UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Action Planning: The Role of Prompts in UNIX Command Production

Permalink
https://escholarship.org/uc/item/9rbow8c1]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors

Doane, Stephanie M.
McNamara, Danielle S.
Kintsch, Walter

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9rb0w8c1
https://escholarship.org/uc/item/9rb0w8c1#author
https://escholarship.org
http://www.cdlib.org/

Action Planning: The Role of Prompts in UNIX Command Production

Stephanie M. Doane, Danielle S. McNamara, Walter Kintsch,
Peter G. Polson, R. Gary Dungca, Deborah M. Clawson

Institute of Cognitive Science and Department of Psychology
Campus Box 345
University of Colorado, Boulder, CO 80309-0345
sdoane@boulder.colorado.edu

Abstract

Our goal is to provide empirical support for assumptions of
the Doane, Kintsch, & Polson (1989;1990) construction-
integration model for generating complex commands in
UNIX. In so doing we designed a methodology that may be
used to examine the assumptions of other cognitive models.
The planning task studied was the generation of complex
sequences of UNIX commands. The sequences were novel,
and as such could not be recalled from memory. We asked
users whose UNIX experience varied to produce complex
UNIX commands, and then provided help prompts when the
commands they produced were erroneous. The help prompts
were designed Lo assist the subjects with both knowledge
and processes which our UNIX modeling efforts have
suggested were lacking in less expert users. There are two
major findings. First, it appears that experts respond to
different prompts than do novices. Expert performance is
helped by the presentation of abstract information, while
novice and intermediate performance is modified by
presentation of concrete information. Second, while
presentation of specific prompts aids the less expert, it does
not appear to be sufficient information to obtain optimal
performance. To do this, the less expert subjects require
information about the ordering of the items in a command.
Our analyses suggest that information about the ordering of
prompts helps the less expert with memory load problems in
a manner consistent with skill acquisition theories.

Theoretical Background

The goal of this study is to provide empirical support for
assumptions about user knowledge of UNIX and user
memory processes which are proposed in the Doane,
Kintsch, & Polson (1989;1990) UNICOM construction-
integration model for generating complex commands in
UNIX. In so doing, we present a general methodology that
may used to examine the complex knowledge and process
assumptions made by other cognitive models.

Previous empirical work gave UNIX users at varied
levels of expertise textual descriptions to produce legal
UNIX commands that required the redirection of standard
input and output (i.e., "composite" commands) (Doane,
Pellegrino, & Klatzky, 1990). Their data suggest that
novices and intermediates have knowledge of the elements
of the system; that is, they can successfully produce the

682

single and multiple commands that make up a composite.
They could not, however, put these elements together using
pipes and/or other redirection symbols to produce the
composite commands. The symbols that enable
input/output redirection are fundamental design features of
UNIX, and these features are taught in elementary
computer science courses. Doane et al (1990) demonstrate
that these features can only be used reliably after extensive
experience (e.g., experts had, on the average, S years of
experience with UNIX).

UNICOM (Doane, Kintsch, & Polson, 1989;1990), was
developed to determine why the Doane et al. 1990 users
had such difficulties generating composite commands. To
facilitate discussion of the UNICOM knowledge base, we
will use the command "nroff -ms ATT2>ATT1" as an
example. This command formats the contents of the file
ATT?2 using the utility nroff and the -ms macro package,
and then stores the formatted contents of ATT?2 in the file
ATT]1. To correctly produce composite action plans like
this, the model must first identify the items that must be
used to produce the command, and then it must sequence
these items using the properly placed redirection symbol o
construct an action plan. Thus, the Doanc et al
(1989;1990) model assumed that expert users use a two-
stage process o complete action plans and that this process
requires knowledge of both items and order. To complete
the first phase, the model requires four different types of
item knowledge to produce composites. UNICOM must
know two syntax specific types of knowledge (a) command
syntax (e.g., the nroff command and the -ms flag) and (b)
1/O redirection syntax (e.g., the ">" redirection symbol).
The model must also have two general types of knowledge
that are syntax independent. The model must know (c)
general facts about the redirection of input and output (e.g.,
that redirection of input an output can occur between
commands). This is separate from the syntax specific
knowledge of I/O redirection symbols. That is, some users
appear to know that redirection can occur, and not know
the specific syntax. UNICOM must also have (d) general
facts about command redirection (e.g., that the output of
nroff can be redirected to a file). The latter form of
knowledge is necessary, because UNIX commands are not
consistent in their I/O structure (e.g., an "Is" cannot take
input from another command, but "sort" can).

In the second phase of action planning, the model has to
sequence items properly and then keep track of the

mailto:sdoane@boulder.colorado.edu

intermediate stages of its action plan in order to produce a
successful command. For example, to produce the
command “sort filelheadllpr”, the model had to first sclect
the items to be used (sort,llIpr,head,file) and then
determine the order of the items and keep track of which
command was first, second, and third, and what the output
of the first command was, where its output was redirected,
and so on. Doane et al (1989;1990) assumed that the
mechanisms involved in integrating and ordering the items
to produce a composite would produce serious memory
load problems. In addition, it was assumed that experts
have knowledge structures which decrease this memory
load, whereas novices do not.

It is important to our research that explanation of the
item knowledge and ordering processes fits in a more
global context than simply UNIX command production.
There are reasons to believe that this is the case. First,
UNIX composites have characteristics that are important
for understanding problem solving and skill acquisition in
general. The literature on expertise and skill acquisition
(c.g., Chi, Feltovich, & Glaser, 1981; Larkin, 1983)
suggests that less expert individuals may know the separate
facts in a domain, but not be able to use them productively
in the sense described by Wertheimer (1982/1945). Thus,
this issue is not unique to the UNIX composite problem.
Understanding how individuals utilize textual instructions
to develop their factual knowledge into effective problem
solving procedures is an important skill acquisition issue in
general. Second, we are analyzing the knowledge and
processes required to chain elements together in the context
of a theory of comprehension that has been used to explain
algebra story problem comprehension (Kintsch, 1988), and
solution of simple computing tasks (Mannes & Kintsch, in

press), Thus, rather than developing an idiosyncratic
knowledge analysis, we are performing our research in the
context of a general architecture of cognition. As such, we
contribute to the goal suggested by Newell (1987) 1o
develop a "unified theory of cognition”.

Experiment

The goals of this study, then, are to determine more
precisely what users at different levels of expertise know
about UNIX, what information is lacking when users
produce erroncous commands, and what information (i.e.,
prompt contents) helps. The experiment uses a prompting
paradigm to assess the knowledge and processes of users at
various levels of expertise. We assume that users have
different amounts of the required four types of knowledge
and that displaying the prompts that help with each
respective type of knowledge will impact subsequent user
performance. We hold similar assumptions about the
process knowledge (i.e., keeping track of intermediate
results).

Method

Subjects. Twenty-two computer science and electrical
engineering majors with between six months and 6 years
experience with UNIX were paid $20 for their
participation. Novices had less than 1.25 years of
experience with UNIX and no operating systems courses;
intermediates had between 1.25 and 3.0 years experience
with UNIX and some had operating systems courses; and
experts had greater than three years experience with UNIX
and all had taken an operating systems course.

. Format the text in ATT2 using the -ms macro package and
ask n.
store the formatled version In ATTI
Prompts: Prompt 1. You will need to use Prompt 5 You will need to use Lhe
tne following command arrow symbol ":" and the command
nrofl =ms

Cne that will fermat the contents

of a e using the -ms macro package -Prornnt 6 You'll need to use an

Prompt 2 You will need to use this
command

aroff -mswill format the contents
of aflle using the =msmacro
package

oroff -mson ATT2 (which will gutput
the formatted contents of ATT2), ang
you'll need to redirect this output as
Inpul Lo ATTI

Prompt 3 You will need to use 3
speclal symbol that regirects
command outpul to a flle

Prompt 7 You will need to use
exactly the following command
elements (though not necessarily
In this order):

Lol -ms
Prompt 8 You'll need to use the

command orolf -ms followed by Lhe
arrow symbol "p"

Prompt 4 You will need Lo use the
arrow symbel "2 thal redirects
output from a command to aflle

Prompt § The correct production Is
oroff -ms ATT2)ATTL
Please enter this production now

Table 1. Example of task description and prompts for problem nroff -ms ATT2> ATT]I.

683

Apparatus and Materials. All tasks were performed on
a Macintosh with large-screen monitor. The stimuli were
lask statements, a fixcd directory of file names and a serics
of help prompts, all displayed on the screen, as well as
three "error cards” presented by the experimenter. Subjects
responded by typing at the keyboard a command or series
of commands which would accomplish a given task and
then using the mouse to "click” on a displayed button.

The task instructions described actions that could best be
accomplished by combining two or three commands
through the use of redirection (i.e., composite problems).
An example is the task shown in Table 1 for which the
command sequence would be “nroff -ms ATT2>ATT1." A
fixed directory listing of file names was displayed on the
screen at all times.

For incorrect responses, there was a series of help
prompts designed to address specific deficits in the
subjects’' UNIX knowledge. These prompts were displayed
on the screen one at a time in a fixed order regardless of the
type of error that the subject had made. The help prompts
were developed to address the most probable causes of
crror, as suggested by the UNICOM model of UNIX
command production. There are seven different areas in
which the help prompts could assist the subjects, and these
are best described by referring to the example in Table 1.

Finally, we used error cards, describing the type of error
made by the subject on an incorrect attempt. The three
types were "lllegal,” "Different: Legal but does something
other than what the problem asks for,” and "Keystrokes;
legal and does what the problem asks for but uses more
than the minimum possible keystrokes.” (This last error
category was intended to force subjects to use composite
commands rather than a series of commands with
temporary files in order to be correcL)

Procedure. Subjects were run individually for a single
two-hour session. The experiment was made up of three
sections: a questionnaire, an orientation, and completion of
the actual UNIX problems.

Composite Command Problems. The subjects were
given a series of 21 composite command problems.
Together, the problems used 10 different utilities (e.g., Ipr,
cmp, cat) and 4 different input/output (I/O) redirection
symbols (e.g., <, |, >>, >). In this activity, subjects were
presented with a task statement on the computer screen,
such as that shown in Table 1 and asked to type a command
or series of commands that would accomplish the task. For
each composite problem, the task statement appeared first
along with the directory listing of all file names used in the
experiment. The subjects would then type their first attempt
at a command or command series to accomplish the task.
After the subject clicked the button image labelled
"DONE", the program would evaluate the subject’s attempt
and give feedback of "Correct" or "Try again". If the
subject's answer was not correct, the experimenter
evaluated the subject's attempt and handed the subject the
appropriate error card. After reading the error card, the
subject clicked another button image; the program then

684

erased the subject's attempt and revealed the first help
prompt.

Once the help prompt was revealed, the subject tried
again to give a command sequence that would accomplish
the task. If incorrect, the subject received another error card
and was shown another help prompt. Throughout a given
task, the task statement, directory listing, and all previous
prompts remained visible; only the subject's previous
attempts and error cards were removed. If at any time the
subjects felt completely stymied, they were able Lo type "no
help" rather than a solution attempt in order to get the next
help prompt. The procedure of subject attempt, error card,
help prompt continued until the subject typed the correct
response. When the subject typed the required command
sequence, the program displayed a "CORRECT!" screen
and then revealed the next composite task instructions.

Results

Scoring Correct Command Productions. Productions
were scored as correct by the Mac computer if they
matched the syntax of the idealized command (spaces were
not parsed). Thus, a subject had to produce the command
that required the least number of keystrokes (i.e., subjects
could not substitute "sort>filel; head filel>file2" for the
command "sort filellhead>file2"). Problems were broken
into two groups, where problems 1-4 constituted the first
group where most of the learning took place, and problems
5-21 made up the second, more stable group. In this paper
we report only the data from the first group of problems.

Correct Productions as a Function of Prompt. Figure
1(a) shows the cumulative percentage of correct composite
productions at each prompt level for the three expertise
groups. Experts have the highest percentage overall,
followed by the less expert groups. We expect experts 10
exceed novice performance. Prompts have a differential
influence on correcting performance for the three expertise
groups. For example, the change in percent correct
performance from Prompt 3 to Prompt 4 is very small for
experts, leading to the inference that Prompt 4 provided
little or no new information for them. Conversely, the same
change between prompts 3 and 4 for the less expert groups
is relatively large, suggesting that this prompt does provide
them with some new information. To analyze this effect,
we study the four types of knowledge at each prompt level
in detail.

Scoring of Knowledge. Each of the 21 problems given
to subjects required certain amount of the four types of
knowledge. For example, the problem described in Table 1
requires two command syntax facts: nroff -ms as a
command name, and that nroff takes a file argument. It
requires knowledge of one 1/O redirection syntax fact, that
">" redirects output from a command to a file. Conceptual
I/0O knowledge required is that redirection of input and
output can occur, and that I/O redirection can occur from
commands to files. The required command redirection
knowledge includes the fact that nroff output can be
redirected to a file. Answers for each task were scored for
the percentage of each type of knowledge displayed by

(a) Cumulative Parcent Correct
Performance as a Function of Prompt

Y 10A G

= 4 = =

s

o 08+4

- -

=

E 0.6:'

.‘0

e W] NOVICE

2 INTERMEDIATE

= 029 EXPERT

s 4

5 0.0 e T R S .
01 2 3 4 S 6 7 8 9

Prompt

(]

< 0.14 4
S 0.10-
~ 0.06
o P

£ 0024
© 6.004

(b) Percent Change In Correct
Performance Averaged

0.16
] Expert Intermediate 5%

Novice

o 2
€0.12-
e 0.08 1

g’ 0.04 5

i
7
gi
Z
7
7
7

Syntax Conceptual Reminder Ordering
Type of Information Given in Prompts

Figure 1. (a) Cumulative percent correct composite answers as a function of prompt; (b) Percent change in correct composite

answers averaged across certain prompls.

each subject at each prompt level. For example, if a
command requires two command syntax facts, and the
attempt at prompt O (before any prompts) shows evidence
of only one of these facts, then the subjects is credited for
having 50% of the required command syntax knowledge
for that task. When a production was correct, all knowledge
types were at 100% levels.

Knowledge Analyses. Figures 2 (a) - 2 (d) show the
mean knowledge scores for the three expertise groups for
prompts 0-9. The arrow markers signal the reader what
prompt first provided subjects with information relevant to
the knowledge type displayed in the graph. For example,
in Figure 2(a), Prompt 2 is the first prompt that describes
all of the command syntax knowledge required to complete
the task (see Table 1 for an example of all prompt types
described in this section). To determine whether amount of
relevant knowledge was influenced by expertise and
prompt, these data were subjected to a 3 x 4 x 10 analysis
of variance (ANOVA) with group (expert, intermediate,
novice) as a between-subjects variable, and knowledge type
and prompt as within-subjects variables. [In all cases,
Greenhouse-Geisser degrees of freedom are used for
within-subject variables.] This analysis resulted in a
marginal effect of level, F(2,19)= 3.24, p < .06. Experts
possess significantly higher knowledge scores than do the
other two groups. There was also a main effect of
knowledge type, F (3,57) = 24.52, p<.01, with the
command redirection conceptual knowledge showing the
lowest scores overall and the command syntax knowledge
showing the highest scores overall. We did not obtain a
knowledge type by level interaction, F < 2, seemingly due
to the expert group ceiling effect. A main effect of prompt
exists, F (9,171) = 29.04, p < .01, and a prompt by level
interaction, F (18,171) = 3.74, p < .0l. Performance
improves as users receive more prompts, though the
amount of improvement is different for experts than for
novices. Experts appear to reach ceiling performance more
quickly than do novices. Prompts influence the four types
of knowledge differently, as evidenced by knowledge by
prompt interaction, F (27,513) =8.12, p < .01.

It is interesting to look at the three expertise groups
separately to determine how the prompts influence their
knowledge scores. Looking at Figures 2 (a-d), it appears
that less expert group’s knowledge scores differ from the
expert's. To determine this, each of the three groups'
knowledge scores were subjected to separate 4 x 10
ANOVAs with the knowledge types and the prompts as
within-subject variables. The novices and intermediates
show a main effect of knowledge type (Novice F (3,27) =
21.99, p < .01; Intermediate, F (3,21) = 13.02, p < .01) and
a main effect of prompt (Novice, F (9,81) = 26.82, p < .01;
Intermediate, F (9,63)= 18.65, p < .01). Both groups show
different levels of the four knowledge types, and an
improvement in performance with the prompts. They also
each show a knowledge type by prompt interaction
(Novice, F (27,243) = 6.44, p < .01; Intermediate, F
(27,189) = 4.84, p < .01). This suggests that the influence
of the prompts on the four knowledge types is not
equivalent for these two groups. The experts also show a
main effect of knowledge, F (3,9) = 5.94, p < .05, and
prompt, F (9,27) = 6.90, p < .02. Their data do not show a
knowledge type by prompt interaction (F < 3). The results
may reflect expert ceiling effects. Their knowledge level is
so high to begin with that there is minimal variance in their
data.

The arrow markers on Figures 2(a-d) show some of the
most interesting interactions, especially when compared
with the percent correct performance shown in Figure 1(a).
Figure 2(a) suggests that for novices and intermediales,
presentation of Prompt 2, which helps with command
syntax (see Table 1 for an example), improves command
syntax knowledge and percent correct performance (see
Figure 1(a)). This is less the case for the experts. Figure
2(b) shows groups with improved I/O conceptual
knowledge scores for their attempts following presentation
of Prompt 3, which gives this information. However,
Figure 1(a) suggests that while the experts can use
conceptual I/O information to increase their chances for a
correct production, the novices cannot. This leads to the
inference that the novices can use conceptual I/O

685

information to make a subsequent attempt that
demonstrates greater 1/O conceptual knowledge, but they
are still lacking other information which would allow them
to produce a correct command. Figure 2(c) shows that
Prompt 4 appears to assist the novice group I/O syntax
knowledge, and that the same trend holds to a lesser degree
for the intermediates. Figure 1(a) suggests that this prompt
increases the percent correct performance for the less
expert groups. The experts, however, find this information
useless. Figure 2(d) and Figure 1(a) show similar trends in
the the change in command redirection knowledge for less
expert groups following Prompt 6. This prompt gives both
command redirection information and ordering
information. Note that experts find this information useless.

A summary of the trends found in correct performance
as a function of prompt is found in Figure 1(b). This figure
shows the percent change in correct performance averaged
together for the first prompts that provide syntax
knowledge (both I/O and command syntax, Prompts 2 &
4), for the conceptual 1/O prompt (Prompt 3), Prompt S,
which is the first reminder of the items required for the
production, and the command redirection prompts, which
also give ordering information (Prompts 6 & 8). Overall,
there appears to be a strong interaction, with novices and
experts showing very different changes in performance as a

(a) Command Syntax Knowledge

0.8+

0.6 1

—{O— Novice

—&— |nlermediale

047 —&— Experl

Proportion Correct

029

00 T T T T T T T T T 1
0 1 2 2 4 5 €& 7 8 9
Prompt

(c) Input/Oulput Redlirection Synlax Knowledge

10
]
¢ o084 A
-
a 1
3]
0.6+
c
2
o 0.4+
a
2
(-8
0.2
u-o T L§ L] T L] L] T T T 1
01 2 3 4 S 6 7 8B 9
Prompt

function of exposure to different types of prompts, and
intermediates falling somewhere between the other two
groups.

It appears that novices and intermediates need help with
both command and I/O syntax, but that this is not a
problem for the experts. Experts get help from an abstract
statement of I/O conceptual knowledge (see Table 1 for an
example),while this statement is practically worthless to the
less expert groups. This finding is in line with the expertise
literature (e.g., Chi et al., 1981) which suggests that experts
can process more abstract information than can novices.
Certainly Prompt 3 is more abstract that Prompts 2 and 4.
Experts also successfully utilize a reminder prompt that
lists all of the command and [/O elements together in one
prompt. Novices and intermediates don't seem to utilize
this information. Anecdotally, it is our view that the experts
that have not solved a problem correctly by this point have
often represented the problem with one command reversed
or dropped, and this prompt reminds them that they have
forgotten an element, and they can use this information to
make a correct production. The less expert subjects seem
to have more problems at this point than just knowing the
elements, they can't put them together with just a list of the
items. Their response to the ordering prompts (6 & 8)
make this clear. These are the first prompts that tell users

(b) Input/Output Redirection Conceptual Knowledge
104

084
0.6

04

Proportion Correct

024

0o T T T T
0 1 2 3 4 5 &€ 7 8 39
Prompl

(d) Command Redirecltion Conceplual Knowledge

1.0 9
S o8- A
=
)
L&)
06
c
2
o 04
o
e
o
024
00 T T T T T T T T 1
0 1 2 3 4 5 &6 7 B 9§
Prompl

Figure 2. (a) Command syntax knowledge; (b) I/O conceptual knowledge; (c) /O redirection syntax knowledge; and (d)
Command redirection conceptual knowledge as a function of prompt.

686

what order they must use for the commands. For example,
that first nroff -ms must be performed on ATT?2 and then
that this output must be redirected to the file ATTI, and so
on. This ordering information helps the less expert groups
quite a bit; it does almost nothing for the experts.

Discussion

Our findings indicate that users vary markedly in their
response to very different classes of prompt as a function of
expertise. The results suggest that novices and
intermediates lack both specific syntax knowledge and
more general conceptual redirection knowledge. If
prompted with specific syntax knowledge, novices and
intermediates can increase their chances of producing a
correct composite. However, novices and intermediates
cannot utilize our more abstract prompt (Prompt 3) which
provides conceptual redirection information knowledge
that they need (see Figure 2(b)) to increase their correct
performance (see Figure 1(a)). Our experts, in contrast,
can use this information effcctively to increase their
performance. This finding is consistent with the literature
on expertise which suggests that experts can utilize abstract
information, while novices cannot (e.g., Chi et. al, 1981).

Novices and intermediates seem to need help retrieving
the elements that go into making a composite; but for many
of them, this is not enough. They also need help ordering
the elements -- or constructing an action plan. When they
receive a prompt that helps them order the items, their
performance improves. There is evidence that ordering the
elements taxes their working memory. They delete and
substitute many more symbols than do experts, and these
memory errors decrease markedly once ordering
information has been given (Doane et al. 1991). Thus, the
hypothesis suggested by the UNICOM construction-
integration model was supported. Retrieving the elements
is only part of the problem in composing a composite. To
chain these elements together is another aspect of the
problem, and this requires relating the pieces of knowledge
in an ordered fashion and tracking the intermediate results.

While these data provide support for the assumptions of
the Doane et. al (1989;1990) model, more direct support is
provided by extending our modeling work to account for
these prompt data. We are currently building models of
individuals in this study, and running simulations by giving
UNICOM prompts, and evaluating prompt activation
within the individual's network. We hope to determine
whether the overlap between the knowledge in a prompt
and the individual network of knowledge dictates the
usefulness of the prompt. This work will have clear
implications computer aided instruction and for system
design.

Acknowledgements

This research was supported by grant IRI-8722792 from
the National Science Foundation,

687

References

Anderson, J. R., & Jeffries, R. 1985. Novice LISP errors:
Undetected losses of information from working memory.
Human-Computer Interaction, 1, 133-161.

Chi, M. T. H., Feltovich, P. J., & Glaser, R, 1981,
Categorization and representation of physics problems by
experts and novices. Cognitive Science, 5, 121-152.

Doane, S. M., McNamara, D, S., Kintsch, W. Polson, P. G.,
Clawson, D. M., Dungca, R. G. 1991. Promp!t
Comprehension in UNIX Command Production. Technical
Report 91-4. Institute of Cognitive Science, University of
Colorado, Boulder.

Doane, S. M., Kintsch,, W. & Polson, P. 1989. Action
Planning: Producing UNIX commands. Proceedings of the
Eleventh Annual Conference of the Cognitive Science
Society. (pp. 458-465). Ann Arbor, Michigan: Lawrence
Erlbaum Associates.

Doane, S. M., & Kintsch, W., & Polson, P. G. 1990.
Understanding UNIX Commands: What Experts Must
Know. Technical. Report. 90-1. Institute of Cognitive
Science, University of Colorado, Boulder.

Doane, S. M., Pellegrino, J. W., & Klatzky, R. L. 1990.
Expertise in a computer operating system:
Conceptualization and performance. Human-Computer
Interaction, 5, 267-304.

Kintsch, W. 1988. The use of knowledge in discourse
processing: A construction-integration model.
Psychological Review, 95, 163-182.

Larkin, J. H. 1983. The role of problem representation in
physics. In D. Gentner & A. Stevens (Eds.), Mental models
(pp. 75-98). Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

Mannes, S. M. & Kintsch, W. in press. Routine computing
tasks; Planning as understanding. Cognitive Science.
Murdock, B. B. 1974. Human memory: Theory and data.
Lawrence Erlbaum Associates.

Newell, A. 1987. Unified theories of cognition. The 1987
William James Lectures.

van Dijk, T. A. & Kintsch, W. 1983. Strategies of
discourse comprehension. New York: Academic Press.
Wertheimer, M. 1982/1945. Productive thinking. Chicago,
IL: University of Chicago Press.

	cogsci_1991_682-687

