reads and writes found in the basic block (BB) code. A virtual register read is denoted by the

virtual register name (e.g. VRl denotes a read of virtual register one) and a virtual register write

is.denoted by concatenating the virtual register name with'*' (e.g. VR2* denotes a write to virtual

register two). Further, the register access pattern reflects the semantics of the instruction, so that

if the instruction is VRl = VR2 + VR3 the corresponding register access pattern is VR2,

VR3, VRl *due to the fact that the arguments for an instruction are read before the write to the

destination occurs1 . This leads to the following definition:

Definition 2.1 A register access pattern is a sequence of virtual register reads and writes
fo·und in some code segment. A virtual register read is denoted by the virtual register name and a
virtual register write is denoted by the virtual register name concatenated with '*'.

Once the register access pattern is constructed, the initial register configuration is determined.

A configuration is a mapping of virtual to real registers. Thus,

Definition 2.2 A register configuration or register mapping is a binding of virtual to real
registers and represents the contents of the real registers at some point in computation.

If allocation starts at the beginning of the program, all real registers are assumed free; oth­

erwise the exiting configuration from the previous BB is used as the initial configuration for the

current BB. After this information has been derived, we can invoke Function BB-OPT which will

determine the optimal register allocation for the particular basic block under consideration2 .

When BB-OPT terminates, the new_state set will contain all possible exit virtual-to-real reg­

ister mappings for the block. The set can then be examined for the lowest cost configuration and

the virtual-to-real register allocation can then be determined by tracing the path back from the

minimal configuration to the root of the allocation tree. A heuristic is presented in [15] which

serves to restrict the growth of the allornt.ion tree and is shown to produce good results with

enlarged BB's, additionally further refine111ents given in (16] can be used.

This algorithm will indeed find the register allocation for a basic block with lowest spill code

cost because it exhaustively explores every possible register configuration at each step. As it is,

however, this basic algorithm is not adequate to allocate registers to loop bodies3 . The virtual-to­

real register configurations at the loop body (LB) exit must match the initial register assignments

1 In (15], it is stated that this register access pattern is not realistic in the sense that it does not allow multiple

register reads and writes to be considered concurrently. A simple extension, however, allows multi-register reads

and writes in a single instruction.

2 Refer to Appendix B for the pseudo-code to this function.
3 For simplicity of exposition the loop body does not contain conditionals. Although extensions exist to handle

this, they are beyond the scope of this paper.

3

at the top of the next iteration body. However, the loop body has two preceding basic blocks-the

loop entry and loop exit. This considerably complicates matters as it is now necessary, when

allocating registers to a loop body, to have the register configurations at LB exit match those at

the LB entry. If the register configurations, resulting from the optimal basic block algorithm in

(15, 16], are not the same at these two points, the computation performed by the resultant code is

not correct unless register moves and/ or spills are generated to enforce a match. However, since

the cost of this additional spill code may vary greatly from configuration to configuration and

would vary further by unrolling the loop some number of times, BB-OPT's results, which ignore

this effect, cannot be optimal.

As an initial method for finding an allocation to an LB where the entry and exit configurations

are equivalent, we might try the following: use BB-OPT to find an allocation for the LB and then

insert spill code (and possibly copy operations-register to register moves) at the end of the LB,

to make the values at LB entry match those at LB exit. Figure 1 illustrates this method using

two real registers for allocation.

In this example, VRl denotes virtual register one and Rl denotes real register one. Also, as can

be seen by the code fragment in (a), VR3, VR5, VR6, and VR7 are constants. When allorating

with BB-OPT the values present in the real registers at LB entry are VR3 and VR5. Thlrefore,

the allocation to the loop body started with VR3 and VR5 occupying the two real registers Rl

and R2. An important consequence of this is that it becomes necessary to re-load these values at

the end of the LB so that the loop code remains correct in (b). Notice that the spill cost for the

loop body in (b) is eight (resulting from BB-OPT) for a single sequential execution, and a cost of

three was added in order to make it possible to iterate over this LB (i.e. so that the "backedge"

values match the loop entry values).

Flow information can be used to further improve the code. The code segment in (c) has been

adjusted accordingly and results in a cost of ten. Note that even though the register-to-register

move does not read or write main memory, it is still counted as it is a necessary consequence of

the generated spill code. This is another extension necessary in adapting the BB-OPT algorithm

to the handling of loops. Unfortunately, even with this optimization, this method does not yield

the minimal spill cost per iteration.

Figure 2 illustrates an allocation where the cost per iteration is lower. This lower cost was

found as a result of unrolling4 the loop one iteration. ·when a match was found between some

4 When using this technique, we can remove the intermediate exit test~ of the loop if the number of unwindings

4

YR7 = Memory[IOO]

YR6 =Memory[!Ot]

YR3 = YR6 • 3.0

YRS = YR7 * 2.0

YR2 = Memory[VRl+Basel]

YR2 = YR3 * YR2

YR4 =Memory[YRl+Base2]

YR4 =YRS • YR4

YR2 = YR2 + YR4

YR2 = YR6 * YR2

YR2 = YR7 + YR2

Memory[YRl +Base3] = YR2

YR! =YR!+ t

a) Original Code

Rl = Rl • 3.0

R2 = R2 • 2.0

Load YR!. R2

R2 = Memory[R2+Basel]

R2 = Rl * R2

Load YRl,Rl

Rl = Memory[Rl +Base2)

Store R2, YR2

Load YRS, R2

Rl =R2 * Rl

Load YR2, R2

R2 =R2 + Rl

LoadYR6,Rl

R2 =Rt* R2

LoadYR7,Rt

R2=Rl + R2

LoadYRt,Rl

Memory[Rl+Base3] = R2

Rt =Rl + 1

StoreRl, YR!

Load YR3, Rt

Load YRS, R2

b) BB-OPT allocated. cost= 11

Rl = Rl • 3.0

Load YRl.R2

R2 = Memory[R2+Basel]

R2 =RI• R2

Load YR!, Rl

Rl = Memory[Rl+Base2]

Store R2, YR2

Load YRS, R2

Rl =R2 • Rl

Load YR2, R2

R2 =R2+Rl

Load YR6, Rl

R2 =Rl • R2

Load YR7, Rl

R2=Rl + R2

Load YR!, Rl

Memory[Rl+Base3] = R2

Rl=Rl +t

Store Rl, YR!

MoveRl,R2

LoadYR3, Rl

c) Flow optimized, cost= 10

Figure 1: A loop basic block allocated with BB-OPT.

5

loop entry and exit register configurations, flow of control was directed back to that point. The

resultant code is minimal and correct as the allocation for the body of the second iteration resulted

in an exit. configuration that is minimal and matches the exit configuration of the first iteration

as well. Thus correctness is preserved and a lower spill cost per iteration is found at the expense

of a larger object code size.

It is not immediately obvious why only two iterations suffice to produce an allocation which

results in less spill code. (In general, the optimal allocation may take longer to emerge and the

resulting loop body may span more than one iteration.) In fact, this is why this problem has been

an open issue. If the process of unwinding the loop and applying BB-OPT is continued, the cost

may be decreased. However, previously it was not known whether this unrolling and allocation

would terminate.

3 An Optimal Algorithm

By iteratively unrolling one loop iteration and applying BB-OPT to the resulting code, we can

find a new loop body, potentially spanning several iterations of the original loop, such that: a) the

cost of spills per iteration in the loop body is minimal; and b) the entry and exit configurations

of the new loop match. The algorithm in Figure 3 called BB-OPT-LOOP performs this.

The following terms are used in conjunction with the exposition of the BB-OPT-LOOP algo­

rithm.

Definition 3.1 An allocation tree is the tree produced by the application of BB-OPT to some
register configuration and register access pattern. The root of the tree is the starting (given) register
configuration and the leaves of the tree arE register configurations which represent the virtual-to­
real register.bindings at the completion of /he code segment. The allocation tree may contain many
iterations of the original loop.

Definition 3.2 An exit configuration 1s a particular register config·uration that is a leaf in some
al location tree.

Definition 3.3 An allocation path is a path :11 rough some allocation tree from the root to some
leaf. This path defines a (unique) virtual-to-real register binding for the code segment.

Definition 3.4 An iteration ancestor of register configuration X is a register configuration Y
which lies on the allocation path from the initial register configuration to X and the parent of Y
and Y belong to iterations i and i + 1 for some i, respectively.

is a multiple of the number of executed iterations. If this is not the case, we may simply leave the exit test in. In

general, an adjustment to the code speculatively executed before the exit may be required.

6

Load YR!, R2

R2 = Memory[R2+Basel]

R2 = Rl * R2

Load YRl. RI

RI= Memory[Rl+Base2]

Store R2, YR2

Load YRS, R2

Rl = R2 * Rl

Load YR2, R2

R2= R2+ Rl

Load YR6, Rl

R2= RI* R2

Load YR7, RI

R2= Rl + R2

Load YRl, Rl

Memory[Rl+Base3] = R2

Rl =RI+ l

R2 = Memory[Rl+BaseI]

Store Rl, YRl

Load YR3, RI

R2= RI* R2

Load YR!, RI

Rl = Memory[Rl+Base2]

Store R2, YR2

Load YRS, R2

Rl = R2 * Rl

Load YR2. R2

R2= R2+ RI

Load YR6. RI

R2 =RI* R2

Load YR7. Rl

R2=Rl+R2

Load YR!, Rl

Memory[R I +Base3] = R2

RI= RI+ I

Figure 2: A loop basic block allocated with BB-OPT-LOOP.

7

Procedure BB-OPT-LOOP (REGS : Initial register configuration;
RA : Register access pattern;
K : number of iterations)

Begin
Set MIN to an empty configuration with oo average cost
Set i to 0
Set current state to REGS
Loop

Set save~5tate...set to null
Foreach state S in the current register state set do

new state set = BB-OPT(S, RA)
Foreach state N in new state set do

If N has an iteration ancestor A with same configuration then
Direct N to A
Delete N from new set state

A C t(ii/) Cost(N)-Cost(A)
verage os 1 = Iter(N)-Iter(A)

If Ave1'ageCost(M IN) > AuerageCost(N) then
MIN=N

Endif
Endif

End do
Set save...state...set to save...set...state U new ...set...state

End do
Set i to i + 1
Set current register state set to save...state_set

Until i = K
Return Jvl IN

End BB-OPT-LOOP

Figure 3: A loop register allocation algorithm.

8

BB-OPT-LOOP works by iteratively using BB-OPT to compute the allocation tree for each

unrnlling of the loop body. BB-OPT-LOOP starts with the given initial register allocation and

applies BB-OPT to the given loop body yielding a new state set. For each state in that new

state-set all iteration ancestor configurations are examined to see if the new state and its ancestor

match. If these two states match, then the average iteration cost. for execution of this path is

determined and compared with the current minimum, saving the new state if it becomes the new

minimum. This only finds a local minimum, however this minimum is "global" over the number

of iterations unrolled so far (K). Hence, if the loop were fully unrolled, this would indeed be a

global minimum.

All of the configurations at the new unrolled depth are "collected" until all of the nodes from the

previous depth have been processed. This is done with the save_state..set. What this accomplishes

is a breadth-first expansion of the allocation tree, where each possible exit configuration from an

allocation tree becomes a "root" of an allocation tree for the subsequent unrolling of the loop

body. Once the bounded number of iterations (I<) has been reached, the minimum average cost

loop is returned. Note that this algorithm must always get an average cost less than or equal to

what BB-OPT would get because we deal strictly with the costs calculated by BB-OPT, and add

nothing more-beyond unrolling.

4 Convergence and Optimality

For simplicity of exposition we assume that no register has been allocated to a global value which is

not used within the loop body. This is in no sense restrictive-good register allocation methodology

would make all registers free and available to the innermost loops; globals would then be allocated

afterward to the relevant portions of the code segments. Thus, the register access pattern can not

change for a given loop body.

Due to the exponential nature of BB-OPT and the fact that the register access pattern does

not change, we can generate all possibilities for the exit configurations after one application of

the algorithm. Then the costs associated with going from one configuration to each other exit

configuration can be found. This requires an application of BB-OPT to each of the exit configu­

rations found after the initial application using the initial loop configuration. (We illustrate this

by example shortly.)

Why is it the case that all configurations are "reachable" from any other? This is true because

9

at each virtual register access all possibilities for spills are examined. Since the register access

pattern for the loop body contains only those virtual registers accessed within the loop, there

will be some point when register configurations are generated and are identical to those in other

generation trees. Hence, the same set of exit configurations is derived by the application of BB­

OPT to any one of the first iteration exit configurations and the register access pattern for the

loop-differing only in the cost of the allocation path.

Basically this is a combinatorial observation. If there are r real register in the target machine

and v virtual registers in the register access pattern, there can be no more than (~) possible

register configurations. However, not all of those configurations will be legal as exit configurations,

as the last virtual register accessed must be present to result in a legal allocation.

Now the costs associated with changing from each possible exit configuration to any other exit

configuration have been determined. A graph can be constructed wherein each node represents

one of the possible exit configurations and the edges between nodes represent the spill cost in

going from some configuration to another configuration. Note that these edges are directed as it

may not be possible to go from configuration x to configuration y for the same cost as y to x. The

result will then be a fully-connected, directed graph. We call this graph the configuration graph.

There are an exponential number of nodes, hence this graph is exponential in size. vVe do not

suggest (nor is it the case) that this graph need be built-we use it for the purposes of illustrating

certain properties of this algorithm.

Figure 4 illustrates the method of building the configuration graph. For this example we have

assumed that we are at the second iteration of unrolling and we have two physical registers. If we

assume that both registers are initially free then the starting configuration for allocation to the

loop body for the access pattern in (a) is { 0, 0 }. The first iteration will build an allocation tree

in which the root is {0, 0} and the exit configurations are {VRl, VR2*}, {VRl, VR3}, and

{VRl, VR4*}. BB-OPT may then be applied to each of these configurations and the allocations

trees in (b) can be obtained.

The leaves have been labelled so that we may associate a label which is used in the configuration

graph with its actual configuration in the allocation tree. As was explained previously, we have

the costs associated with going from the allocation tree's initial configuration to all other possible

exit configurations. In the case of the same configurations we take the lowest cost one, breaking

ties arbitrarily.

The configuration graph can be constructed from the allocation trees in (b). Traversing a path

10

through the first allocation tree from the initial configuration labelled A, to VRl VR3, which has

been labelled B, there are two possible paths which both terminate at a node with cost of two.

Therefore, a directed edge from A to B with cost two is added to the configuration graph. Other

edges are added similarly, one for each distinct lowest cost exit configuration in that allocation

tree. We then repeat this procedure for each of the allocation trees in (b). Thus, a fully-connected

graph results, as shown in (c). To find the optimal allocation, this graph is searched for the lowest

cost cycle.

In this example, there are four virtual registers and two real registers for a total of (~) = 6

possible configurations. Notice that the allocation trees have only generated three configurations

as exit configurations. The reason that there are less exit configurations lies in the virtual register

access pattern. Note that all of the exit configurations contain VRl. This must be the case as a

legal allocation must have VRl bound to a real register at this point for correct computations to

take place.

4.1 Convergence

The question of convergence of the algorithm presented earlier can now be addressed. ·when an

unrolling of the loop body and allocation to that iteration is performed, all of the edges in the

graph from the initial configuration to all of the exit configurations are obtained. If the allocation

algorithm is again applied to each of these nodes (e.g. unroll the loop body for another iteration),

directed edges from each of the possible exit configurations to one another are obtained. Hence,

the completely connected graph is incrementally built. In order to guarantee that the algorithm

converges, it must shown that by unrolling, exit configurations that do not lie on the allocation

path to the current exit configuration are not indefinitely generated.

In terms of the constructed graph this is equivalent to finding a path from some starting node

which eventually returns to that same node (i.e. a cycle must be found). However, we know that

one must exist as the graph is completely connected5 . Intuitively this converges because both the

number of configurations and the number of transitions from one configuration to another is finite

and independent of (fixed w. r. t.) the number of iterations the loop executes, although exponential.

5 In some sense this is trivial as every node is directly connected to itself. However, the cost edge associated with

this connection is not guaranteed to be a minimum. Indeed, in most cases, this edge tends to have a higher than

average cost.

11

c

c

vrl vr2*vr3vr4*vrl

a) Register Access Pattern

vrlvr4*

2

b) Allocation Trees

vr2*vr3

0

B

2 2

2

c) Configuration Graph

Figure 4: Building a configuration graph from the allocation tree.

12

vrl vr4*
2

4.2 Optimality

The question of optimality can also be addressed with the notion of the configuration graph.

An optimal allocation is one in which the memory traffic is minimized. When the loop body

is unrolled, an optimal allocation becomes the allocation which has minimal memory traffic or

spill cost over the iterations that are contained within the unrolled loop. Thus, in the optimal

allocation, the ratio of the spill cost for the new unrolled loop body to the number of iterations it

contains, is minimized. In the configuration graph this corresponds to the ratio of the total cost

of a cycle to the number of nodes in that cycle.

Definition 4.1 The minimal average spill cost for a loop is

nun (1::; i::; n)

where Costj is the cost associated with edge j in some cycle of length i.

That is, the optimal allocation is found by examining the average cost of all possible cycles in

the configuration graph and taking the minimum.

Note that this does not simply correspond to the minimal cycle of length one in the graph.

(A cycle of length one would imply that some allocation to the loop body is minimal and its

initial configuration naturally (i.e. without spills or moves) matches its exit configuration.) In the

worst-case it is possible that the optimal cycle must make a complete tour of the graph.

While the above can become quite expensive, BB-OPT-LOOP can be invoked with some J(

significantly lower than the (expected) loop bound. In this case, the allocation returned by BB­

OPT-LOOP will be optimal for the given initial configuration and number of unrollings (!\),since

the algorithm will explore all possible allocations with the given initial configuration. In the graph

this is equivalent to finding the minimal average cycle with a bound (K) on the length of the cycle,

and the start node equal to the node in the graph which corresponds to the initial configuration. If

a lower average cost cycle exists, it must be farther away from the given initial configuration than

[(, or it may be reachable within length I\ from some other configuration. Hence, the .allocation

returned must be minimal for the given parameters. In addition, all the pruning optimizations

proposed in [14, 16] would still apply.

13

Widlh

aJ Optimal Allocation Trw b) Width Heuristic Tree ~) Depth Heuristic Tree

Figure 5: Pictorial representation of allocation algorithm.

5 Heuristic Pruning

The algorithm given above will compute the optimal register allocation for a loop. However,

even for moderately long loops, the algorithm may be computationally prohibitive. Therefore, it

becomes impractical to obtain an optimal allocation for large loop bodies even with the enhance­

ments proposed for basic blocks in [15, 14, 16]. However, the optimal algorithm does provide a

strong starting point for determining good heuristics.

The computational complexity in this algorithm arises from the replacement of each physical

register in the current configuration when a read or write miss occurs. One way of reducing the

complexity is to introduce heuristics to prune the search tree. One pruning method is to select

only one of the r physical registers in the current configuration for replacement. The heuristic

proposed in [15] does this and prunes a significant amount of the search tree by looking at the

tradeoffs between replacing the most distant clean and dirty6 registers.

Since this scheme only expands a node once, the heuristic function must be a very close

approximation to the true optimal, if results are to be good. The heuristic presented in [15]

performs well for basic blocks. However. in allocating registers in loops, the difference in cost

between the true optimal and the heuristic allocations is even more critical, as slight differences

can have cumulative effects over large numbers of iterations, and thus can have a significant impact

on overall performance.

We have utilized two strategies for heuristic pruning. The first restricts breadth (width) of

the search, while the second strategy restricts the depth between successive width restrictions.

Figure 5 is a pictorial representation of the size of the optimal and heuristic allocation trees.

6 Clean refers to the case when the virtual registers memory location is consistent with the value in its assigned

register, while dirty refers to an inconsistency.

14

5.1 Width Restriction

The first approach to pruning the search tree is to expand each node in the current set and then

keep only the best m of those expanded states. That is, if a virtual register access causes a

read/write miss in a node in the current set under examination, we replace each virtual register

in that node with the virtual register causing the miss. Then, after all nodes have been exan1ined

we keep only the m lowest cost nodes in the new state set. The number of nodes which result

from expanding the current state-set is bounded by mr. After this expansion step we retain only

the m best of the mr new nodes.

This heuristic serves to capture the intuition that at certain stages in the search tree there

is some set of nodes that appear to be better candidates than others for expansion and can be

thought of as a local greedy approach. One or more nodes might provide better solutions if they are

fully expanded so that possibly lower cost paths might have eventually been generated. Therefore,

we have the ability to follow the most promising m nodes through the search tree.

5.2 Depth Restriction

Another method for heuristic pruning of the allocation tree is depth restriction and refers to the

amount of look-ahead into the allocation tree before the width heuristic is applied. Using the width

restriction alone effectively yields a look-ahead of one, as it only locally selects nodes for future

expansion. With the addition of depth restriction, the selection of nodes by the width heuristic is

deferred until the desired depth has been reached. When the depth restriction parameter has been

reached the width heuristic is applied (hopefully) selecting nodes which are closer to the minimal

allocation.

Depth restriction allows the deficiency found in a local-greedy approach to be partially alle­

viated. Nodes which appear to be "good candidates" will be expanded along with other nodes

that would have been pruned. This allows a sort of "recovery" mechanism within the depth size

window in the selection of nodes for expansion.

6 Results

vVe took the Livermore loops in C source and unrolled them three times to obtain larger code

segments and live ranges. The unrolled code was then compiled with the GNU C Compiler into

15

SPARC assembly code. The register access pat.tern was then derived from the resultant assembly

code.

'With these register access patterns, several experiments were conducted. Results of the BB­

OPT7 algorithm (which was applied on the basic blocks of the loop) on the Livermore Loops are

presented in subsection 6.1. Results of forcing the entry and exit register mappings, as suggested

by (16], and "patching" (the use of moves and spills to match register usage) are detailed in

subsection 6.2. In subsections 6.3 and 6.4 results are presented for BB-OPT-LOOP optimal and

heuristic algorithms, respectively. Lastly, the results of a comparison of BB-OPT-LOOP with a

graph coloring algorithm are presented in subsection 6.5.

6.1 BB-OPT

For each Livermore Loop, we calculated the optimal allocation, using BB-OPT, for the pre-loop

basic block and used the exit configuration for that allocation as the initial register bindings for

the loop to determine the initial values for the loop entry (i.e. the allocation of registers before

the loop is entered).

Our results (Table 2, column "BB-OPT") reflect the dynamic spill cost. This was computed

by determining the number of iterations that a loop executes and then multiplying by the spill

cost. In the case of BB-OPT, unwound for three iterations, the spill cost was determined for the

unwound loop body and then multiplied by the number of executions of that loop body (i.e. the

initial number of iterations divided by three).

6.2 Forcing Convergence

One idea presented in (16] as an extension to Horwitz's algorithm to deal with simple loops is

to "force" the register configurations to be equal to one another at the loop entry and exit. In

this scheme only one iteration of the loop body is examined. Some state is chosen as both the

initial and final configuration with the allocation proceeding from that state. When the end of

the loop code is reached, register mismatches may be found as all values are present but are not

in the same physical registers as at loop entry. Mismatches can be dealt with by introducing

register-to-register copy operations at this point. To find the minimal allocation for the loop in

this manner requires that all possible initial configurations be tried.

7 We actually unwound the loop three times before applying BB-OPT, to create better opportunity for BB-OPT

to do well.

16

We have used this idea in conjunction with BB-OPT. Since it is not practical to apply BB-OPT

to every possible initial configuration for the loop, what we have done is to assume that all of the

registers at loop entry are free. BB-OPT is then applied to the register access pattern, and at the

point when all free registers have been taken, that particular configuration is not.eel. Allocation

then continues until the entire allocation tree is built. At this point the leaves of the allocation

tree are searched for the least cost configuration which matches the one previously noted (we

refer to this as the "Force Method"). This results in an allocation for the loop code in which the

values at the encl of the loop will be in the correct registers for the subsequent iterations. Another

approach is to find the absolute minimum leaf in the allocation tree and introduce spill code to

match it with the noted initial configuration (we refer to this as a "Patch Method"). In both cases

the entry and exit register mappings have been forced equal. Table 1 shows the results for both

of these methods for two and four registers as the true optimal is computationally infeasible to

calculate in all cases.

Somewhat surprisingly, in many cases it is more cost-effective to introduce spill code at the

loop exit than to force the register mappings to be equal. Since certain values are "anticipated"

as being live for a long time (e.g., specific values are forced into the allocation at the loop exit),

more spill code than need be is created because non-exit values are "favored" for spill code. Thus,

an artificial increase in register pressure results at the subsequent virtual accesses. Also, because

we are dealing with a small number of real registers the spill cost has a small upper bound. For

instance, in the case of two real registers, if both virtual registers need to be saved and then two

new virtual registers need to be loaded we have a maximum spill cost of four. Since we have picked

the node with smallest cost to direct back to loop entry and since that direction is bounded by

a small replacement cost, intuitively it seems that this is a better decision (since we have started

with an allocation which is optimal w.r.t. this block and have imposed a small additional cost).

6.3 BB-OPT-LOOP, Optimal Results

In Table 2 we have obtained the true optimal results for BB-OPT-LOOP. As discussed earlier,

that for a given initial register configuration, a minimum found after unrolling a specified number

of times is optimal w.r.t. that initial configuration. (Our method for determining that initial

configuration was outlined earlier in subsection 6.2.) Although it is possible that a lower cost

exists, which can be found by examining all conceivable entry mappings, no lower cost can be

found for these code segments with the particular initial configuration used. The column labelled

17

BB-OPT
Program Number of Force Method Patch Method

Registers
2 13,734 13,334

111 4 6,668 5,868
2 4,736 4,670

112 4 1,934 1,467
2 11,334 10,334

113 4 5,334 4,000
2 3,920 3,752

114 4 2,296 1,904
2 17,316 17,427

115 4 5,772 5,994
2 17,649 17,760

116 4 7,326 6,438
2 6,060 5,760

117 4 - -

2 - -

118 4 - -

2 5,338 5,202
119 4 1,360 1,224

2 6,494 6,732
1110 4 - -

2 12,987 13,653
1111 4 6,660 5,661

2 12,987 13,653
1112 4 6,660 5,661

Table 1: Spill costs for the two methods of matching register maps.

18

BB-OPT BB-OPT-LOOP
Program l\ urn her of Metho<l Dynamic Spills Dynamic Spills

Registers Spill Cost per Spill Cost per
Iteration Iteration

2 Patch 1:3,:3:34 33.3 12,800 32
LLl 4 Patch 5,868 14.7 4,800 12

2 Patch 10,000 50 9,000 45
LL2 4 Patch 1,467 7.3 1,400 7

2 Patch 10,334 10.3 9,000 9
LL3 4 Patch 4,000 4 2,001 2

2 Patch 3,752 22.3 3,528 21
LL4 4 Patch 1,904 11.3 1,514 9

2 Force 17,316 52 17,264 52
LL5 4 Force 5,772 17.3 5,312 16

2 Force 17,649 53 17,649 53
LL6 4 Patch 6,438 19.3 5,661 17

2 Patch 5,760 48 5,760 48
LL7 4 - - - - -

2 - - - - -

LL8 4 - - - - -

2 Patch 5,202 51 5,000 50
LL9 4 Patch 1,224 12 1,100 11

2 Force 6,494 63.7 6,200 62
LLlO 4 - - - - -

2 Force 12,987 13 12,974 13
LLll 4 Patch 5,661 5.7 4,991 5

2 Force 12,987 13 12,974 13
LL12 4 Patch 5,661 5.7 4,991 5

Table 2: True optimal results of loop allocation algorithm (as discussed in text).

BB-OPT contains the results of using BB-OPT only on a triply unwound loop for a given program

while the BB-OPT-LOOP column contains the results of unwinding the loop the indicated number

of iterations. The column labelled "method" indicates the method selected from Table 1 which

provided the least spill cost. Finally, the spills per iteration column shows the number of spills in

a single iteration. Note that these are not necessarily whole numbers for the BB-OPT column as

the spill code was allocated for a trace of three iterations, so the cost here represents an amortized

cost.

From Table 2, we see that the savings in spill cost uniformly increases as the number of real

registers available increases. vVhen we only have two real registers, the maximal difference between

the two methods is bounded by four (in the worst case both registers have to be spilled and then

loaded.). As the number of registers increases, this bound also increases. Thus, BB-OPT-LOOP

19

will have an increased performance advantage over BB-OPT with larger numbers of register (if

the code has high register pressure). Of course. since these techniques are expensive, some of the

longer loops and higher number of registers were too time consuming to compute.

6.4 BB-OPT-LOOP, Heuristic Results

In Table 3, the results for the heuristic BB-OPT-LOOP can be found. Because our heuristic

bounds the width of the search tree, the first column labelled "Width = 1" represents the case

where the minimum is followed through the allocation tree. This strategy yields results very

similar to those obtained by allocation via BB-OPT with entry/ exit point matching.

Also, as the width is increased, closer approximation of the optimal numbers occurs. With

very few exceptions, increasing the width of the tree yields iinprovecl results. In the cases where

the heuristic broke clown, a node generated children which locally appeared to be better choices

(i.e. they had lower costs than their siblings) and served to "knock" other nodes out of the

expansion set. As the width of the tree is expanded, beyond that which is shown, this phenomena

diminishes rapidly. Evidently, at each stage in the allocation tree, there are only a few nodes

which are good candidates and as the tree expands, it becomes evident which of those candidates

will eventually lead to the minimum.

Of course, as the number of available registers increases beyond the number of overlapping

lifetimes, there is no spill code needed. Table 3 demonstrates some cases with eight registers

where no spill code is necessary.

Tables 4 and 5 show results for our algorithm with the depth heuristic and the width heuristic

working in conjunction. In both cases, heuristic widths of 1, 2, and 5 were used. In Table 4 a

depth of 2 was used; while in Table 5 a depth of 3 was used. These results show that the spill

cost per original iteration decreases as the width increases with very few exceptions, particularly

as the depth increases.

6.5 Comparison with Graph Coloring

The register allocation algorithm currently most widely used is the graph coloring algorithm

mentioned earlier. The Gnu Standard Distribution C Compiler (gee) implements a graph coloring

scheme in allocating registers. Further, the code produced by this compiler is generally accepted

to be of high quality [13]. We therefore have used this compiler as a metric of code produced by

a graph coloring algorithm on our benchmarks.

20

Width= l Width= 2 Width= 5
Program Number of Cost Iters Cost/ Cost Iters Cost/ Cost Iters Cost/

Registers Iter Iter Iter
2 1:3,200 3 3;3 12,800 3 32 12,800 3 32

111 4 5,600 3 14 5,600 3 14 6,400 3 1()

8 1,200 3 3 1,200 3 3 1,200 3 3
2 10,000 3 50 9,000 3 45 9,000 3 45

112 4 1,600 4 8 1,600 4 8 1,400 5 7
8 0 2 0 0 2 0 0 2 0
2 10,000 3 10 9,000 3 g 9,000 3 g

113 4 2,000 4 2 2,000 4 2 2,000 4 2
8 0 2 0 0 2 0 0 2 0
2 4,032 3 24 3,528 3 21 3,528 3 21

114 4 1,680 5 10 1,680 4 10 1,680 4 10
8 168 ;3 1 168 3 1 168 3 1
2 19,256 3 58 17,264 3 52 17,264 3 52

115 4 5,312 4 16 5,312 4 16 5,312 4 16
8 0 3 0 0 3 0 0 3 0
2 19,647 3 59 17,649 3 53 17,649 3 53

116 4 5,661 4 17 5,661 4 17 5,661 3 17
8 0 2 0 0 2 0 0 2 0
2 5,760 3 48 5,760 3 48 5,760 3 48

117 4 2,040 4 17 2,160 4 18 2,040 3 17
8 360 4 3 360 4 3 360 3 3
2 5,624 3 296 4,788 3 252 4,617 3 243

118 4 2,128 4 112 2,109 4 111 2,014 4 106
8 798 3 42 855 3 45 779 3 41
2 5,100 3 51 5,000 3 50 5,000 3 50

119 4 1,300 4 1:3 1,200 4 12 1,200 3 12
8 100 3 1 100 3 1 100 3 1
2 6,200 3 62 6,200 3 62 6,200 3 62

1110 4 2,200 4 22 2,100 4 21 2,400 3 24
8 600 3 6 500 3 5 500 3 5
2 14,970 3 15 12,974 3 13 12,974 3 13

1111 4 3,992 4 4 3,992 4 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0
2 14,970 3 15 12,974 3 13 12,974 3 13

1112 4 3,992 4 4 3,992 4 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0

Table 3: Results of heuristic width restriction only.

21

Depth= 2
Program Number of Width= 1 Width= 2 Width= 5

Registers Cost Iters Cost / Cost Iters Cost/ Cost lt.ers Cost/
Iter Her Iter

2 13,200 3 3:3 12,800 3 32 12,800 3 32
LLl 4 7,200 3 18 5,200 3 13 4,800 3 12

8 1,200 2 3 1,200 2 3 1,200 2 3
2 10,400 3 52 9,200 3 46 9,200 3 46

LL2 4 1,600 3 8 1,400 3 7 1,400 3 7
8 0 2 0 0 2 0 0 2 0
2 10,000 3 10 9,000 3 9 9,000 3 9

LL3 4 2,000 2 2 2,000 2 2 2,000 2 2
8 0 2 0 0 2 0 0 2 0
2 4,0:32 3 24 3,528 3 21 3,528 3 21

LL4 4 1,680 4 10 1,680 3 10 1,680 3 10
8 168 2 1 168 2 1 168 2 1
2 19,256 3 58 17,264 3 52 17,264 3 52

LL5 4 6,640 3 20 5,312 3 16 5,312 3 16
8 0 2 0 0 2 0 0 2 0
2 19,647 3 59 17,649 3 53 17,649 3 53

LL6 4 5,661 4 17 5,661 4 17 5,661 3 17
8 0 2 0 0 2 0 0 2 0
2 5,760 3 48 5,760 3 48 5,760 3 48

LL7 4 2,040 4 17 2,160 4 18 2,040 3 17
8 360 2 3 360 2 3 360 2 3
2 5,605 3 295 4,731 3 249 4,598 3 242

LL8 4 2,090 3 110 1,995 3 105 1,995 3 105
8 836 3 44 836 3 44 779 3 41
2 5,100 3 51 5,100 3 51 5,000 3 50

LL9 4 1,600 3 16 1,200 3 12 1,200 3 12
8 100 2 1 100 2 1 100 2 1
2 6,200 3 62 6,200 3 62 6,200 3 62

LLlO 4 3,700 3 37 2,400 3 24 2,400 3 24
8 600 3 6 500 3 5 400 3 4
2 13,972 3 14 12,974 3 13 12,974 3 13

LLll 4 3,992 3 4 3,992 3 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0
2 13,972 3 14 12,974 3 13 12,974 3 13

LL12 4 3,992 3 4 3,992 3 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0

Table 4: Results of depth restriction = 2.

22

Depth= ;3
Program Number of Width= 1 Width= 2 ~Width = 5

Registers Cost Hers Cost/ Cost Iters Cost/ Cost Iters Cost/
Itn It.er Iter

2 13,200 3 33 12,800 3 32 12,800 3 32
LLl 4 6,000 3 15 4,800 3 12 4,800 3 12

8 1,200 2 3 1,200 2 3 1,200 2 3
2 10,000 3 50 9,000 3 45 9,000 3 45

LL2 4 2,200 3 11 1,600 3 8 1,400 3 7
8 0 2 0 0 2 0 0 2 0
2 10,000 3 10 9,000 3 g 9,000 3 g

LL3 4 2,000 2 2 2,000 2 2 2,000 2 2
8 0 2 0 0 2 0 0 2 0
2 3,528 3 21 3,696 3 22 3,528 3 21

LL4 4 1,680 4 10 1,680 3 10 1,680 3 10
8 168 2 1 168 2 1 168 2 1
2 19,256 3 58 17,264 3 52 17,264 3 52

LL5 4 5,312 4 16 5,312 4 16 5,312 4 16
8 0 2 0 0 2 0 0 2 0
2 18,981 3 57 17,649 3 53 17,649 3 53

LL6 4 5,994 3 18 5,661 3 17 5,661 3 17
8 0 2 0 0 2 0 0 2 0
2 5,760 3 48 5,760 3 48 5,760 3 48

LL7 4 2,040 3 17 2,040 3 17 2,040 3 17
8 360 2 3 360 2 3 360 2 3
2 4,655 3 245 4,636 3 244 4,522 3 238

LL8 4 2,033 3 107 1,957 103 1,881 3 99
8 817 3 43 760 3 40 760 3 40
2 5,000 ;3 50 5,000 3 50 5,000 3 50

LL9 4 1,300 ;3 13 1,200 3 12 1,200 3 12
8 100 2 1 100 2 1 100 2 1
2 6,200 ;3 62 6,200 3 62 6,200 3 62

LLlO 4 2,200 4 22 2,100 4 21 2,400 3 24
8 500 3 5 500 3 5 400 3 4
2 12,974 3 13 12,974 3 13 12,974 3 13

LLll 4 6,986 3 7 3,992 3 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0
2 12,974 3 13 12,974 3 13 12,974 3 13

LL12 4 6,986 3 7 3,992 3 4 3,992 3 4
8 0 2 0 0 2 0 0 2 0

Table 5: Results of Depth Restriction = 3.

23

Heuristic BB-OPT-LOOP
Gnu gee Depth = 1, Width = 2

Program Number of Dynamic Spills Dynamic Spills
Registers Spill Cost per Spill Cost per

Iteration Iteration
LLl 4 7,600 HJ 5,600 14

8 4,800 12 1,200 3
LL2 4 4000 20 1,600 8

8 2,600 13 0 0
LL3 4 8,000 8 2,000 2

8 8,000 8 0 0
LL4 4 2016 12 1,680 10

8 1,344 8 168 1
LL5 4 9,628 29 5,312 16

8 5,644 17 0 0
LL6 4 8,991 27 5,661 17

8 6,327 19 0 0
LL7 4 4,680 39 2,160 18

8 2,160 18 360 3
LL8 4 2,907 153 2,109 111

8 1,444 76 855 45
LL9 4 2,700 27 1,200 12

8 1,600 16 100 l
LLlO 4 5,700 57 2,100 21

8 2,100 21 500 5
LLll 4 6,986 7 3,992 4

8 5,988 6 0 0
LL12 4 6,986 7 3,992 4

8 5,988 6 0 0

Table 6: Comparison of results between heuristic BB-OPT-LOOP with depth= 1, width = 2 and
Gnu C.

Gee was configured to produce code for the SPARC architecture. Further, the register alloca­

tion module was modified so that gee would produce code for four and eight physical registers8
.

Table 6 summarizes the results of the code produced by gee as well as a comparison with our

heuristic algorithm. We have arbitrarily selected to compare gee with our heuristic parameters of

depth = 1 and width = 2 due to its acceptable performance/execution-time trade-off.

8 Gee produced an internal compiler error when the real register count was set to two.

24

CPU Time Average Number of
Spills Per Iteration

Mt/hod Ave. Min. !\fox. 4 Regs. 8 Regs.
Graph Coloring

Gee 0.06 secs 0.04 secs 0.11 secs 33.8 17.7
BB-OPT 600.0 secs 345.0 secs 2700.0 secs 10.8 -

BB-OPT-LOOP 1800.0 secs 480.0 secs 10 hrs. 9.3 -

Heuristic BB-OPT-LOOP
Depth=l, Width=l 0.08 secs 0.06 secs 0.34 secs 19.9 4.7
Depth=l, Width=2 0.13 secs 0.07 secs 0.48 secs 19.8 4.8
Depth=l, Width=5 0.34 secs 0.11 secs 0.57 secs 19.6 4 .. 5
Depth=2, Widt.h=l 0.11 secs 0.08 secs 0.54 secs 21.9 4.8
Depth=2, Width=2 0.23 secs 0.13secs 0.65 secs 19.3 4.7
Depth=2, Width=5 0.39 secs 0.15 secs 0.70 secs 19.2 4.4
Depth=3, Width=l 0.24 secs 0.16 secs 0.72 secs 20.4 4.7
Depth=:3, Width=2 0.47 secs 0.23 secs 0.89 secs 18.8 4.4
Depth=3, Width=5 0.93 secs 0.33 secs 1.12 secs 18.7 4.3

Table 7: Execution times of the various methods.

7 Use in a Production Compiler

The allocation model used here is realistic in the sense that virtual registers can be created for

the constants, local and global variables, and temporary expressions found in the intermediate

code and later assigned (or allocated) to real, physical registers in a separate manipulation of

the intermediate code representation. Because this model has been shown to be successfully

implemented [17, 20, 9, 8], the integration of our register allocation strategy into the real-to-virtual

register binding phase is straight-forward. Therefore, it is possible to incorporate this algorithm

into a production compiler. As such, the optimization level parameter to the compiler can control

the heuristic width and depth used. In order to assess this possibility, we have noted the average

execution times for various heuristic width and depth combinations which were investigated on

the stated benchmarks. Table 7 summarizes execution times for the various allocation schemes.

The results indicate that while the brute-force approach, even for basic blocks is likely to be too

expensive, the heuristic BB-OPT-LOOP is efficient enough to be practical.

On average, the execution time of our heuristic algorithm is twice that of the Gnu gee algorithm.

However, the quality in the spill code produced by our method results in a savings of a factor of

five in memory references due to spill code. Similar results are evident in the comparison of the

quality of the spill code produced with depth = 1 and width = 1 and Gee spill code, while the

average execution time is comparable to the execution time of Gee's allocator. As the search

25

space is expanded, the allocation derived from BB-OPT-LOOP improves with some increase in

the running time (which is still likely to be within acceptable limits).

8 Conclusion

The problem of register allocation has long been a subject of much research. Good register

allocation serves to minimize the memory traffic during the execution of a program, so it is quite

natural to devote a moderate amount of computation by a compiler to determine some such

allocation. The earliest work in determining the optimal allocation of registers to data items

focused on registers which were used only as index registers [14]. Work was done later which

served to extend those ideas to allocating index registers to loops [16]. More recently, research was

done that extended the original model in [14] to that of general purpose registers [15]. This paper

continues in that tradition by extending the work in [14, 15, 16] to allocation of general purpose

registers to loops and answers the long standing question of whether it is possible to, in principle,

achieve optimal (minimal) spill code in loops.

We have presented an algorithm which demonstrates that it is possible to determine an optimal

allocation of registers to data items in loops. However, this algorithm is computationally infeasible

for all but the shortest loops, especially as the current trend in high-speed architecture is to

execute enlarged basic blocks. In order to reduce the computational complexity of the algorithm,

we identified a heuristic which serves to restrict the width of the allocation tree, and demonstrated

it for some Livermore Kernels. Further, the fast execution time of our heuristic is practical for

production compilers, while its results are superior.

26

A Pseudo-code for Heuristic BB-OPT and BB-OPT-LOOP

function BB-OPT-HEUR (REGS: Initial register configuration;
RA : Register access pattern;
K : number of iterations;
W : heuristic width of tree;
D : heuristic look-ahead depth)

Begin
Set current register state to REGS
Set cwT...depth to 0
Foreach virtual register access V in RA do

Foreach state N in the current register state set do
If V is in state N then

Add N to new ..state set
Otherwise

Foreach real register R in N do
Create N', an exact duplicate of N
Replace virtual register, V', currently in R with V
Cost(N') = Load-Cost(V) + Store-Cost(V') + Cost(N)
Note that N is the parent of N'
Add N' to new state set

Enddo
Endif

End do
Set current register state set to new..state set
Set cur1· ...depth to Cll1'1' ...depth + 1
If curr ...depth = D then

Set current register state set to
Set curr ...depth to 0

Endif
Enddo
Return new ..state set

End BB-OPT-HEUR

27

Procedure BB-OPT-LOOP-HEUR (REGS : Initial register configuration;
RA : Register access pRttern;
K : number of iterations;
W : heuristic width of tree;
D : heuristic look-ahead depth)

Begin
Set MIN to an empty configuration with <Xi average cost
Set i to 0
Loop

Set save...state...set to null
Foreach state S in the current. register st.ate set do

new st.ate set = BB-OPT-HEURISTIC(S, RA, W, D)
Foreach state N in new state set do

If N has an iteration ancestor A with same configuration then
Direct N to A
Delete N from new set state

A C' (.c) Cost N)-Cost(A)
ve1'age ,ost iv = Jter N)-Iter(A)

If AverageCost(11'IIN) > Ave1'ageCost(N) then
MIN=N

Endif
End if

End do
Set save...state...set to save...set...state U new ...set...state

End do
Set i to i + 1
Set current register state set to save...state_set

Until i = K
Return JV! IN

End BB-OPT-LOOP-HEUR

28

B Pseudo-code for BB-OPT and its supporting routines.

Function Load-Cost(V : Virtual Register)
Begin

If V is a read then
Rfltnrn 1

Otherwise/* This is a write * /
Return 0

Endif
End Load-Cost

Function Store-Cost(V : Virtual Register)
Begin

If V was a read then
Return 0

Otherwise If V is a write but is dead then
Return 0

Otherwise/* An updated value must be stored * /
Return 1

End if
End Store-Cost

Function BB-OPT (REGS : Initial register configuration; RA : Register access pattern)
Begin

Set current register state to REGS
Foreach virtual register access V in RA do

Foreach state N in the current register state set do
If V is in state N then

Add N to new ..state set
Otherwise

Foreach real register R in N do
Create N', an exact duplicate of N
Replace virtual register, V', currently in R with V
Cost(N') = Load-Cost(V) + Store-Cost(V') + Cost(N)
Note that N is the parent of N'
Add N' to new state set

Enddo
Endif

Enddo
Set current register state set to new..state set

End do
Return new ..state set

End BB-OPT

29

References

[l) A. H. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo­
rithms. Addison Wesley. Reading, IvIA., 1974.

(2) D. Bernstein, M. C. Golumbic, Y. Mansour, R. Y. Pinter, D. Q. Goldin, H. Krawczyk, and
I. Nahshon. Spill Code Minimization Techniques for Optimizing Compilers. Proceedings of
SIGPLAN Co11f. on Prag. Lang. Des. and Imp/., January 1989.

(3) D. Brelaz. New Methods to Color the Vertices of a Graph. Communications of the ACM,
22(4), April 1979.

[4] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring Heuristics for Register Allocation.
Proceedings of SIGPLAN Conf. on Prag. Lang., June 1989. Portland, Oregon.

(3) G. Chaitin. Register Allocation and Spilling via graph coloring. Proc. of SIGPLAN Symp.
on Comp. Cons., 17(6), June 1982.

(6) G. Chaitin, M. Auslander, A. Chandra, .J. Coocke, M. Hopkins, and P. Markstein. Register
Allocation Via Coloring. Computer Languages, 6, .January 1981.

[7) F. Chow and .J. Hennessy. The Priority-Based Coloring Approach to Register Allocation.
Trans. on Prag. Lang. and Sys., 12(4), October 1990.

(8) J. W. Davidson and C. W. Fraser. Register Allocation and Exhaustive Peephole Optimization.
Software-Practice and Ei:perience, 14(9), September 1984.

(9) W. H. E. Day. Compiler Assignment of Data Items to Registers. !BJ{ Systems Journal, 9(4),
1970.

[10) J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale University, 1985.

(11) J. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Trans.
on Comp., C-30(7), July 1981.

(12) R. A. Freiburghouse. Register Allocation Via Usage Counts. Communications of the ACM,
17(11), November 1974.

(13) T. Granlund and R. Kenner. Eliminating Branches using a Superoptimizer and the GNU C
Compiler. Proceedings of SIGPLAN Conf. on Prag. Lang. Des. and Imp{., 27(7), July 1992.

(14) L. P. Horwitz, R. M. Karp, R. E. J\'Iiller, and S. Winograd. Index Register Allocation. Journal
of the ACivl, 13(1), January 1966.

(15) W. Hsu, C. Fischer, and J. Goodman. On the Minimization of Loads/Stores in Local Register
Allocation. IEEE Trans. on Soft. Eng., 15(10), October 1989.

(16) K. Kennedy. Index Register Allocation in Straight Line Code and Simple Loops. In R. Rustin,
editor, Design and Optimization of Compilers. Prentice-Hall, Englewood Cliffs, NJ, 1972.

(17] B. W. Leverett. Register A/location in Optimizing Compilers. PhD thesis, Carnegie-Mellon
Univ., February 1981.

(18] F. Luccio. A Comment on Index Register Allocation. Communications of the ACM, 10(9),
September 1967.

30

[19] S. Melvin and Y. Patt. Exploiting Fine-Grained Parnllelism Through a Combination of
Hardware and Software Techniques. Proc. of the 18th A1111ual Int. S'ymp. on Comp. Arch.,
19(3), May 1991. Toronto, Canada.

(20] R. M. Stallman. Using and Porting Gnu CC. Free Software Foundation, November 1992.

31

