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Abstract

To investigate the genetic etiology of anophthalmia and microphthalmia, we used exome 

sequencing in a Caucasian female with unilateral microphthalmia and coloboma, bilateral optic 

nerve hypoplasia, ventricular and atrial septal defects and growth delays. We found two sequence 

variants in SALL4 - c.[575C>A], predicting p.(Ala192Glu), that was paternally inherited, and c.

[2053G>C], predicting p.(Asp685His), that was maternally inherited. Haploinsufficiency for 

SALL4 due to nonsense or frameshift mutations has been associated with acro-renal ocular 

syndrome that is characterized by eye defects including Duane anomaly and coloboma, in addition 

to radial ray malformations and renal abnormalities. Our report is the first description of structural 

eye defects associated with two missense variants in SALL4 inherited in trans; the absence of 

reported findings in both parents suggests that both sequence variants are hypomorphic mutations 

and that both are needed for the ocular phenotype. Sall4 is expressed in the developing lens and 

regulates Bmp4, leading us to speculate that altered BMP4 expression was responsible for the eye 

defects, but we could not demonstrate altered BMP4 expression in vitro after using small 

interfering RNAs (siRNAs) to reduce SALL4 expression. We conclude that SALL4 hypomorphic 

variants may influence eye development.
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Introduction

The human Spalt family members, Sal-like proteins 1 to 4 (SALL1, SALL2, SALL3 and 

SALL4), are transcription factors containing C2H2 double zinc fingers that have been 

implicated in developmental eye defects (Kohlhase et al., 2002a). Sequence variants 

interrupting function in SALL4 cause acro-renal-ocular syndrome (AROS), characterized by 

eye defects including Duane anomaly and coloboma, radial ray malformations and renal 

abnormalities (Kohlhase et al., 2003; Borozdin et al., 2004a; Borozdin et al., 2004b; 

Kohlhase et al., 2005). SALL4 variants also cause Okihiro syndrome, or Duane-radial ray 

syndrome (MIM 607323;Al-Baradie et al., 2002; Kohlhase et al., 2002b; Kohlhase et al., 

2003). Loss of function for SALL2 results in non-syndromic ocular coloboma affecting the 

iris and retina (Kelberman et al., 2014). Sequence variants in SALL1 causes Townes-Brocks 

syndrome (TBS; MIM 107480; (O’Callaghan and Young, 1990; Kohlhase et al., 1998; 

Powell and Michaelis, 1999; Miller et al., 2012). Eye defects are rare with SALL1 sequence 

variants (Miller et al., 2012), but unilateral chorioretinal coloboma with absent vision in the 

affected eye and anophthalmia and microphthalmia have been described (Botzenhart et al., 

2005; Bardakjian et al., 2009).

Patients with AROS have displayed a range of structural eye defects, including 

microphthalmia, microcornea, cataract and colobomas involving the iris, choroid and optic 

nerve, in addition to nystagmus and strabismus (Becker et al., 2002; Kohlhase et al., 2003; 

Aalfs et al., 1996; Borozdin et al., 2004a; Borozdin et al., 2004b; Kohlhase et al., 2005). All 

of the SALL4 sequence variants associated with eye disease have been nonsense, frameshift 

or deletion mutations and thus are likely associated with premature protein truncation and/or 

haploinsufficiency. We present a female with unilateral microphthalmia and coloboma, 

bilateral optic nerve hypoplasia, cardiac septal defects and growth delays who was found on 

whole exome sequencing to have two missense sequence variants in SALL4.

Materials and Methods

Clinical Report

Ethical approval was obtained from the Committee on Human Research at the University of 

California, San Francisco and the Institutional Review Board at Einstein Medical Center. 

The proband was delivered after an uneventful pregnancy. Two small septal defects, 

including a membranous muscular ventricular septal defect (VSD) and atrial septal defect 

(ASD) were detected in the neonatal period, but surgery was not required. At 3 weeks of 

age, her right eye was noted to be smaller than her left eye. At 5 months of age, she was 

diagnosed with microcornea, microphthalmia, lenticular opacities and amblyopia with an 

afferent pupillary defect, all involving the right eye. She had bilateral optic nerve hypoplasia 

that was more severe on the right. A magnetic resonance imaging scan of the brain showed 

asymmetry of the ocular globes and optic nerves, but the extra-ocular muscles were 

symmetric. At age 33 months, she had full extraocular motility without nystagmus, but did 

have an afferent pupillary defect of her right eye.

At 5 years of age, growth parameters were in the normal range (height 25–50th centile, 

weight 50th centile and head circumference 10–25th centile). There were no limb 
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defects.When last reviewed at 8 years of age, she had speech therapy and vision therapy, but 

her cognitive development and general health were normal. Prior investigations included a 

normal karyotype and array comparative genomic hybridization (array CGH). She also had a 

normal renal ultrasound scan and normal hearing evaluation.

Both parents had no significant findings on external examination, by report. The proband’s 

paternal grandmother had macular degeneration that was diagnosed in adult life and her 

paternal grandfather had history of cataract surgery and type 2 diabetes mellitus. There was 

no known consanguinity.

Exome Sequencing

This patient and her biological parents underwent exome sequencing as part of a larger study 

involving patients with microphthalmia, anophthalmia and coloboma (MAC; Slavotinek et 

al., 2015). Libraries were prepared and sequenced on a HiSeq4000 (Illumina, San Diego, 

CA, USA) according to previously published methods (Slavotinek et al., 2015). Variants 

were assessed for deleteriousness using Sorting Intolerant from Tolerant (SIFT) and 

PolyPhen-2 databases and mutations that had a SIFT score <0.05 or a PolyPhen-2 score 

>0.909 were retained. Variants were excluded from consideration if they were not in exons, 

were present in the database of single nucleotide polymorphisms (dbSNP135), or had a 

minor allele frequency of greater than 0.01 in the 1000 Genomes database. We also excluded 

candidate genes in a published list of common false positive genes to rule out genes that are 

likely to have mutations due to their length or inherently variable nature (Fuentes Fajardo et 

al., 2012). Selected variants were verified using Sanger sequencing using previous methods 

(Slavotinek et al., 2013).

Cell Culture and Small Interfering RNA (siRNA) to Reduce SALL4 Expression

HEK293T cells and NT2 cells (UCSF cell culture facility) were cultured according to 

standard methods on 6-well plates at a density of 5×104 cells per well. Cells were transiently 

transfected in six-well dishes with small interfering (si)RNAs using Lipofectamine® 3000 

(Life Technologies, Grand Island, NY). We transfected siRNA (Silencer® Select s32817; 

Life Technologies, Grand Island, NY) targeting exon 2 of SALL4 at base pair (bp) 557 

(NM_020436.3) at a final concentration of 30 nM. At 48 hours, RNA was obtained and 

cDNA was prepared. Silencer® Select GAPDH Positive Control siRNA was used as a 

positive control. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

using gene-specific primers (Table S1) was run on an 7500 RT-PCR machine (Applied 

Biosystems, Foster City, CA) and data was analyzed according to the ΔΔCt method using 

negative control siRNA and human GAPDH as internal controls. Results were normalized to 

expression levels in cells transfected with control siRNA and statistical comparisons 

between the expression in cells transfected with siRNA for SALL4 and expression in cells 

transfected with siRNA for GAPDH were performed with an unpaired t-test.
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Results

Exome Sequencing

Data regarding coverage of the proband’s exome is provided in Table S2. Variant analysis 

demonstrated two missense substitutions in exon 2 of SALL4 (NM_020436.3) - c.

[575C>A], predicting p.(Ala192Glu) and c.[2053G>C], predicting p.(Asp685His) (Table 1). 

Both sequence variants were confirmed using Sanger sequencing (Fig. S1); c.[575C>A] was 

paternally inherited, and c.[2053G>C] was maternally inherited. Both variants were 

predicted to be damaging with three software programs (Table 1). Mutation Taster predicted 

that p.(Ala192Glu) would alter splicing, with an increased donor splice site (wildtype: 0.58 

and mutant: 0.99) for exon intron site CAAG/gtgg, and creation of a new splice site. The 

alternative splicing was predicted to cause loss of all of the double zinc fingers in this 

protein, but there was no RNA from the patient to verify aberrant splicing. p.(Ala192Gln) 

was present at a low frequency (6/121,266) in the ExAC control database, but p.(Asp685His) 

was not present (Table 1). We assessed species conservation for both variants and p.Ala192 

was highly conserved in different species, whereas p.Asp685 was less conserved (Fig. S2A 

and Fig. S2B; Table S3). Reanalysis of the .BAM files for this patient did not show any 

evidence of a large structural rearrangement, such as a chromosome translocation, affecting 

SALL4 (data not shown).

We did not find any other sequence variants in published gene lists for MAC (Deml et al., 

2014; Prokudin et al., 2014) that were predicted to alter function and did not find any other 

cause for the eye defects in this child.

Cell Culture and Small Interfering RNA (siRNA) to Reduce SALL4 Expression

The mean expression +/− standard deviation for BMP4, SOX2 and OTX2 genes after 

SALL4 knockdown are shown for HEK293T (Fig. 1) and NT2 cells (Fig. 2). We found no 

significant difference in BMP4 or OTX2 expression after reduction of SALL4 in HEK293T 

cells. However, SOX2 showed a significant increase in expression after siRNA for SALL4 in 

HEK293T cells (Fig. 1), but not in NT2 cells (Table S4).

Discussion

We report a female patient with microphthalmia, colobomas and optic nerve hypoplasia, 

VSD, ASD and growth delays who was found to have two missense substitutions in SALL4 
that were inherited in trans and predicted to affect function. Her parents each carried one 

variant and were not reported to have eye defects. As SALL4 mutations have been 

associated with ocular defects in AROS (Table 2), we consider that inheritance of both of 

these sequence variants is likely to account for her eye malformations and that the 

inheritance pattern in this family is most consistent with compound heterozygosity for two 

hypomorphic mutations that cause birth defects. Variants in SALL4 typically result in an 

altered reading frame with premature protein truncation and nonsense-mediated decay with 

the phenotype resulting from haploinsufficiency (Borozdin et al., 2004a, Kohlhase et al., 

2005; Borozdin et al 2007). As both parents were not reported to have any clinical findings, 

it is probable that both of the missense variants do not significantly affect function in the 
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heterozygous state. Non- penetrance for SALL4 variants has been infrequently demonstrated 

and was found in 1/69 (1.4%) people with a pathogenic SALL4 sequence variant (Kohlhase 

et al., 2015).

Missense variants in SALL4 are rare and only one has previously been described. A five 

year old child with type III Duane anomaly, deep-set eyes with partial strabismus of right 

eye, hypotelorism, a single central upper incisor, pituitary hypoplasia with short stature, 

growth hormone deficiency and an empty sella, had c.[2663A>G], predicting p.(His888Arg), 

that was inherited from the child’s father and paternal grandmother with type I Duane 

anomaly, hypoplasia of the thenar eminences and double-rowed maxillary central incisors 

(Miertus et al., 2006; Kohlhase et al., 2015). The variant p.(His888Arg) alters a histidine 

residue critical for zinc finger structure in the most carboxy terminal double zinc finger of 

SALL4 and was predicted to lead to increased DNA-binding affinity of the domain and 

altered zinc finger binding (Miertus et al., 2006).

Sall4 can act either as a transcriptional repressor or activator. The SALL4 promoter is 

strongly activated by TCF4E/LEF1 and regulated by canonical Wnt signaling (Boehm et al., 

2006). Sall4 interacts with Tbx5 during limb and heart development in mice and fish 

(Boehm et al., 2007) and regulates Bmp4 expression in a Sall4 null mouse (Sakaki-Yumoto 

et al., 2006). Sall4 also interacts with Nanog, a homeodomain transcription factor that can 

sustain pluripotency in murine ES cells (Wu et al., 2006). Finally, Sall4 represses pou5f3 
during neurogenesis, enabling the neural plate to respond to inductive signals from Fgf, 

retinoic acid and Wnt (Young et al., 2014).

The molecular mechanism responsible for the eye defects associated with SALL4 
haploinsufficiency is unknown.We hypothesized that reduced levels of SALL4 would alter 

regulation of BMP4, as homozygous null mice for Sall4 showed significant reduction in 

Bmp4 (Sakaki-Yumoto et al., 2006). However, no change in BMP4 expression was found 

after siRNA targeting SALL4 in vitro, indicating that the decrease in BMP4 may be context 

dependent. Instead, we found that reduced expression for SALL4 resulted in upregulation of 

SOX2 in HEK293T cells only (Table S4; Fig. 1). In Danio rerio, sox2 and sall4 are 

expressed in the cell nucleus and their expression patterns overlap (Thisse et al., 2001). Chip 

on chip analysis in W4 ES cells has confirmed an interaction between Sall4 and Sox2, 

although reduced Sall4 expression was associated with reduced Sox2 expression, rather than 

upregulation (Yang et al., 2008). Haploinsufficiency for SOX2 is strongly associated with 

MAC (Bardakjian et al., 2015), but the developmental effects of upregulation of SOX2 have 

been less well studied and our siRNA experiments do not allow us to conclude that altered 

SOX2 expression is relevant to the eye defects found with SALL4 haploinsufficiency.

Conclusion

We report a female with unilateral microphthalmia and coloboma and optic nerve hypoplasia 

who had two missense substitutions in SALL4 that were inherited in trans and predicted to 

disrupt function. In view of the previously described role of haploinsufficiency for SALL4 in 

the pathogenesis of eye defects, we consider that these variants are most probably relevant to 

the ocular phenotype, although SALL4 missense mutations have not been frequently 
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reported. A reduction in SALL4 expression using siRNA was associated with increased 

SOX2 expression in HEK293T cells, but not in NT2 cells, and further work is needed prior 

to concluding that dysregulation of SOX2 is relevant to the mechanism for SALL4 
mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. siRNA and qRT-PCR in HEK293T cells show that reduced SALL4 expression results in 
up-regulation of SOX2, but not BMP4.
Genes amplified by gene-specific primers are indicated on the X-axis; relative mRNA 

expression is indicated on the Y-axis. Blue columns show data from wells transfected with 

negative control siRNA and expression for these wells has been normalized to 1 for 

comparison. Red columns show data from wells treated with 30 nM GAPDH siRNA 

treatment and green columns show data from wells treated with 30 nM SALL4 siRNA 

(s32817). The first set of three columns confirms reduced expression of GAPDH after 30 

nM GAPDH siRNA treatment (red column) using GAPDH-specific primers. The second set 

of columns confirms reduced expression of SALL4 after 30 nM SALL4 siRNA treatment 

(green column) using SALL4 specific primers. The set of columns relating to SOX2 shows 

significantly increased SOX2 expression after 30 nM SALL4 siRNA treatment (green 

columns) compared to control siRNA; p value <0.05. The remaining sets of columns show 

no significant changes in BMP4 and OTX2 expression. All results are expressed as the mean 

± standard deviation; sample size n = 4
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Fig. 2. siRNA and qRT-PCR in NT2 cells show that reduced SALL4 expression does not results in 
up-regulation of SOX2.
Genes amplified by gene-specific primers are indicated on the X-axis; relative mRNA 

expression is indicated on the Y-axis. Blue columns show data from wells transfected with 

negative control siRNA and expression for these wells has been normalized to 1 for 

comparison. Red columns show data from wells treated with 30 nM GAPDH siRNA 

treatment and green columns show data from wells treated with 30 nM SALL4 siRNA 

(s32817). The first set of three columns confirms reduced expression of GAPDH after 30 

nM GAPDH siRNA treatment (red column) using GAPDH-specific primers. The second set 

of columns confirms reduced expression of SALL4 after 30 nM SALL4 siRNA treatment 

(green column) using SALL4 specific primers. The set of columns relating to SOX2 does 

not show significantly increased SOX2 expression after 30 nM SALL4 siRNA treatment 

(green columns) compared to control siRNA (p value >0.05). The remaining set of columns 

shows no significant changes in BMP4 expression. All results are expressed as the mean ± 

standard deviation; sample size n = 3
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Table 1.

Deleterious sequence variants in SALL4 a patient with microphthalmia, coloboma, and optic nerve hypoplasia.

Gene Nucleotide Amino acid
alteration

Inheritance SIFT1 PolyPhen-
22

Mutation
taster3

ExAC
browser4

Predicted
effect

SALL4 c.575C>A p.Ala192Gln Pat. D5; 0 PD6; 0.994
(sens. 0.69;
spec.0.97)

DC7; 0.999 6/121,266;
0.00004948

Mutation

SALL4 c.2053G>C p.Asn685His Mat. D; 0.01 PD; 0.983
(sens. 0.74;
spec. 0.96)

DC; 0.999 Not present Mutation

1
SIFT = http://sift.jcvi.org

2
Polyphen-2 = http://genetics.bwh.harvard.edu/pph2/

3
Mutation Taster = http://www.mutationtaster.org

4
ExAC Browser = http://exac.broadinstitute.org/

5
D = Damaging

6
PD = Probably damaging

7
DC = Disease causing.
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Table 2.

Phenotypic features of individuals with SALL4 and SALL1 mutations and structural eye defects in addition to 

Duane anomaly.

Family Ocular findings Other clinical features SALL4 mutation Reference

Proband Microphthalmia;
coloboma; Bilateral
optic nerve hypoplasia

Ventricular septal defect;
atrial septal defect;
growth delays

c.575C>A; p.Ala192Glu
c.2053G>C; p.Asp685His

This paper

I-1
Mother

- Absent thumbs; shortened
forearms; L renal
hypoplasia/pelvic kidney;
conductive and
sensorineural hearing loss

c.2593C>T; p.Arg865* Becker et al., 2002;
Kohlhase et al., 2003

II-1
Proband

Dysplastic optic discs;
bilateral nystagmus;
bilateral Duane anomaly

Absent thumbs/radii;
shortened humeri;
conductive hearing loss

c.2593C>T; p.Arg865* Kohlhase et al., 2003

II-3
Proband

Cataract, iris and
choroideal coloboma
involving optic nerve,
nystagmus, strabismus,
bilateral microphthalmia
and microcornea

L thumb aplasia; R thumb
hypoplasia; crossed renal
ectopia

c.2477delC; p.Pro826fs Aalfs et al.,1996; Borozdin 
et al., 2004A

I-1
Mother

- L thumb hypoplasia Not tested Borozdin et al., 2004A

II-4
Sister

- Bilateral aplasia of
thumbs, radii and ulnae;
L humeral shortening

Not tested Borozdin et al., 2004A

Family 3
Mother

L iris coloboma; L retinal coloboma; 
L Duane anomaly

R Triphalangeal thumb,
short stature

c.1223_1226dupGACC;
p.Phe410fs

Kohlhase et al., 2005

Family 3
Daughter

L iris coloboma; L retinal coloboma Bilateral triphalangeal
thumbs, short stature, hip
dislocation, hypophyseal
hypoplasia

c.1223_1226dupGACC;
p.Phe410fs

Kohlhase et al., 2005

Family 2
1–2

R Duane anomaly Bilateral absent thumbs
and radii; ulna hypoplasia

Deletion exon 2 SALL4 Becker et al., 2002
Borozdin et al., 2004B

Family 2
II-1

R ‘morning glory’ optic
disc; L dysplastic optic
disc; L retinal
coloboma; L Duane
anomaly

Absent L thumb;
hypoplastic R thumb;
mild pelvicalyceal
dilatation with grade I
vesicoureteric reflux;
moderate conductive
hearing loss

Deletion exon 2 SALL4;
Supernumerary Bisatellited
marker derived from
chromosome 22

Becker et al., 2002
Borozdin et al., 2004B

Family F R chorioretinal
coloboma with no vision
in R eye

Imperforate anus, R
preauricular tag, bilateral
sensorineural hearing
loss, long thumbs,
polycystic kidneys and
hypospadias

c.1145_1146insTA
p.Leu383fs

Botzenhart et al., 2005
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