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ORIGINAL INVESTIGATION

Candidate locus analysis of the TERT–CLPTM1L cancer risk 
region on chromosome 5p15 identifies multiple independent 
variants associated with endometrial cancer risk
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reported with endometrial cancer. To evaluate the role of 
genetic variants at the TERT–CLPTM1L region in endome-
trial cancer risk, we carried out comprehensive fine-mapping 
analyses of genotyped and imputed SNPs using a custom 
Illumina iSelect array which includes dense SNP coverage 
of this region. We examined 396 SNPs (113 genotyped, 283 
imputed) in 4,401 endometrial cancer cases and 28,758 con-
trols. Single-SNP and forward/backward logistic regression 
models suggested evidence for three variants independently 
associated with endometrial cancer risk (P = 4.9 × 10−6 to 
P = 7.7 × 10−5). Only one falls into a haplotype previously 

Abstract Several studies have reported associations 
between multiple cancer types and single-nucleotide poly-
morphisms (SNPs) on chromosome 5p15, which harbours 
TERT and CLPTM1L, but no such association has been 
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et al. 2002), suggesting that genetic factors play important 
roles in the risk of this malignancy (Hemminki et al. 2004). 
Endometrial cancer can be caused by rare, highly pen-
etrant mutations in DNA repair or replication genes such 
as MLH1, MSH2, MSH6, PMS2, POLE or POLD1 that 
result in Lynch Syndrome or in Polymerase Proofreading 
Associated Polyposis (Briggs and Tomlinson 2013; Fearon 
1997; Palles et al. 2013). Genome-wide association stud-
ies (GWAS) have also been used to dissect the genetics of 
endometrial cancer and so far have convincingly identi-
fied one associated SNP, rs4430796, on chromosome 17q 
close to the HNF1B gene (Spurdle et al. 2011; Setiawan 
et al. 2012; Painter et al. 2014). The rs4430796 G allele is 
associated with decreased risks of endometrial and prostate 
cancers, but with an increased risk of type 2 diabetes (Gud-
mundsson et al. 2007). Candidate gene studies have also 
identified an association between endometrial cancer and 
two SNPs in the CYP19A1 gene (Setiawan et al. 2009).

Variants in chromosome 5p15, a region which harbours 
the TERT and CLPTM1L genes, have been found through 
GWAS to be associated with the risk of bladder, pancreas, 
brain, testicular, breast, prostate, skin and lung cancers 
and glioma (Haiman et al. 2011; Kote-Jarai et al. 2011, 
2013; McKay et al. 2008; Petersen et al. 2010; Rafnar 
et al. 2009; Shete et al. 2009; Stacey et al. 2009; Turnbull 
et al. 2010; Wang et al. 2014). TERT encodes the catalytic 
subunit of the telomerase reverse transcriptase enzyme. 
Activation of TERT transcription occurs in most human 
cancers where telomerase activity increases to counteract 

associated with other cancer types (rs7705526, in TERT 
intron 1), and this SNP has been shown to alter TERT pro-
moter activity. One of the novel associations (rs13174814) 
maps to a second region in the TERT promoter and the other 
(rs62329728) is in the promoter region of CLPTM1L; nei-
ther are correlated with previously reported cancer-associ-
ated SNPs. Using TCGA RNASeq data, we found signifi-
cantly increased expression of both TERT and CLPTM1L 
in endometrial cancer tissue compared with normal tissue 
(TERT P = 1.5 × 10−18, CLPTM1L P = 1.5 × 10−19). Our 
study thus reports a novel endometrial cancer risk locus 
and expands the spectrum of cancer types associated with 
genetic variation at 5p15, further highlighting the impor-
tance of this region for cancer susceptibility.

Introduction

Endometrial cancer is the second most commonly diag-
nosed gynaecologic cancer in the world and accounts for 
~5 % of all cancers in women (Kaaks et al. 2002). World-
wide, about 320,000 women are diagnosed with endome-
trial cancer and approximately 76,000 die of the disease 
annually (http://globocan.iarc.fr/Default.aspx). Risk factors 
for this malignancy include long reproductive span (early 
menarche and/or late menopause), nulliparity, obesity, hor-
mone replacement therapy, tamoxifen, and personal and/or 
family history of cancer of the endometrium, breast, ovary, 
or colorectum (Beral et al. 2005; Fisher et al. 2005; Kaaks 
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(Supplementary Table 1). Germline DNA extracted from 
blood was used for genotyping.

Healthy female controls with European ancestry and 
known age at sampling were selected from controls gen-
otyped by the Breast Cancer Association Consortium 
(BCAC) iCOGS project (Michailidou et al. 2013), or the 
Ovarian Cancer Association Consortium (OCAC) iCOGS 
project (Pharoah et al. 2013). We selected the 27,062 
BCAC controls from studies in the same countries as the 
endometrial cancer cases, 744 European-ancestry con-
trols from the Mayo Clinic Ovarian Cancer Case–Control 
Study (MAY) and 896 controls from the Australian Ovarian 
Cancer Study (AOCS). In addition, 282 Norwegian blood 
donor controls with no known history of cancer were geno-
typed for this study (Supplementary Table 1).

Details of cases and controls are described in the Sup-
plementary Note.

SNP selection and genotyping

Cases and controls were genotyped on a custom Illuminia 
Infinium iSelect array (“iCOGS”) with 211,155 SNPs, 
designed by the Collaborative Oncological Gene–environ-
ment Study, a collaborative project involving four consortia 
(Couch et al. 2013; Kote-Jarai et al. 2013; Michailidou et al. 
2013; Pharoah et al. 2013). Cases and molecular markers 
in treatment of endometrial cancer (MoMaTEC) controls 
were genotyped by the Genome Quebec Innovation Center. 

telomere shortening, thereby circumventing the normal 
limits on cellular proliferation (Kolquist et al. 1998). Lit-
tle is known about CLPTM1L but recent studies have dem-
onstrated it has an anti-apoptotic role in lung and pancre-
atic cancer cells (James et al. 2014; Jia et al. 2014; Wang 
et al. 2014). In recent studies, members of the Collabora-
tive Oncological Gene–environment Study (COGS) used 
an Illumina iSelect high-density genotyping array (referred 
to as the “iCOGS” array) and imputation around the TERT–
CLPTM1L region to identify several independent variants 
for breast, ovarian and prostate cancers, and for telomere 
length in lymphocytes (Bojesen et al. 2013; Kote-Jarai 
et al. 2013). In the current study, we used the iCOGS array 
and genotype imputation to investigate whether variants in 
the TERT–CLPTM1L candidate region are associated with 
the risk of endometrial cancer in populations of European 
descent.

Materials and methods

Samples

For the iCOGS genotyping, 5,591 women with a con-
firmed diagnosis of endometrial cancer and European 
ancestry were recruited via 11 separate studies in Western 
Europe, North America and Australia, collectively called 
the Endometrial Cancer Association Consortium (ECAC) 
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BCAC and OCAC control samples were genotyped at four 
centres. Raw intensity data files for all consortia were sent 
to the COGS data coordination centre at the University of 
Cambridge for centralized genotype calling and QC, so that 
all case and control genotypes were called using the same 
procedure.

The study presented here relates only to SNPs within a 
200 kb region (chr5:1,200,000–1,400,000) including the 
TERT and CLPTM1L genes. For this region, SNPs were 
selected for inclusion on the iCOGS array on the basis 
of published cancer associations and from the March 
2010 release of the 1000 Genomes Project (2012). These 
included all known SNPs with MAF >0.02 in Europeans 
and r2 > 0.1 with the then-known cancer-associated SNPs 
[rs402710 (McKay et al. 2008)] and/or rs3816659 (Shen 
et al. 2010), plus a tagging set for all known SNPs in the 
linkage disequilibrium blocks encompassing the genes in 
the region (SLC6A18, TERT and CLPTM1L). An additional 
30 SNPs in TERT were selected through a telomere length 
candidate gene approach. In total, 134 SNPs were selected, 
121 of which were successfully manufactured.

Quality control

Genotypes were called using Illumina’s proprietary Gen-
Call algorithm, using a cluster file specifically generated 
for the project using a subset of samples from each geno-
typing center. SNPs were excluded for call rate <95 % 

(<99 % for MAF <5 %), MAF <0.1 % or deviations from 
HWE significant at 10−7, based on a stratified Robinson-
Hill test. Samples were excluded for low overall call rate 
(<95 %), heterozygosity >5 standard deviations from the 
mean, non-female genotype (XO, XY or XXY), or <85 % 
estimated European ancestry based on Identical By State 
scores between study individuals and individuals in Hap-
Map (http://hapmap.ncbi.nlm.nih.gov/) and multidimen-
sional scaling.

For duplicate samples or those identified as close rela-
tives by IBS probabilities >0.85, the sample with the lower 
call rate was excluded, except for case–control relative 
pairs for which the case was retained. Among cases, the 
minimum duplicate concordance rate was 99.96 %. For 
cases, any 96-well plate containing ≥5 excluded samples 
was entirely excluded.

For 2,006 cases, we could compare iCOGS genotypes 
for 40 SNPs with corresponding genotypes from the rapid 
replication stage of our initial GWAS (Spurdle et al. 2011). 
Cases with unresolved discrepancies were excluded. After 
these exclusions, genotypes were available for 113 SNPs in 
the defined region, in 4,401 cases and 28,758 controls.

Imputation

We used ImputeV2 (Howie et al. 2009) to obtain in silico 
genotypes for an additional 1,677 SNPs in this region using 
two reference panels: the 1000 Genomes Phase 1 (April 
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2012 release) and an in-house genotyping panel that con-
tained 133 additional SNPs from the October 2010 1000 
Genomes Project data release, genotyped in 15,044 sam-
ples from the SEARCH and CCHS BCAC studies (Bojesen 
et al. 2013). After filtering for SNP frequency (MAF 
≥0.02; 887 SNPs excluded) and imputation QC (info score 
≥0.8; 394 further SNPs excluded), we included 396 SNPs 
in the association analyses, comprising 113 genotyped 
and 283 imputed. SNPs with MAF <0.02 were excluded 
because we would not have statistical power to detect asso-
ciations with rare SNPs. We used a stringent cutoff for 
the imputation information score to reduce the chance of 
spurious associations caused by imputation artefacts. The 
IMPUTEv2 “leave-out” internal concordance check gave 
98.2 % concordance at SNPs with r2 ≥ 0.8 for SNPs on 
the 1000 Genomes reference panel but not on the additional 
in-house panel, and 99.2 % for those SNPs also on the in-
house reference panel.

Statistical analysis

Associations between each SNP and endometrial cancer 
were estimated using unconditional logistic regression with 
a per-allele (1df) model, based on the expected genotype 
dosages for the imputed SNPs. Analyses were adjusted for 
strata (6 of the 8 strata were defined by country, whilst the 
large UK dataset was divided into ‘SEARCH’ and ‘other 
UK’) and for the first 10 principal components of the 
genomic kinship matrix, based on 37,000 uncorrelated 

SNPs (r2 < 0.1), including ~1,000 selected as ancestry 
informative markers, using an in-house C++ programme 
incorporating the Intel MKL libraries for eigenvectors 
(http://ccge.medschl.cam.ac.uk/software/). One princi-
pal component was derived specifically for the Leuven 
(LES/LMBC) studies, for which there was substantial infla-
tion not accounted for by the other principal components.

Inflation of the test statistic (λ) was estimated by divid-
ing the 45th centile of the test statistic by the 45th cen-
tile of a 1df χ2 distribution based on 43,233 uncorrelated 
(r2 < 0.1) SNPs selected for the iCOGS array by consor-
tia other than ECAC. This was converted to an equivalent 
inflation for a study with 1,000 cases and 1,000 controls 
(λ1,000) by adjusting for effective sample size,

where ncasek and nctrlk are the numbers of cases and con-
trols in strata k.

A ‘global’ test using the admixture maximum likelihood 
method [AML (Tyrer et al. 2006)] was performed against 
the null hypothesis that none of the genotyped SNPs within 
the region are associated with endometrial cancer, with the 
alternative hypothesis that at least one of the SNPs is asso-
ciated, based on 10,000 permutations. The test was per-
formed for 55 of the 113 genotyped SNPs, selected such 
that none of the SNPs had a pairwise r2 ≥ 0.5 with another 
SNP in the test.

�1,000 = 1 +
500(� − 1)

∑

k

(

1
ncasek

+
1

nctrlk

)
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To determine independently associated SNPs, we used 
forward stepwise logistic regression based on all SNPs with 
P < 0.05 in the single-SNP analysis; at each stage, the most 
significant SNP was potentially eligible for inclusion in the 
final model if it was significant at P < 0.01 after adjustment 
for other SNPs. Given the strong prior evidence of can-
cer associations with this region, this is a candidate gene 
study, and hence the very stringent significance thresholds 
required for a GWAS are not applicable here. The 396 
SNPs in the analysis can be pairwise-tagged by 68 tagging 
SNPs at r2 ≥ 0.5, hence the number of strictly independent 
tests is closer to 68 than to 396 (and could be considered 
to be even lower) which would give a Bonferroni-corrected 
significance threshold of around 0.05/68 = 7.4 × 10−4. An 
additional logistic regression was performed including all 
SNPs retained in the step-wise process. Backwards logistic 
regression was also performed. A secondary analysis was 
performed in which the most significant independent SNPs 
from the main analysis were tested for associations specifi-
cally with endometrioid and non-endometrioid histology 
endometrial cancer, and in a case-only comparison of endo-
metrioid and non-endometrioid cases. Pairwise linkage dis-
equilibrium r2 measures were calculated from the iCOGS 
samples.

As an alternative to the frequentist stepwise variable 
selection procedure we also used a Bayesian-inspired 
penalized maximum likelihood approach which simulta-
neously analyses all genotyped and imputed SNPs in the 
region to identify the optimal subset for disease prediction 

[HyperLasso (Hoggart et al. 2008)]. We used the normal 
exponential gamma distribution (NEG) shrinkage prior 
with shape parameter 1.0, as recommended by Vignal et al. 
(2011). To obtain a SNP-wise type I error of 0.001, we used 
a penalty (lambda) of 110, estimated based on 100 permu-
tations under the null for different values of lambdas.

The Tagger package (de Bakker et al. 2005) was used to 
identify independent tagging SNPs for the AML analysis. 
All analyses were conducted using R, including the Gen-
ABEL and SNPMatrix packages (Aulchenko et al. 2007; 
Clayton and Leung 2007), apart from the HyperLasso anal-
ysis (Hoggart et al. 2008) and the AML testing (Tyrer et al. 
2006). All statistical tests were 2-sided.

SNP annotation

We annotated all SNPs that had moderate to high LD with 
the three risk alleles identified in our study using Galaxy 
(Giardine et al. 2005) and the UCSC genome browser. 
To do so, we followed the annotation scheme described 
recently by Carvajal-Carmona et al. (2011).

Gene expression analysis

A literature search to identify all published microar-
ray studies investigating endometrial cancer was per-
formed and datasets accessed directly from the author 
(Moreno-Bueno et al. 2003), publication supplementary 
data (Risinger et al. 2003; Saidi et al. 2004) or the NCBI 
Gene Expression Omnibus database [GEO; http://www.
ncbi.nlm.nih.gov/geo/; (Day et al. 2011) (GSE17025), 
(Mhawech-Fauceglia et al. 2010) (GSE23518), (Salvesen 
et al. 2009) (GSE14860)]. Additional microarray data 
were downloaded from the Expression Project for Oncol-
ogy (expO) study via GEO (GSE2190) and TCGA (Kan-
doth et al. 2013) via the TCGA data portal (http://tcga-
data.nci.nih.gov/tcga/tcgaHome2.jsp). TERT expression 
was interrogated by the platforms used in all eight data-
sets, whilst CLPTM1L was able to be interrogated by 
five datasets [(Day et al. 2011; Kandoth et al. 2013; 
Mhawech-Fauceglia et al. 2010; Salvesen et al. 2009) 
and expO].

All datasets were log transformed (by taking the loga-
rithmic values of the signals to the base of two) and median 
centred per array. The change in expression level of TERT 
and CLPTM1L between non-endometrioid and endome-
trioid endometrial cancer for each individual study was 
expressed as an effect size, a unit-free standardized mean 
difference between groups. Gene expression results were 
then combined using the t-based modelling approach (Choi 
et al. 2003) using the meta-package in R. Meta-analysis 
was performed using a random effects model to account for 
between-study heterogeneity.

Fig. 1  Association between SNPs in the 5p15 region and endome-
trial cancer. SNPs in SNP sets 1–3 are shown by circles, squares and 
triangles, respectively, with the filled symbols denoting the most sig-
nificant SNP in that set. Only SNPs with MAF >0.02 and imputation 
information score >0.8 are shown

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
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Level 3 (processed) RNASeqV2 normalized expression 
values for TCGA endometrial cancer samples were down-
loaded from the TCGA data portal. Differences in TERT 
and CLPTM1L expression between cancer vs normal tissue 
and endometrioid vs non-endometrioid endometrial cancer 
tissue was assessed by Mann–Whitney U test using IBM 
SPSS Statistics (version 22).

eQTL analysis

Level 2 (preprocessed) germline GWAS data from endo-
metrial cancer patients was downloaded from the TCGA 
data portal and QC performed. SNPs were excluded for call 
rate <95 %, MAF <1 % or deviations from HWE signifi-
cant at 10−4. Samples were excluded for low overall call 
rate (<95 %), heterozygosity >3 standard deviations from 
the mean, inconclusive sex status (X-chromosome homozy-
gosity rate between 0.2 and 0.8), or samples >6 standard 
deviations from the mean scores for principal compo-
nent 1 or 2, calculated using CEU individuals in HapMap 
(http://hapmap.ncbi.nlm.nih.gov/). For duplicate samples 
or samples identified as close relatives by IBS probabilities 
>0.85, the sample with the lower call rate was excluded. 
RNA-Seq Zscores and GISTIC copy number calls for 
TCGA endometrial cancer samples were obtained via the 
cBio Portal for Cancer Genomics (http://www.cbioportal.
org/public-portal/index.do). There were 192 TCGA sam-
ples with both genotype and gene expression data avail-
able for analysis. The association of SNPs in the TERT–
CLPTM1L gene region (chr5:1,200,000–1,400,000) with 
TERT and CLPTM1 expression was assessed using PLINK, 
adjusting for copy number.

Results

We performed high-density genotyping and genotype 
imputation for variants in the 5p15 TERT–CLPTM1L 
region to examine genetic associations with endometrial 
cancer risk. For this purpose, we used a custom-designed 
Illumina iSelect ~200,000 SNP array (“iCOGS”), which 

included 118 successfully genotyped SNPs (after standard 
QC exclusions) spanning a 200 kb region (chr5:1,200,000–
1,400,000), to genotype 4,401 endometrial cancer cases 
from 11 centres participating in the Endometrial Cancer 
Association Consortium (ECAC) and 28,758 control sub-
jects from the Breast Cancer Association Consortium 
(BCAC) and the Ovarian Cancer Association Consortium 
(OCAC). All subjects were of European ancestry (Sup-
plementary Table 1). We then imputed the genotypes of 
untyped SNPs using 1000 Genomes project data (April 
2012 release) as a reference. After excluding SNPs with 
an imputation information score <0.8 or minor allele fre-
quency <0.02, 113 genotyped and 283 imputed SNPs 
were included in the analyses. There was no evidence of 
genomic inflation (λ1,000 = 1.012, based on 43,233 uncor-
related iCOGS SNPs separate from those presented here).

First, a ‘global’ test using the admixture maximum like-
lihood method (AML) (Tyrer et al. 2006) against the null 
hypothesis that none of the genotyped SNPs within the 
TERT–CLPTM1L region are associated with endometrial 
cancer provided significant evidence that at least one SNP 
is associated (P = 0.0001).

Single-SNP association testing identified 61 out of 396 
SNPs with P values <0.05, compared with <20 expected by 
chance (Fig. 1; Supplementary Table 2). Forward stepwise 
logistic regression based on these 61 SNPs identified three 
imputed SNPs (rs7705526, rs13174814 and rs62329728) 
that each showed evidence of being independently asso-
ciated with disease (P = 7.7 × 10−5, 4.9 × 10−6 and 
2.2 × 10−5; conditioning on the other SNPs in the model 
P = 9.7 × 10−3, 1.7 × 10−4 and 1.8 × 10−4, respectively; 
Table 1). The three SNPs had high imputation informa-
tion scores (0.89, 0.98 and 0.82, respectively). Backward 
stepwise regression did not improve the model. The link-
age disequilibrium (LD) between these three SNPs is weak 
(maximum pairwise r2 = 0.047; Table 1), which further 
suggests that they represent independent risk factors for 
endometrial cancer. Although rs7705526 did not reach the 
approximate Bonferroni-corrected significance threshold 
(7.4 × 10−4; see “Materials and methods”), it was retained 
in the model because of its individual significance and the 

Table 1  The 3 SNPs showing independent associations with endometrial cancer

Unconditional analyses were adjusted for study strata (see “Materials and methods”) and for the first ten principal components. The Conditional 
Analysis model was also adjusted for the above variables and contained all 3 listed SNPs. Odds ratios (OR) are for allele A1

SNP Position 
(bld 37)

A1/A2 Frequency 
of A1

Imputation 
information 
score

Unconditional analysis Conditional analysis r2 with 
rs7705526

r2 with 
rs13174814

OR (95 % CI) P value OR (95 % CI) P value

rs7705526 1,285,974 C/A 0.33 0.89 1.11 (1.06, 1.17) 7.7E−05 1.08 (1.02, 1.14) 9.7E−03

rs13174814 1,299,859 G/C 0.25 0.98 0.87 (0.82, 0.93) 4.9E−06 0.89 (0.84, 0.95) 1.7E−04 0.047

rs62329728 1,356,890 G/A 0.06 0.82 1.27 (1.14, 1.43) 2.2E−05 1.24 (1.11, 1.39) 1.8E−04 0.024 <0.001

http://hapmap.ncbi.nlm.nih.gov/
http://www.cbioportal.org/public-portal/index.do
http://www.cbioportal.org/public-portal/index.do
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strong prior evidence supporting a role for this particular 
SNP in hormonal cancers (Bojesen et al. 2013).

Whilst the three SNPs in Table 1 were the most signifi-
cant in the forward logistic regression, each SNP should 
be considered as a tagging or representative SNP for a set 
of SNPs, sometimes referred to as an association “peak”. 
For each of the three SNPs, Supplementary Table 3 lists all 
other SNPs in the analysis which were in LD (r2 > 0.2) with 
that SNP, and which have likelihood ratios of <100:1 rela-
tive to the most significant SNP for that set. The SNP sets 
harbouring rs7705526, rs13174814 and rs62329728 (SNP 
sets 1, 2 and 3), respectively, contain 12, 4 and 10 distinct 
SNPs, none of which could be excluded as potentially caus-
ative on the basis of statistical analysis. Replacing each of 
the three imputed SNPs in Table 1 with a genotyped SNP 
from its own SNP set, each SNP set still showed evidence 
of association with endometrial cancer in the multi-SNP 
model, albeit with slightly weaker significance for two of 
the three sets, indicating that the observed effects are not 
due to imputation artefacts (Supplementary Table 4).

As an alternative to the frequentist stepwise variable 
selection procedure, we also used a Bayesian-inspired 

penalized maximum likelihood approach which simulta-
neously analyses all genotyped and imputed SNPs in the 
region to identify the optimal subset for disease prediction 
[HyperLasso (Hoggart et al. 2008)]. With shrinkage param-
eters fixed to obtain a Type I Error Rate of 0.001, the four 
best-fitting models all contained rs13174818 (lead SNP in 
SNP set 2), and one of rs7705526, rs33961405, rs7725218 
or rs7734992, all of which fall within SNP set 1. This dif-
fers in some respects from the stepwise regression results, 
in which rs13174814 and rs62329728 were more signifi-
cant than rs7705526, and provides further support for a role 
of SNP set 1 in endometrial cancer.

Of the three SNPs independently associated with endo-
metrial cancer in our study, only one (rs7705526) lies 
in an LD region previously associated with cancer risk. 
rs7705526 (OR = 1.11, CI = 1.06–1.17, P = 7.7 × 10−5) 
is located in the first intron of TERT (chr5:1,285,974, Sup-
plementary Fig. 1a). In the recent COGS study of breast 
and ovarian cancer risk and telomere length associated 
with SNPs in the TERT region, rs7705526 was classified 
as being in what was referred to as “peak 2” (one of two 
sets of associated SNPs straddling TERT introns 2–4 in 

Fig. 2  Forest plot showing 
the differential expression of 
a TERT and b CLPTM1L by 
endometrial cancer histological 
subtype using collated datasets 
of endometrial cancer micro-
array gene expression. The 
solid vertical line represents 
no change in gene expression 
between the two histological 
subtypes and the dashed line 
indicates the overall standard-
ized mean difference (SMD) 
in expression across all studies 
analysed. SMD is a unit-free 
measurement of gene expres-
sion. A positive SMD value 
represents increased gene 
expression in non-endometrioid 
endometrial cancer (NEEC) 
compared with endometrioid 
endometrial cancer (EEC). 
Heterogeneity P value was 
calculated by Q-statistic
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that study), and was associated with longer telomeres in 
blood cells and with increased risks of breast cancer (oes-
trogen receptor negative and positive subtypes) and ovar-
ian cancer (serous low-malignant potential and serous 
invasive epithelial) (Bojesen et al. 2013; Pharoah et al. 
2013). rs7705526 is in high LD with prostate cancer SNP 
rs7725218 (r2 = 0.87) (Kote-Jarai et al. 2013), and also in 
moderate LD with SNPs in “peak 3” of the COGS study, 
e.g., r2 = 0.36 with rs10069690, which is particularly 
associated with oestrogen receptor negative breast cancer 
and with both subtypes of ovarian cancer (Supplemen-
tary Table 5) (Bojesen et al. 2013; Pharoah et al. 2013). 

rs7705526 is also in LD with rs7726159 and rs2736100 
(r2 = 0.95 and 0.53, respectively, Supplementary Table 5), 
which are reported to be associated with multiple cancers 
including lung, ovarian, testicular, pancreatic and prostate 
cancers and glioma. Therefore, rs7705526 lies in a complex 
risk haplotype that is now associated with risks of at least 
eight different types of cancers.

The two remaining SNP sets identified as independently 
associated with endometrial cancer risk in our study (repre-
sented by rs13174814 and rs62329728) have not, to the best 
of our knowledge, been previously associated with cancer 
(Supplementary Table 5), and therefore represent novel risk 

Fig. 3  Boxplots of endometrial tissue normalized gene expression 
levels using RNASeq data generated by The Cancer Genome Atlas. 
Boxplots depict the median and first and third quartiles. a TERT 
expression in endometrioid endometrial cancer (EEC) and non-endo-

metrioid endometrial cancer (NEEC) tissue samples. b CLPTM1L 
expression in EEC and NEEC tissue samples. c TERT expression 
in endometrial cancer and normal endometrial tissue. d CLPTM1L 
expression in endometrial cancer and normal endometrial tissue
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variants in the region. rs13174814 (OR = 0.87, CI = 0.82–
0.93, P = 4.9 × 10−6) maps to the TERT promoter (chr5: 
1,299,859 and ~4.7 Kb from the 5′ UTR), a region that 
has been previously associated with the risk of testicu-
lar [rs4635969 (Turnbull et al. 2010)], lung [rs4975616 
(Landi et al. 2009; Wang et al. 2008)], prostate [rs7712562, 
rs2853669, rs2736107 and rs13190087 (Kote-Jarai et al. 
2013)] and breast cancers [rs2853669, rs2736108 and 
rs2736107 (Bojesen et al. 2013)]. However, the previ-
ously reported cancer-associated variants show only weak 
LD with rs13174814 (r2 < 0.07 for all comparisons) (Sup-
plementary Table 5), suggesting that this SNP represents 
a novel risk variant for cancer in the promoter region of 
TERT. The other SNP independently associated with endo-
metrial cancer, rs62329728 (OR = 1.27, CI = 1.14–1.43, 
P = 2.2 × 10−5), maps to a non-coding region ~12 kb 
upstream of the 5′ UTR of CLPTM1L (Supplementary 
Fig. 1c). To the best of our knowledge, rs62329728 is not 
correlated with any published cancer SNP (r2 < 0.05), and 
thus represents a new cancer risk allele in the CLPTM1L 
region.

rs13174814 and rs62329728 showed similar associa-
tions for endometrioid and the more aggressive non-endo-
metrioid histology endometrial cancers (Supplementary 
Table 6). Although rs7705526 was not significantly asso-
ciated with non-endometrioid cancers, the number of non-
endometrioid cancers (n = 757) was far smaller than the 
number of endometrioid cancers (n = 3,535), and the case-
only endometrioid vs non-endometrioid analyses did not 
show any significant differences (P > 0.05).

To identify possible mechanistic associations between 
TERT, CLPTM1L and endometrial cancer, we searched for 
information on endometrial gene expression and somatic 
variation in publically available datasets. Specifically, we 
looked at eight microarray datasets that have compared 
gene expression levels in endometrioid and non-endome-
trioid cancer (Fig. 2) and RNASeq data from The Cancer 
Genome Atlas (TCGA, Fig. 3). Analysis of microarray 
data found that TERT was overexpressed in non-endome-
trioid cancer (P = 0.0015, Fig. 2a), however, this was not 
observed in the larger TCGA RNASeq dataset (P = 1.0, 
Fig. 3a). Increased expression of CLPTM1L in non-
endometrioid cancer was seen across five of the microar-
ray datasets that also interrogated CLPTM1L expression 
(P < 0.0001, Fig. 2b), with a similar result also found by the 
TCGA RNASeq analysis (P = 4.1 × 10−8, Fig. 3b). Using 
TCGA RNASeq data we found significantly increased 
expression of both TERT (Fig. 3c) and CLPTM1L (Fig. 3d) 
in endometrial cancer tissue compared with normal tissue 
(TERT P = 1.5 × 10−18, CLPTM1L P = 1.5 × 10−19). 
TCGA endometrial cancer data analysis (http://www.cbio
portal.org/public-portal/index.do) shows that the 5p15.33 
region containing both TERT and CLPTM1L is significantly 

amplified in ~3 % of cases (Gistic Q value <0.00011, not 
shown), whilst TERT and CLPTM1L mutations have been 
identified in a small fraction of endometrial tumours (Kan-
doth et al. 2013).

We then assessed association between SNPs in the 
region and TERT and CLPTM1L expression. Our most 
strongly associated risk variants were not genotyped by 
the TCGA genotyping platform (Affymetrix 6.0) and it 
was not possible to impute these SNPs with a satisfactory 
degree of accuracy (imputation information scores of 0.41, 
0.35 and 0.45 for rs7705526, rs13174814 and rs62329728, 
respectively) based on this genotyping. Other variants in 
the region were assessed for association with expression 
of TERT (Supplementary Table 7) or CLPTM1L (Supple-
mentary Table 8): the best TERT eQTL (P = 0.009) was 
for rs2853668 (endometrial cancer risk P = 7.2 × 10−4; 
Supplementary Table 2) located 166 bp from rs13174814 
(r2 = 0.10) in the TERT promoter; the best CLPTM1L 
eQTL (P = 0.06) was observed for rs2736100 (endome-
trial cancer risk P = 8.6 × 10−4; Supplementary Table 2), 
located 542 bp from rs7705526 (r2 = 0.53). The TCGA 
genotyping array provided reasonable tags for rs7705526 
(best tag rs2736100 with r2 = 0.53), but not for rs62329728 
(best tag rs246992, r2 = 0.09) or rs1317814 (best tag 
rs246995, r2 = 0.13).

Discussion

Using high-density genotyping, imputation, a ‘global’ like-
lihood test and multi-SNP logistic regression analyses, we 
have shown for the first time that genetic variants in the 
TERT–CLPTM1L region are associated with the risk of 
endometrial cancer, and provide evidence that this region 
contains three independent risk SNPs for this cancer. One 
previous study has reported a nominally significant asso-
ciation between a SNP in the TERT region (rs2736122) 
and endometrial cancer (reported P = 0.03) (Prescott et al. 
2010), but this SNP was not significant in our larger anal-
ysis (P = 0.85; Supplementary Table 5), whilst a recent 
multi-cancer study of nearly 2,000 5p15.33 SNPs did not 
report an association with endometrial cancer (Wang et al. 
2014). Only one of the endometrial cancer risk variants 
identified in our study (rs7705526) lies in an LD region that 
has been previously associated with other cancer types.

To date, GWAS for endometrial cancer have convinc-
ingly identified evidence for endometrial cancer risk asso-
ciation at the HNF1B locus (Spurdle et al. 2011; Setiawan 
et al. 2012; Painter et al. 2014), the risk allele of which 
(rs4430796A) maps to a region that has also been associ-
ated with the risk of ovarian and prostate cancers (Gud-
mundsson et al. 2007; Shen et al. 2013; Thomas et al. 
2008). In the candidate study of the 5p15 multi-cancer 

http://www.cbioportal.org/public-portal/index.do
http://www.cbioportal.org/public-portal/index.do
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region presented here, we have identified up to three new 
independent endometrial cancer risk variants within a 
locus already associated with multiple cancers, potentially 
accounting for ~0.5 % of the excess familial relative risk 
of endometrial cancer. A similar candidate region approach 
has been used successfully to demonstrate associations 
between variation at the 8q24 multi-cancer region and thy-
roid cancer, another understudied malignancy (Jones et al. 
2012). We thus propose that future studies on the role of 
additional multi-cancer regions, such as 1q32/MDM4, 
4q24/TET2, 8q24, 10p12/MLT10, 14q24/RAD51B8 or 
19q13/MERIT40 (Sakoda et al. 2013), are worthwhile 
endeavours for cancers that are relatively understudied, 
including endometrial cancer.

Among the list of 41 TERT SNPs for which we were 
able to identify a previous report of a significant associa-
tion with cancer in a European ancestry population (Sup-
plementary Table 5), only those SNPs which are in LD with 
rs7705526 showed even nominally significant associations 
with endometrial cancer (with the exceptions of P = 0.032 
for rs402710 and P = 0.041 for rs13172201), and none 
remained significant after conditioning on rs7705526. 
This suggests that we identified one SNP from a haplotype 
which is associated with endometrial cancer and also with 
multiple other types of cancer, and two mutually independ-
ent SNPs which are associated with endometrial cancer but 
do not lie in haplotypes previously reported to be associ-
ated with any other type of cancer. However, this does not 
exclude the possibility that these novel endometrial cancer 
SNPs are also multi-cancer variants. The 5p15.33 region 
has complex LD patterns and is poorly tagged by many 
GWAS genotyping panels. As a comparison, we exam-
ined the SNP coverage of this region in a set of 5,180 con-
trol subjects genotyped using the Illumina Infinium 1.2M 
GWAS array as part of the Wellcome Trust Case Control 
Consortium (2007), for which missing genotypes were 
imputed using the same method and reference panel as in 
our main study. Of the 799 SNPs with MAF >0.02, the 
median imputation information score in the iCOGS set was 
0.80 compared with 0.21 in the 1.2M GWAS set, and 87 % 
of SNPs had an information score of at least 0.4 in the 
iCOGS set compared to just 26 % of SNPs reaching this 
threshold in the GWAS set (Supplementary Fig. 2; Supple-
mentary Table 2). These findings emphasize the value of 
targeted, dense genotyping as a complementary approach 
to standard GWAS. The imputation information score for 
rs7705526 (the only one of our associated SNPs previously 
associated with other cancer types) was 0.55 in the GWAS 
set, whilst the GWAS information scores for rs13174814 
and rs62329728 were just 0.43 and 0.12, respectively. Thus, 
the use of a deliberately dense panel of local SNPs, such as 
that used in this study, may reveal associations between the 
novel endometrial cancer risk SNPs and other cancers.

Fine-mapping genomic regions which potentially contain 
multiple causal variants is a relatively new area of research, 
and generally accepted thresholds for claiming the statisti-
cal significance of variants do not yet exist. An appropriate 
threshold for a given region can depend on the number of 
SNPs tested, the extent of LD in the region, the frequencies 
of the variants and the prior evidence for association. Some 
authors have suggested using Bayesian inference as an 
alternative to frequentist P value-based methods. Here, we 
performed one such Bayesian-inspired method, the Hyper-
Lasso (Hoggart et al. 2008), which also found associations 
with SNP sets 1 and 2, but reported no further associated 
SNPs. The results of this alternative method increase our 
confidence in the associations between endometrial can-
cer and SNP sets 1 and 2, while direct genotyping of large 
case–control studies will help towards resolving the disa-
greement between statistical methods regarding the asso-
ciations with SNP set 3. The use of imputed genotypes in 
our analysis allowed us to examine a broader group of SNPs 
than would have been possible in an analysis restricted to 
SNPs that had been genotyped. Genotyping cases and con-
trols using the same array, thorough pre-imputation quality 
control, excluding rarer SNPs and restricting the analysis 
to SNPs with high imputation information scores (>0.8) 
should have reduced imputation errors and minimized the 
chance of false-positive associations (Marchini and Howie 
2010). Nevertheless, it will be informative to replicate the 
analysis using direct genotyping in independent samples.

Two of the endometrial cancer risk SNPs identified in 
this study are in or near the TERT gene. The risk allele at 
rs7705526 has been shown to result in increased TERT pro-
moter activity in luciferase reporter assays conducted in 
ER-negative breast, ER-positive breast and ovarian cancer 
cell lines (Bojesen et al. 2013), and was reported to be asso-
ciated with TERT transcript levels in benign prostate tissue 
(Kote-Jarai et al. 2013). Data from ENCODE show that 
rs13174814 and another SNP in LD with it, rs13174919, 
map to a 400 bp region (chr5:1,299,601–1,300,000) identi-
fied as an insulator in embryonic stem cells, although an 
insulator function has yet to be experimentally validated in 
this or other cell lines. Interestingly, there are also a number 
of chromatin interactions, indicative of regulatory poten-
tial in the region of the most likely causal SNPs for this 
SNP set in two cancer cell lines (MCF7 and K562) (Sup-
plementary Fig. 1b). Furthermore, our search for functional 
effects in RegulomeDB (Boyle et al. 2012) and HaploReg 
(Ward and Kellis 2012) suggests that rs13174814 affects 
the binding of both RAD21 and CTCF. Previous studies 
have shown that both RAD21 and CTCF are deregulated 
or aberrantly expressed in endometrial cancer (Hoivik et al. 
2014; Supernat et al. 2012). Interestingly, CTCF appears to 
be a target for slippage mutations in endometrial cancers 
with microsatellite instability (Zighelboim et al. 2014).
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The third endometrial cancer risk SNP identified in this 
study is in the upstream/promoter region of CLPTM1L, 
~60 kb away from TERT, and which also harbours sev-
eral cancer risk alleles, mostly for non-hormone-related 
malignancies such as lung, bladder and pancreatic cancers 
(Haiman et al. 2011; Kote-Jarai et al. 2011, 2013; McKay 
et al. 2008; Petersen et al. 2010; Rafnar et al. 2009; Shete 
et al. 2009; Stacey et al. 2009; Turnbull et al. 2010; Wang 
et al. 2014). The evidence for an involvement of CLPTM1L 
in tumorigenesis is, however, more limited. One study 
has linked CLPTM1L expression with cisplatin resistance 
in an ovarian cancer cell line (Yamamoto et al. 2001) and 
more recently, CLPTM1L was shown to promote growth 
and enhance chromosomal instability in pancreatic cancer 
cell lines (Jia et al. 2014). Although yet to be functionally 
characterized, rs62329728 is in LD (r2 > 0.8) with addi-
tional SNPs across the TERT–CLPTM1L region which are 
located within areas of open chromatin, transcription fac-
tor binding or chromatin interactions in multiple ENCODE 
cell lines including the Ishikawa endometrial cancer cell 
line (Supplementary Fig. 1c), and hence may have regula-
tory potential.

Our analysis of microarray datasets suggested dif-
ferences in CLPTM1L expression between endometrial 
tumour histological subtypes, and increased expression of 
both TERT and CLPTM1L between endometrial tumour 
and normal tissue. Further, a role for TERT is indicated by 
eQTL analyses, in that endometrial cancer risk-associated 
SNPs were associated with expression of TERT in endo-
metrial tumour tissue. These results have highlighted a new 
region of the TERT promoter worthy of functional inves-
tigation, and, importantly, implicate CLPTM1L expression 
in the aetiology of endometrial cancer. As such, these find-
ings will expand biological studies of the TERT/CLPTM1L 
region in this and other hormone-driven cancers. A pos-
sibility that should be examined in future studies is the 
existence of long-range regulatory elements in this region 
and their effects on TERT, and whether the prioritized risk-
associated variants play a role in CLPTM1L regulation.

In summary, we have used an informed candidate 
approach to identify a novel endometrial cancer risk 
locus. Importantly, our study highlights the value of using 
the information generated by GWAS to guide candidate 
gene/SNP approaches, particularly for those cancer types 
that have been relatively understudied using the GWAS 
approach, such as endometrial cancer. Unlike previous 
studies in hormone-related malignancies (breast, ovarian 
and prostate), which only found risk variants in or near 
TERT, our study found evidence of risk variants in and 
near TERT and also near CLPTM1L. Future studies should 
investigate the functional effects of prioritized risk-asso-
ciated variants on CLPTM1L and/or TERT in endometrial 
cancer and other cancer models. Furthermore, additional 

studies, ideally using re-sequencing, should be carried 
out to uncover possible additional low frequency causal 
variants.
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