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ABSTRACT OF THE DISSERTATION

Improving Measurements in Large-scale Surveys and Using Survey Data to Assess

Program Impacts

by

Shujin Zhong

Doctor of Philosophy in Education

University of California, Los Angeles, 2021

Professor Christina A. Christie, Co-Chair

Professor Minjeong Jeon, Co-Chair

Using surveys to collect data for evaluating program effectiveness is a common

approach in large national multi-pronged program evaluation, and it is widely used

in the evaluation of biomedical training programs initiated by the Diversity Program

Consortium (DPC). The dissertation consists of three studies. In study one, Measur-

ing Research Mentoring Skills: Revisiting the Faculty Mentoring Competency Assessment and

Developing a Short-form to Measure College Faculty-Student Mentoring, I investigated and

validated the between-item dimensionality of the Mentoring Competency Assessment

(MCA) and created a short form of MCA for future evaluation that was tailored to the

DPC population. In study two, An Item Response Tree Modeling Approach for Assessing

“Not Applicable” Responses in the Enhance Diversity Study, I used an item response tree

(IRTree) modeling approach for assessing “Not Applicable” or ”N/A” responses, and

took the measurement of faculty mentoring as an example to examine the nature of the

“N/A” responses in the MCA scale and investigate within-item dimensionality. In study

three, Evaluating the Impact of the BUILD Scholar Program on First Year College Students’ In-

tent to Pursue Science-related Research Careers, I examined the effectiveness of the BUILD

scholar program, an affiliated undergraduate diversity training program developed at
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each BUILD site. I studied the influence of program participation on students’ intent to

pursue science-related research careers during students’ initial stage in college.
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CHAPTER 1

Introduction of the Diversity Program Consortium

1.1 Background

The US is becoming more racially and ethnically diverse, and this trend will

continue to grow in the coming decades (Cohn & Caumont, 2016). In sharp contrast

to the population’s growing diversity is the stagnant demography of the US biomedi-

cal research workforce, which lags behind in participation of workers from historically

excluded groups despite numerous efforts over the past 40 years to increase diversity

(Valantine & Collins, 2015; McGee Jr, Saran, & Krulwich, 2012). Individuals from his-

torically marginalized groups in science and research (defined in Maccalla, Gutierrez,

Zhong, Wallace, & McCreath, 2020) are ”disproportionately underrepresented and un-

derserved at all levels of the scientific workforce” (Cobian and Gutiérrez, 2021, p. 3),

from undergraduate students and their pipelines, to faculty members. The completion

of biomedical degrees — at the undergraduate and graduate levels — by underrepre-

sented groups (URGs; Maccalla et al., 2020) has continuously fallen behind (Rask, 2010;

Valantine & Collins, 2015) that of their well-represented peers (WRGs; Maccalla et al.,

2020). Further, scientists who belong to the URGs are significantly less likely to be

awarded research grants from the National Institutes of Health (NIH) compared to their

WRG counterparts (Ginther et al., 2011).

In response to these continued disparities in the biomedical workforce, the NIH

funded a new set of initiatives in 2013. The aim was unique in that it employed a

broad and transformative approach to “[promote] diversity in the NIH-funded biomed-

ical, behavioral, clinical, and social sciences (collectively termed ‘biomedical’) research
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workforce” (Funding Opportunity Announcement, 2013a, 2013b, 2013c), providing con-

stant support for individuals from diverse backgrounds underrepresented in biomedical

research. Participants receive training and mentoring, from as early as their undergrad-

uate studies, through their terminal degrees, and into their early career after achieving

their terminal degrees. By providing training and mentoring, the program aims to con-

tribute to diversifying the candidate pool in biomedical research at different educational

stages. The funding opportunity resulted in the creation of Enhancing the Diversity

of the NIH-Funded Workforce (n.d.), also known as the Diversity Program Consortium

(DPC), a trans-NIH program managed by the National Institute of General Medical Sci-

ences (NIGMS).

1.2 Diversity Program Consortium (DPC)

The DPC consists of three core integrated initiatives: the Building Infrastruc-

ture Leading to Diversity (BUILD) Initiative, the National Research Mentoring Network

(NRMN) Initiative, and the Coordination and Evaluation Center (CEC). The DPC de-

velops, implements, assesses, and disseminates innovative and effective approaches to

research training and mentoring, with the goals of: ”1) engaging, training and mentoring

students 2) enhancing faculty development, and 3) strengthening institutional research

training infrastructure” (Enhancing the Diversity of the NIH-Funded Workforce, n.d.).

The DPC emphasizes impacts on students, faculty, and institutions, at all levels of the

biomedical workforce. Each of the three components (i.e., BUILD, NRMN, and CEC) of

the DPC provide a wide range of support for URGs in biomedical research fields.

1.2.1 BUilding Infrastructure Leading to Diversity (BUILD)

The disparity in diversity between the general population and that of biomed-

ical research field professionals can be reduced only if the candidate pool for the field

consists of a diverse population. In 2014, the NIH initiated the BUILD program in order

2



to foster interest among underrepresented undergraduates from diverse backgrounds in

biomedical research fields (as broadly defined in the Funding Opportunity Announce-

ment, to include biomedical, behavioral, clinical, and social sciences, 2013b). The BUILD

initiative, a set of quasi-experimental training programs at 10 primary BUILD institutions

across the nation, aims to attract students from diverse and underserved backgrounds

into biomedical research fields and prepare them for academic success and career readi-

ness through innovative methods (McCreath et al., 2017). Ten institutions are currently

funded as primary BUILD sites (Figure 1.1, cited from Davidson et al., 2017, p. 158).

Table 1.1 (adapted from Davidson et al., 2017, p. 166) summarized the basic institutional

information of the BUILD primary sites prior to the start of the BUILD program. These

primary BUILD sites, along with their research partner institutions, provide biomedical

training and mentoring to undergraduate students in the BUILD programs.

Figure 1.1: BUilding Infrastructure Leading to Diversity (BUILD) Primary Sites

Note. From ”A participatory approach to evaluating a national training and institutional

change initiative: the build longitudinal evaluation,” by P. L. Davidson, N. M. G. Mac-

calla, A. A. Afifi, L. Guerrero, T. T. Nakazono, S. Zhong and S. P. Wallace, 2017, BMC

proceedings (Vol. 11) p. 158. Copyright 2017 by the author(s). Reprinted with permission.
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Table 1.1: BUILD Prime Sites: Institutional Characteristics

Site
Type

A
ve.

total

N
IH

fund.

2011-13

A
dm

.

rate

A
ve.

SA
T

Pell

G
rants

(%
)

6-yr

G
rad.

rates

Total

stu-
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1.2.2 National Research Mentoring Network (NRMN)

The NRMN initiative (Figure 1.2, cited from NRMN, 2019) is a nationwide con-

sortium of more than 100 partner institutions and organizations that provides network-

ing, mentorship, and training opportunities for researchers from diverse backgrounds.

The NRMN aims to develop, implement and disseminate innovative, evidence-based

best practices to improve mentoring relationships in biomedical research fields across

the consortium (Funding Opportunity Announcement, 2013c; NRMN, n.d.). Unlike the

BUILD programs, which serve the undergraduate participants and their faculty mentors

from the 10 primary sites, the NRMN programs recruit participants at all levels (from

undergraduate students to early-career faculty) and work with partner institutions and

organizations across the United States (NRMN, n.d.).

Figure 1.2: National Research Mentoring Network (NRMN)

Note. From National Research Mentoring Network (NRMN), by Diversity Program Con-

sortium (DPC), 2019 https://www.diversityprogramconsortium.org/pages/nrmn). In

the public domain. Reprinted with permission.
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1.2.3 Coordination and Evaluation Center (CEC)

The Coordination and Evaluation Center (CEC) has the responsibility of evaluat-

ing and assessing the effectiveness of the BUILD and NRMN initiatives. The key foci for

the CEC evaluation of the DPC programs include but are not limited to 1) developing

and revising the DPC “Hallmarks of Success” (2020) in biomedical research career paths,

2) exploring motivations and factors that contribute to student participation in biomed-

ical research career paths, 3) identifying institutional, social, and individual factors that

influence students’ decision to pursue biomedical careers, 4) recognizing institutional

structures and re- sources that support student success, and 5) finding approaches to

continuing impact beyond the funding period (Funding Opportunity Announcement,

2013a).

Aligned with the Funding Opportunity Announcement (2013a), the CEC, along

with the other DPC initiatives, identified the “important indicators of transition through

[biomedical] career stages” (McCreath et al., 2017, p.16), and grouped and named them

as DPC Hallmarks of Success. At the beginning of the BUILD program evaluation, the

Executive Steering Committee (ESC, composed of BUILD and NRMN PIs as well as rep-

resentatives from NIH and the CEC) developed a checklist of potential indicators, based

on the literature and program implementation. After discussion, the ESC voted on each

indicator then considered the indicators that received at least 80% approval to be Hall-

marks. The Hallmarks are indicators of transition from entering into biomedical fields

through various career stages. Thus, growth in a Hallmark could reflect the increasing

odds of success in the biomedical field. The Hallmarks of Success (2020) are presented

on the DPC website, and the Hallmarks have been mapped to the DPC evaluation logic

models.

To understand the impact of these multi-pronged research training activities on

future career success in the biomedical field, the CEC identified and summarized the

DPC Hallmarks as outputs and outcomes of the DPC programs. The Hallmarks of Suc-

cess define the constructs of interests to be measured using the survey items, and these
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constructs are indicators of individual development or indicators of successful pursuit

of biomedical education and career paths. To assess program effectiveness, the CEC

needs to assess the participants’ growth and achievement of the Hallmarks throughout

the programs. Accordingly, the CEC developed a longitudinal multi-method evaluation

plan that includes utilizing large-scale surveys to assess stakeholder credibility (internal

reliability) and scientific credibility (external reliability).

1.3 Organization of Research

Using surveys to collect data for evaluating program effectiveness is a common

approach in large national multi-pronged program evaluation, and it is widely used in

the evaluation of biomedical training programs initiated by the DPC. In this dissertation,

I utilized the survey data and program participation data from the DPC evaluation to

conduct three studies.

1.3.1 Study One: Developing a Short-form to Measure Faculty Mentoring

In study one, Measuring Research Mentoring Skills: Revisiting the Faculty Mentor-

ing Competency Assessment and Developing a Short-form to Measure College Faculty-Student

Mentoring, I investigated and validated the between-item dimensionality of the Mentor-

ing Competency Assessment (MCA Fleming et al., 2013) and created a short form of

MCA for future evaluation that was tailored to the DPC population. To measure the

Hallmarks that were indicated by latent traits, the CEC identified existing scales as item

pools and tailored the scales to the DPC population. Although most existing scales were

assessed when they were created, the scales were not purposefully designed based on

the DPC population nor for the DPC evaluation. Using existing scales without perform-

ing any validating test on the DPC population could be problematic, especially for a

national high-stake multi-site longitudinal study. I removed problematic items and se-

lected suitable items based on measurement properties, and created the MCA-short-C,
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a short form of MCA scale for measuring college faculty-student research mentoring.

The paper provided supportive evidence demonstrating that the 9-item MCA-short-C

kept the features of the original 26-item MCA scale, and measured the college faculty-

student research mentoring adequately well for both faculty (self-rating) and student

(rating mentors) population.

1.3.2 Study Two: Using IRTree Models to Assess “N/A” Responses

In study two, An Item Response Tree Modeling Approach for Assessing “Not Ap-

plicable” Responses in the Enhance Diversity Study, I used an item response tree (IRTree)

modeling approach for assessing “Not Applicable” or ”N/A” responses, and took the

measurement of faculty mentoring as an example to examine the nature of the “N/A”

responses in the MCA scale and investigate within-item dimensionality. The DPC sur-

veys provided the “N/A” option as a response category so participants could have more

opportunities to express their actual conditions. However, how to interpret “N/A” re-

sponses has rarely been studied. These responses were often treated by analytical models

as missing, although by design, participants were provided opportunities to distinguish

the use of “N/A” from a missing response. This set an example of handling “N/A”

responses, which could be a reference for DPC data analysis and for interpreting other

similar response options.

1.3.3 Study Three: Evaluating the Impact of the BUILD Scholar Program

The first two studies aimed at addressing measurement issues. After using a

valid scale to measure the construct of interest and collecting the data from the DPC

population, I was able to evaluate the impacts of the DPC programs. In study three,

Evaluating the Impact of the BUILD Scholar Program on First Year College Students’ In-

tent to Pursue Science-related Research Careers, I examined the effectiveness of the BUILD

scholar program, an affiliated undergraduate diversity training program developed at

each BUILD site. I studied the influence of program participation on students’ intent to
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pursue science-related research careers during students’ initial stage in college. In this

study, I also demonstrated potential approaches, such as matching, regression analysis,

and sensitivity analysis for assessing program impacts using survey data. The results in-

dicated that the BUILD scholar program positively influenced students’ intent to pursue

science-related research careers during students’ initial stage in college.

The three studies in this dissertation utilized the DPC survey data to address

important issues in measurement, survey methods, and evaluation of program impacts.

Using surveys to collect data for evaluating program effectiveness is a common approach

in large national multi-pronged program evaluation. These three studies demonstrated

approaches for improving measurement and in large-scale surveys and using survey

data to assess program impacts.
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CHAPTER 2

Measuring Research Mentoring Skills: Revisiting the

Faculty Mentoring Competency Assessment and

Developing a Short-form to Measure College

Faculty-Student Mentoring

2.1 Introduction

2.1.1 Enhance Diversity Study

Under the Diversity Program Consortium (DPC), a trans-NIH program managed

by the National Institute of General Medical Sciences (NIGMS), the Building Infras-

tructure Leading to Diversity (BUILD) initiatives and the National Research Mentoring

Network (NRMN) initiatives provide research training and mentoring programs for in-

dividuals from historically marginalized groups in science and research. The Enhance

Diversity Study (the evaluation of the DPC), supported by the National Institutes of

Health (NIH), is determining the effectiveness of innovative approaches to engage indi-

viduals from diverse backgrounds and help them prepare for and succeed in biomedical

research careers (Davidson et al., 2017; McCreath et al., 2017).

The DPC supports transformative approaches to student engagement, research

training, mentoring, faculty development, and infrastructure development. The Enhance

Diversity Study administers annual surveys to students and faculty at 10 primary BUILD

institutions (2015-2024) as well as mentees and mentors in the NRMN (2015-2019) pro-

grams, with the intention of measuring key outcomes of interest, i.e., the Hallmarks of
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Success (Davidson et al., 2017; McCreath et al., 2017).

2.1.2 Faculty Mentoring in the Diversity Program Consortium

Early in the project, DPC leadership adopted a set of measurable objectives

dubbed the “Hallmarks of Success” (or “Hallmarks”). These Hallmarks represent key

indicators of students’, faculty members’, and institutions’ ability to meet the kinds

of benchmarks identified in previous literature as relevant to individual and organi-

zational success with respect to advancement and achievement within STEM education

and within the STEM workforce. These Hallmarks cover a wide-range of aspects, such as

quantity of mentoring, quality of mentoring, improving mentoring skills and mentoring

with diverse minds (Hallmarks of Success, 2020). In the current version of the Hallmarks

of Success (2020), three (out of 18) student Hallmarks, four (out of 17) faculty Hallmarks

and one (out of 11) institutional Hallmark are directly related to mentoring (Table 2.1).

Preparation for and mentoring of undergraduate and graduate students, post-docs, and

junior faculty compose a key area of focus for the DPC’s activities.

It is expected that students participate in mentored research, receive frequent

mentoring, and are satisfied with the quality of mentorship. Faculty are expected to

engage in mentor training, mentor frequently, and mentor with high self-efficacy while

utilizing evidence-based practices. Institutions (BUILD primary sites) are expected to

demonstrate commitments to implementing and sustaining mentoring practices to en-

hance diversity in the biomedical research workforce. Additionally, the major focus of

the NRMN is to develop, implement and disseminate innovative, evidence-based best

practices to improve research mentoring relationships at all levels (from undergraduate

students to early-career faculty) in the biomedical research field (Funding Opportunity

Announcement, 2013c; NRMN, n.d.).

The Hallmarks of Success affirms the essentials of faculty mentoring, and par-

ticularly, they indicate that mentoring matters both ways. It is important for the DPC to

help faculty improve their mentoring competency, and it is equally important to know
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whether students are satisfied with the research mentoring they receive.

Table 2.1: Mentoring Related Hallmarks

Types ID Hallmarks

Student

STU-4 Satisfaction with quality of mentorship

STU-10 Frequent receipt of mentoring to enhance success in the

biomedical pathway

STU-11 Participation in mentored or supervised biomedical research

Faculty

FAC-3 High self-efficacy as a mentor to biomedical research trainees

FAC-4 High self-efficacy as a mentor to a diverse group of biomedical

research trainees

FAC-5 Frequently mentors students, post-docs, and/or more junior

faculty on biomedical related issues

FAC-17 Uses evidence-based practices in teaching and mentoring

Institutional INST-10

Demonstrated institutional commitment to implementing and

sustaining mentoring practices that promote the development

of research-oriented students from all backgrounds

2.1.3 Purpose of the Study

According to prior research findings on the significance of quality mentorship

in supporting the academic and career progression of students from underrepresented

backgrounds, quality measurement tools are of great importance in capturing impacts

of training programs. We are unable to assess the growth of a latent trait, unless we can

express the quantity (Thomson, 1889). Before we evaluate DPC programs’ effectiveness

at improving faculty mentoring in research or attempt to measure students’ satisfaction

with research mentoring, we need to find tools to measure faculty-mentoring compe-

tency. Using survey data to evaluate program effectiveness hinges upon having valid

and reliable measurement tools. A common approach is to identify in literature existing
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valid measures of the construct of interests. In this process, we have to ensure that the

identified scales and survey items are measuring the same population in the original

scale development and in our program.

To collect reliable information on faculty mentoring competency for the NRMN

and the BUILD program participants, we incorporated the 26-item Mentoring Compe-

tency Assessment (MCA) scale, originally developed by Fleming et al. (2013), into the

DPC surveys. One feature of many large-scale studies, including the Enhance Diver-

sity Study, is the measurement of multiple outcomes of interest. When scales include a

multitude of items, surveys can quickly become unwieldy in length and pursuing item

reduction procedures becomes necessary. From a practical consideration, since survey

length and time to completion are negatively correlated with response rates and sur-

vey completion, having the fewest number of items as are necessary on a survey is of

paramount importance.

Although the MCA provides a good item bank for measuring faculty mentoring

skills, the 26-items take up substantial space on the Enhance Diversity Study student

and faculty surveys where many other important constructs are also being measured.

An unnecessarily long survey jeopardizes survey completion. In an effort to eliminate

item redundancy and reduce respondent burden, item reduction procedures are pur-

sued. The most informative items of the scale are identified to produce a short unidi-

mensional scale measuring faculty mentoring competency. In this study, our goal is to

assess and increase the feasibility and effectiveness of using the MCA scale to measure

mentoring competency in large scale surveys. Item reduction is built upon confirming

the measurement validity on the DPC population, with reduced scales maintaining the

overall integrity of the original MCA scale. This paper details the results from item re-

duction procedures applied to the original long form (26-items) of the MCA (Fleming et

al., 2013).

The previously established short form of the Mentoring Competency Assess-

ment, the MCA-short (Zhong, Maccalla, & Jeon, 2020), largely consulted the NRMN
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survey responses. The NRMN programs recruited participants at all levels, from under-

graduate students to early-career faculty, (NRMN, n.d.); however, the majority of their

mentor-mentee relationships were not at the undergraduate level. As tested in the first

MCA-short development (Zhong et al., 2020) practice, the item context of the original

MCA scale fit the NRMN population better, due to the similarity of the survey partici-

pants (Graduate level academic research or clinical research mentor-mentee pairs).

Another purpose of this study is to establish a short form of the MCA that allows

cross-rating from both faculty mentors and student mentees of faculty research men-

toring competency for faculty-student research mentoring at the undergraduate level

(namely MCA-short-College or MCA-short-C), while maintaining similar psychometric

properties of the original scale. It is important that the high validity and reliability of

the original MCA scale transfer to the MCA-short-C. Getting assessment of mentoring

skills in college settings down to a reasonable length on the Enhance Diversity Study

surveys supports complete and sustained engagement in the longitudinal study of DPC

effectiveness. In this study we take an exploratory approach to examine how well the

MCA measures faculty mentoring of the BUILD faculty and students, and to investigate

the extent to which we can shorten the MCA to a reasonable length while measuring the

faculty mentoring competency construct reliably.

2.2 Literature Review

2.2.1 Faculty Mentoring

In Homer’s Odyssey, “mentor” was a “wise and trusted counselor” whom Odysseus

entrusted with the care and education of his son, Telemachus. Along these lines, Crisp

and Cruz (2009) defined a mentor as “a wise, responsible and trusted advisor” who

guides the development of an individual (p. 527). Previous studies have concluded

that mentorship programs provide beneficial outcomes for individuals and aid in the

development of organizations or institutions (Lin & Hsu, 2012; Seibert, 1999).

14



The Faculty-student mentoring model is the most common form of mentorship

in college (Zhong, 2016), and the effectiveness of faculty mentoring has been considered

as one of the important indicators of institutional change (Bradbury & Koballa Jr, 2008;

Colvin & Ashman, 2010; Lin & Hsu, 2012; Seibert, 1999). However, our understanding of

which specific aspects of mentoring lead to students’ career advancement and improved

psychosocial support is largely anecdotal (Crisp & Cruz, 2009; Gómez, Ali, & Casillas,

2014). Jacobi (1991) as well as Crisp and Cruz (2009) holistically reviewed studies on

mentorship in higher education, and recognized the limitations of these studies: limited

sample sizes, a lack of evidence from quasi-experimental designs, and measurement

issues that led to low external validity.

In 2010, five awardee institutions of the NIH Clinical and Translational Science

Awards (CTSA) jointly developed a clinical and translational research mentor training

curriculum, based on the Entering Mentoring seminar, a mentor training program in

the science, technology, engineering, and mathematics (STEM) fields (Pfund et al., 2013,

2014). This training program featured a large, experimental nation-wide study that in-

volved participants from 16 U.S. universities. This experimental program had a fairly

large sample size of 283 pairs of mentors and mentees, and more importantly, the pro-

gram provided evidence of rather high external validity. Having overcome the previ-

ously mentioned limitations of past studies, the CTSA training program and the evalu-

ation of this program remains a vital addition to mentorship literature.

2.2.2 The Mentoring Competency Assessment (MCA) Scale

Along with the CTSA program, Fleming et al. (2013) developed and utilized

the Mentoring Competency Assessment (MCA) scale for evaluating the mentor training,

to fulfill the requirement by the CTSA (Pfund et al., 2013, 2014). The original MCA

scale went through a rigorous development process including 1) a holistic review of the

Mentorship Effectiveness Scale (a 12-item six-point agree–disagree-format Likert-type

rating scale developed by Berk, Berg, Mortimer, Walton-Moss, & Yeo, 2005) and other
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instruments, 2) interviews with mentoring program participants, and 3) scale validation

procedures on the CTSA participants – 283 pairs of mentors (self-rating) and mentees

(rating their mentors) at 16 U.S. universities using confirmatory factor analysis (CFA).

Fleming et al. (2013) identified 26-item MCA scale that measured six sub-domains

of mentoring competency: 1) maintaining effective communication, 2) aligning expecta-

tions, 3) assessing understanding, 4) addressing diversity, 5) fostering independence,

and 6) promoting professional development. Table 2.2 presented the six domains, their

related mentoring skill names, and the items that measured the skills. These 26 items

asked participants (both mentors and mentees) to rate the mentors’ mentoring com-

petence on a 7-point Likert-type scale, ranging from not at all skilled (1) to extremely

skilled (7). The scale was then utilized to estimate the improvement of effective mentor-

ing in the CTSA program (Pfund et al., 2014). The articles by Pfund et al. (2013, 2014)

and Fleming et al. (2013) promoted various implementations in studies and evaluations

of mentorship and mentor training.

2.2.3 The Development of the MCA-short Scale in the Enhance Diversity Study

The 26-item MCA scale was used to evaluate faculty research mentoring com-

petency in the national longitudinal Enhance Diversity Study, with permission from its

original developers. In an effort to reduce respondent burden in the Enhance Diversity

Study, analysts examined the psychometric properties of the MCA, using faculty/mentor

data from two biomedical faculty survey samples, the BUILD Faculty Annual Follow-up

Survey (FAFS) 2017-2018 sample and the NRMN Follow-up Survey 2016-2018. Statis-

tical analyses employed to test the quality of each item and the overall scale included

Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Item Re-

sponse Theory (IRT). The results indicated that the MCA scale was reliable for measuring

the mentors self-assessment of their research mentoring skills. After analyzing the psy-

chometric properties of items in the MCA scale, analysts reduced the original MCA scale

to a short form.
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Table 2.2: The Mentoring Competency Assessment (MCA) Scale

Sub-domains Skills Items

Communication

Listening Active listening

Feedback Providing constructive feedback

Trust Establishing a relationship based on trust

Styles Identifying and accommodating different communication styles

Strategies (C) Employing strategies to improve communication with mentees

Coordinate Coordinating effectively with mentees’ other mentor

Expectation

Set expectations Working with mentees to set clear expectations of the mentoring

relationship

Align expectations Aligning expectations with mentees’

Differences Considering how personal and professional differences may impact

expectations

Goals Working with mentees to set research goals

Strategies (E) Helping mentees to develop strategies to meet goals

Assessing

Knowledge Accurately estimating mentees’ level of scientific knowledge

Mentee ability Accurately estimating mentees’ ability to conduct research

Mentee skills Employing strategies to enhance mentees’ knowledge and abilities

Independence

Motivation Motivating mentees

Confidence Building mentees’ confidence

Creativity Stimulating mentees’ creativity

Contributions Acknowledging mentees’ professional contributions

Negotiating Negotiating a path to professional independence with mentees

Diversity

Prejudice Taking into account the biases and prejudices the mentor brings to

the mentor/mentee relationship

Background Working effectively with mentees whose personal background is

different from the mentor (age, race, gender, class, region, culture,

religion, family composition etc.)

Profession

Network Helping mentees network effectively

Career goals Helping mentees set career goals

Work/life balance Helping mentees balance work with their personal life

Role model Understanding the mentor’s impact as a role model

Acquire resources Helping mentees acquire resources (e.g. grants, etc.)

Rating on a 7-point Likert-type scale: 1 = not at all skilled, 4 = moderately skilled, 7 = extremely skilled
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The resulting short form of the Mentoring Competency Assessment (MCA-short;

Zhong et al., 2020) included 8 items measuring faculty mentoring competency across the

6 sub-domains (Table 2.3). IRT scores from the 8-item scale and the 26-item scale were

highly correlated (above .96 for both BUILD faculty and NRMN mentor samples). The

MCA-short was proved to be both valid and reliable on the mentor population and

was offered as an alternative to the long form in measuring faculty mentoring com-

petency, particularly when researchers were concerned about space constraints and/or

respondent burden. The MCA-short was used in the subsequent Enhance Diversity fac-

ulty/mentor surveys and studies associated with the DPC. Permission from original

MCA developers was granted to publish the MCA-short.

Table 2.3: The Short Form of the Mentoring Competency Assessment (MCA-short)

Sub-domains Items

Communication Establishing a relationship based on trust

Expectation Aligning the mentor’s expectations with mentees’

Assessing Accurately estimating mentees’ level of scientific knowledge

Independence
Building mentees’ confidence

Stimulating mentees’ creativity

Diversity
Taking into account the biases and prejudices the mentor brings

to mentor/mentee relationship

Profession
Helping mentees balance work with personal life

Understanding mentor’s impact as a role model

Rating on a 7-point Likert-type scale: 1 = not at all skilled, 4 = moderately skilled, 7 = extremely skilled

2.3 Methods

Our study examined the generalizability and transferability of the MCA scale

in the Enhance Diversity Study, and explored variations of the MCA scale’s appearance
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in large-scale surveys in higher education. In Fleming et al. (2013), items in the MCA

scale were selected based on both mentors’ self-rating as well as mentees’ rating on

their mentors. To expand the usage and coverage of the short form of the MCA scale

on the DPC population, in this paper, we presented the item selection process using

the BUILD faculty responses and the cross-validation with the corresponding mentee

responses. The purpose of this study is to re-establish the MCA-short from the faculty-

student samples in college settings to create a new short form, the MCA-short-C, while

maintaining similar psychometric properties of the original scale. Sequential statistical

analyses were employed to test the quality of each item and the overall scale included

factor analysis, item response theory and cross-validation procedures (mentor/mentee

ratings).

2.3.1 Data and Sample

In the DPC administration of the MCA scale, we strictly followed the origi-

nal design of the MCA scale. We asked the faculty/mentor participants to rate their

mentoring skills on a 7-point Likert-scale from 1-7, representing “not at all skilled” to

“extremely skilled” of the ability the items described. We used the same questions in

the student/mentee survey, and asked students to rate the skill level of their primary

mentor on the same scale. In addition to the 7 options, we also provided an extra “N/A”

option, so that participants did not have to respond to the items that were not applica-

ble to their experience. For items that we kept for analyses, we temporarily treated the

“N/A” responses as missing data at random.

The data utilized in this paper were faculty/mentor and student/mentee re-

sponses to the MCA scale from the BUILD Faculty Annual Follow-up Survey (FAFS,

2017-18) and the BUILD Student Annual Follow-up Survey (SAFS, 2017). The BUILD

faculty were from the 10 primary BUILD sites. Most of the 10 BUILD sites were teach-

ing universities with large percentages of undergraduate students. The BUILD FAFS

was distributed to faculty members in the primary BUILD sites, and we received 683
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responses in the survey year 2017-18. Among them, 586 participants self-identified as a

mentor, and 547 mentors responded on the scale of 1-7 to at least half of the questions

in the MCA scale. Within those 547 mentors, 312 faculty respondents identified their

mentees through training programs or departmental assignments. The SAFS was dis-

tributed to students in the BUILD sites, and we received 5230 responses in 2017. Among

them, 1482 participants self-identified as having a faculty mentor and responded on the

scale of 1-7 to at least half of the questions in the MCA scale. Within these 1482 students,

851 of them identified their mentors through training programs or departmental as-

signments, including 353 students who found their faculty mentors through the BUILD

programs. In this study, we used the 547 faculty responses and 1482 student responses

to at least half of items in the MCA scale, because we wanted to ensure that after item

reduction when we dropped more than half of items in the MCA, the responses were

from the same groups of respondents.

We followed the procedure proposed by the scale developer, and validated the

scale using data from both mentors’ self-rating and mentees’ rating of their mentors.

Unlike in the original scale development article by Fleming et al. (2013) in which mentors

and mentees were paired, we did not have the information about the paired mentor-

mentee relations. However, we determined that this would not be problematic, since

Fleming et al. (2013) did not use much of this information in their quantitative analysis.

2.3.2 Exploratory Factor Analysis (EFA)

We assessed the faculty’s self-rating and performed exploratory factor analysis

(EFA), the similar approach used in the Fleming et al. (2013), to determine the qual-

ity of items for measuring research mentoring competency of the BUILD faculty. The

instrument developers suggested that the 26 items could be decomposed into 6 highly

correlated domains (Table 4 in Fleming et al., 2013). This information suggested that we

could try to fit a unidimensional 1-factor model, a 6-factor model or a bi-factor model

with one general domain and 6 sub-domains to our survey data.
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In the MCA scale, since all the items were coded toward the same direction with

a smaller number representing lower frequency or rating and the larger number repre-

senting higher frequency or rating, there was no need for recording. Before we ran the

EFA, we checked the correlations among items. The responses for psychological items

were likert-type ordinal responses, so we chose to use polychoric correlations. After ob-

taining polychoric correlations, we consulted multiple simple statistical rules of thumb,

such as scree plots (Cattell, 1966) and parallel analysis (Horn, 1965) to get a sense about

the scale dimensionality. This procedure could help us identify the suitable factorial

model and fit a structure that could be easily interpreted (such as Thurstone’s Simple

Structure [1947], independent cluster, or a bi-factor model). With certain information

about the dimensionality, if the information supported the factorial structure reported

by the original MCA developer, we would fit three models to the faculty data: a uni-

dimensional 1-factor model, a 6-factor model, and a bi-factor model with one general

domain and 6 sub-domains. We then chose the structure based on interpretability and

model fit.

2.3.3 Confirmatory Factor Analysis (CFA)

After getting the results from the exploratory analyses on the faculty data, we

conducted confirmatory factor analysis on the students’ data to check whether the de-

termined dimensionality appeared to be similar. In this process, we assumed that both

students and faculty rated the faculty research mentoring competency latent trait ratio-

nally. Although students’ rated their primary mentors, who might be faculty respon-

dents in our surveys or other faculty in their universities, we observed that 55.3% of the

faculty respondents and 57.4% of the student respondents found their mentees or men-

tors through training programs or departmental assignments. Both students and faculty

answered the same questions on the same rating scale at similar periods of time. We

believed that this level of matching would provide sufficient evidence that students and

faculty were more or less rating similar traits on a similar population.
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We fitted the confirmed factorial structure from the previous EFA to the student

data, reassessed the dimensionality, and conducted item reduction to create a short form.

Quinn (2014) proposed to use the explained common variance (ECV =
Σλ2

ig

Σλ2
ig+Σλ2

is
, where

λig is the factor loading on the general factor and λis is the factor loading on a sub-

domain) thresholds to specify if the scale is unidimensional or not. With an ECV above

.9, the scale could be treated as unidimensional; with an ECV between .7 and .9, we

might need extra information to determine the unidimensionality. In practice, Hansen et

al. (2014) used item explained common variance (I-ECVi =
λ2

ig

λ2
ig+λ2

is
) to assess if the item

was strongly associated with the general dimension, and defined that with a general

factor loading above .5, the item is strongly related to the general dimension; with an I-

ECV above .8, the item is weakly influenced by a group-specific dimension. These criteria

were considered for determining the measurement dimensionality and item selection for

the short scale.

2.3.4 Evaluation of Short Form Performance

We planned to select a group of items that could well-represent the features (i.e.,

dimensionality and reliability) of the MCA scale. After item selection, we used multiple

procedures, to assess the dimensionality and reliability of the short form, compared to

the original MCA scale. We reported the ECV differences to assess the dimensionality,

and used Cronbach’s Alpha and Squared Multiple Correlation (SMC) to evaluate the

reliability of the short form. Additionally, we used Fisher Information to determine how

much information an item could provide at each point or how reliable an item could

be, and to what extent the item could help with the classification of individuals’ latent

scores. To get the Fisher Information, we fitted graded response IRT models to the

data, and obtained individual IRT scores. Then we checked Pearson’s correlation and

Spearman’s rank order correlation between the scores from the MCA and MCA-short-C.

The goal of item selection for creating a short form was to group the most informative

items for both faculty and student population that could reflect the same item structure
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and response structure, and meanwhile, could measure the construct adequately well.

2.4 Results

2.4.1 Exploratory Factor Analysis on Faculty Data

We started with exploratory analyses, using the FAFS data, to examine the po-

tential factorial structures. We firstly produced the polychoric correlation matrix (Table

2.4) from the faculty responses of the 26 items in the MCA. The correlations in the ma-

trix showed that all items were positively and highly correlated (all greater than .37),

which somewhat suggested the unidimensional factorial structure. From the item corre-

lation clusters on the diagonal of Table 2.4, We observed high correlations among items

that were designed to be in the same sub-domain; meanwhile, some items across dif-

ferent sub-domains were also highly correlated. We ran parallel analyses (Figure 2.1),

using this polychoric correlation matrix and its reduced matrix (with SMCs placed on

the diagonal), and the results supported the unidimensionality as well.

With the above information, we fitted a unidimensional 1-factor model and chose

maximum likelihood (ML) as the factoring method. The results of the 1-factor model (Ta-

ble 2.5) suggested that all items had relatively high standardized factor loadings (load-

ings or factor loadings, hereinafter) on one factor (all greater than .66), and the unique

variances (uniqueness) of items ranged from .28 to .57. The high factor loadings and

communalities (shared variances) suggested that the 1-factor model could be sufficient

for measuring one general latent trait, the faculty-student research mentoring compe-

tence, and we could roughly conclude that the 26-item MCA scale could be utilized as

a reliable measure for the self-assessment of faculty-student research mentoring compe-

tence in college settings.

According to Fleming et al. (2013), they designed the MCA to measure 6 aspects

of the faculty research mentoring competence, and their confirmed factorial structure

was a 6-factor model with highly correlated factors. In our study, we planned to test if the
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Table 2.4: Polychoric Correlations
I1

I2
I3

I4
I5

I6
I7

I8
I9

I10
I11

I12
I13

I14
I15

I16
I17

I18
I19

I20
I21

I22
I23

I24
I25

I26

I1I2
.72

I3
.72

.70

I4
.59

.64
.66

I5
.65

.65
.65

.83

I6
.45

.52
.45

.53
.58

I7
.52

.58
.52

.55
.63

.67

I8
.54

.64
.56

.65
.66

.65
.82

I9
.57

.55
.56

.62
.63

.51
.58

.71

I10
.46

.62
.49

.51
.54

.43
.56

.65
.58

I11
.60

.61
.53

.61
.65

.56
.67

.69
.63

.65

I12
.38

.54
.43

.47
.48

.46
.48

.58
.45

.64
.60

I13
.45

.58
.45

.47
.49

.45
.52

.58
.47

.69
.62

.87

I14
.55

.63
.55

.64
.71

.54
.59

.65
.66

.69
.75

.66
.65

I15
.47

.53
.52

.57
.62

.48
.57

.60
.62

.57
.66

.47
.51

.78

I16
.56

.57
.61

.61
.61

.46
.53

.64
.58

.56
.71

.51
.51

.71
.71

I17
.55

.61
.56

.57
.58

.52
.57

.62
.58

.55
.63

.51
.52

.68
.67

.74

I18
.49

.62
.52

.47
.52

.45
.46

.56
.56

.66
.60

.50
.52

.63
.61

.67
.63

I19
.52

.61
.57

.60
.62

.56
.59

.66
.55

.62
.70

.60
.62

.70
.66

.70
.69

.71

I20
.60

.54
.59

.64
.68

.50
.55

.59
.72

.51
.65

.46
.47

.65
.65

.62
.64

.53
.61

I21
.59

.53
.56

.59
.58

.41
.46

.49
.63

.45
.59

.39
.44

.57
.56

.61
.57

.51
.51

.73

I22
.43

.45
.55

.50
.54

.47
.52

.53
.50

.39
.53

.37
.37

.55
.56

.59
.58

.50
.63

.53
.58

I23
.55

.59
.59

.56
.60

.49
.58

.61
.62

.61
.70

.51
.54

.68
.69

.67
.66

.70
.74

.64
.64

.69

I24
.43

.44
.47

.56
.56

.47
.43

.51
.53

.43
.55

.39
.43

.55
.59

.60
.55

.46
.56

.61
.60

.57
.65

I25
.54

.55
.62

.63
.69

.59
.57

.64
.64

.53
.62

.44
.47

.65
.68

.71
.68

.60
.68

.71
.64

.66
.74

.69

I26
.47

.45
.48

.46
.50

.42
.47

.44
.44

.50
.53

.38
.38

.54
.55

.54
.58

.51
.58

.50
.46

.62
.65

.57
.64
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Table 2.5: EFA 1-factor Model (FAFS Sample)

Sub-domains Items Factor Loading Communality Uniqueness

Communication

Listening 0.71 0.50 0.50

Feedback 0.76 0.58 0.42

Trust 0.73 0.54 0.46

Styles 0.77 0.59 0.41

Strategies (C) 0.81 0.65 0.35

Coordinate 0.66 0.44 0.56

Expectation

Set expectations 0.74 0.54 0.46

Align expectations 0.81 0.65 0.35

Differences 0.77 0.59 0.41

Goals 0.73 0.54 0.47

Strategies (E) 0.83 0.69 0.32

Assessing

Knowledge 0.66 0.43 0.57

Mentee ability 0.69 0.47 0.53

Mentee skills 0.85 0.72 0.28

Independence

Motivation 0.79 0.62 0.38

Confidence 0.81 0.66 0.34

Creativity 0.80 0.63 0.37

Contributions 0.74 0.55 0.45

Negotiating 0.83 0.68 0.32

Diversity
Prejudice 0.79 0.62 0.38

Background 0.72 0.52 0.48

Profession

Network 0.69 0.48 0.52

Career goals 0.83 0.69 0.31

Work/life balance 0.70 0.48 0.52

Role model 0.83 0.68 0.32

Acquire resources 0.67 0.44 0.56
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Figure 2.1: Parallel Analysis

factorial structure of 6 competency aspects, or the 6 sub-domains also appeared in our

studied populations. Thus, the second EFA model we tried was the 6-factor model that

allowed correlations between the factor pairs. In the 6-factor model (Table 2.6), similar to

what Fleming et al. (2013) described in their paper, the six sub-domains somewhat stood

out. Only four items – “Coordinate,” “Goals,” “Creativity” and “Negotiating” – did not

have factor loadings that were above .3 in their designed sub-domains. Most items were

highly loaded on their designed sub-domains. Table 2.6 also presented the relatively

high correlations between the factor pairs, and the results were similar to those reported

by Fleming et al. (2013). The high correlations between the factor pairs suggested that

we could try to fit a bi-factor model.

We explored a bi-factor model, where all 26 items fell under one general men-

toring domain and also belonged to a specific sub-domain. By design, we assumed that

there were 6 sub-domains, and therefore, we purposefully used a target rotation to lead
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Table 2.6: EFA 6-factor Model and Factor Correlations (FAFS Sample)

Item Communication Expectation Assessing Independent Diversity Profession

Listening 0.78

Feedback 0.72

Trust 0.73

Styles 0.40 0.16 0.33

Strategies (C) 0.37 0.25 0.31

Coordinate 0.63 0.21

Set expectations 0.85

Align expectations 0.79

Differences 0.30 0.47

Goals 0.40 0.32

Strategies (E) 0.28 0.20 0.23

Knowledge 0.92

Mentee ability 0.93

Mentee skills 0.31 0.27 0.28

Motivation 0.32 0.29 0.26

Confidence 0.18 0.35 0.17 0.29

Creativity 0.28 0.30

Contributions 0.19 0.49 0.17

Negotiating 0.19 0.20 0.26 0.37

Prejudice 0.56

Background 0.22 0.46 0.25

Network 0.68

Career goals 0.27 0.50

Work/life balance 0.28 0.55

Role model 0.17 0.19 0.54

Acquire resources 0.62

Communication 1.00

Expectation 0.59 1.00

Assessing 0.58 0.66 1.00

Independent 0.47 0.56 0.62 1.00

Diversity 0.56 0.55 0.50 0.38 1.00

Profession 0.41 0.40 0.40 0.49 0.27 1.00

Note. Only reported factor loadings with absolute values greater than .1527



the bi-factor model to fit the structure that all items belonged to a general factor and

their designed sub-domains that were proposed by Fleming et al. (2013). All factors in

this model were orthogonal to each other. The bi-factor model with six sub-domains was

presented in Table 2.7, where we observed a strong pattern that indicated the bi-factor

structure, since for all items, their factor loadings on the general domain were greater

than .55 and most items loaded majorly on their designed sub-domains.

Among the three EFA models, the bi-factor model was easier to interpret, be-

cause the MCA scale was designed to measure faculty mentoring competency and the

competency covered 6 aspects. We further compared goodness-of-fit indexes of the 1-

factor model, 6-factor model and bi-factor model. We noticed that, for example, the

Tucker Lewis Indexes (TLI) increased from .81 in the 1-factor model to .94 in the 6-factor

model and then to .96 in the bi-factor model; the root mean squared error of approxima-

tion dropped from .11 in the 1-factor model to .06 in the 6-factor model and then to .05 in

the bi-factor model. These comparisons along with several other comparisons of indexes

indicated that the bi-factor model fitted better than the two other models. Therefore, we

chose the bi-factor model as the confirmed factorial structure in the next step.

2.4.2 Confirmatory Factor Analysis on Student Data

We fitted the previously identified factorial structure, the bi-factor model to stu-

dent data, with the restrictions that items loaded on the general factor as well as a

sub-domain proposed by Fleming et al. (2013). Table 2.8 presented the CFA bi-factor

model with 6 sub-domains using the SAFS sample. We observed similar features in the

CFA results to the EFA target rotation results. All items had high loadings on the gen-

eral factor (above .71) and weak loadings on a sub-domain (due to the factorial structure

constraints). The items’ unique variances ranged from .02 to .49, and averaged at .26;

the I-ECV ranged from .52 to 1, and averaged at .85. These values indicated that on av-

erage around three quarters of the item variances were explained in this model, and the

general factor explained large proportions of the explained common variances for each
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Table 2.7: EFA Bi-factor Model with 6 Sub-domains under Target Rotation (FAFS Sample)

Item General Communication Expectation Assessing Independent Diversity Profession

Listening 0.55 0.57 0.16 0.24

Feedback 0.60 0.52 0.19 0.18 0.23

Trust 0.60 0.52 0.16

Styles 0.80 0.35

Strategies (C) 0.84 0.34

Coordinate 0.63 0.32 0.16

Set expectations 0.66 0.19 0.56

Align expectations 0.75 0.50

Differences 0.74 0.26 0.28

Goals 0.64 0.24 0.31 0.29

Strategies (E) 0.76 0.24 0.18

Knowledge 0.63 0.63

Mentee ability 0.63 0.16 0.70

Mentee skills 0.84 0.24

Motivation 0.78 0.27

Confidence 0.76 0.34

Creativity 0.71 0.28 0.19

Contributions 0.61 0.49

Negotiating 0.74 0.29 0.22

Prejudice 0.78 0.35

Background 0.67 0.47 0.21

Network 0.62 0.48

Career goals 0.72 0.30 0.37

Work/life balance 0.70 0.33

Role model 0.79 0.34

Acquire resources 0.58 0.21 0.42

Note. Only reported factor loadings with absolute values greater than .15
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Table 2.8: CFA Bi-factor Model with 6 Sub-domains (SAFS Sample)

Item
G

eneral
C

om
m

unication
Expectation

A
ssessing

Independent
D

iversity
Profession

U
niqueness

I-EC
V

Listening
0.71

0.43
0.30

0.73

Feedback
0.74

0.43
0.27

0.75

Trust
0.78

0.42
0.22

0.77

Styles
0.81

0.35
0.22

0.84

Strategies
(C

)
0.80

0.28
0.28

0.89

C
oordinate

0.71
0.05

0.49
1.00

Set
expectations

0.79
0.32

0.27
0.86

A
lign

expectations
0.82

0.34
0.21

0.85

D
ifferences

0.81
0.27

0.27
0.90

G
oals

0.72
0.03

0.48
1.00

Strategies
(E)

0.83
0.13

0.29
0.98

K
now

ledge
0.74

0.49
0.22

0.69

M
entee

ability
0.72

0.69
0.02

0.52

M
entee

skills
0.72

0.35
0.35

0.81

M
otivation

0.82
0.38

0.18
0.82

C
onfidence

0.83
0.46

0.09
0.76

C
reativity

0.84
0.28

0.22
0.90

C
ontributions

0.83
0.20

0.27
0.95

N
egotiating

0.84
0.10

0.28
0.99

Prejudice
0.84

0.18
0.26

0.96

Background
0.79

0.12
0.36

0.98

N
etw

ork
0.78

0.34
0.27

0.84

C
areer

goals
0.80

0.40
0.20

0.80

W
ork/life

balance
0.77

0.32
0.31

0.85

R
ole

m
odel

0.83
0.30

0.22
0.88

A
cquire

resources
0.79

0.31
0.27

0.87
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item. The total ECV of the scale performed under the bi-factor model on the student

sample was .84, which provided evidence of a strong general factor. For this model, the

TLI was .94, the RMSEA was .06, and the comparative fit index (CFI) was .94. These

indexes indicated relatively adequate model fit. From the evidence presented above, we

could conclude that the bi-factor structure fitted both faculty and student data.

2.4.3 Development and Evaluation of the MCA-short-C

As we noticed in the previous polychoric correlations (Table 2.4), EFA results

(Tables 2.5, Table 2.6 and Table 2.7) and CFA results (Table 2.8), the MCA scale was in

general unidimensional. Accordingly, we conducted item selections to create a short

form that not only inherited features from the original MCA scale performance on both

student and faculty population, but could also measure the faculty-student research

mentoring competency adequately well. We also acknowledged that the sub-domains

proposed by Fleming et al. (2013) mostly appeared in the factorial structure of our

confirmed model. We hoped that in the short form, the sub-domains could be well-

represented as well. Taking sub-constructs into consideration, we selected items that

were well-explained by the general domain and meanwhile, explained by a specific sub-

domain by design in the original study by Fleming et al. (2013).

We adapted the selection criteria and procedure from Hansen et al. (2014), with

the consideration of prior knowledge about the dimensionality. We planned to retain

items that were strongly related to the general factor and weakly influenced by only

one of the 6 sub-domains to which they were designed to be associated. The loadings

on the general factor (λig) and the I-ECV reflected the influence of the general factor.

The loadings on the sub-domains (λis) indicated if the items were also weakly explained

by the designed sub-domains. To reflect all 6 sub-domains, we should include at least

one item per sub-domains. These criteria should stand for both student and faculty

responses, and as a result, we would not select an item if it performed well for one

population but not for the other.
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In practice, we firstly selected items that had high factor loadings on the gen-

eral factor in both the EFA bi-factor model and the CFA model, and then we selected

those items with high I-ECV. In this process, we excluded items that were not majorly

loaded on, in addition to the general factor, their designed sub-domains (e.g., items “Co-

ordinate” and “Goals”). Based on these criteria, we selected one or two most suitable

items per sub-domain, and grouped the selected items to create the short form of MCA

for measuring college faculty-student research mentoring competency, the MCA-short-C

(Tables 2.9).

Table 2.9: Items in the MCA-short-C

Sub-domains Item
Student Faculty

λig λis I-ECV λig λ∗is I-ECV∗

Communication
Styles 0.81 0.35 0.84 0.80 0.35 0.84

Strategies (C) 0.80 0.28 0.89 0.84 0.34 0.86

Expectation Align expectations 0.82 0.34 0.85 0.75 0.50 0.69

Assessing Knowledge 0.74 0.49 0.69 0.63 0.63 0.50

Independent
Motivation 0.82 0.38 0.82 0.78 0.27 0.89

Confidence 0.83 0.46 0.76 0.76 0.34 0.83

Diversity Prejudice 0.84 0.18 0.96 0.78 0.35 0.83

Profession
Work/life balance 0.77 0.32 0.85 0.70 0.33 0.82

Role model 0.83 0.30 0.88 0.79 0.34 0.84

∗Only factor loadings on the designed sub-domains were presented and included in I-ECV calculations.

In Table 2.9, we presented the selected items and their λig, λis and I-ECV values

from the CFA model on the student sample and the EFA model on the faculty sample. In

the selected items, their λig ranged from .74 to .84 in the CFA model, and from .63 to .84

in the EFA model; the I-ECVs ranged from .69 to .96 in the CFA model, and from .50 to .89

in the EFA model. Two important points should be mentioned in the selected items. One

was that the indexes in the two models were not exactly comparable, even though the
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results were all standardized, because the EFA model was freely estimated whereas we

set constraints in the CFA model. The λis and I-ECV values from the EFA only considered

factor loadings on the designed sub-domains for the selected items. The other important

point was that if we did not insist on including at least one item per sub-domain (strictly

by design), it would be possible to select items that had higher λig and I-ECV values,

so that the short form could be even “more” unidimensional. For example, under the

“Assessing” sub-domain, the best item out of the three items was “Knowledge” (as we

selected into the short form), but this selected item did not perform as well as items

selected from other sub-domains. For another example, item “Coordinate” seemed to be

a good candidate, if we allowed it to be affiliated with another sub-domain instead of

the originally proposed “Communication” domain.

After we obtained the short form, we evaluated the scale’s psychometric prop-

erties as a whole and compared them to the properties of the original MCA scale (Table

2.10). We compared the ECV of the two scales across the two samples and found that the

ECVs of the MCA-short-C were higher than the ECVs of the MCA scale for both student

(increased from .84 to .86) and faculty (increased from .74 to .79) samples. The ECVs

indicated strong evidence of unidimensionality (Quinn, 2014). Then, we treated both

scales as unidimensional and compared common Classical Test Theory (CTT) reliability

indexes, the Cronbach’s alpha and the SMC (Guttman’s lambda 6) values. Although

we observed smaller alpha values (.96 to .92 in faculty sample and .97 to .94 in student

sample) and SMC values (.97 to .92 in faculty sample and .98 to .94 in student sample)

of those obtained from the MCA-short-C scale than those from the MCA scale, the alpha

and SMC values of the MCA-short-C still indicated strong reliability, from a classical test

theory perspective. We also examined the changes of these two indexes if we dropped

any item in the MCA-short-C, and found that the two values would drop at least .02

when excluding any item.

In the Enhance Diversity Study, before responses to the scales like MCA were put

into use for evaluating program effects, we assigned scores (usually expected-a-posterior
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Table 2.10: Evaluation of MCA-short-C Performance

Comparisons Faculty Student

Dimensionality
ECV of MCA 0.74* 0.84

ECV of MCA-short-C 0.79* 0.86

CTT Reliability

. Cronbach’s Alpha of MCA 0.96 0.97

Cronbach’s Alpha of MCA-short-C 0.92 0.94

SMC of MCA 0.97 0.98

SMC of MCA-short-C 0.92 0.94

EAP Scores
Pearson’s Correlation 0.98 0.98

Spearman’s Rank Order Correlation 0.97 0.98

IRT Reliability**

Empirical reliability of MCA 0.96 0.93

Empirical reliability of MCA-short-C 0.93 0.89

Marginal reliability of MCA 0.97 0.92

Marginal reliability of MCA-short-C 0.93 0.87

∗Only factor loadings on the designed sub-domains were included in the ECV calculation.

∗∗Overall reliability.

[EAP] item response scores) to respondents as representations of their abilities of the

measured construct. Thanks to this step, consortium-wide researchers could use the

scores directly in their data analyses. In addition to the internal consistency of the MCA-

short-C, we also compared the scoring alignment between the two scales. Normally, we

would use the first survey cohort data or a national sample to obtain the item parameters,

and then use the parameters to compute the EAP scores to ensure that the scores could

be comparable across responses from different years. In this study, the MCA scale was

first-time administered to both populations, and as a result, we had to use the same

samples to estimate item parameters and EAP scores on both scales.

We fit two unidimensional graded response IRT models to faculty data and stu-

dent data separately; one model included 9 items in the MCA-short-C and the other

34



included all 26 items in the MCA. After we obtained item parameters and EAP scores,

we used Pearson’s correlation and Spearman’s rank order correlation to compare the

alignment of the scores (Table 2.10). For the faculty sample, Pearson’s correlation and

Spearman’s rank order correlation of the scores from the MCA and the MCA-short-C

were .98 and .97, respectively. For the student sample, the correlations were .98 and

.98, respectively. These values indicated that the scores from the two scales were highly

correlated.

We then compared the overall precision of measurement under the IRT frame-

work, i.e., the overall reliability (ρxx). The empirical reliability was computed from

ρ̂xx =
σ2

S(θ̂)

σ2
S(θ̂)

+σ2
E(θ̂)

, where σ2
S(θ̂)

was the variance of the estimated scores, and σ2
E(θ̂)

was

computed from the mean squared standard errors of the estimated scores. The marginal

reliability was computed from the integration of conditional Fisher information on a

given probability density function of the latent trait distribution. In Table 2.10, we re-

ported the comparisons of the overall empirical reliability and marginal reliability of the

two scales. For the faculty sample, the empirical reliability dropped from .96 to .93 and

the marginal reliability dropped from .97 to .93 when using the MCA-short-C instead of

the MCA. Similarly, for the student sample, the empirical reliability dropped from .93 to

.89 and the marginal reliability dropped from .92 to .87. The results were congruent with

the findings from CTT reliability comparisons. Although the reliability index values de-

creased when using the short form, the changes were subtle, especially considering the

reduced response burden.

To illustrate the relations between the individual scores (standardized to mean

0, variance 1) from the two scales, we plotted the correlations in Figure 2.2a and Figure

2.3a. In these two plots, the diagonal red line represented that the scores obtained from

the two scales were equal. The individual scores were all around the red lines for the

two samples, though in the student sample, the scores seemed to hit a ceiling effect. We

further compared the score distributions of the two scales and plotted the histograms in

Figure 2.2b and Figure 2.3b. The corresponding score distributions for the two samples
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Figure 2.2: Comparisons of MCA and MCA-short-C (Faculty Sample)
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Figure 2.3: Comparisons of MCA and MCA-short-C (Student Sample)
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were well aligned, though the student score distributions, especially the MCA-short-C

score distribution, were not normal.

We also plotted the test information of the two scales in Figure 2.2c and 2.2d as

well as Figure 2.3c and 2.3d. The IRT test information – Fisher information of the scale

or the variance of the scores I(θ) calculated from the sum of item Fisher information,

presented the degree of measurement precision of the scales at different ability levels

(θ). Although we lost some information when using the MCA-short-C, judging from

the similarity of shapes of test information between Figure 2.2c and 2.2d, and between

Figure 2.3c and 2.3d, we believed that the MCA-short-C provided sufficient information

in the interval where the MCA scale measured the construct reliably.

When faculty respondents’ ability (Figure 2.2c and 2.2d) of the latent trait (θ)

was smaller than 2 standard deviations (SDs) above the mean, the test information I(θ)

was larger than 6, and the measurement error (the standard error of estimation SE(θ) =
1√
I(θ)

) for the faculty sample was smaller than .4. This indicated that within the same

range of θ that covered around 97.5% of faculty respondents, the reliability given θ, ρxx|θ

was rather large (over .86), since ρxx|θ
∼= I(x,θ)

1+I(x,θ) (exact when standardized to variance

1) was monotone increasing. The original MCA scale could maintain a similar level of

reliability for 99% of faculty respondents. We concluded that apart from those whose

research mentoring scores were at the top 2.5%, the MCA-short-C could reliably measure

the construct, and the difference between the scoring reliability conditional on θ was

empirically indistinct.

In Figure 2.3c and 2.3d, we noticed that due to the ceiling effect, both MCA and

MCA-short-C dropped their measurement accuracy when θ was larger than 1 SD above

the mean. Test information of the MCA-short-C scale indicated that the reliability given θ

was larger than .78 for around 85% respondents (θ < 1.037). The reliability of the MCA

scale given θ was larger than .78 for around 90% respondents (θ < 1.283). Although

the reliability of MCA-short-C for high performers was not ideal, this was somewhat

inherited from the MCA scale.
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2.5 Discussion

2.5.1 Summary of the MCA-short-C

In this study, we investigated dimensionality of the MCA scale, and validated

the MCA scale performance on the BUILD faculty and student population. Based on

the dimensionality and scale performance, we conducted item reduction and created a

short form of MCA, the MCA-short-C (Table 2.9). We performed EFA on the BUILD

faculty survey sample from 2017-2018 to explore the factorial structure according to the

proposed structure by Fleming et al. (2013), the MCA developer. We confirmed that a bi-

factor model with one general domain and 6 sub-domains was the best fit for the faculty

data; we then fitted the confirmed structure to the undergraduate student survey data

from SAFS 2017. Based on the CFA results, we selected items that had high loadings on

the general factor and weakly loaded on one specific sub-domain. These items formed

the 9-item MCA-short-C scale as tailored to measure college faculty-student research

mentoring.

We utilized multiple approaches to assess the dimensionality, reliability, and

scoring congruence of the MCA-short-C, compared with the original MCA scale. We

found that the MCA-short-C was unidimensional and reliable for both student and fac-

ulty populations. The EAP scores from the MCA-short-C were highly correlated with

that from the MCA scale. After assessing the MCA-short-C from different aspects and

comparing it to the MCA scale, we confirmed that the MCA-short-C maintained the

general measurement properties and functionality of the original MCA and could be

used in both faculty and student populations as a substitute for the original MCA scale.

The MCA-short-C was reliable for both faculty and student samples, especially when

the ability level was not at the top of their group. The MCA-short-C could be offered as

an alternative to the long form in measuring faculty-student research mentoring com-

petency, particularly when researchers were concerned about space constraints and/or

respondent burden.
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The MCA-short-C shared 6 items (”Align expectations,” ”Knowledge,” ”Confi-

dence,” ”Prejudice,” ”Work/life balance,” and ”Role model,” see shared items in Table

2.3 and Table 2.9) with the previously developed MCA-short scale (Zhong et al., 2020).

When researchers planned to measure mentoring competency of faculty, especially those

whose mentees were mainly graduate students, the MCA-short would be a better op-

tion. The MCA-short-C provided the opportunity for assessing undergraduate faculty-

student research mentoring from both mentors’ self-rating as well as mentees’ rating on

their mentors. Moreover, the MCA-short-C could be a good fit for measuring paired

undergraduate faculty-student research mentoring relations. The responses from faculty

and students could serve as multiple measures and rating agreement between the two

populations could be assessed. To support the Enhance Diversity Study, the item pa-

rameters obtained from this study could be used for scoring future participants of the

BUILD faculty surveys.

2.5.2 Limitations and Future Studies

Although in this study, we proved that the MCA-short-C was valid for both

college faculty and students and the scale reduced survey response burdens, we noticed

several drawbacks. First of all, we observed a ceiling effect when students rated their

mentors on the MCA-short-C scale. Judging from the scoring on both scales, the ceiling

effect might be inherited from the original MCA scale. This indicated that we should

put effort toward searching for ”harder” items for the student population to measure

the undergraduate faculty-student research mentoring in the future.

Moreover, through IRT modeling, we noticed another measurement issue that

was more or less related to the ceiling effect – the collapse of item response categories,

especially at the lower ability spectrum. The response category collapse issue appeared

in both student and faculty models, and in almost all of the 26 items in the MCA. This

suggested that in the future, we should re-examine the item response categories and

consider reducing the number of response categories.
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The third limitation is that due to the unknown mentor-mentee pairing relations,

we could not confirm the rating alignment or agreement. If the pairing relationships

could be identified in the Enhance Diversity Study or in another study that collected

data using MCA-related scales, we could test the mentor-mentee rating agreement and

differential item functioning in the future.

Finally, we mentioned that in addition to the 7 ordinal response options, we also

provided an extra ”Not Applicable” or “N/A” option so that participants did not have

to respond to the items that were not applicable to their experience. We temporarily

treated the “N/A” responses as missing data at random. In the next chapter, we will

discuss more about the influence of the “N/A” option.
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CHAPTER 3

An Item Response Tree Modeling Approach for Assessing

“Not Applicable” Responses in the Enhance Diversity

Study

3.1 Introduction

In the Enhance Diversity Study, researchers administer large-scale surveys to col-

lect data for evaluating program effectiveness under the Diversity Program Consortium

(DPC). Using surveys to collect data and evaluating program effectiveness starts with

finding reliable and valid instruments and understanding the item response process.

The previous chapter provided an example of examining the reliability and validity of a

scale that was developed by another study and used for measuring the DPC population.

This chapter explored the response tendency or item response decision-making process

of the DPC population. Considering the importance of faculty mentoring in the DPC,

we continued to use measuring faculty mentoring competency as an example to explore

the item response process. Building upon the study in Chapter 2, we analyzed faculty

and student responses to the 26-item Mentoring Competency Assessment (MCA) scale

(Fleming et al., 2013), with a purpose of understanding the meaning of ”Not Applica-

ble” (or ”N/A”) which was provided as an additional response category in many survey

items in the DPC survey administration.

The DPC surveys provided the “N/A” option as a response category so partic-

ipants could have more opportunities to express their actual conditions. However, how

to interpret “N/A” or other similar response alternatives has rarely been studied. These
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responses were often treated in analytical models as missing at random, although by

design, participants were provided opportunities to distinguish the use of “N/A” from

a missing response. In this study, we used an item response tree modeling approach

(IRTree, De Boeck & Partchev, 2012; Jeon & De Boeck, 2016) to assess the influence of

”N/A” responses and to explore potential response processes when participants selected

their response options.

3.1.1 Response Alternatives

Item response alternatives are the choices or response categories that partici-

pants could choose when responding to an item. In a Likert-type scale, the alternatives

are usually coded as ordinal responses. In addition to ordinal responses, response al-

ternatives could also be response categories that had no ordinal indication, such as “not

applicable,” “don’t know,” or ”prefer not to state.” Although the reasons for choosing

this type of responses might be unknown, these options could help reduce forced choos-

ing and non-response (Oldendick, 2012).

Survey method researchers encouraged the use of “not applicable” type of re-

sponse options (Holman, Glas, Lindeboom, Zwinderman, & De Haan, 2004; “Don’t

knows (DKs)”, n.d.; Oldendick, 2008); however, how to analyze ”N/A” responses be-

yond descriptions has rarely been studied. Berinsky and Margolis (2011) urged that

researchers should treat such responses as “not applicable” with caution, and used de-

scriptive data to conclude that participants who were socioeconomically disadvantaged

tend to choose this type of options in the polling and health care surveys. Apart from

presenting descriptive frequency, “not applicable” and “don’t know” responses were of-

ten treated as non-substantive responses, and in data analysis and statistical modeling,

as missing data (Holman et al., 2004; “Don’t knows (DKs)”, n.d.; Berinsky & Margolis,

2011). Holman et al. (2004, p. 29) proposed 4 approaches for handling “N/A” responses;

however, all 4 approaches, i.e., “cold deck imputation, hot deck imputation, treating

the missing responses as if these items had never been offered to those individual pa-
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tients, and using a model which takes account of the ‘tendency to respond to items’,”

were merely treating “N/A” as missing responses. Limited by available analytical ap-

proaches, our understanding of ”N/A” type of responses largely stays at the descriptive

level. It is possible that the ”N/A” type of responses are nothing more than missing

responses at random or representing a lowest response category in some cases, while

it is also possible that the ”N/A” responses could cause missing representation or even

misrepresentation of certain groups of respondents. Analytical approaches should be

implemented to help researchers dig more information from ”N/A” type of responses.

In the measurement field, researchers put great efforts on accounting for the

“don’t know” condition in answering test and assessment questions (Bock, 1972; Same-

jima, 1979; Thissen & Steinberg, 1984), when participants did not know the answer yet

correctly responded to a multiple choice question. Although the setting was not the

same as the survey response conditions, previous research indicated the possibility of

using measurement models to analyze ”N/A” type of responses.

3.1.2 ”Not Applicable” Options in the Enhance Diversity Study

In the Enhance Diversity Study, researchers identified existing scales to measure

the Hallmarks. Some scales were not necessarily designed for populations that were sim-

ilar to the DPC program participants, and as a result, some items might not be applicable

for all DPC participants. Researchers noticed this issue, and added “N/A,” ”prefer not

to state,” ”other,” and ”don’t know” options as additional response categories to provide

respondents with opportunities to declare their actual conditions. Researchers might re-

vise items or add additional response alternatives if they noticed large percentages of

missing responses in certain survey questions from a previous year. The purpose was

to make the items more friendly to respondents, respect their thoughts, avoid forced

choosing and collect more accurate information. The “N/A” type of response alterna-

tives leveraged the difficulty level in data analyses, and even though we collected extra

information from those responses, we did not understand their actual influence. In this
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study, we took the added “N/A” response option in the MCA scale as an example, and

explored the meaning of ”N/A” responses.

The MCA scale (Fleming et al., 2013) was developed for evaluating the re-

search mentoring in the NIH Clinical and Translational Science Awards (CTSA, Pfund

et al., 2013, 2014) program. Participants in the CTSA were clinical professionals and

researchers, and the MCA was originally developed for the CTSA participants in the

clinical training settings. To respect the actual conditions of the DPC participants, when

utilizing the MCA scale to measure research mentoring of the DPC program partici-

pants, an “N/A” response option was added to each item. In other words, items in

the MCA scale administered by the DPC had 8 different response categories; they were

numeric responses 1 – 7, representing participants’ rating of mentoring skills from “Not

at all Skilled” (1) to ”Moderately Skilled” (4) and to “Extremely Skilled” (7), plus one

“N/A” option, representing the activity that the item described was not applicable to

the respondents. The “N/A” response option was a special case, since it did not have

ordinal meaning and might lead to unique response patterns.

Although the “N/A” response option was provided to participants and we no-

ticed large percentages of choosing “N/A” in certain items, we often treated the “N/A”

responses as missing responses at random (e.g., the study in Chapter 2). Since we pro-

vided the “N/A” response option in the surveys, we hoped that we could know more

about the meaning of the “N/A” responses and how we could treat the “N/A” responses

in the future statistical analyses.

3.2 Item Response Tree Modeling Approach

3.2.1 Item Response Theory Modeling for Analyzing Latent Traits

Abstract and socially constructed concepts (Hacking, 1997), such as faculty re-

search mentoring competency, are latent traits or latent constructs in measurement mod-

els. Latent traits, being largely used in social sciences as predictors (Schofield, 2015), are
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unobserved random variables in a statistical model that cannot be directly measured,

but they associate with and can be modeled by observed variables or manifest variables

(Bollen, 2002; Cai, 2012). In the field of measurement, a common belief is that the ob-

served behaviors are caused or influenced by underlying latent traits (Bollen, 2002). This

belief leads to the approach for measuring latent traits – using a set of items to obtain

observable data to assess a latent trait (Thurstone, 1925). Scales like the MCA were de-

veloped for measuring latent traits and measurement models, such as the Item Response

Theory (IRT) models were widely used for analyzing and scoring items that measured

latent traits (Jeon & De Boeck, 2016; Zhang, 2016).

The IRT models are logistic models, and can be formulated to illustrate the prob-

ability of selecting a certain response to an item, conditional on participants’ ability of

a latent trait. IRT models provide item level information through the discrimination

parameters and difficulty parameters. The difficulty parameter describes the location

where the amount of the latent trait has a .5 probability of endorsing the item. There can

be multiple locations if an item has polytomous responses. The discrimination param-

eter is the slope of the curve at the item location. In an item with ordered polytomous

categories, the discrimination parameter is the same across the ordinal responses, un-

der the graded response models. The IRT parameters can be expressed in a form of

generalized linear mixed models (GLMM, De Boeck & Partchev, 2012). The GLMM pa-

rameterization is more commonly seen in statistical modeling, although the parameters

seem to be less intuitive in item plots.

Although traditional IRT models could provide plenty of information about the

performance of items and overall scales, the models would not provide information

related to the response process or response decision making. For example, when DPC

survey participants responded to an item in the MCA, they might firstly consider if the

item was applicable to them, and if so, they would then declare their skill levels. This

process could not be reflected, if we only fitted a graded response model and treated the

”N/A” responses as missing at random.
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3.2.2 Item Response Tree Models

De Boeck and Partchev (2012) as well as Jeon and De Boeck (2016) proposed to

use the item response tree (IRTree) model, an item response model with a response tree

structure, to analyze response processes. The IRTree model is defined as “a postulated

internal decision process with a tree structure, which is composed of sub-trees and their

corresponding nodes and branches” (p. 1070, Jeon & De Boeck, 2016). In the IRTree

models, researchers add a node into the tree structure, at the point where they believe a

decision making behavior happened when participants chose a response category over

another. The IRTree modeling could be a potential method for handling such responses

as “not applicable,” and was implemented in this study.

Jeon and De Boeck (2016) presented an IRTree structure in their Figure 3 (p.

1077), which modeled item response process of choosing an option on verbal aggression

items (Smits, De Boeck, & Vansteelandt, 2004) from a three-point Likert-type scale with

the “No,” “Perhaps” and “Yes” categories. In this IRTree, the first Node Y∗1 portrayed

the decision process that the participants chose not to present verbal aggression, or pos-

sibly gave an aggressive verbal response to a particular scenario. For those who chose to

cast verbal aggression, their next response step was to make a decision on second Node

Y∗2 to indicate the level of certainty. For those who chose “No” on the first Node, their

responses on the second Node would be marked as missing information. From a mod-

eling perspective, instead of fitting a graded response model (as we normally would) to

the data, Jeon and De Boeck (2016) fitted a multi-dimensional IRT model and estimated

the correlation between the nodes Y∗1 and Y∗2 . When they observed a small correlation,

they concluded that depending on the chosen response options, different latent vari-

ables were measured. The multi-dimensionality held, and the response options were not

ordinal (Smits et al., 2004).
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3.2.3 Illustration of the IRTree Modeling

To better illustrate the IRTree modeling, we used a possible IRTree structure of re-

sponding to the MCA scale as an example to demonstrate the IRTree modeling approach

as well as its advantages and potential issues. We also explained the IRTree modeling

from a statistical modeling perspective to articulate the relations between IRTree models

and traditional IRT models.

Figure 3.1: Illustration of an IRTree Structure of Responses to the MCA Scale
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Treating the MCA scale as unidimensional and regardless of the actual missing

responses, the most complicated IRTree structure, presented in Figure 3.1, consists of

seven nodes where each node is associated with two branches. Each node represents

the decision making process of choosing the left branch (coded as 1) or the right branch

(coded as 0). Node 1 (Y∗1 ) distinguishes choosing “Not Applicable” or the seven ordinal

response categories; Node 2 (Y∗2 ) separates choosing category “1” versus choosing other

categories above 1; similarly, Node 3 (Y∗3 ) separates choosing “2” versus choosing other

categories above 2, and so forth, until Note 7 (Y∗7 ) that separates choosing the category

“6” versus choosing the category “7”. This IRTree structure treats the “N/A” response

option as the first decision to make, or the lowest response category that respondents

would first consider.

In this IRTree structure (Figure 3.1), we assume that all nodes are correlated. To

test the necessity of having a particular node in the structure, we need to look at if the

values of correlations between node pairs, especially correlations between the directly

attached nodes (e.g., σY∗1 Y∗2 , σY∗2 Y∗3 , . . ., σY∗6 Y∗7 ). If a node is highly correlated with one of its

neighbors, then it would not be necessary to have the two nodes, and the responses could

be treated as ordinal. For example, if σY∗2 Y∗3 , σY∗3 Y∗4 . . ., σY∗6 Y∗7 are all high, we could treat

response options 1 – 7 as ordinal. If a node is barely correlated with one of its neighbors,

then the decision making at the two nodes are almost independent. For instance, if σY∗1 Y∗2

is close to 0, we could treat the ”N/A” responses as missing at random.

A mapping matrix can mimic the choices of branches at each node to pseudo-

item responses as if the responses were from a regular multidimensional IRT model. Fig-

ure 3.2 presents the mapping matrix of the IRTree structure in Figure 3.1. The mapping

matrix T in Figure 3.2 shows how ”regular” item responses Ypi (where p is “person,” and

i is “item”) in rows are linked to the pseudo-item responses in columns. For the observed

outcome Ypi = N/A, it corresponds to (Y∗pi1, Y∗pi2, Y∗pi3, Y∗pi4, Y∗pi5, Y∗pi6, Y∗pi7) = (0, NA, NA,

NA, NA, NA, NA), where NA represents a missing observation, since Ypi = N/A does

not involve responses in other nodes. The interpretation of other observed outcomes are
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rather similar.

Figure 3.2: Mapping Matrix

Each node in this IRTree structure, apart from the first one, is conditional on the

previous node. According to Jeon and De Boeck (2016), the conditional probability of

the (m, k)-th element of the mapping matrix T, Pr(Y∗pik = Tmk|θpk), where m represents

the m-th terminal observed outcome or the m-th row in matrix T and k represents the

k-th node or the k-th column in matrix T, can be formulated as (Eq. 3.1):

Pr
(

Y∗pik = Tmk|θpk

)
= g−1(αikθpk + βik), (3.1)

In Eq. 3.1, g(·) is the logit link function, αik is the item slope and βik is the

intercept for item i node k. The parameters αik and βik are item parameters in a 2-

parameter logistic model (2PL) under the GLMM framework notation. Then the model

for observed terminal outcome Ypi = m can be expressed as (Eq. 3.2):

Pr
(
Ypi = m|θp1, . . . , θp7

)
=

7

∏
k=1

Pr(Y∗pik = Tmk|θp1, . . . , θp7)
tmk, (3.2)
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In Eq. 3.2, k ∈ (1, 2, . . . , 7) represents the node, m ∈ (1, 2, . . . , 8) represents

the response category, θpk is the latent trait at node k, and θp = (θp1, . . . , θp7)
′ follows

a multivariate distribution with θp ∼ N(0, Σ), where Σ is a 7 × 7 covariance matrix.

The above description indicated that although the logic of modeling differs between the

IRTree modeling and traditional IRT modeling, the estimation and parameterization of

the two are rather similar.

3.3 Methods

As mentioned earlier, the illustrated structure (Figure 3.1) is the most compli-

cated IRTree structure. The number of nodes reflects the number of dimensions, and

estimating high-dimensional models often causes heavy computational burden due to

the curse of dimensionality. This reminds us to use prior knowledge to design potential

IRTree models that are simple and interpretable. In this study, we used findings from the

study in Chapter 2 and re-coded the response categories. Based on the new categories,

we proposed potential IRTree structures.

3.3.1 Data and Response Patterns

In this study, similar to the study in Chapter 2, we included faculty/mentor and

student/mentee responses to the MCA scale from the BUILD Faculty Annual Follow-

up Survey (FAFS, 2017-18) and the BUILD Student Annual Follow-up Survey (SAFS,

2017) as our analytical data. In addition, as a majority of mentors in the DPC programs

were in the NRMN programs, we combined the BUILD Faculty Survey (2017-18) data

and the NRMN Survey (2018) data together as the faculty/mentor sample. The NRMN

faculty survey was distributed to all NRMN participants, and received 1107 responses.

Among them, 754 participants self-identify as a mentor, and 621 participants responded

to at least one MCA item on the ordinal scale of 1 – 7. The BUILD survey samples

were described in Chapter 2. Combining the NRMN faculty mentors and the 565 faculty
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Table 3.1: N/A Response Patterns

Item
”N/A” Responses

Faculty (1156) Student (1760)

Listening 0 192

Feedback 0 187

Trust 1 202

Styles 4 215

Strategies (C) 9 237

Coordinate 215 474

Set expectations 25 269

Align expectations 23 238

Differences 23 268

Goals 52 375

Strategies (E) 5 226

Knowledge 40 363

Mentee ability 46 415

Mentee skills 11 456

Motivation 5 231

Confidence 3 232

Creativity 14 272

Contributions 22 320

Negotiating 69 345

Prejudice 23 437

Background 8 338

Network 27 344

Career goals 20 306

Work/life balance 21 356

Role model 8 295

Acquire resources 59 278
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mentors who rated at least one MCA item on the ordinal scale of 1 – 7, the total sample

of the faculty mentors was 1156. Similarly, the student mentee sample included 1760

participants who responded to at least one MCA item on the ordinal scale of 1 – 7.

In addition to the ”N/A” responses, we observed missing responses in 31 faculty

participants; none of the student participants had missing responses. Since the number

of missing responses was small, we treated them as missing at random or ignorable in

the analysis. We reported the N/A response pattern in Table 3.1. The ”N/A” response

patterns in the Table 3.1 showed that the proportions of ”N/A” responses were relatively

small in the faculty sample across all items, apart from the ”Coordinate” item. In some

items, such as ”Listening,” ”Feedback,” ”Trust,” and ”Confidence,” the proportions of

”N/A” responses were none or close to none. There were more ”N/A” responses in

the student responses, the proportions of ”N/A” responses across all items were more

consistent than those in the faculty responses.

In Chapter 2, we found that the response category collapse issue appeared in

both student and faculty populations, and proposed to reduce the number of response

categories in future studies. We also noticed that not all ordinal response categories

appeared in the responses. For example, the ordinal response ”1” did not appear in

the item ”Feedback.” In the MCA scale, the numeric response categories 1 – 7 repre-

sented participants’ rating of mentoring skills from “Not at all Skilled” (1) to ”Moder-

ately Skilled” (4) and to “Extremely Skilled” (7). As our study served the purpose of

providing an analytical demonstration, to simplify the analytical models and to avoid

missing response categories, we re-coded the the numeric response categories 1 – 7 to

“Not at all Skilled” (1 – 2), ”Moderately Skilled” (3 – 5), and “Extremely Skilled” (6 – 7).

Analyses in this study were based on the re-coded response categories. We presented

the corresponding relations between the original response categories and the re-coded

response categories in Table 3.2.
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Table 3.2: Re-coded Response Categories

Re-coded Categories Original Response Categories

Not at all Skilled
1

2

Moderately Skilled

3

4

5

Extremely Skilled
6

7

Not Applicable Not Applicable

3.3.2 Proposed IRTree Models

From the findings in Chapter 2 and in Zhong et al. (2020), we knew that the MCA

scale could be considered as a unidimensional scale for both faculty and students. Our

focus in this study was to use the IRTree modeling to explore the meaning of ”N/A” re-

sponses, so we considered the unidimensional measurement structure as the confirmed

structure, even after we re-coded the ordinal responses.

3.3.2.1 Model One

The first proposed IRTree model was a 3-node model that was similar to the

model we illustrated in Figure 3.1, but simplified due to the reduced number of response

categories. In Figure 3.3, we presented the IRTree structure (3.3a) and the mapping

matrix (3.3b) of Model 1. In this model, we assumed a three-stage decision process:

respondents would decide if this item was applicable to them at the first stage (node

Y∗1 ); if the item was applicable, participants would decide if the mentor was skilled in

this item at the second stage (node Y∗2 ); if the mentor was skilled, then participants would

decide the skill level – moderately skilled or extremely skilled, at the final stage (Y∗3 ). In
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Figure 3.3: IRTree Structure and Mapping Matrix of Model 1

this process, if participants chose a left branch at Y∗1 or Y∗2 , their choices at later nodes

would be automatically coded as missing. The model could be considered as a three

dimension 2PL model that allowed the dimensions to be correlated; each dimension

included 26 items.

3.3.2.2 Model Two

Model 2 (Figure 3.4) was a 2-node model that mapped a two-stage decision

process: respondents would decide if this item was applicable to them at the first stage

(Y∗1 ); if the item was applicable, then participants would decide the skill level – not at

all skilled, moderately skilled or extremely skilled, at stage two (Y∗2 ). In Figure 3.4, we

presented the IRTree structure (3.4a) and the mapping matrix (3.4b) of Model 2. The

model could be considered as a two dimension model in which one dimension included

26 items that parameterized as 2PL, and the other included 26 items that parameterized
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as graded response model; the two dimensions were correlated.

Figure 3.4: IRTree Structure and Mapping Matrix of Model 2

3.3.3 Analysis

In addition to the IRTree models, we fit the unidimensional graded response IRT

model to both faculty and student data as a reference model. We used the Maximum

Likelihood (20 quadrature points) to estimate the proposed tree models, and similar

to the estimation of traditional IRT models, the Full-Information Maximum Likelihood

(FIML) could help with handling missing data. The missing data included a small por-

tion of missing data from the original dataset, and ”planned” missing data due to choos-

ing a left branch before the final node. Model estimation and scoring would be based on

complete items responses, and missing responses, although unable to contribute extra

information, would not be problematic.

In Table 3.1, we noticed that there was no ”N/A” observation in the item ”Listen-

ing” and ”Feedback” in the faculty sample. We were unable to estimate the parameters

if the response categories were not observed. To make the model estimation possi-
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ble, we added a ”fake” response record that selected ”N/A” in the item ”Listening”

and ”Feedback,” selected ”Moderately Skilled” in the item ”Trust” (or rather, any other

items apart from ”Listening” and ”Feedback”), and responses to all other items were

missing. We assumed that this ”fake” participant who believed that the item ”Listen-

ing” and ”Feedback” were not applicable, had moderate skills in the item ”Trust,” and

the participant’s skills in other items were estimated based on the moderate skills in the

item ”Trust” using FIML. With this ”fake” response record, we were able to estimate the

models, although the item parameters for the ”N/A” responses in the item ”Listening”

and ”Feedback” were meaningless and the scoring for this participant was unstable. In-

terpreting item parameters for the ”N/A” responses was not a focus in this study, and

item scoring for this ”fake” participant was ignored since this participant did not exist

in reality.

After model estimation, we examined correlations between nodes, and evaluated

the necessity of including the nodes in the models. We used information based statistics,

e.g., the Akaike’s information criterion (AIC) and the Bayesian information criterion

(BIC) to compare the relative model fit of Model 1, Model 2 and the corresponding

unidimensional graded response IRT model.

3.4 Findings and Implications

We fitted the Model 1, a 3-node model to the student and faculty data, and

reported the correlations in Table 3.3. We noticed that for both faculty and students,

the correlation between Y∗2 and Y∗3 (σY∗2 Y∗3 ) was relatively high. If the σY∗2 Y∗3 was close

to 1, the nodes Y∗2 and Y∗3 could be combined, and the skill levels – not at all skilled,

moderately skilled, and extremely skilled – were ordinal. However, σY∗2 Y∗3 was not high

enough, say, over .8, and that Y∗2 and Y∗3 should still be considered as measuring two

separate dimensions. The correlation between Y∗1 and Y∗3 (σY∗1 Y∗3 ) was almost 0, which

confirmed our assumption of the order of response decision making.
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Table 3.3: Node Correlations (Model 1)

Faculty Student

Y∗1 Y∗2 Y∗3 Y∗1 Y∗2 Y∗3

Y∗1 σY∗1 Y∗2 σY∗1 Y∗3 σY∗1 Y∗2 σY∗1 Y∗3

Y∗2 -0.285 σY∗2 Y∗3 0.01 σY∗2 Y∗3

Y∗3 -0.007 0.534 0.036 0.621

The most important correlation, σY∗1 Y∗2 was slightly different in faculty and stu-

dent data. In the student data, the σY∗1 Y∗2 was close to 0, which indicated that the ”N/A”

responses could be treated as missing at random. In the faculty data, the σY∗1 Y∗2 was -.285,

and although the value was small, we could not ignore the correlation. Thus, ”N/A”

responses could not be treated as missing at random for the faculty responses. The

negative correlation somewhat indicated that choosing ”N/A” responses was related to

the declaration of having research mentoring skills. In other words, participants who

tended to choose the ”N/A” option were more likely to choose skilled in the measured

mentoring competency.

Table 3.4: Node Correlations (Model 2)

Faculty Student

Y∗1 Y∗2 Y∗1 Y∗2

Y∗1 σY∗1 Y∗2 σY∗1 Y∗2

Y∗2 -0.303 -0.382

Table 3.4 presented the node correlations in Model 2, which were estimated from

fitting the 2-node model to the student and faculty data. In both student and faculty sam-

ples, the we observed negative correlation between nodes Y∗1 and Y∗2 (σY∗1 Y∗2 = −0.382 in

the student sample, and σY∗1 Y∗2 = −0.303 in the faculty sample). The ”N/A” responses

were not ignorable and could not be treated as missing at random for the faculty re-

sponses. The negative correlation suggested that participants who tended to choose the
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”N/A” option were more likely to rate higher skill levels in research mentoring. For the

student sample, the estimated σY∗1 Y∗2 in Model 2 led to a different conclusion than what

we concluded from Model 1.

Table 3.5: Model Comparisons

Faculty Student

AIC BIC AIC BIC

IRTree Model 1 38658.65 39462.17 47509.49 48379.70

IRTree Model 2 40636.97 41298.99 51008.73 51725.70

Unidimensional IRT Model 36005.94 36400.12 35333.04 35759.93

We compared the two IRTree models with the unidimensional IRT model that

treated the ”N/A” responses as missing data at random. The unidimensional IRT model

was nested within the Model 2, and both the unidimensional IRT model and Model 2

were nested within Model 1. Judging from AIC and BIC values (Table 3.5), the unidi-

mensional IRT model fitted the best, and the Model 2 fitted the worst. Model 1 fitted

better than Model 2, which again, indicated that Y∗2 and Y∗3 in Model 1 should be con-

sidered as measuring two dimensions and the Y∗3 should not be removed or combined

with Y∗2 .

From the above results, we re-examined the meaning of ”N/A” responses from

the MCA scale. For the faculty sample, even from the ”N/A” response patterns (Table

3.1), we noticed that the percentages of ”N/A” responses were essentially larger. Con-

sidering that faculty participants were rating themselves, the response patterns might

indicate that participants were certain if an item was applicable to their own conditions.

We also found consistent results in the two IRTree model, where there were small, but

non-ignorable negative correlations between the nodes Y∗1 and Y∗2 .

The negative correlations indicated that faculty who tended to choose the ”N/A”

option were more likely to rate their mentoring skill levels higher; furthermore, we could

interpret this phenomenon from a different perspective – when faculty participants were
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certain that the measured skills were applicable to them, they rated high on those appli-

cable measured skills. ”N/A” responses could somewhat indicate the level of certainty

or confidence; when the confidence level was low on an item, individuals might choose

”N/A” over a low rating. With this in mind, even the AIC and BIC indicated that the

unidimensional IRT model was better than the IRTree models, we should be cautious

about model selection, since the assumption of treating ”N/A” responses as missing

data might not hold.

The results from the two IRTree models using the student sample yielded two

different suggestions for handling ”N/A” responses. In Model 1, σY∗1 Y∗2 was close to 0,

so we concluded that the nodes Y∗1 and Y∗2 were independent and the ”N/A” responses

were random to the future response process. In this case, we could treat the ”N/A”

responses as missing at random. In Model 2, we noticed that σY∗1 Y∗2 was negative and

non-ignorable. This indicated that students who tended to choose ”N/A” responses

were more likely to rate higher on their faculty mentors’ skill levels.

When student participants rated their mentors, although rating others, instead

of self-rating encountered less of the ”confidence” issue, they might face a similar issue.

Students rated the mentoring skills that they received, which might not reflect the actual

applicable skills to their mentors. Students might only rate partial skills that they experi-

enced. If their mentors were not skilled in some aspect and as a result, the mentors never

expressed those mentoring skills, students could only claim that they did not have the

related experience and declared that the measured skill aspects were not applicable. In

an extreme case scenario, if students only experienced the mentoring aspects that their

mentors were extremely skilled, reflecting on the MCA survey response scoring, stu-

dents probably rated higher than their mentors’ self-rating, due to a lack of information

in the mentoring aspects they did not experience. This hypothesis could also explain the

observed ceiling effect we mentioned in Chapter 2. Similar to the previous conclusion,

we should be cautious about model selection based on AIC and BIC, because the ”N/A”

response effect could not be fully eliminated.
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CHAPTER 4

Evaluating the Impact of the BUILD Scholar Program on

First Year College Students’ Intent to Pursue

Science-related Research Careers

4.1 Introduction

Given the high demand for talent in STEM careers, especially in Medical Science

and Biomedical Engineering, the Department of Education has urged all young people

to “be prepared to think deeply and to think well so that they have the chance to become

the innovators, educators, researchers, and leaders who can solve the most pressing

challenges” (2015). To encourage undergraduates to enter the biomedical research field,

the National Institute of Health (NIH) has provided opportunities for underrepresented

minority (URM) students to participate in research training.

Studies showed that undergraduate diversity training programs, such as the

NIH-funded Bridges to the Baccalaureate (B2B) program (n.d.), the Research Training

Initiative for Student Enhancement (RISE) program (n.d.) and the Maximizing Access

to Research Careers (MARC) award (n.d.), could increase the likelihood of URM stu-

dents expressing intentions and then following through on those intentions to pursue

careers in science-related research. (Schultz et al., 2011; MacLachlan, 2012). In 2013, the

NIH started a new set of initiatives using a transformative approach to “supplant less-

effective practices and methods to have a broad and sustained impact on the diversity of

the NIH-funded biomedical research workforce” (Funding Opportunity Announcement,

2013a, 2013b, 2013c). The overall goal is to “[promote] diversity in the NIH-funded
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biomedical, behavioral, clinical, and social sciences (collectively termed ‘biomedical’) re-

search workforce” (Funding Opportunity Announcement, 2013b). The funding provides

constant support for individuals from diverse backgrounds who are underrepresented in

biomedical research. Participants can receive training and mentorship throughout their

undergraduate and graduate education and into their early career. With this support,

the program could contribute to diversifying the candidate pool in biomedical research

at different educational stages. This funding opportunity resulted in the activation of

the Diversity Program Consortium (DPC), a collaborative program with NIH, consist-

ing of the BUilding Infrastructure Leading to Diversity (BUILD) Initiative, the National

Research Mentoring Network (NRMN) Initiative, and the Coordination and Evaluation

Center (CEC).

4.1.1 BUILD Scholar Program

The BUILD initiative is a set of NIH-funded experimental training programs

that aims to attract undergraduate students from diverse and historically excluded back-

grounds into biomedical research fields and through innovative methods, prepare them

for academic success and career readiness (McCreath et al., 2017). The BUILD initiative

is designed to explore the most effective ways to engage students from underrepresented

backgrounds in biomedical research, helping them progress on the path to becoming fu-

ture contributors to the biomedical research fields. The BUILD primary sites each set

up their own selection process and structure and facilitate their BUILD programs ac-

cording to the characteristics of their specific student population. In most of the sites,

BUILD programs have unique names associated with the BUILD interventions at their

sites. Each BUILD site submitted their individual proposals and received funding to

implement their own, local and specific interventions. The 10 successful BUILD sites

received their funding through a request for proposals from the NIH in 2014. Beginning

in the fall of 2014, the first wave of funding included more than $500 million allocated to

these 10 sites, a national mentorship network, and a coordination and evaluation center

62



that collectively formed the DPC.

The BUILD scholar program is one of the most intensive BUILD programs, and

participants receive support, varied in both nature and scope, related to research train-

ing, academic support, financial aid and scholarships, professional development, exten-

sive advising and mentoring, and so forth. Four out of the 10 BUILD scholar programs

accept newly admitted first-year students. In order to protect identities, the four primary

BUILD sites were referred to as Sites A, B, C and D. Table 1.1 (adapted from Davidson et

al., 2017, p. 166) summarized the basic institutional information of the BUILD primary

sites prior to the start of the BUILD program.

Table 4.1: BUILD Scholar Financial Support

Financial Support*
Program Duration

Tuition and Fees Stipend Other Funding

Site A 15 units/semester $1114/month Publication costs; Travel

awards

Renewable annually

Site B Fully covered, up to

30 credits/yr

Not specified Program award up to

$5000/yr; Travel awards

Renewable annually,

up to 4 years

Site C Tuition support Monthly stipend Research awards; Travel

awards

Structured 2 years

Site D Up to 30 credits/yr $1114/month Travel awards Renewable annually,

up to 3 years

NIH TL4** 60% of tuition, up

to $16000/yr

$1114/month

($13368/yr)

- -

*The amount of financial support was reported or estimated based on the aids amount in FY 2020

**The listed TL4 financial support amount was for the Freshman/Sophomore career level in FY 2020

The BUILD scholars at these four sites receive no less than the NIH-defined TL4

(NIH: NOT-OD-20-070, 2020) financial support (Table 4.1), and engage in research en-

richment and professional development activities (Table 4.2). Table 4.1 presents the site-

specific financial support for first-year BUILD participants in Fiscal Year (FY) 2020 and

the possible program duration. We collected the information through the BUILD pro-
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gram websites and the NIH announcements. Table 4.1 indicates that the BUILD scholar

program financially supports its participants to a large extent, since it covers the majority

of their tuition and fees and provides monthly stipends as well as other program-related

awards. Prior to FY 2020, qualified Freshmen/Sophomores and Juniors/Seniors received

stipends on two different levels. Freshmen/Sophomores received about three quarters

of the amount that the upperclassmen were awarded. All BUILD scholars joining the

program on and after the FY 2020 received the same level of stipend, which was similar

to the previous level for Juniors/Seniors.

Table 4.2: BUILD Scholar Research Enrichment and Professional Development Activities

Activities Site A Site B Site C Site D

Program entry points Fr/Sph/Jr/Sr
Fr/Transfer

Fr/Jr (transfer) Fr/Sph/Jr
(Sph/Jr/Sr)

Summer bridge O C C O

Learning community C C C -

Enrollment in novel curriculum C C C C

Research training (mentored) C C C C

Undergraduate research experience C C O C

Conferences (local/national) O C C C

Career advancement & development C C C C

Other funding support O O O O

Abbreviations: C = Compulsory; O = Optional; - = Not mentioned

Table 4.2 reported program entry points and the main program activities offered

to the BUILD scholars at each site. These data were collected from programs’ internal

reports and participation data. Table 4.2 showed that apart from learning community

activity which was not offered by Site D, other activities were offered either as compul-

sory or optional at all four sites. Activities such as novel curriculum, mentored research

training, as well as career advancement and development were compulsory at all four

sites. Table 4.2 reflected the fact that although programs were designed and facilitated
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by each site, the main activities were similar across sites.

To participate in the BUILD scholar program as a first-year college student, can-

didates need to apply to the program during the spring semester of their last year of

high school. The BUILD scholar program staff review applications and select suitable

candidates based on site-specific criteria (Table 4.3). Table 4.3 showed that almost all sites

required candidates to be full-time students, in biomedical related majors, and holding

relatively high GPA. They also preferred their BUILD scholar candidates had interests

in science and research, planned to obtain graduate degrees, and intended to pursue

biomedical related careers.

Table 4.3: BUILD Scholar Program Selection Criteria

Selection

Criteria
Site A Site B Site C Site D

Status Full-time Full-time, first-year Full-time, first-year
Full-time, first time

college student

Major Biomedical

Biomedical, psycho-

logical, behavioral or

social sciences

STEM related to

biomedical science

Approved BUILD

majors

Academic 2.75 GPA 3.0 GPA 3.0 GPA
High school GPA,

SAT/ACT

Intended

Career

Careers in healthcare,

biomedicine; research

in life, social sciences

Careers in biomedi-

cal or behavioral re-

search fields

Research scientists

in biomedical fields

Expected

Degree

Grad-level, especially

doctoral studies

STEM related gradu-

ate school education

Graduating with a

Ph.D.

Science &

Research

Interests

Interests in biomedi-

cal or health research

Desire to learn about

conducting formal re-

search and engaging

in real-world projects

Documented interest

in research in the

biomedical or behav-

ioral sciences

Although the BUILD scholar program, like many other NIH-funded diversity

training programs, does not have standardized interventions and selection criteria across
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sites, the four sites that allow first-year student participation share similar program ac-

tivities (Table 4.2) and selection criteria (Table 4.3). In addition, the programs at BUILD

sites share common goals, such as stimulating students’ interests in science and increas-

ing their intent to pursue science-related career paths.

4.1.2 Purpose of the Study

Research has shown that college students’ intentions to pursue a biomedical sci-

ence research career are often significant and strong predictors of subsequent pursuit of

such a career (Young, Fraser, & Woolnough, 1997; Pascarella & Staver, 1985; Dibenedetto,

Easterly, & Myers, 2015; Sahin, Ekmekci, & Waxman, 2017); therefore, it is reasonable to

expect that college students’ declared career intentions could serve as proxies or early

indicators for future career choices (Ajzen, 2011; Deci & Ryan, 1985). Given that one of

the core goals of the BUILD initiative is to diversify the biomedical scientific workforce,

an early indicator of the program’s success can be operationalized through students’

expressed intentions to pursue science-related research careers. Examining early career

intentions among first-year college students as an evaluation of the BUILD initiative’s

initial efficacy also provides formative feedback to funders and program directors; this

early feedback is especially critical as an evaluation of whether the program actually

increases individuals’ likelihood of pursuing such careers could span well over a decade

– from program participants’ matriculation and completion of graduate degrees to sub-

sequent entry into the scientific workforce.

The purpose of this study is to examine the effectiveness of an undergraduate

diversity training program, the BUILD scholar program, on students’ intent to pursue

science-related research careers during their initial stage in college, and the correspond-

ing research question is: Does participation in the BUILD scholar program during the

first year of college impact students’ intent to pursue science-related research careers?

This study relies primarily on longitudinal survey data and programmatic administra-

tive records to examine the effectiveness of the BUILD intervention on increasing the
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likelihood of participants’ intentions of pursuing biomedical research careers. When

combining these two data sources, we potentially construct a quasi-experimental design.

Methodologically, this study aims to demonstrate an approach of using program data

and self-reported data from surveys to explore potential causal relations, and then ap-

plying multi-stage matching and sensitivity analysis to prevent the confounding with

the program effects and to examine the plausibility of threats to internal validity.

4.1.3 Significance of the Study

As a part of the BUILD program evaluation, this study provided credible ev-

idence of the effectiveness of the scholar program on increasing first-year college stu-

dents’ intent to pursue science-related careers. The findings can be generalized to first

year college participants in other federally funded initiatives designed to contribute to

the diversity of undergraduate and graduate science education as well as the scientific

workforce. Much of the research in this area has focused on the experiences of juniors

and seniors who participated in mentored research experiences; therefore, this study’s

focus on first-year students expands our understanding of the effectiveness of similar

initiatives targeting first-year college students.

Using a quasi-experimental design, this study aims to examine the causal influ-

ence of a federally funded intervention program on changes in first-year college students’

likelihood of intending to pursue biomedical science research careers. Many studies that

proved the positive influence of the diversity training programs for enhancing under-

graduate students’ intent to pursue science-related research careers were based on anec-

dotal or correlational evidence. We attempt to go beyond the correlational relations. Our

study analyzes the BUILD scholar program’s effects on an intended program outcome

variable, using analytical approaches that provide a reference for examining program

effectiveness on other program-intended outcome variables. Furthermore, we hope that

this study presents a useful example for researchers who are interested in exploring

causal relations using data with similar components.
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4.2 Review of Intent to Pursue Science-related Research Careers

“Roads diverged in a wood, and I —

I took the one less traveled by,

And that has made all the difference.”

— Robert Frost

An important goal of higher education is helping students achieve their desired

outcomes, which includes helping students find and pursue their intended career paths

(Peterson, 1993; Brown, Glastetter-Fender, & Shelton, 2000; Gianakos, 1999). For college

students, the decision to pursue a particular life-long career is one of the most important

and most difficult self-selections (Freedman, 1999; Peterson, 1993; Willis & Rosen, 1979).

Research shows that college students’ career choices can be approximated by their de-

clared career intent (Ajzen, 2011; Deci & Ryan, 1985). Students who have ambitions for

working in science-related research fields while in college are typically more likely to

find themselves in science-related research careers compared to their college peers who

do not share these goals (Young et al., 1997; Pascarella & Staver, 1985; Dibenedetto et al.,

2015; Sahin et al., 2017). Factors that influence students’ intent to pursue science-related

careers include demographic variables, pre-college academic performance and experi-

ence in STEM education, self-efficacy in science and research, and college experience

(Crisp, Nora, & Taggart, 2009; MacLachlan, 2012; Sweeney & Villarejo, 2013; Pascarella

& Staver, 1985; Young et al., 1997; Bottia, Stearns, Mickelson, Moller, & Parker, 2015;

Wang, 2013; Sahin et al., 2017). Particularly, undergraduate diversity training programs

have proved to be effective for increasing students’ intent to pursue science-related ca-

reers, especially for the URMs; however, there is a lack of research quantifying program

effects on first-year college students (MacLachlan, 2012; Hurtado et al., 2008).
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4.2.1 College Students’ Career Development: From Intent to Actions

Though not specifically studying college students’ career development, many

career development theorists have described how young adults seek career interests. For

example, Super’s developmental self-concept theory (1953) identified by age groups five

distinct career developmental stages. Most college students belong to the age group of

15-24, which Super’s theory identifies as the “Exploration” stage. The key words and

phrases of this stage include “trying things out, crystallizing, specifying, and imple-

menting career choice” (Super, 1990). In Super’s theory, the career development process

is driven by one’s self-concept (1990). Holland’s career typology theory of vocational

behavior (1959) states that an individual career choice is determined by the personality

type they most resemble. In Holland’s theory, personality types are characterized by

interests, preferred activities, beliefs, abilities, values, and characteristics. Social cogni-

tive career theory (Lent, Brown, & Hackett, 1994; Lent, 2005), which is an extension of

social cognitive theory into career development theory (Lent & Brown, 2006), describes

that individuals’ beliefs largely influence their career choices. These theories, as well as

many other career development theories, are similar in two aspects. One, they acknowl-

edge the influence of external or environmental factors on the internal factors, and in

this way career development seems to be a constructive process. Two, all these theories

emphasize that internal factors, (i.e., self-concept, self-efficacy, beliefs, motivations, or

interests), are the major forces driving career choices. As the saying goes, “where there’s

a will, there’s a way.”

In science education literature, other theories, such as the theory of planned be-

havior (Ajzen, 2011), self-determination theory (Deci & Ryan, 1985), and flow theory

(Csikszentmihalyi, 1997) have been used as frameworks to explore students’ persistence

in science education and the pursuit of science-related careers. As a result, inner motiva-

tions and early aspirations serve as the primary factors influencing the career choices of

college students (Ajzen, 2011; Deci & Ryan, 1985; Csikszentmihalyi, 1997). For example,

Mishkin, Wangrowicz, Dori, and Dori (2016) studied the career choice of undergraduate
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engineering students under the theory of planned behavior, and they found that students

who expressed positive attitudes towards engineering education were less likely to be

influenced by external factors such as subjective norms. Similarly, Lavigne and Vallerand

(2010) developed the hierarchical model of intrinsic and extrinsic motivation (HMIEM)

in science education based on the self-determination theory, and identified “a conscious

internalization of personal valuable beliefs” as the highest level of self-determination

(p. 2344). Ellwood and Abrams (2018) concluded that experiences of flow could sustain

students’ motivation in science education and elevate achievement outcomes. In their

study, students’ motivation and achievement outcomes were inseparable.

Empirical studies suggested that students’ intent to stay on the science track was

one of the most influential factors determining whether they remained in the science

related fields (Sweeney & Villarejo, 2013; Bottia et al., 2015; Wang, 2013). Many more

studies directly used students’ declared intent or desire as the representation or approx-

imation of the likelihood that students would pursue science-related paths (Young et al.,

1997; Pascarella & Staver, 1985; Dibenedetto et al., 2015; Sahin et al., 2017). Theoreti-

cal and empirical evidence suggested the potential for using students’ intent to pursue

science-related research careers as an approximation of their future actions in pursuit of

science-related research careers. Furthermore, efforts to increase students’ intent to pur-

sue science-related research careers could help students get onto science-related paths

(Sahin et al., 2017).

4.2.2 Influential Factors of College Students’ Science Career Choices

In career development theories, influential factors of career exploration and ca-

reer tendency development can be conceptualized by a set of internal motivations and

ambitions and a set of external factors related to school context, parental influences, and

social networks (Duffy & Sedlacek, 2007). Internal factors include self-efficacy (Betz,

Klein, & Taylor, 1996; Gianakos, 1999; Peterson, 1993; Willis & Rosen, 1979), psycho-

logical development (Harren, 1979), outcome expectations (Lent, Brown, & Hackett,

70



2000), developmental trajectory (Super, 1980), personal environment fit (Holland, 1997),

parental influence (Fisher & Padmawidjaja, 1999; Hartung, Lewis, May, & Niles, 2002),

and social cognition (Lent et al., 2000). External societal factors (or rather societal factors)

include social stratification (Anctil, Hutchison, & Smith, 2013), subjective norms (Ajzen,

2011), social demand (Willis & Rosen, 1979), and economic climate (Stone, Van Horn,

& Zukin, 2012). Educational studies have usually focused more on internal factors as

well as external factors associated with educational equity and inclusion, such as social

stratification and subjective norms. In science education literature, factors that influence

college students’ persistence on science paths and their choice of science-related careers

can be summarized into four categories: demographic variables, pre-college academic

performance and experience in STEM education, self-efficacy in science and research,

and college experience. Factors under these categories somewhat reflect those abstract

factors in career development theories.

4.2.2.1 Demographic Variables

In educational studies, researchers often report students’ demographic infor-

mation or personal background variables such as race/ethnicity (Sweeney & Villarejo,

2013; Crisp et al., 2009; Herrera & Hurtado, 2011) (MacLachlan, 2012), gender identity

(Mishkin et al., 2016; Pascarella & Staver, 1985; Sweeney & Villarejo, 2013; Riegle-Crumb

& Morton, 2017; Robnett, 2013; Amelink & Creamer, 2010; Sahin et al., 2017), social

economic status (Crisp et al., 2009; MacLachlan, 2012) and parents’ education (Sweeney

& Villarejo, 2013; Pascarella & Staver, 1985), in educational studies. Many researchers

use these demographic variables to categorize the underrepresented minorities (URMs)

in higher education, and to explore differences in educational outcomes due to the un-

derrepresentation. Their findings are similar – URMs in STEM education (e.g., students

of color, female students, students from low-income families and first-generation col-

lege students) persist at lower rates in the STEM fields than their well-represented peers

(Crisp et al., 2009; Mishkin et al., 2016; Pascarella & Staver, 1985).
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The NIH’s identification of the URMs in biomedical research aligns with the pre-

viously mentioned literature. Maccalla et al. (2020) reviewed science education literature

and NIH guidelines and summarized the identification of URMs through item responses

of race/ethnicity, gender identity, social economic status, parents’ education, and many

other variables. They noted that URM identification could be limited to the availabil-

ity of information (e.g., appearance of items in the survey), and should be evaluated

according to research purposes and actual situations.

4.2.2.2 Pre-college Academic Performance and Experience in STEM Education

Many studies proved that pre-college academic performance and experience in

STEM education were usually good predictors of college students’ intent to pursue

science-related careers (Pascarella & Staver, 1985; Young et al., 1997; Bottia et al., 2015;

Wang, 2013; Crisp et al., 2009; Sahin et al., 2017). These variables can be pre-college aca-

demic aptitude (Pascarella & Staver, 1985; Crisp et al., 2009), high school STEM learning

experience (Bottia et al., 2015), high school math achievement and math self-efficacy

(Wang, 2013; Sahin et al., 2017), high school percentile (Crisp et al., 2009), etc.

4.2.2.3 Self-efficacy in Science and Research

As mentioned in the career development theories, self-efficacy is an important in-

ternal driver of career choice. Self-efficacy describes individuals’ confidence about their

competence in a domain field (Bandura, 1991). Pajares and Schunk (2001) suggested that

“individuals tend to engage in tasks about which they feel competent and confident.”

Students’ self-efficacy influences their decision making; they pursue what they believe

they can succeed at and then increase their efforts. The domain-specific self-efficacy in

pursuing science-related research careers are described as science identity and researcher

self-efficacy.

Science identity. Science identity indicates “the extent to which students con-
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ceive of themselves as scientists” (CIRP Constructs, n.d.). Estrada, Woodcock, Hernan-

dez, and Schultz (2011) observed that underrepresented students’ sense of self-efficacy

was significant measure of their ability to integrate into an academic social system in

science, and perhaps more importantly, their personal identification as a scientist had a

stronger relation to their persistence in science. Carlone and Johnson (2007) found that

by increasing students’ tendencies to feel, think, behave, and be recognized by meaning-

ful others (e.g., faculty role models) as a “science person,” URMs had a much greater

chance of believing in their ability to succeed in science.

Researcher self-efficacy. Researcher self-efficacy, research self-efficacy, or scien-

tific research self-efficacy describes “students’ sense of confidence to engage with the sci-

entific method” (CIRP Constructs, n.d.). Adedokun, Bessenbacher, Parker, Kirkham, and

Burgess (2013) grouped students’ intention to pursue careers in STEM under the con-

struct of aspirations for research careers, exploring the relations among research skills,

research self-efficacy, and student aspirations for research careers. The results suggested

that researcher self-efficacy is a predictor of student aspirations for research careers.

4.2.2.4 College Experience

Sweeney and Villarejo (2013) believed that external factors associated with stu-

dents’ college experience, such as research experience, coursework, peers, and mentors,

influenced college students’ science-related career choices. Schultz et al. (2011) specified

that undergraduate minority training programs, the presence of a scientific mentor, and

research experience moderated the decline of students’ intent to pursue a research career

across their college years. Pascarella and Staver (1985) found the positive influence of

on-campus work in science on science career choices. Crisp et al. (2009) reported that

initial college experiences in STEM education, such as the first-semester academic per-

formance and introductory science course-taking sequences, were associated with the

likelihood of earning a STEM degree. Wang (2013) found similar results that students’

initial post-secondary experiences were related to choosing a STEM track. Particularly,
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STEM major intent, academic interaction, receiving financial aid, and expecting to earn

a science graduate degree were positively associated with entering into STEM fields.

4.2.3 Enhancing URMs’ Science Career Intent Through Diversity Programs

For URM students, the persistence of the intention to pursue a career in science

is especially critical. Since the 1970s, despite a convergence in intentions among URM

and white students majoring in a STEM-related field when initially enrolling in college,

disparate completion rates between URM students and their well-represented peers have

persisted (Rask, 2010). An URM student can face substantial difficulties when attempting

to complete their STEM degree. Gibbs Jr and Griffin (2013) noticed that in biomedical

sciences, there were significant amounts of variance in the career choices between the

two populations at the undergraduate level, and even at the graduate level, non-URMs

saw greater freedom to pursue their interests. The extra challenges URMs face while

pursuing a scientific research career call for support and research.

As mentioned in the previous section, college experiences, such as research expe-

rience, financial aid and academic interaction often positively influence students’ intent

to pursue science-related careers. These factors are often included in an undergraduate

diversity training program. Researchers found that diversity training programs, such as

Bridges to the Baccalaureate (B2B), Research Initiative for Scientific Enhancement (RISE)

and Maximizing Access to Research Careers (MARC), as well as other science training

activities, helped URMs enter science-research tracks and increased their intent to pur-

sue science-related careers (MacLachlan, 2012; Schultz et al., 2011; Crisp et al., 2009;

Pascarella & Staver, 1985; Sweeney & Villarejo, 2013; Dibenedetto et al., 2015). Even

under the condition that students’ interests in science tended to decline across their col-

lege years (Hurtado et al., 2008), students supported by diversity programs had a higher

probability of keeping their intent to pursue science-related research careers (Schultz et

al., 2011).

Although considerable research has shown the positive influence of undergrad-
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uate diversity training programs for enhancing URM’s intent to pursue science-related

research careers, most of the conclusions were drawn from anecdotal or correlational ev-

idence. There was a lack of literature that clearly identified causal effects of a diversity

training program on students’ persistence in science careers.

Additionally, as MacLachlan (2012) mentioned, the participants in most under-

graduate diversity training programs were already likely to be high achievers in science

research due to the program design or selection criteria. They might have completed

introductory gatekeeper science courses, maintained a high college GPA, and been ex-

posed to certain research training before joining the programs. As a result, first-year

students are rarely involved in such programs (Hurtado et al., 2008). This implies that

many research findings in this topic drew from programs that only admitted upper-

classmen in college. Hurtado et al. (2008) recognized the importance of “early efforts to

provide structured opportunities for students” and called for future research exploring

diversity program effects on first-year students.

4.3 Theoretical Framework: Evaluating BUILD Program Effects

The standards of experiments are unlikely to be achieved by design in educa-

tional studies because it is often unethical to randomly assign students to a treatment

or control group. Quasi-experiments can be good alternatives, for they share similar

features with the experiments, apart from the random assignment. Shadish, Cook, and

Campbell (2002) commented on the primacy of control by design in quasi-experimental

research and suggested that “the usual alternative to design controls are statistical con-

trols that attempt to remove confounds from effect estimates using statistical adjustment

after the study is done” (p. 105). This indicates that even without an experimental de-

sign, certain levels of design controls combined with proper post-hoc statistical controls

could lead to a reasonable causal claim.

We developed the theoretical framework of evaluating BUILD program effects
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based on this idea. In this section, we will go over the theoretical background of causal

relations, review previous attempts to examine causal relations in science-related inter-

ventions and students’ science-career intent, and using the scholar program as an exam-

ple, introduce feasible approaches for evaluating BUILD program effects. We avoided

using complex mathematical expressions in this section in the hope that this paper could

help a broad range of researchers interested in examining causal program effects to con-

struct their analyses. We did not intend to give a holistic review of the Rubin causal

model; instead, we provided a showcase of evaluating educational program effects.

4.3.1 Causal Effects

Our discussion is tailored to educational programs. Following Rubin (1974),

we assume that 1) we are able to know when and who received the intervention (or

did not receive it), and 2) the membership of being in the treated group and that of

being in the control group are exclusive of each other. Under the random assignment

of intervention (or selection independence), the causal effect is defined as the difference

between the average post-intervention measure of the treated group outcome and that

of the control group outcome. We also assume that the stable unit treatment value

assumption (SUTVA, see definition on Imbens and Rubin, 2015, p. 10) holds and there

is no spillover.

A causal relationship should follow at least three requirements: 1) the cause pre-

cedes its effects, 2) the cause covariates with its effects, and 3) alternative explanations

are implausible (Shadish et al., 2002). For educational programs with manipulated inter-

ventions, temporal relations and correlations among variables are easy to identify. In this

case, examining alternative explanations is the key to determining causal relations. We

use D, Y, and X to represent treatment assignment and outcome variable and covariate,

respectively. Under random assignment, X and D are independent, and the treatment

effect is the difference in the observed outcomes (Figure 4.1a). When X is associated

with D, meaning that random assignment is not feasible, X is covariate with D as well
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as Y (Figure 4.1b). In this situation, we usually describe X as a confounder, which can

be observed or latent. Confounders are those potential alternative explanations that we

need to carefully examine. After we address the confounder issues, we can estimate

the causal effects from the differences in the observed outcomes. The treatment effects

are identifiable when the conditional ignorability holds, which means among units with

the same X, treatment D is as good as randomly assigned. In this process, commonly

used methods include matching, weighting, regression and sensitivity analysis for un-

observed confounders.

Figure 4.1: Simple Illustration of Confounders

4.3.2 Previous Attempts

Previous studies related to program effects and science career intent rarely at-

tempted to report causal relations. In several existing studies, we see the efforts of using

statistical tools to extract possible causal effects. For example, Pascarella and Staver

(1985) explored the causal effect of on-campus work in science on college students’ sci-

ence career choices, using the input-environment-output (IEO) framework (Astin, 1970a).

In their last model, they used partial correlation to control for the input bias. However,

Pascarella and Staver (1985) ignored the temporal relations among input and environ-
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mental variables, nor did they sufficiently classify variables into inputs or environment

due to their lax research focuses. Though their analysis was somewhat limited by the

statistical approaches proposed by Astin (1970a, 1970b), their study was still undeniably

valuable. Pascarella and Staver (1985) inspired us to consider the possibility of using the

IEO framework to explore the effects of a well-defined environmental variable.

In a longitudinal study to explore the program effectiveness of the RISE program,

Schultz et al. (2011) put great effort into constructing causal relations from observational

data. In this study, the participants were not randomly assigned into the treatment or

control groups. Researchers implemented a common strategy, propensity score matching

(PSM), to address the covariance imbalance between the treated group and control group

at the baseline. The logic of their analytical design was rigorous; however, their results

were somewhat problematic for two reasons. Firstly, they only reported the balance of

the propensity scores after matching and did not report the balance of the covariance

used for PSM. This left uncertain whether after matching, the treatment and control

group achieved similar covariance distributions. Judging from the large difference of

the treatment indicator estimates between their model 4 and model 5 (Schultz et al.,

2011, p. 104, Table 3), the matching or intervention indicator (β30) and the propensity

score (β01) seemed to be associated, which indicated that their after-matching balance

was questionable. Secondly, researchers matched cases across sites in a multi-site study

without any adjustment. Nevertheless, Schultz et al. (2011) demonstrated the use of

matching to achieve conditional ignorability.

Our goal was to identify an approach that could help us maximize within group

matches. To account for the selection differences at local sites, Rickles and Seltzer

(2014) proposed a two-stage propensity matching strategy (2SM). They firstly identi-

fied matched cases at local level based on propensity scores, and for those that failed

to find a close match at local site, they found matched cases across sites using Maha-

lanobis distance. After matching, they adjusted the outcome values for those matched

cases from non-local sites. The general goal was to ensure the similarity of the treated
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and control groups in a multi-site study. The downside of matching was that it could

jeopardize sufficient overlapping of the covariates and common support, because not

for any value of X, the unit could have received treatment or control. Another strategy

was moving forward directly to the regression analysis with covariates in the regression

model, and checking backwards on the impacts of covariates to estimate if the treatment

was effective under the influence of the covariates. This approach could be realized by

the sensitivity analysis (Cinelli & Hazlett, 2020), which not only helped with assess-

ing the impacts of observed confounders, but provided information regarding whether

unobserved confounders could influence the results as well.

4.3.3 Evaluating BUILD Program Effects

Inspired by Pascarella and Staver (1985), we designed our research framework

based on the IEO framework (Astin, 1970a, 1970b; Astin & Antonio, 2012). Although

viewed as a mediation model in many applications, the IEO framework (Figure 1 in

Astin, 1970a, p. 225) is more similar to causal inference under selection on observables,

if considering the environmental variable to be the treatment and input variables to

be observed confounders (Figure 4.2). As a matter of fact, in his original IEO papers,

Astin (1970a, 1970b) mentioned confounding issues several times, although his atten-

tion focused on multiple relations among the three components. Astin and Antonio

(2012) stated that the focus of the IEO framework was on the environmental effects on

educational outcomes, and they described the environmental variables as treatments,

interventions, programs, etc. From this perspective, the IEO model could be considered

an applied version of a causal inference framework in educational studies, with the as-

sumption that inputs naturally confound with environment and output. Astin, possibly

influenced by his training in psychological and educational measurement, was a pio-

neer of using a neat diagram (Figure 1, 1970a, p. 225) to illustrate causal relations and

confounding issues in educational studies. The IEO illustration (1970a) encapsulated

the details in the path analysis (Wright, 1921) – the latter was considered as the ”direct
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ancestor” (p. 11) of statistical methods for analyzing causal effects (Pearl & Mackenzie,

2018) – and created a general framework for analyzing educational causal relations from

observational data. Astin’s IEO framework (1970a, 1970b) was a little ahead of its time,

several years before the maturity of the statistical framework proposed by Rubin (1974)

and Cochran and Rubin (1973). Interestingly, although both frameworks were more or

less influenced by D. T. Campbell and his colleagues’ earlier work in quasi-experimental

evaluations (e.g., Campbell & Stanley, 1963; Campbell & Erlebacher, 1970), they were not

interacted much during the past half century. Combined with the statistical techniques of

causal inference analysis, the IEO framework could go beyond correlations and bounds

to become a more powerful tool for analyzing causal inference in educational studies.

Figure 4.2: Evaluating Causal Effects in Higher Education

The general framework we proposed for evaluating BUILD program effects (Fig-

80



ure 4.3) was similar to the illustration of the IEO framework. Our focus was similar to

the IEO framework in that we wanted to know the effectiveness of an educational inter-

vention on a specific outcome after controlling for demographic and pre-college inputs

that influenced the outcome as well as selection into either the treatment or control con-

ditions of the intervention. This encourages researchers to examine the mitigating effects

of intervention efforts and policy implementation of key demographic characteristics to

provide greater insight into the effectiveness of these strategies to achieve more equitable

outcomes in education.

Figure 4.3: Framework of Evaluating BUILD Program Effects

After considering the study variables and learning from the previous attempts,

we identified participation in the BUILD scholar program as the intervention (D) or

cause and the students’ post-test responses of intent to pursue science-related careers as

the specific outcome (Y). According to the program description, there were, by design,

selection criteria in each site (see Table 4.3), which indicated the existence of site-level

and/or cohort-level selection bias (observed confounders). We have also learned from
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previous literature that students’ intent to pursue science-related careers can be influ-

enced by demographic variables, pre-college academic performance and experience in

STEM education, and self-efficacy in science and research. These variables, however,

might also be associated with the likelihood of being selected into the BUILD scholar

program. This information helps us identify potential observed confounders, which

were included among the confounders represented by X in the model depicted in Figure

4.3.

With a designed environmental variable (i.e., the BUILD scholar program), our

framework and potential analytical approaches were straightforward. The study had a

primary focus on the magnitude of the effects on path B (in Figure 4.3) and the plausi-

bility of this quantity. We either found a way to “disconnect” path A before conducting

analysis for estimating the magnitude of effects of path B, or we employed a certain ap-

proach to estimate the impact of path A on changing the magnitude of effects on path

B. In addition, as much as we tried to include all possible covariates, we were not sure

if any unobserved confounder could threaten the plausibility of our analysis. Accord-

ingly, we took two approaches to estimate potential program effects and introduced the

suitable conditions in the next section. In the first approach, we applied a multi-stage

matching strategy similar to the 2SM approach (Rickles & Seltzer, 2014) to ensure the

largest extent of local similarity. After examining the covariance balance, we used regres-

sion to estimate program effects. In the second approach, we skipped the matching and

applied the regression analysis on the whole dataset. After getting the regression results,

we performed sensitivity analysis to examine the plausibility of the program effects and

the influence of potential confounders.

4.4 Methodology

In this study, we used BUILD program participation data and longitudinal sur-

vey data to examine the effectiveness of the BUILD scholar program on students’ intent
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to pursue science-related research careers during their initial stage in college. To ad-

dress the research question, “Does participation in the BUILD scholar program during

freshman year impact students’ intent to pursue science-related research careers?” we

identified 4 primary BUILD sites that provided the scholar program interventions for

their first year students, and based on the program characteristics, we constructed po-

tential causal relations. Our goal is to realistically assess the BUILD scholar program

effects and we hope that our demonstration of analytical approaches can be an example

for future research. In this section, we will introduce the data sources of the study, the

sample, the process for variable construction, as well as the analytical approaches and

their conditions and limitations.

4.4.1 Data Sources and Sample

The BUILD sites reported program participation data through an internal tracker,

which became the data source of BUILD program participation. Through the pro-

gram participation data, we identified who participated in the BUILD scholar pro-

gram and when they joined and left the program. In this study, we exclusively se-

lected students who joined the BUILD scholar program during their first (usually fall)

semester in college and who were still enrolled in the program in the following (usually

spring) semester. We linked the participation records to longitudinal surveys to construct

datasets for analysis.

Data used in this study were majorly collected through the Higher Education Re-

search Institute’s (HERI) Cooperative Institutional Research Program (CIRP) Freshman

Survey (TFS) and the NIH Diversity Program Consortium Student Annual Follow-Up

Survey (SAFS). The TFS, originally developed by HERI in the 60s and revised based on

historical trends in the national sample data and issues currently facing higher education

institutions, was administered to incoming first-year students in the participating insti-

tutions before they started their classes in the first semester, and was open for incoming

first-year students to respond usually from late March till early October (CIRP Freshmen
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Survey, 2021). Generally, the TFS was distributed to the total sample of incoming first-

year students, and for the studied BUILD sites, the response rates approximately ranged

from 20% to 50% across sites and cohorts since the beginning of the BUILD program.

The response rates for freshman year BUILD scholar program participants were much

higher, usually over 90%.

As a follow up to the HREI Freshman Survey, the SAFS was administered to

continuing undergraduate students in the BUILD sites, and was open to respond from

mid-spring till early summer. We used the HERI CIRP student survey items (CIRP

Constructs, n.d.) as the initial item pool from which to draw items to include on the

SAFS. We revised items and tailored the content to fit the purposes of BUILD program

evaluation. To reduce the administrative burden, in half of the BUILD primary sites, we

sampled students in the biomedical fields, with a target of collecting over 400 biomedical

students’ responses per site per survey. As a result, in the sampled sites, the majority of

the survey participants were in the biomedical and STEM-related fields. In the other half

of the BUILD primary sites, since the student populations were relatively small, we sent

the surveys to the entire continuing undergraduate cohort. Around a quarter of those

who had a TFS response record in the previous year also responded to the SAFS. For

the BUILD scholars, due to the program incentive, nearly 80% of the TFS participants

responded to the SAFS during the spring of their freshman year.

Although the first BUILD scholar cohort was the 2015 cohort, we only include

cohorts of 2016 to 2019 in our analysis, because the TFS 2015 did not provide a baseline

assessment of the outcome, and the first SAFS administration occurred in the spring of

2017. Typically, incoming freshmen completed the TFS before the fall of their first year

and the SAFS during the spring of their first year. For example, a student who entered

college the fall of 2016 would have completed the TFS 2016 before the start of the 2016

fall semester and then completed the SAFS 2017 in the spring of 2017. Out of the 205

first-year BUILD scholars who had a record in the TFS, 162 responded to the SAFS in

the following spring, and 134 students completed the outcome variable-related question
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in the SAFS questionnaire. All of the 134 students graduated from high school during

the same year they entered into college, and their first fall semester in the BUILD sites

was the first time they enrolled into college as undergraduate students. All first-year

BUILD scholars were full-time students, and planned to obtain a bachelor degree or

above. By the time they responded to the SAFS in the spring of their first year, most of

them had received several months of BUILD scholar interventions, although the amount

of interventions they were exposed to might vary case by case due to the long survey

response windows.

We selected students in the 4 studied sites who completed the TFS and the fol-

lowing SAFS with no missing responses in key variables that we were interested in, and

who were not in the BUILD scholar program in their first year, into the control group. To

mimic the BUILD scholar group sample, we limited the control group students to full-

time first-time college students who were straight out of high school when they started

college, and who planned to obtain a bachelor degree or above. We ended up with 1988

students in the control group, and combined with 134 BUILD scholars, our initial sample

size was 2122.

4.4.2 Variable Construction

Following the previous framework (Figure 4.3), there were 3 types of variables in

this study — the outcome variable (Y) that measured students’ intent to pursue science-

related careers, the intervention indicator (D), and covariates (X) that potentially associ-

ated with Y and/or D (If a covariate X solely associates with D, and D impacts Y, then

D is a mediator in the causal chain). We summarized the variables and their coding in

Table 4.4. In this table, we also marked the reference group for the categorical variables

in regression analyses. In the next few paragraphs, We introduced how we mapped the

variables from survey items, and explain the variable coding (Table 4.4) in detail.
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Table 4.4: Variable List

Variable Name Coding

Dependent

Variable
Science Career Intent Science Career

Definitely no (1), Possibly no (2), Uncertain (3), Possibly

yes (4), Definitely yes (5)

Intervention
BUILD Scholar Designa-

tion
Scholar Scholar, Control group student*

Covariates

Race/Ethnicity Race
Asian, Black, Hispanic, White*, Other, and Two or more

race/ethnicity

Gender Identity Gender Male*, Female, Others

First Generation College

Student Status
First-gen First-gen, Non-first-gen*

Pell Grant Status Pell Pell Grant receiver, Did not receive Pell Grant*

High School GPA High School GPA A or A+ (8), A- (7), B+ (6), B (5), B- (4), C+ (3), C (2), D (1)

Years of Math prior to

College
Math Training None (1), 1/2 (2), 1 (3), 2 (4), 3 (5), 4 (6), 5 or more (7)

Science Identity Science Identity EAP scores, mean = 5, variance = 1

Researcher Self-Efficacy
Researcher Self-

Efficacy
EAP scores, mean = 5, variance = 1

Baseline Science Career

Intent
Baseline

Definitely no (1), Possibly no (2), Uncertain (3), Possibly

yes (4), Definitely yes (5)

Degree Expectation Degree Bachelor*, Graduate, Biomedical and academic terminal

Site Site A, B, C, D*

Cohort Cohort 2016*, 2017, 2018, 2019

Major Major
Non-biomedical*, Biomedical social science, Biomedical

natural science

*Reference group in regression models.

4.4.2.1 Outcome Variable

The outcome variable or dependent variable, students’ intent to pursue science-

related careers, was measured by a survey item in the SAFS: Will you pursue a science-

related research career? The response categories were coded from 1 to 5, representing

“Definitely no,” “Possibly no,” “Uncertain,” “Possibly yes,” and “Definitely yes.” This

question was also asked in the TFS, of which the responses were used as a baseline
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measure of the outcome.

4.4.2.2 Intervention Indicator

The intervention indicator was a dichotomous variable linked from the program

participation data to the survey data that suggested if a students was in the treatment

group (for scholars, D = 1) or control group (for non-scholars, D = 0) between the time

they took the TFS and SAFS. Students identified as in the treatment group were BUILD

scholars who were first year students selected through the criteria in Table 4.3, and

participated the activities in Table 4.2, between the time period that they responded to

the TFS and corresponding SAFS.

4.4.2.3 Covariates

We identified the covariates based on the previously mentioned influential fac-

tors in the literature, and summarized them into the suggested 4 categories: demo-

graphic variables, pre-college academic performance and experience in STEM education,

self-efficacy in science and research, and college experience. All of the covariates were

extracted and computed from the responses to the TFS.

Demographic variables. The demographic variables included race/ethnicity,

gender identity, first generation college student status, and Pell Grant status. The fol-

lowing sections provide further details about how each of the models operationalized

each of these characteristics.

Race/Ethnicity. In the surveys, we asked students to mark all that apply: White/

Caucasian, African American/Black, American Indian/Alaska Native, East Asian (e.g.,

Chinese, Japanese, Korean, Taiwanese), Filipino, Southeast Asian (e.g., Cambodian, Viet-

namese, Hmong), South Asian (e.g., Indian, Pakistani, Nepalese, Sri Lankan), Other

Asian, Native Hawaiian/Pacific Islander, Mexican American/Chicano, Puerto Rican,

Other Latino, and Other. We then regroup students into Race/Ethnicity Groups: Amer-
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ican Indian, Asian, Black, Hispanic, White, Other, and Two or more race/ethnicity. In

this study, we combined the American Indian group into the Other group, due to a lack

of observations of that category in the BUILD scholar group.

Gender. We had different versions of asking students’ gender identity. In general,

we grouped those who self-identified as Male, Man or Trans Man as Male, Female,

Woman or Trans Women as Female, and others such as Gender queer, Gender non-

conforming or Different identity as Others.

First generation college student status. The first generation college student sta-

tus, or first-gen status, was a computed variable from students’ parents’ education.

In ours study, we used the definition of first generation college students provided in

Maccalla et al. (2020), and assigned value “1” for those students whose parent(s) did not

have a bachelor degree, and value “0” for students with at least one parent with a bach-

elor degree or above. We made this decision also because our study sites were all 4-year

colleges, and participants were full-time college students. It would be an advantage for

students whose parent(s) successfully went through college education under relatively

equivalent settings.

Pell Grant status. We used Pell Grant receiving status to reflect students’ so-

cioeconomic status. Students who received Pell Grant were coded as “1” and those who

did not as “0” on this variable.

Pre-college academic performance and experience in STEM education. The

related variables are high school GPA and math training prior to college. We did not

include students’ SAT or ACT performance because not all sites specified them as an

admission requirement.

High school GPA. We asked students to respond to the question, “What was

your average grade in high school? (Mark one)” and provided the options: A or A+, A-,

B+, B, B-, C+, C, and D, coded as numbers from 8 to 1.

Math training prior to college. For math training prior to college, we focused on

students’ years of math training in high school, and used the responses to the question
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“During high school (grades 9-12) how many years did you study each of the following

subjects?” on the subject Mathematics, and the options were coded from 1 to 7, repre-

senting: None, 1/2, 1, 2, 3, 4, and 5 or more.

Self-efficacy in science and research. In addition to science identity and re-

searcher self-efficacy, in this special case that our outcome variable also reflected self-

efficacy in science and research, the baseline measure of students’ intent to pursue

science-related careers, and similarly, students’ degree expectation (another important

outcome to study in the future) were also included as a covariate.

Science identity. Since we used the definition of science identity from the HERI,

we also used the scale developed by the HERI (CIRP Constructs, n.d.). The scale asked

students’ to indicate their level of agreement (coded from 5 to 1, Strongly Agree to

Strongly Disagree, with 3 being the Neutral option on the 4 questions) with the following

statements: “I have a strong sense of belonging to a community of scientists,” “I derive

great personal satisfaction from working on a team that is doing important research,”

“I think of myself as a scientist,” and “I feel like I belong in the field of science.” The

variable was quantified using students’ expected-a-posterior (EAP) item response scores

on the HERI national sample in 2016, and was originally centered and scaled at N(50,

10). We rescaled it to N(5, 1) for the convenience of interpretation in future analyses.

Researcher self-efficacy. Similarly, we used the 10-item HERI scientific researcher

self-efficacy scale to measure students’ researcher self-efficacy (CIRP Constructs, n.d.).

Students were asked to rate their confidence level from 5 to 1, representing Absolutely,

Very, Moderately, Somewhat, and Not at All on the 10 questions: “Use technical sci-

ence skills (use of tools, instruments, and/or techniques),” “Generate an answerable

research question,” “Determine how to collect appropriate data,” “Explain the results

of a study,” “Use scientific literature to guide research,” “Integrate results from multi-

ple studies,” “Ask relevant questions,” “Identify what is known and not known about

a problem,” “Understand scientific concepts,” and “See connections between different

areas of science and mathematics.” The HERI conducted the scoring (EAP score) on the
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2016 national sample, and centered the scores to N(50, 10). Again, we rescaled it to N(5,

1) for the convenience of interpretation in future analyses.

Baseline of students’ intent to pursue science-related careers. As mentioned

previously, this variable was from students’ responses to “Will you pursue a science-

related research career?” in the TFS.

Degree expectation. We asked the question “What is the highest academic de-

gree that you intend to obtain?” and provided the options: None, Vocational certificate,

Associate (A.A. or equivalent), Bachelor’s (B.A., B.S., B.D., etc.), Master’s (M.A., M.S.,

M.B..A., etc.), J.D. (Law), M.D., D.D.S., D.V.M., etc. (Medical), Ph.D., Professional Doc-

torate (Ed.D., Psy.D., etc.), and Other. We categorized the degree options “None, Vo-

cational certificate, Associate (A.A. or equivalent)” as Below bachelor, “Bachelor’s (B.A.,

B.S., B.D., etc.)” as Bachelor, “Master’s (M.A., M.S., M.B..A., etc.), J.D. (Law), Professional

Doctorate (Ed.D., Psy.D., etc.)” as Graduate, and “M.D., D.D.S., D.V.M., etc. (Medical),

Ph.D.” as Biomedical and academic terminal. As mentioned earlier, all our participants

planned to obtain at least a bachelor degree or above, so the categories of this variable

that appeared in this study were only Bachelor, Graduate, and Biomedical and academic

terminal.

College experience. Our participants were from 4 different BUILD sites across 4

different cohorts, which made it extremely challenging to identify well-defined measur-

able common college experience in this study. Therefore, instead of identifying specific

college experience, we identified covariates that might bring different types of college

experience. We believed that students from different institutions, different cohorts and

different majors could have quite different experiences in college.

Site. The 4 sites in this study were coded as site A, B, C, and D, due to the

identification protection purpose, for some BUILD scholar programs only enrolled less

than 5 students of a certain class standing in a cohort. The names of the sites could be

reviewed internally for program improvement purposes.

Cohort. The cohort variable was coded as 2016, 2017, 2018, and 2019, indicating
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which year the participants started college.

Major. The majors were originally reported by students in the TFS, and we coded

them into three categories: Non-biomedical, Biomedical social science, and Biomedical

natural science.

4.4.3 Data Analysis

Under the framework presented in Figure 4.3, we assumed that the covariates

confounded both Y and D. We proposed two different approaches that emphasized dif-

ferent perspectives. In the first approach, we applied a matching strategy that is similar

to the 2SM to ensure the local similarity at the largest extent. After examining the co-

variance balance, we used regression to estimate program effects. This approach was

suitable under the conditions that the covariance balance was off and we had many

observations in the control group. In the second approach, we applied the regression

analysis on the whole dataset and then performed sensitivity analysis to examine the

plausibility of the program effects and the influence of potential confounders. This ap-

proach might be useful when we have a small number of observations in the dataset or

the covariates were relatively balanced.

4.4.3.1 Approach One: Multi-stage Matching

Based on the selection criteria (Table 4.3), we employed multi-stage matching to

address potential selection bias attributable to the fact that program participation was not

randomly assigned to students at the BUILD sites. The philosophy in this approach was

to use matching to identify students in the control group who were similar to the BUILD

scholars in this multisite setting, to achieve conditional ignorability. After assessing the

covariance balance of the matched data, we used the matched data to perform regression

analysis and estimating the program effects.

The multi-stage matching procedure, revised from the 2SM developed by Rickles
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and Seltzer (2014), was designed uniquely for the features of the BUILD programs, which

could be used for matching data from programs that implemented interventions in mul-

tiple institutions and/or across multiple cohorts (and/or other group level indicators),

especially when school and/or cohort (and/or other group level indicators) level sample

size was less than 20. This matching procedure accounted for the heterogeneity of the

across group level (e.g., between-site) treatment effects, and it was superior to matching

at single level separately (Rickles & Seltzer, 2014) because it allowed us to borrow in-

formation from participants in other sites. This would be especially helpful in our case,

since some single-site/cohort might have a small sample size that limited the statistical

power as well as limited the likelihood of finding a close match.

The number of stages depended on if and when the number and the quality of

the matched cases met the researchers’ tolerance, as Ho, Imai, King, and Stuart (2007)

described that matching was a nonparametric process. In this procedure, identifying

local matches was our priority. We used the matching on the BUILD scholar program

participation as an example to demonstrate each step. Out of the 2122 observations in

the data, 134 students were BUILD scholars. After many attempts, we proposed the

following procedure.

Stage one: identify within-group matches. We assumed that the across group

level treatment effect heterogeneity of the BUILD scholar program existed at both the in-

stitutional level and the cohort level. This assumption was based on the fact that each site

had their own selection criteria and the competition of getting into the scholar program

might vary across different cohorts. Therefore, we considered the cross-classification of

site and cohort as the group level in this study. Table 4.3 indicated that sites would select

their BUILD scholars based on (apart from first-item enrollment) high school GPA, ma-

jor, degree expectation, baseline intent to pursue science-related research careers, science

identity, and research self-efficacy. We used a logistic regression (Eq. 4.1) to estimate the

propensity for BUILD scholar program participation, which was notated as P(Dijk = 1)

for student i in site j and cohort k.
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logit(P(Dijk = 1)) = βjk ·
[
1, siteijXsc, cohortikXsc, siteij · cohortik · Xsc, Xg

]> (4.1)

In Eq. 4.1, the coefficients βjk = (β0jk, β1jk, . . . , βpjk), where p is the number

of covariates for estimating the propensity of BUILD scholar program participation for

students in site j and cohort k. The indicators, siteij and cohortik, represented students’

memberships of BUILD sites and cohorts. We used Xsc to represent the covariates whose

association with BUILD scholar program participation might be strongly influenced by

site and cohort memberships, and Xg to represent the rest of covariates that generically

influenced BUILD program participation across groups.

We did not use a multilevel structure to estimate the propensity scores, because

the group level (site × cohort) sample size was small (ngroup = 4 × 4 = 16); instead,

we used interactions of the group membership and selection criterion related variables

to create unique group level estimates. We considered other covariates as universally

influenced students’ overall chance of being selected into a diversity training program

in all sites. We, as suggested by Ho et al. (2007), used the logistic regression with logit

link (Eq. 4.1) to predict the propensity scores and identified the 2 nearest neighbors

(to keep more observations and to maximize the analytical sample size), defined by the

Mahalanobis distance, for each BUILD scholar using potential large-effect variables: all

variables in Xijk, with the continuous variables being mean-centered.

We set a caliper of .25 standard deviations (Cochran & Rubin, 1973) of the

propensity scores estimated using all covariates excluding site and cohort, to ensure

that the propensity scores of the matched control units were within .25 standard devia-

tions from that of the treated unit they matched to. Although .25 was a common caliper

in matching, we could adjust the caliper based on our preference of the amount of local

matches, or in other words, on our prior knowledge about the program differences at

the group level (Rickles & Seltzer, 2014). At this stage, we only allowed treated units to

be matched, without replacement, to control units within the same group (exact match-

ing on site and cohort) — e.g., a BUILD scholar of cohort 2016 from site A should be
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matched with two other non-BUILD scholars from site A who entered site A as freshmen

in 2016.

We might end up with two matched control units for each treated unit after

stage one. If so, we could move on to the regression analysis. If not, which might be

more likely, we would move on to the next stage. The illustration could be similar to the

Figure 1 in Rickles and Seltzer (2014, p. 619).

Stage two: identify within-site matches. After stage one, we might end up with

a certain percentage of BUILD scholars that found two matched control cases, some

only found one matched control unit and some found none. At stage two, we relaxed

the constraints to allow cross cohort matching for those treatment units that failed to

find two matched control units from the previous matching. We still only allow the

treatment units to be matched with control units in the same site, but could be matched

with control units in all other cohorts apart from their own (exact matching on site).

For example, a BUILD scholar in site A cohort 2016 can only be matched with students

unaffiliated with the BUILD program in site A cohort 2017, 2018 or 2019. We used the

same matching standard, in which we used Mahalanobis distance matching on the same

set of selected covariates as in the previous step, with a caliper of .25 of the propensity

scores computed from all covariates.

The only complication for this stage was that, in the previous matching, the

distances and the propensity scores were “group-based” and therefore, not comparable

across different site and cohort combinations (Rickles & Seltzer, 2014). To address this

issue, we recalculated the distances and propensity scores using the respective subset

of variance-covariance matrix and parameter estimates of the treatment units that the

control units matched to. For example, a student in the control group, who might come

from site A cohort 2017, 2018 or 2019, was about to be matched with a BUILD scholar in

site A cohort 2016, we would use the subset of variance-covariance matrix and parame-

ter estimates for the group site A cohort 2016 to rescale the control units’ distances and

propensity score, “pretending” that this student was from the same group as the treat-
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ment unit that this control unit was about to matched to. This simple transformation

ensured that the across cohort matching was based on the same propensity score model

(Rickles & Seltzer, 2014).

We would skip those treatment units that already had two matched control

cases from the previous matching. For those BUILD scholars who only found one local

matched control unit at stage one, we selected the “best fit” of the matched control cases

defined by the minimal Mahalanobis distance, within the caliper. For the rest of the

BUILD scholars who failed to find any matched control units, we selected the top two

fits of the matched control cases within the caliper. If the distances of multiple matched

cases were the same (very unlikely, almost impossible), we would choose the one from

the nearest cohort. As in the previous stage, we would stop the matching process if we

could identify two matched control units for all treated units.

Stage three: identify cross-site matches. Following the previous matching re-

sults, we relaxed the constraints to allow cross-site matches. Similar to previous stages,

we use distance matching on large-effect covariates. We planned to find two matched

control units for all treated units, and to meet this goal, at this stage, we did not set a

caliper. We allow the treatment units to be matched with control units from different

sites other than their own sites. To ensure the comparability of the distances, we would

use the subset of variance-covariance matrix of the treatment unit’s site of belonging to

rescale the control units’ distances.

Balance assessment. After matching, we assessed the covariate balance through

comparing the raw (unweighted) means of covariates between the BUILD scholars and

the matched students in the control group. We also presented the standardized mean

difference (a measure of effect size), variance ratio (VR) and Kolmogorov–Smirnov (KS)

statistics to assess the differences of the covariates’ empirical distributions between the

treated and the control groups.

Outcome adjustments. We adjusted the outcome variable for those control units

that matched across cohorts and/or sites, using the strategy proposed by Rickles and
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Seltzer (2014). The general idea was to use the group level mean differences to construct

the outcome values, as if the matched control units were from the same group as the

treatment units they were matched to. We used site and cohort associated estimates

from Eq. 4.1 to perform adjustments following Eq. 4.2.

Y∗(0)ijk = Y(0)ij′k′ + Xi · (∆site + ∆cohort + ∆sc)

∆site = bj − bj′ , ∆cohort = bk − bk′ , ∆sc = bjk − bj′k′

(4.2)

In Eq. 4.2, Y∗(0)ijk was the adjusted outcome value for a control group student i

who matched to a BUILD scholar in site j and cohort k. Y(0)ijk was the original outcome

value for this control group student i who was originally from site j′ and cohort k′.

We used ∆site, ∆cohort and ∆sc to represent the site level, cohort level and site cross

cohort level differences, respectively. To compute these differences, we used the group

associated estimates from Eq. 4.1. For example, ∆site was computed from bj − bj′ =

(b0j − b0j′ , b1j − b1j′ , . . . , bqj − bqj′)
>, where b·j represented site related covariate estimates

for site j, b·j′ represented site related covariate estimates for site j′, and q was the number

of covariates. Xi was a m× (p + 1) design matrix with the first column to be constant 1

and the rest of columns each representing students’ responses to a variable in Xsc, and

m was the number of students who were cross-matched in stage two and stage three.

Regression analysis. With the matched sample, we ran OLS regression on the

402 observations (134 BUILD scholars and 268 non-BUILD students) and controlled for

covariates that were used in matching to estimate the BUILD scholar program impact

on students’ intent to pursue science-related research careers. Although for the purpose

of estimating program effects, we did not have to include the covariates since we could

possibly rule out the correlation between the intervention and the covariates through

the matching process, we included the covariates to help us understand what influenced

students’ intent to pursue science-related research careers in general.
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4.4.3.2 Approach Two: Sensitivity Analysis

In addition to using strategies to ensure conditional ignorability, we could use

sensitivity analysis to conduct a post-hoc assessment of the confounder issue. This ap-

proach might be suitable for the situation that the initial balance of the covariates were

good, or the number of observations were so limited that researchers did not want to

discard any case. This approach was less complicated than the previous one, but the

interpretation of the results required the familiarity of the context related literature. The

advantage of using sensitivity analysis was that it not only informed the potential im-

pact of observed confounders included in the analysis, but also provided benchmarks as

references for assessing the possibility of the existence of unobserved confounders. In

addition, if the sensitivity analysis indicated that the impact of the treatment effect on

the outcome variable was not jeopardized by confounders, the regression results could

be more likely to be generalized to a broader population.

The major procedure included two steps. We firstly conducted regression anal-

ysis using the full observed data, and then performed sensitivity analysis with bench-

marks (Cinelli & Hazlett, 2020) that were strategically selected based on the regression

results. In this study, we used the dataset to demonstrate this approach as a conve-

nient example to present the methodological differences, regardless of the suitability of

applying this approach to analyze the data.

Regression analysis. In this analysis, we used all 2122 observations in the

dataset, including 134 BUILD scholars and 1988 non-BUILD students. We ran OLS re-

gression on the treatment indicator, controlling for all covariates that were mentioned in

the previous sections to estimate the BUILD scholar program impact on students’ intent

to pursue science-related research careers.

Sensitivity Analysis. We then ran a sensitivity analysis based on the results from

the OLS regression to examine if the observed covariates confounded with the treatment

and the outcome variables and the possibility of having unobserved confounders that

largely influenced the conclusion of the program effects. Unobserved confounders are
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variables that were not included in the analytical model but might influence the results.

What if, hypothetically, we left out a variable that was really important to the model

and might have changed the results? We used sensitivity analysis to evaluate if the

regression results were sensitive to observed covariates and unobserved confounders or

to what extent the results might have changed due to observed covariates or unobserved

confounders.

4.5 Results

In this section, we reported the analytical results in the order of the two ap-

proaches described in the previous section. Along with reporting the results, we focused

on the interpretation of the results and addressed the research question, “Does partici-

pation in the BUILD scholar program during freshman year impact students’ intent to

pursue science-related research careers?”

4.5.1 Approach One: Multi-stage Matching

4.5.1.1 Matching

We chose pre-intervention variables and background demographic variables as

covariates in the matching process, because from the previous review of literature and

the program, we believed that those variables might influence the likelihood of being

selected into the BUILD scholar program. That included the students’ self-selection of

applying for the program, as well as the sites selecting students based on their selection

criteria.

Table 4.5 presented the covariate mean comparisons of pre- and post-matching

between the BUILD scholar group and the control group. We used the standardized

mean difference (SMD), a measure of effect size, to assess the magnitude of the mean

differences. For continuous variables, such as high school GPA, math training, science
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Table 4.5: Comparisons of Covariate Means and SMDs

Scholars (mean)
Control Group (mean) SMD

Pre-match Post-match Pre-match Post-match

Sex: Male 0.306 0.338 0.279 -0.032 0.027

Sex: Female 0.672 0.638 0.691 0.033 -0.020

Sex: Others 0.022 0.024 0.029 -0.001 -0.007

Pell 0.433 0.349 0.386 0.084 0.047

First-gen 0.284 0.281 0.257 0.003 0.026

High School GPA 6.948 6.807 7.040 0.118 -0.082

Baseline: Definitely no 0.097 0.124 0.074 -0.027 0.024

Baseline: Possibly no 0.075 0.187 0.081 -0.113 -0.006

Baseline: Uncertain 0.134 0.221 0.129 -0.087 0.006

Baseline: Possibly yes 0.224 0.232 0.221 -0.009 0.003

Baseline: Definitely yes 0.470 0.235 0.496 0.235 -0.026

Major: Non-biomed 0.022 0.257 0.018 -0.235 0.004

Major: BM Social 0.082 0.066 0.033 0.016 0.049

Major: BM Natural 0.896 0.677 0.949 0.219 -0.053

Race: White 0.194 0.385 0.239 -0.191 -0.045

Race: Asian 0.187 0.178 0.250 0.009 -0.063

Race: Black 0.284 0.104 0.210 0.180 0.074

Race: Hispanic 0.105 0.165 0.107 -0.060 -0.002

Race: Other 0.030 0.016 0.022 0.014 0.008

Race: Two or more 0.202 0.152 0.173 0.049 0.029

Degree: Bachelor 0.022 0.193 0.011 -0.170 0.011

Degree: Graduate 0.269 0.443 0.228 -0.174 0.041

Degree: Terminal 0.709 0.365 0.761 0.344 -0.052

Math training 5.963 5.953 5.996 0.020 -0.066

Science identity 6.153 5.414 6.102 0.934 0.077

Research self-efficacy 5.506 5.290 5.448 0.237 0.071
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identity and research self-efficacy, we compared their mean differences. For other vari-

ables that coded categorically, we compared the proportions of categories that were ob-

served in the treatment and the control groups. We coded the baseline students’ intent

to pursue science-related careers as categorical in the matching procedure, because we

wanted to ensure that the number of observed categories of the baseline to be propor-

tionately similar.

Table 4.6: Comparisons of Variance Ratio (VR) and Kolmogorov–Smirnov (KS) Statistics

Pre-matching Post-matching

VR KS Statistics VR KS Statistics

High School GPA 0.838 0.050 1.188 0.030

Math Training 1.089 0.009 1.319 0.031

Science Identity 0.528 0.376 0.980 0.098

Research Self-efficacy 0.675 0.152 0.868 0.077

In the pre-matching sample, we observed some covariate imbalance between the

treatment group and the control group. BUILD scholars had higher high school GPA

(SMD = .118), higher science identity (SMD = .934) and higher research self-efficacy

(SMD = .237) than the control group students. For the continuous covariates, only

the variable math training had an absolute SMD that was smaller than 0.1, a threshold

(Stuart, Lee, & Leacy, 2013) for determining the achievement of satisfactory balance (the

SMDs that closer to 0, the better). For continuous variables, we also examined the VR

and the KS statistics of the BUILD scholars and the control group students (Table 4.6).

We observed that the VRs of the science identity (VR = .528) and research self-efficacy

(VR = .675) were far from 1, the VR benchmark that indicated the equal variance in

the two groups. The two-sample KS statistics, which measured the largest distance

of the empirical cumulative density functions (eCDFs) between the two sample, of the

science identity (KS = .376∗∗∗, p < .001) and research self-efficacy (KS = .152∗∗, p <

.01) were significant and a lot larger than 0, the value that implied perfectly identical
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distributions. The VRs and KS statistics further confirmed the imbalance of science

identity and research self-efficacy between the two groups.

Among covariates that were categorical (including dichotomous) variables, gen-

der identity, Pell Grant status, first generation college student status were balanced.

There was a higher percentage of BUILD scholars who selected “5” in the baseline ques-

tion (SMD = .235), meaning that proportionately, more BUILD scholars definitely in-

tended to pursue science-related research careers before they started college. Similarly,

a higher percentage of BUILD students chose (broadly defined) biomedical natural sci-

ence majors (SMD = .219), and a higher percentage of BUILD scholars planned to

obtain biomedical and academic terminal degrees (SMD = .344). Compared to the

control group students, a higher proportion of BUILD students were self-identified as

Black/African American (SMD = .180), and a lower percentage of BUILD students were

self-identified as White (SMD = −.191).

We expected these differences, because they reflected the selection criteria of

this undergraduate diversity training program. In general, the BUILD scholars had

stronger self-efficacy in science and research at the baseline (before they started college),

and were more diverse in race/ethnicity than the control group students. The observed

covariate imbalance suggested that some of the covariates confounded the treatment and

the outcome, which indicated that strategies such as matching were probably necessary

to help address the selection bias.

We strictly followed the procedures described previously, and identified two

matched control cases for each BUILD scholar. At the first stage, we were able to iden-

tify 206 matched control units for 114 BUILD scholars, including 92 scholars who were

matched with 2 control units, 22 scholars with 1 control unit, and 20 scholars who were

not matched with any control unit. We moved on to stage two, hoping to find matched

cases for the 42 scholars (134− 92 = 42). Stage two was not very productive. We only

helped 12 scholars find one matched case, out of the 22 scholars who found a match

in stage one; in addition, we helped another 7 scholars find one matched case, out of
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the 20 scholars who found no match previously. After stage two, in total, 104 schol-

ars successfully found two matched cases, 17 scholars had one matched case, and 13

scholars had none. We moved forward to stage three, and found matched cases for the

17 scholars who had one matched case and 13 scholars who had none in the previous

stages. Through the whole process, we matched the cases without replacement. We

found 76.87% control units at stage one, 7.09% units at stage two, and 16.04% units at

stage three. If we were about to redesign the procedure, we would probably consider

dropping the caliper at stage two to finish matching there, or skipping stage two and

directly using the matching criteria in stage three, since stage one captured over three

quarters of the matched control cases and the cohort differences seemed to be subtle.

After matching, the covariate balance was improved for almost all covariates. All

post-matching absolute SMDs were below .1 (Table 4.5). We plotted the absolute SMD

comparisons of pre- and post-matching samples in Figure 4.4. The dash line marked the

.1 threshold that we used for assessing satisfactory balance. The VRs and KS statistics

(Table 4.6) also indicated balance improvement for previously problematic covariates:

science identity and research self-efficacy, since the post-matching VRs were closer to 1

and the KS statistics were no longer significant. In addition, although the site and cohort

were not included as covariates for matching distance computing, the site variable for

students in the two groups was exact at stage one and two, and the cohort variable

was exact at stage one. The proportions of site of belong and cohort of belonging were

relatively balanced across the two groups (Table 4.7). After matching, the covariate

balance improved, and we were more confident about meeting conditional ignorability

with the matched data.

Before we used the matched data to run OLS regression, we adjusted the out-

come variable for those control group units that matched to treatment units in different

cohorts and/or sites. We performed the transformation based on the Eq. 4.2 for the

control units matched at stage two and stage three. For those matched at stage two, the

adjustment would only account for the cohort differences, meaning that ∆site = 0 and
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Figure 4.4: Covariate Balance: Absolute Standardized Mean Differences

Note. The Standardized Mean Difference values were presented in Table 4.5.

∆sc = 0. The mean of the original measure of the outcome variable of the 62 matched

control units that needed the transformation was 4.129, and after the adjustment, it de-

creased to 4.118. The variance changed from 1.236 to 1.229. This result indicated that the

adjustment process might not be necessary, considering it only affected less than a quar-
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Table 4.7: Comparisons of Site and Cohort Balance

BUILD Scholars
Control Group

Pre-matching Post-matching

Site: A 5.2% 11.8% 6.3%

Site: B 38.8% 25.8% 26.5%

Site: C 46.3% 38.3% 53.3%

Site: D 9.7% 24.1% 14.0%

Cohort: 2016 29.9% 16.6% 26.5%

Cohort: 2017 18.7% 18.3% 15.1%

Cohort: 2018 33.6% 37.4% 38.6%

Cohort: 2019 17.9% 27.7% 19.9%

ter of observations and from a post-hoc perspective, the mean and variance differences

between the original outcome values and the adjusted values were subtle. Nevertheless,

we inserted the adjusted outcome values of the 62 students as their post-measure values

of students’ intent to pursue science-related research careers in the regression analysis.

4.5.1.2 Regression (Sample Size = 402)

As mentioned, to estimate program effects, under the condition that the co-

variates were balanced between the two groups, a simple regression that regressed the

outcome variable (Y) on the intervention variable (D) would help us understand the

impact of the program. In the regression analysis, we treated both the baseline and

post-measure of students’ intent to pursue science-related research careers as continuous

variables, since they were ordinal in nature (rating from 1 to 5, representing “definitely

no” to “definitely yes” to pursue science-related research careers). Table 4.8 presented

the analytical results of this simple regression model, which majorly showed that on av-

erage, the BUILD scholars’ post-measure of intent to pursue science-related research was

.267 (p = .004) higher than their peers in the control group. This result was significant
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at p < .01 level, and the treatment explained 1.7% of the post-measure outcome. In this

model, the BUILD scholar program effect size (Hedges’ g, recommended by the What

Works Clearinghouse, 2021) was 0.275. This model helped us answer the research ques-

tion that participation in the BUILD scholar program during freshman year positively

impacted students’ intent to pursue science-related research careers.

Table 4.8: Simple Regression Model (N = 402)

Estimate Std. Error p value sig.level

(Intercept) 4.053 0.061 0.000 ***

Scholar 0.267 0.093 0.004 **

Adjusted R-squared: 0.017

BUILD scholar program effect size (Hedges’ g): 0.275 (SE = 0.106)

sig.level: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05

In addition to including the intervention variable in the model, we were also

interested in including the covariates to help us understand what influenced students’

intent to pursue science-related research careers in general. Table 4.9 presented the

results of the model that included the covariates used in the matching process. In this

model, our conclusion regarding the BUILD scholar program effects on students’ intent

to pursue science-related research careers stayed the same. On average, the BUILD

scholars’ post-measure of intent to pursue science-related research was .265 (p = .004)

higher than their peers in the control group and the estimate was significant at p < .01

level. The BUILD scholar program effect size was 0.274. Judging from the similarity of

the treatment estimates in the two models, the covariates did not influence the treatment

effects, indicating the likelihood of confounding was low.

This model explained 28.5% of the outcome variable. We observed that students’

baseline measure of intent to pursue science-related research careers, science identity

and degree expectations were the most significant covariates, after controlling for other

covariates and the intervention effects. Students who rated 1 unit higher on the baseline
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Table 4.9: Multiple Regression Model (N = 402)

Estimate Std. Error p value sig.level

(Intercept) 0.088 0.812 0.914

Scholar 0.265 0.091 0.004 **

Site: A -0.025 0.251 0.922

Site: B -0.024 0.17 0.889

Site: C 0.025 0.174 0.885

Cohort: 2017 0.074 0.151 0.626

Cohort: 2018 0.007 0.107 0.949

Cohort: 2019 0.087 0.132 0.509

Sex: Female -0.009 0.097 0.925

Sex: Others 0.099 0.238 0.678

Pell -0.026 0.097 0.788

First-gen -0.019 0.104 0.856

High School GPA 0.085 0.042 0.046 *

Baseline 0.262 0.039 0.000 ***

Major: Biomed Natural 0.793 0.315 0.012 *

Major: Biomed Social 0.653 0.361 0.071

Race: Asian -0.052 0.129 0.688

Race: Black 0.055 0.132 0.679

Race: Hispanic 0.081 0.187 0.668

Race: Other -0.586 0.362 0.107

Race: Two or more 0.051 0.147 0.729

Degree: Academic Terminal 1.168 0.348 0.001 ***

Degree: Graduate 0.901 0.346 0.010 **

Math Training -0.155 0.092 0.092

Science Identity 0.278 0.078 0.000 ***

Research Self-efficacy -0.051 0.057 0.364

Adjusted R-squared: 0.285

BUILD scholar program effect size (Hedges’ g): 0.274 (SE = 0.106)

sig.level: p < 0.001∗∗∗, p < 0.01∗∗, p < 0.05∗
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measure of students’ intent to pursue science-related research careers, rated .262 (p <

.001) unit higher on the outcome variable. On average, one standard deviation higher on

the science identity led to .278 (p < .001) unit higher on the outcome variable. Compared

to students who did not plan to obtain a graduate degree, those who planned to obtain a

graduate degree and who planned to obtain a biomedical and academic terminal degree

leveraged their intent to pursue science-related research careers by .901 (p < .01) and

1.168 (p < .001) units, respectively. Students who were in biomedical natural science

majors rated .793 (p < .05) higher on the outcome variable. Students who had higher

high school GPA were more likely to intend to pursue science-related research careers

(p < .05), although the magnitude was rather small.

4.5.2 Approach Two: Sensitivity Analysis

In the second approach, we used 2122 observations in the dataset, including

134 BUILD scholars and 1988 non-BUILD students. Although we found confounding

issues when assessing covariance balance in the first approach, as mentioned previously,

we performed this approach as a demonstration of assessing the internal validity of an

empirical study.

4.5.2.1 Regression (Sample Size = 2122)

We started with the regression model. In this approach, we did not rule out the

selection bias before conducting the analysis, we controlled for all the previously men-

tioned covariates in the regression model. Table 4.10 presented the regression results. We

observed that students’ baseline measure of intent to pursue science-related research ca-

reers, biomedical majors, science identity, degree expectations and research self-efficacy

were significant. The BUILD scholar program effect size was 0.202, which was smaller

than those we estimated in Approach One. The interpretation of the coefficients were

similar to those in the previous section, so here we left it to the readers to interpret the

meaning of these significant estimates. We noticed that students who self-identified as
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Table 4.10: Multiple Regression Model (N = 2122)

Estimate Std. Error p value sig.level

(Intercept) 0.068 0.366 0.853

Scholar 0.271 0.097 0.005 **

Site: A 0.081 0.087 0.351

Site: B -0.129 0.073 0.079

Site: C -0.144 0.074 0.051

Cohort: 2017 0.016 0.078 0.84

Cohort: 2018 -0.059 0.067 0.374

Cohort: 2019 0.019 0.071 0.785

Sex: Female 0.064 0.049 0.197

Sex: Others 0.066 0.154 0.67

Pell 0.05 0.052 0.336

First-gen -0.01 0.055 0.851

High School GPA -0.001 0.019 0.939

Baseline 0.249 0.016 0.000 ***

Major: Biomed Natural 1.077 0.062 0.000 ***

Major: Biomed Social 0.597 0.101 0.000 ***

Race: Asian 0.023 0.068 0.733

Race: Black 0.09 0.08 0.262

Race: Hispanic 0.132 0.079 0.094

Race: Other -0.107 0.178 0.549

Race: Two or more 0.144 0.071 0.044 *

Degree: Academic Terminal 0.261 0.071 0.000 ***

Degree: Graduate -0.01 0.065 0.883

Math Training -0.001 0.047 0.983

Science Identity 0.273 0.045 0.000 ***

Research Self-efficacy 0.073 0.025 0.003 **

Adjusted R-squared: 0.402

BUILD scholar program effect size (Hedges’ g): 0.202 (SE = 0.089)

sig.level: p < 0.001∗∗∗, p < 0.01∗∗, p < 0.05∗
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“two or more races” showed significantly stronger interests in pursuing science-related

careers, compared to their “White” peers. The treatment and covariates in this model

explained 40.2% of the outcome variable.

This model presented a significant effect of the BUILD scholar program on the

outcome variable, after controlling for all covariates. Before drawing conclusions about

the effectiveness of the program, we ran a sensitivity analysis and used the baseline in-

tent to pursue science-related research careers and science identity as benchmarks based

on the regression results. This could help us assess the potential threat of unobserved

confounders that were really important to the model and might have changed the re-

sults. The explanation of the results of sensitivity analysis on unobserved confounders

in empirical studies was relatively standard. To ensure the accuracy of interpretation, we

used terms and languages defined in Cinelli and Hazlett (2020), and used Z to denote

the confounder.

4.5.2.2 Sensitivity Analysis

As suggested by Cinelli and Hazlett (2020), we presented the minimal sensitivity

analysis reporting in Table 4.11. Table 4.11 reported the estimate of the treatment effect

(.271) as well as its standard error (.097) and the corresponding t-value (2.808), in the

regression model with a degree of freedom of 2096 (d f = 2096). We also reported the

partial R2 of the BUILD scholar program on the outcome variable (.4%), the robustness

value (RVq=1) for bringing the point estimate of the treatment to 0 (5.9%), and the ro-

bustness value for altering the statistical significance (α = 0.05) of the point estimate of

the treatment (RVq=1,α=0.05) to insignificant (1.8%). The partial R2 of the BUILD scholar

program on the outcome variable indicated that in an extreme scenario, even if con-

founders explained all remaining variation of the outcome variable, they would need

to explain at least .4% of the residual variation of the treatment to bring down the esti-

mated BUILD scholar program effect to 0. The RVq=1 and RVq=1,α=0.05 indicated that if

potential founders explained 5.9% (or 1.8% if we account for sampling uncertainty) both
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of the residual variation of the outcome and of the treatment, this would be sufficient

to explain away the treatment effect. These quantities reflected the difficulty level of

turning around the treatment effect by unobserved confounders. Although these values

seemed rather small and the treatment effect did not explain much of the outcome, we

needed more information to help us evaluate the likelihood of having confounders that

were impactful enough to overrule the significant impact of the BUILD scholar program

on the outcome variable.

Table 4.11: Sensitivity Analysis of BUILD Scholar Program on Science Career Intent

Treatment Est. S.E. t-value R2
Y∼D|X RVq=1 RVq=1,α=0.05

BUILD scholar program 0.271 0.097 2.808 0.4% 5.9% 1.8%

Bound (1×Baseline Career Intent) : R2
Y∼Z|X,D = 11%, R2

D∼Z|X = 0%

Bound (1×Science Identity) : R2
Y∼Z|X,D = 1.8%, R2

D∼Z|X = 1.1%

To better understand the above values, we used the baseline intent to pursue

science-related research careers and science identity as benchmarks for comparisons,

because these variables were the most significant covariates in the model and could,

to a certain extent, represent the most extreme cases. We believed that even if there

were any latent confounders that we failed to detect and thus excluded in the regression

analysis, due to the fact that previous literature did not at all mention covariates other

than those that were already included in our model, the unobserved confounders were

unlikely to be as influential as the observed strongest covariates (Cinelli & Hazlett, 2020),

such as baseline science career intent and science identity, in the model. This provided

the rationale for us to choose these two variables as benchmarks to provide bounds on

confounding as strong as themselves. At the bottom of Table 4.11, we reported the partial

R2 of covariates with the outcome (R2
Y∼Z|X,D), and the partial R2 of covariates with the

treatment (R2
D∼Z|X).

For the variable baseline science career intent, although it explained 11% of the

outcome variable, which is higher than both RVq=1 and RVq=1,α=0.05, it did not explain
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anything about the treatment, indicating that this variable was not an observed con-

founder and it would not influence the treatment effect on the outcome variable. This

finding implied that although sensitivity analysis was a post-hoc analysis on poten-

tial latent confounders, it could potentially help us confirm the existence of observed

confounders as well. Even though we confirmed that this baseline variable was not a

confounder, we kept it in the analysis for reference purposes.

The variable science identity was an observed confounder that explained 1.8% of

the outcome variable and 1.1% of the treatment. Both of the values were not larger than

RVq=1 and RVq=1,α=0.05, indicating that confounders as strong as science identity were

not sufficient to explain away the treatment effect, nor were they sufficient to change the

significant conclusion of the treatment effect on the outcome variable. However, since the

bound on R2
D∼Z|X (1.1%) was larger than the R2

Y∼D|X (.4%), an extreme confounder that

explained all residual variation of the outcome variable and was as strongly associated

with the BUILD scholar program assignment as the variable science identity, would

be powerful enough to overrule the conclusion of the program effect on the outcome

variable.

Using the statistical tool developed by Cinelli, Ferwerda, and Hazlett (2020),

we further explored the potential influence of unobserved confounders if they were

stronger than science identity. In Table 4.12, we presented R2
D∼Z|X and R2

Y∼Z|X,D of

confounders that were one, two and three times as strong as baseline science career intent

and science identity. The growth of partial R2 by the strength of confounding was linear.

Based on the explained proportions of the outcome and the treatment, we reported the

adjusted estimations of the treatment effect on the outcome and their corresponding

standard errors and t-values. We observed that the increasing strength of the baseline

career intent confounding did not influence the estimates and conclusions too much.

This was expected, as the baseline career intent barely correlated with the treatment

variable. Increasing strength on the baseline career intent confounding, however, largely

influenced the conclusions. The treatment effect estimates were brought closer and closer
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to 0, and a confounder that was twice as strong as the science identity was strong enough

to change the estimate to be insignificant.

Table 4.12: Sensitivity Analysis (Multiple Bounds)

Bound R2
D∼Z|X R2

Y∼Z|X,D Adj. Est. Adj. S. E. Adj. t-value

1× Baseline Career Intent 0.000 0.110 0.246 0.091 2.703

2× Baseline Career Intent 0.001 0.219 0.222 0.085 2.596

3× Baseline Career Intent 0.001 0.329 0.197 0.079 2.486

1× Science Identity 0.011 0.018 0.207 0.096 2.156

2× Science Identity 0.023 0.036 0.143 0.096 1.492

3× Science Identity 0.034 0.054 0.078 0.096 0.816

We used contour plots (Figure 4.5 and Figure 4.6) to illustrate the dynamic

changes of treatment effects. In Figure 4.5, we observed that a confounder that was

one, two or three times as strong as one of the two variables was not strong enough to

bring the positive estimate down to 0. Figure 4.6 showed that a confounder that was two

or three times as strong as science identity would bring the t-value to 1.492 and .816,

which implied that the treatment effect would no longer be significant.

Cinelli et al. (2020) also provided suggestions of using sensitivity plots to ana-

lyze extreme scenarios (pp. 13-14). In our analysis, the situations were relatively extreme,

since one variable (baseline career intent) barely explained any effects of the treatment,

and the other one (science identity) explained a large proportion. Accordingly, we de-

cided to report the extreme scenarios under the condition that a confounder was as

strongly associated with BUILD scholar program assignment as the science identity, i.e.,

this confounder explained 1.1% of the treatment variable. In this scenario, if the con-

founder explained 31.6% (can be easily computed from 5.9%×5.9%
1.1% ), it could bring the

treatment effect estimate to 0; if the confounder explained 2.95% (1.8%×1.8%
1.1% ), it could

bring the treatment effect estimate to be insignificant. If a confounder had a stronger

association with the treatment, say, three times as strong as the science identity (3.4%),
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Figure 4.5: Sensitivity Analysis Contour Plots

the above two values would be 10.24% and .95%, respectively.

From previous studies, we believed that it would be unlikely to have an un-

observed confounder that was as impactful as the baseline career intent to the outcome

variable, since students basically responded to the same question at different time points.

We also believed that unobserved confounders were unlikely to explain more of the treat-

ment than science identity (could be explored through analysis of variances). Under

these assumptions, we concluded that it was possible to have an influential unobserved

confounder that could shrink the treatment effect estimate, but the confounder was quite
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Figure 4.6: Sensitivity Analysis Contour Plots (t-value)

unlikely to be powerful enough to bring the effect to be 0, or insignificant. We were also

aware of the possibility of having multiple unobserved confounders, and the previous

results would be conservative for this situation (Cinelli et al., 2020). Even with that in

mind, the program effect was still likely to stay positive, while the significant level might

be jeopardized.
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4.6 Discussion

4.6.1 Summary of Findings

In this study, we examined the effectiveness of an undergraduate diversity train-

ing program, the BUILD scholar program, on students’ intent to pursue science-related

research careers during students’ initial stage in college. To address the research ques-

tion, “Does participation in the BUILD scholar program during freshman year impact

students’ intent to pursue science-related research careers?” we identified 4 primary

BUILD sites that provided the scholar program interventions for their first year students,

and based on the program characteristics, we constructed an analytical framework (Fig-

ure 4.3), a structured and simplified application of the IEO framework (Astin, 1970a,

1970b), to evaluate potential causal relations.

Due to selection processes, BUILD scholars had higher high school GPA, higher

science identity and higher research self-efficacy than the control group students prior to

college. Accordingly, we utilized two approaches, one featured by multi-stage matching

and the other by sensitivity analysis, to analyze BUILD program participation data and

longitudinal survey data. Approach one used multi-stage matching to identify com-

parable control group students with the BUILD scholars and to achieve conditional

ignorability through diminishing the effects of path A (Figure 4.3) prior to data anal-

ysis. Approach two implemented a post-hoc sensitivity analysis to assess the severity

of the influence of observed confounders on the magnitude of effects of path B (Fig-

ure 4.3) and the likelihood of having unobserved confounders that could threaten the

conclusion. Results from both approaches suggested that the BUILD scholar program

positively influenced students’ intent to pursue science-related research careers during

students’ initial stage in college. Although the BUILD scholar program effect size were

less than .3 which indicated small effects, compared with other interventions in higher

education, for example, interventions motioned in Sneyers and De Witte (2018), the effect

sizes from the two approaches were relatively large.
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In addition to answering the research question, through the first approach, we

found that the baseline measure of students’ science career intent, science identity, major,

degree expectation, and high school GPA might influence students’ intent to pursue

science-related research careers. Through the second approach, we found a similar set

of significant covariates – baseline measure of students’ science career intent, science

identity, major, degree expectation and research self-efficacy. In the second approach,

students in the “two or more” race category showed stronger science career intent than

their White peers. Both approaches yield similar results in that variables related to

students’ self-efficacy, such as baseline science career intent, science identity and degree

expectation, and variables related to students’ college experience, such as major and the

BUILD scholar program intervention all positively influence the outcome. We did not

observe significant impacts from covariates such as sites, cohort, gender identity, Pell

Grant status, first generation college student status and previous math training.

4.6.2 Remarks on Methodology

We used two different approaches that emphasized different perspectives to han-

dle confounding issues. In the first approach, we applied a multi-stage matching strat-

egy that optimized the local similarity at the largest extent. In the second approach,

we applied the regression analysis on the whole dataset and then performed sensitivity

analysis to examine the plausibility of the program effects and the influence of potential

confounders. Upon completing this study, we would like to comment on the analytical

procedures and takeaways on methodological choices.

4.6.2.1 Notes on Matching

In this study, we designed a multi-stage matching approach that was tailored

for our data and for the selection criteria. We encourage researchers to put efforts on

exploring different matching procedures to identify the most suitable approach based

on their own research. After confirming the potential necessity of matching (e.g., imbal-
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anced covariates or evidence on confounders), we need to consider the following general

issues for determining the matching procedures.

First of all, as shown in this study, sample size determines several aspects of

matching. If the original control group sample size is large compared to that of your

treatment group, it is possible to match exactly on all covariates. If the sample size is

small, weighting might be a better strategy, because we do not want to lose more cases.

Secondly, We are aware that ”large” and ”small” sample sizes are relative ideas, not only

depending on the ratio of the original sample sizes of the treatment and control groups,

but depending on the number of covariates as well. Furthermore, when involving too

many covariates into the matching procedure, the curse of dimensionality makes it tricky

for us to judge the balancing from checking lower dimensional summaries (Ho et al.,

2007). Thirdly, the tolerance of calipers, common support and power of generalizability

all set limits to the types of matching methods we are able to choose. Finally, no matching

procedure should be set up as a general approach, and decisions have to be made to fit

the features of the data and to maximize the balance. Ho et al. (2007) suggested that the

best way to identify the optimal approach was to ”run as many as possible and choose

by maximizing balance” (p. 232).

4.6.2.2 Notes on Sensitivity Analysis

Compared to the matching approach, sensitivity analysis is more standard as a

statistical approach, but it requires more context knowledge for assessing the likelihood

of existing unobserved confounders. The sensitivity analysis with benchmarks helps us

evaluate the impact of a potential confounder, but it might be less intuitive if it is possible

to have multiple confounders. The findings from this approach were drawn from the

total survey participants with pre- and post-measure data, and thus the findings could

be generalized to a relatively broader first year college student population, unlike in the

matching approach, the results represented the treatment effect of the treated group.
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4.6.2.3 Methodological Choices

With a purpose of demonstrating useful analytical approaches for researchers

who might be interested in exploring causal relations in educational study, some parts

of the analytical design were ”overkilled” and more than enough for answering the

research question. Multiple approaches could certainly help cross-validate the findings,

but in practice, for the purpose of addressing a research question in an empirical study,

sometimes the analysis could be as simple as a simple regression, if the condition allowed

(e.g., balanced covariates). One of the two approaches would be sufficient for most

situations. As mentioned in the analysis, some procedures, such as the some stages

in matching and the outcome variable adjustment could be skipped or simplified. For

high-stake studies, where researchers need to provide more than enough evidence, some

adjustments can be considered: setting smaller calipers (e.g., .2) or SMD thresholds

(e.g., .05, as recommended by the What Works Clearinghouse, 2021) in the matching

procedure, combining the two approaches to implement matching, regression analysis

and sensitivity analysis without benchmarks (due to the ruling out of the partial R2 on

the treatment variable through matching), and applying rigorous statistical models such

as multilevel modeling.

Every method and model has its pros and cons. For example, in addition to

common support issues, some researchers (Smith & Todd, 2005) found that treatment

effect estimates could be highly sensitive to both the model specification and the analyt-

ical samples. For another example, sensitivity analysis only provides information using

existing covariates in the model, and assessing the likelihood of having unobserved con-

founders really relies on researchers’ knowledge base about the context. Sometimes,

even using similar approaches, we might end up with different conclusions. Matching

and sensitivity analysis only help us address the confounder issues to certain extents;

we are, after all, not analyzing experimental data. We should keep in mind that ”all

models are wrong but some are useful” (p. 202, Box, 1979) – we could only control as

much as we could, and honestly report the procedures and results. We just have to let
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our readers determine the trustworthiness of our conclusions.

4.6.3 Limitations and Future Research

The foundation of data analysis in this study was that the measurement issues

were addressed and measurement errors were minimized. One drawback of our study

was that our outcome measure was based on a single question, which might not be

reliable. We could improve the study by using scales that contained multiple items to

optimize the internal reliability of the outcome measure. This stimulates us to identify

potential scales that measure college students’ intent to pursue science-related research

careers.

In this study, although we used multiple approaches and concluded that the

BUILD scholar program positively influenced students’ intent to pursue science-related

research careers during students’ initial stage in college, one thing that we could not

ignore was that the BUILD scholar program effect and the effect size were less than

.3. This indicated that the program might not have enough power to motivate students

to move from, say ”uncertain” to ”maybe yes” to pursue science-related careers, as we

often discussed – statistically significant but not empirically significant (although this is

really not a type I error situation). This might be due to the fact that the pre- and post-

measure were only several months apart, and students barely finished one semester of

their college. This implied that, in the future, we should conduct longitudinal analysis

to monitor the continuity of growth.

Although results indicated potential influence of the covariates (or inputs) on

the outcome variable, we needed to be careful about our interpretation. As mentioned

earlier, the only thing we cared about in Figure 4.3 was the magnitude of effects of path

B and the plausibility of this quantity, meaning that all our efforts in the two approaches

were to ensure that we could answer the research question with certain confidence.

We did not take any approach to assess if the covariates were independent with each

other, and as a result, we did not know if there was any latent variable that confounded
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the covariates and the outcome variable. For example, the high associations between

students’ self-efficacy related variables and the outcome variable might be due to a latent

trait that reflected a person’s sense of confidence. We might get some sense through

this study that certain covariates were more important. Instead of making uncertain

claims, we could conduct another study that is purposefully designed to explore those

covariates.

Another issue was that our ultimate goal was to identify the best practice for

supporting the URGs. Although we might be able to say that the BUILD program was

effective, the essential question would be – which part of the BUILD scholar program

brought the significant difference. To explore the details of program activities, other

forms of data collection and research practice such as site visit and case study might

supplement the current research findings.
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CHAPTER 5

Summary

In this dissertation, I utilized the DPC survey data to conduct three studies,

demonstrated how to validate scales for a particular population, and how to measure

program effectiveness. These studies could contribute to the current literature in applied

measurement, and to the DPC program evaluation. Moreover, each of the studies would

provide additional contributions to the methods implemented during the process.

Study one performs scale validation for a particular population, and item selec-

tion for creating short forms to make the scale a better-fit in the survey. Unlike in many

other studies where researchers usually analyze the responses to one scale, in this study,

we take a holistic approach. We treat the scale as a part of the survey, and adjust the scale

to fit the survey instrument. As a product of this study, MCA-short-C, a 9-item short

form of the original MCA was developed for measuring undergraduate faculty-student

mentorship in college settings. The MCA-short-C is offered as an alternative to the long

form in measuring faculty mentoring competency, particularly when 1) researchers are

concerned about space constraints and/or respondent burden, 2) the participants are

college faculty and students, and 3) researchers intend to explore the ”cross-rating” of

faculty mentoring from mentors’ self-rating as well as mentees’ rating on their mentors’

competency.

Study two focuses on the response pattern of the population, and explores strate-

gies to treat response categories prior to identifying the measurement model. This study

uses an item response tree (IRTree) modeling approach to explore the possible response

tendency of “N/A” responses. The “N/A” option is suggested to be included as a re-
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sponse category, so that participants might have more opportunities to express their real

opinions to the survey items. However, how to handle “N/A” responses has rarely been

studied. They are often treated as missing in analytical models, although by design,

participants are provided opportunities to distinguish their response from missing. This

study set an example of handling “N/A” responses, which can be a reference for DPC

scale validation, and for handling other similar response options. The results indicated

that we should treat such responses as “not applicable” with caution, and not all “N/A”

responses could be treated as missing responses at random.

In study three, we examined the effectiveness of an undergraduate diversity

training program, the BUILD scholar program, on students’ intent to pursue science-

related research careers during students’ initial stage in college. To address the research

question, “Does participation in the BUILD scholar program during freshman year im-

pact students’ intent to pursue science-related research careers?” we identified 4 primary

BUILD sites that provided the scholar program interventions for their first year students,

and based on the program characteristics, we constructed an analytical framework, a

structured and simplified application of the IEO framework, to evaluate potential causal

relations. We utilized two approaches, one featured by multi-stage matching and the

other by sensitivity analysis, to analyze BUILD program participation data and longi-

tudinal survey data. Results from both approaches suggested that the BUILD scholar

program positively influenced students’ intent to pursue science-related research careers

during students’ initial stage in college.

Using surveys to collect data for evaluating program effectiveness is a common

approach in large national multi-pronged program evaluation. The three studies in this

dissertation utilized the DPC survey data to address important issues in measurement,

survey methods, and evaluation of program impacts. In addition to provide formative

suggestions to improve the current DPC programs, these three studies demonstrated

approaches for improving measurement and in large-scale surveys and using survey

data to assess program impacts.

122



REFERENCES

Adedokun, O. A., Bessenbacher, A. B., Parker, L. C., Kirkham, L. L., & Burgess, W. D.

(2013). Research skills and stem undergraduate research students’ aspirations for

research careers: Mediating effects of research self-efficacy. Journal of Research in

Science teaching, 50(8), 940–951.

Ajzen, I. (2011). The theory of planned behaviour: Reactions and reflections. Taylor & Francis.

Amelink, C. T., & Creamer, E. G. (2010). Gender differences in elements of the un-

dergraduate experience that influence satisfaction with the engineering major and

the intent to pursue engineering as a career. Journal of Engineering Education, 99(1),

81-92. doi: https://doi.org/10.1002/j.2168-9830.2010.tb01044.x

Anctil, T. M., Hutchison, B., & Smith, C. K. (2013). Class, status, poverty, and capital: A

guide to social stratification in career counseling.

Astin, A. W. (1970a). The methodology of research on college impact, part one. Sociology

of education, 223–254.

Astin, A. W. (1970b). The methodology of research on college impact, part two. Sociology

of education, 437–450.

Astin, A. W., & Antonio, A. L. (2012). Assessment for excellence: The philosophy and prac-

tice of assessment and evaluation in higher education (2nd ed.). Rowman & Littlefield

Publishers.

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and

Human Decision Processes, 50(2), 248-287. (Theories of Cognitive Self-Regulation)

doi: https://doi.org/10.1016/0749-5978(91)90022-L

Berinsky, A. J., & Margolis, M. (2011). Missing voices: polling and health care. Journal of

Health Politics, Policy and Law, 36(6), 975–987.

Berk, R. A., Berg, J., Mortimer, R., Walton-Moss, B., & Yeo, T. P. (2005). Measuring the

effectiveness of faculty mentoring relationships. Academic medicine, 80(1), 66–71.

Betz, N. E., Klein, K. L., & Taylor, K. M. (1996). Evaluation of a short form of the career

decision-making self-efficacy scale. Journal of career assessment, 4(1), 47–57.

123



Bock, R. D. (1972). Estimating item parameters and latent ability when responses are

scored in two or more nominal categories. Psychometrika, 37(1), 29–51.

Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual

review of psychology, 53(1), 605–634.

Bottia, M., Stearns, E., Mickelson, R., Moller, S., & Parker, A. (2015). The relationships

among high school stem learning experiences and students’ intent to declare and

declaration of a stem major in college. Teachers College Record, 117(3), 1–46.

Box, G. E. (1979). Robustness in the strategy of scientific model building. In R. L. Launer

& G. N. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic Press.

Bradbury, L. U., & Koballa Jr, T. R. (2008). Borders to cross: Identifying sources of tension

in mentor–intern relationships. Teaching and teacher education, 24(8), 2132–2145.

Bridges to the Baccalaureate (B2B). (n.d.). Bridges to the Baccalaureate Research Train-

ing Program (T34). National Institute of General Medical Sciences (NIGMS). Re-

trieved from https://www.nigms.nih.gov/research/mechanisms/pages/bridges

baccalaureate.aspx

Brown, C., Glastetter-Fender, C., & Shelton, M. (2000). Psychosocial identity and career

control in college student-athletes. Journal of Vocational Behavior, 56(1), 53–62.

Cai, L. (2012). Three cheers for the asymptotically distribution free theory of estimation

and inference: Some recent applications in linear and nonlinear latent variable

modeling. In Current topics in the theory and application of latent variable models (pp.

119–131). Routledge.

Campbell, D. T., & Erlebacher, A. (1970). How regression artifacts in quasi-experimental

evaluations can mistakenly make compensatory education look harmful. Compen-

satory education: A national debate, 3, 185–210.

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs

for research on teaching. In N. L. Gage (Ed.), Handbook of research on teaching (Vol. 5,

pp. 171–246). Chicago: Rand McNally.

Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful

women of color: Science identity as an analytic lens. Journal of Research in Science

124



Teaching: The Official Journal of the National Association for Research in Science Teaching,

44(8), 1187–1218.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral

research, 1(2), 245–276.

Cinelli, C., Ferwerda, J., & Hazlett, C. (2020). sensemakr: Sensitivity analysis tools for

ols in r and stata. Available at SSRN 3588978.

Cinelli, C., & Hazlett, C. (2020). Making sense of sensitivity: Extending omitted variable

bias. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(1),

39–67.

CIRP Constructs. (n.d.). Higher Education Research Institute (HERI). Retrieved from

https://heri.ucla.edu/cirp-constructs/

CIRP Freshmen Survey. (2021). Higher Education Research Institute (HERI). Retrieved

from https://heri.ucla.edu/cirp-freshman-survey/
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