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ABSTRACT OF THE DISSERTATION 

 

 

Creative Problem Solving in Mathematics: Immersion, Impasse, Incubation, and Insight 

 

By 

Stacy Tamsen Shaw 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2020 

Professor James Stigler, Chair 

 

Although creativity research frequently borrows anecdotes from mathematicians, most 

research is conducted in a lab setting with abstract tasks known to be heavily confounded with 

verbal fluency (e.g. RATs, anagrams). This is unfortunate, as utilizing an area such as math 

would not only diversify creativity research, but allow exploration of how factors such as 

identity and affect can relate to creative processes. In the current dissertation, I employed a 

creative math puzzle to extend previous work on creativity and insight to the realm of 

mathematics, and explored how trait individual differences and state differences relate to solve 

rates both within the lab, and outside the lab (up to three days later). Study 1 recruited 231 

undergraduate students, who were brought into the lab and randomly assigned to a condition—a 

low-demand incubation condition (LD), high-demand incubation condition (HD), or a control 

group. All groups had six minutes to work on the puzzle, but students in the LD and HD 

conditions took a break after three minutes to complete a signal detection task (LD condition) or 

complex- reading task (HD condition) for 2.5 minutes. If students were unable to solve the 

puzzle in lab, they were provided a follow-up survey link to fill out if they solved the math 
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puzzle later, or if three days had passed and they had not solved. Results showed that there was 

no effect of incubation condition on problem solving within the lab, but it was significantly 

related to solving outside of the lab. Interestingly, control condition students had a greater 

probability of solving outside the lab compared to LD students. I also found that several factors 

significantly related with problem solving in the lab (i.e. math anxiety, trait emotions) were not 

related to solving the problem outside of the lab. 

Study 2 attempted to replicate the findings of study 1 by adopting the same procedure 

(but limiting conditions to control and LD) and extending to trait individual difference measures 

such as openness, intellect, and different aspects of curiosity. Study 2 also evaluated an 

opportunistic assimilation account of the findings of study 1, which suggest that control 

participants may be out-solving their LD counterparts in the wild because they were reaching an 

impasse more than LD students, allowing them to pick up on cues from their environment that 

aid with solving the problem outside the lab. However, results from 252 students showed that 

incubation condition had no effect on solving in lab or the wild, failing to replicate the results 

from study 1. Further, impasse was not found to relate to solving in the wild, and while some 

students reported hints had helped them solve in the wild, this was only a small subset of the 

sample. Among trait individual difference measures, intellect and curious-I were found to 

positively relate to solving in the lab, but along with the other trait and individual difference 

measures, failed to predict whether students solved in the wild. Collectively, this dissertation 

highlights the complex nature of creative problem-solving in mathematics, and how different 

aspects of data collection (lab and wild) can contribute to a richer understanding of students’ 

creative cognition. 
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Creative Problem Solving in Mathematics: Immersion, Impasse, Incubation and Insight 

At its core, the essence of mathematical thinking is creative thinking (Mann, 2006). 

Creative problem solving in particular, which generally describes the process of making new and 

meaningful connections through the generation of unusual or original possibilities (Treffinger, 

Isaksen, & Stead-Dorval, 2005), is a valuable skill in math. At the forefront of mathematics, 

expert mathematicians rely on creative problem-solving to make new connections across 

different areas of math to solve problems and create scientific breakthroughs (see Mackenzie, 

2006). In the classroom, the practice of creative problem-solving signals both an understanding 

of the problem and the ability to think flexibly about concepts in math (Ervynck, 2002; Liljedahl 

& Sriraman, 2006)—critical skills for the development of expertise (Hatano & Inagaki, 1984). 

Creative problem-solving is highly valued both in math classrooms (Mann, 2006) and as a 

general skill (Craft, Gardner, & Claxton, 2007; Feldman, Csikszentmihalyi, & Gardner, 1994). 

Despite immense interest, the cognitive processes underlying creative problem solving in 

mathematics are not fully understood.  

The nature of creative cognition is complex, but one popular theory of creative problem-

solving has inspired a simple four-stage model of creativity. Wallas (1926) argued that creative 

problem-solving begins by first, immersing oneself in the problem to better understand it and 

exhaust conventional ideas. After a period of immersion, one likely reaches an impasse, or a 

mental block. Once an impasse has been reached, people enter a period of incubation, where they 

temporarily shift their attention away from the problem and do something else. During this 

period of incubation, or upon return to the problem, people can experience an aha! moment of 

insight, where an idea surfaces with “brevity, suddenness, and immediate certainty” (Hardy, 

1946, p. 54). After experiencing insight, the potential solution or breakthrough is evaluated. 
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Although proposed almost 100 years ago, the four stages of creative problem-solving – 

immersion, incubation, insight, and evaluation – has generally held up well in empirical research 

across the years and continues to be a popular framework. The primary interest of researchers, 

however, revolves around the first three phases: immersion, incubation, and insight (Mumford, 

Lonergan, & Scott, 2002; Silvia, 2008). Immersion, incubation, and insight are of particular 

interest for the field of mathematics, where problems are often ill-structured, and require 

overcoming fixations, making remote connections, and thinking both convergently and 

divergently about concepts to arrive at solutions—all characteristics of creative problem-solving 

(Runco, 2014).  

We know from research and first-hand accounts that people experience immersion, 

incubation, and insight in mathematics (e.g. Hadamard, 1945; Poincaré, 1946; Savic, 2016). 

Through this dissertation, I hope to answer some important questions about these processes and 

how an individual experiences them. For instance, what are these experiences like for everyday 

students? How important is immersion in math for a student to reach a moment of insight? Do 

previous findings of incubation replicate when it comes to math? What are the experiences of 

students who have aha! moments of insight in their everyday life? And do individual differences 

in cognition and affect play a role in these creative processes? Below, I define and highlight 

research on each of the first three stages of creativity and discuss its potential role and relevance 

in mathematics. Afterwards, I summarize the limitations of the existing literature, then provide 

an introduction to the current set of studies. 

Immersion  

Famed physicist Hermann Helmholtz once said that it was almost impossible to reach an 

insight “without long preliminary work” (Cahan, 1995, p. 389). The period of immersion 
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describes this preparation phase, and is characterized by intense periods of conscious effort to 

understand and solve a problem (Savic, 2016). Haylock (1987) argued that in mathematics, 

immersion produces a full and thorough investigation of the problem at hand, and a complete 

understanding of all aspects of the problem. Dorfman, Shames, and Kihlstrom (1996) note that in 

addition to developing a stronger representation of the problem and exhausting conventional 

ideas, immersion promotes a “definite problem attitude” for the problem solver that increases the 

awareness that there is a lingering problem to solve (p. 258). Work on open goals has found 

evidence that only when participants fail to solve problems, but are still motivated to solve them, 

do they show benefits of incubation periods (Bos, Dijksterhuis, & Van Baaren, 2008; see also 

Zeigarnik, 1938).   

 The immersion phase of creativity shares some commonalities with productive struggle 

(Hiebert & Grouws, 2007), productive failure (Kapur, 2014) and other constructivist approaches 

to teaching in math education in which a student expends great effort during an initial period to 

explore and try to solve a math problem before receiving direct instruction. Receiving an 

opportunity to fully immerse oneself in a problem before direct instruction has been found to 

lead to better conceptual knowledge and a greater ability to transfer new knowledge to other 

problems (Kapur, 2014) as students engage in more diverse strategies and develop a stronger 

understanding of the features of the problem (DeCaro & Rittle-Johnson, 2012). In sum, 

immersion practices show great benefits in critical aspects of learning and creative problem-

solving. Some researchers have argued, however, that beyond developing an understanding of 

the problem, the most important process of immersion is that it temporarily exhausts the problem 

solver, prompting them to take a break from the problem (Savic, 2016). This break, then paves 

the way for incubation.  
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Incubation 

After struggling to solve a problem during the immersion phase, problem solvers 

frequently feel the need to take breaks from the problem. Referred to as incubation, the process 

of walking away from a particularly a troubling problem and allowing oneself to “incubate” has 

garnered much attention from creativity researchers (see Sio & Ormerod, 2009), as incubation 

has been found to have great benefits to problem-solving. Such benefits include the 

reorganization of information, polarization of information, and reliance on more gist-based 

memory (Ritter & Dijksterhuis, 2014). Equally important, the processes of incubation can allow 

one to forget about elements that lead to fixation when solving problems (Smith & Blankenship, 

1989). Upon return to the problem, the restructuring of information and forgetting of fixations 

can allow for false cues to become less accessible, leaving the cues needed to solve the problem 

more accessible (Schooler & Melcher, 1995). This can result in an aha! moment of insight.  

One popular account of incubation is unconscious work theory (Ritter & Dijksterhuis, 

2014; Zhong, Dijksterhuis, & Galinsky, 2008) which posits that the benefits of incubation are 

largely due to subconscious processes that continue to aid with problem solving during breaks. 

Whether this processing is mostly made up of further activation of relevant semantic information 

(a semantic-activation account; see Sio & Rudowicz, 2007), sensitivity to related environmental 

information (an opportunistic-assimilation account, see Seifert, Meyer, Davidson, Patalano, & 

Yaniv, 1994), inhibition of fixating cues or ideas (a selective-forgetting account; see Smith, 

1995; Smith & Blankenship, 1991) or some sort of mix of these processes is unclear, as evidence 

has been found for each account. But regardless of the exact mechanism, incubation has been 

strongly linked to improved problem solving and creativity, both in the form of spontaneous 
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insights during incubation (aha! moments that come without previous conscious thought of the 

problem) or reaching an insight shortly after a returning to working on the problem. A meta-

analysis of incubation studies found an overall effect of incubation breaks on problem solving, 

with the strongest effects of incubation on divergent thinking tasks and for breaks when 

participants complete tasks with a low-level of cognitive demand (Sio & Ormerod, 2009). 

Two of the most cited anecdotes of incubation come from mathematicians Poincare and 

Archimedes. Research papers frequently cite the story of Poincaré who reported making a major 

breakthrough in his Fuchsian function problem while stepping off a bus during a geological 

excavation (e.g. Benedek & Jauk, 2018; Gilhooly, 2016; Sadler-Smith, 2015), as well as the 

famed story of Archimedes who had a moment of sudden realization regarding how to calculate 

the volume of a crown using displaced water in the bathtub (e.g. Lawson, 2001; Simonton, 2018; 

Ward, Smith, & Finke, 1999). From the limited empirical research on incubation within math, 

we know that individuals do experience incubation and insight when solving math problems. For 

example, some research has found that expert mathematicians not only take incubation breaks, 

but even have more developed and diverse routines during incubation compared to more junior 

mathematicians (Savic, 2012, 2015). This indicates that expert mathematicians have established 

routines that can provide them with incubation opportunities. But how everyday students can use 

incubation to improve math learning and problem-solving is a different question, and worth 

exploration.  

Insight 

Synonymous with aha! moments, insights are described as “the sudden experience of 

comprehending something that you didn’t understand before, thinking about a familiar thing in a 

novel way, or combining familiar things to for something new.” (Kounios & Beeman, 2015, p. 
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5). Insights are also distinguished from other experiences of problem solving by a sense of 

suddenness (Gick & Lockhart, 1995; Metcalfe & Wiebe, 1987), a new way of looking at a 

problem (Csikszentmihalyi & Sawyer, 2014) and often, and accompanying feeling of elation or 

happiness (Shen, Yuan, Liu, & Luo, 2016). Spontaneous insights are a special type of insight, 

that describe a sense of suddenness, but reflect an experience of arriving at a solution without 

previous conscious thought (e.g. an answer “popping” into your head). For mathematicians, 

insight has been described as finding a remote connection, switching on a light, and suddenly 

developing a greater understanding for how concepts relate together (Burton, 1998). But it’s not 

just expert mathematicians who experience insight in math. Research has also found that students 

experience insights when learning mathematical content (Barnes, 2000; Liljedahl, 2005). Student 

insights in math are extremely important, as they not only represent leaps of understanding on 

the part of the student, but insights can also spark interest and confidence in students who 

previously disliked mathematics (Liljedahl, 2004).  

Insights are often achieved when students are in a relaxed mood and doing activities that 

require little cognitive effort (Sio & Ormerod, 2009) and are believed to be the product of 

unconscious processes (Metcalfe & Wiebe, 1987; Ritter & Dijksterhuis, 2014; Schooler & 

Melcher, 1995;). What separates insights from what’s referred to as analytical problem-solving 

(e.g. conscious work on the problem) is a sense of suddenness and unexpectedness (Kounios & 

Beeman, 2015). For example, a student walking to campus one day who unexpectedly arrives at 

the solution to a problem would have solved via insight, whereas a student who continuously 

works on the problem and gradually arrives at the solution through reasoning and logic is said to 

have solved it analytically. There may be some positive feelings of solving for the student who 

solves via an analytical problem solving method, but the student who experiences an aha! 
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moment would experience much stronger and more positive feelings (Kounios & Beeman, 

2015). Therefore a critical element that distinguishes how students arrive at solutions is how 

sudden and unexpected the solution feels.  

Limitations to Prior Work 

Our understanding of creative problem-solving has come a long way since Wallas first 

published his work on creativity in 1926. But there remain several limitations in studying 

immersion, incubation and insight—especially in math. For example, much of the research on 

immersion in mathematics is conducted in relation to performance (e.g. productive struggle) but 

how this immersion leads to creative problem-solving, not just retention of information or the 

ability to execute a series of procedures, is unknown. When immersion is studied in relation to 

incubation and insight, researchers frequently rely on abstract problems that do not reflect the 

types of problems that people will need to solve in real life. The Remote Associates Test (RAT), 

for example, provides participants with three words and ask the participant to generate a fourth 

word that connects the three words together (e.g. “dust”, “gold”, “shooting” are all related to 

the word “star”). Not only is this task heavily confounded with verbal fluency of the participant, 

but has little connection to real-world problems, or educational content. Further, classic RAT 

incubation studies give upwards of 20 RAT items to solve (showing participants 60 words in 

total), provide a break, and then test to see how many more can be solved after a break (e.g. 

Dodds, Smith, & Ward, 2002; Smith, & Blankenship, 1991) but some work suggests that 

students have difficulty remembering so many different sets of problems (Moss, Kotovsky, & 

Cagan, 2007), possibly overpowering processes involved in incubation, and obscuring results.  

 Perhaps the greatest limitation is that much of the research on immersion, incubation and 

insight take place in a controlled testing environment which makes it difficult to study incubation 
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and insight that happens in everyday life. Of course laboratory research has provided vital 

information about these processes, but to build a more complete picture, research must be 

conducted outside the lab as well. Dunbar (2001a), who studied how scientific insight and 

reasoning arises utilized more naturalistic settings (such as lab meetings), was able to provide 

fruitful information about these processes— information that would otherwise be difficult to 

capture in a controlled testing environment. In addition to providing richer information, research 

from the analogy literature has found that participants tend to focus on superficial details in 

controlled testing environments, whereas outside the lab, they tend to focus on deeper structural 

information (Dunbar, 2001b). Might similar differences be found with incubation and insight, 

where participants engage in deeper forms of thinking outside the lab? 

Capturing incubation and insight in student’s everyday lives not only provides a richer 

account of creative problem-solving, but allows for the space, time, and activities that real-world 

incubation and insight requires. Research on incubation in natural settings suggests that 

incubation periods often take much longer than an hour—the standard time of a full lab 

experiment (Savic, 2012). The activities mathematicians engaged in are also diverse and tailored 

to the specific routine of the mathematician, something that could only be captured in a 

naturalistic setting. Further, the general creativity literature has found that incubation often 

occurs during the five “B’s” – bed, bathroom, bus, bars, and boring meetings (Benedek & Jauk, 

2018), making it difficult to recreate such conditions in a lab environment. By primarily relying 

on research that restricts the creative problem-solving experience to lab visits (and limits 

naturalistic research to experts), the field has missed out on rich and detailed information as to 

how students use immersion and incubation to reach mathematical insights in their everyday 

lives. Hence, one of the main goals of the dissertation is to address whether incubation and 
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insight outside the lab reveals a more rich and representative picture of what creative problem-

solving in math is like. 

The Current Studies 

My dissertation investigates how students come to solve a creative math puzzle both 

inside and outside the lab. In the first experiment, I examine how an immersion/incubation 

manipulation in lab leads students to experience insight for a novel math problem puzzle. 

Students are brought into the lab, complete a number of trait individual measures, attempt to 

solve a math puzzle, and then report on various state measures about their experiences and 

feelings in the lab. For students who are unable to solve the puzzle in the lab, they are instructed 

to go back to their lives as normal. I follow up with them up to three days later and survey them 

about their experiences solving in their everyday lives. For study 2, I attempt to replicate the 

findings of study 1 and expand upon study 1 by including new measures that capture different 

trait individual differences, as well as collect more detailed information from students who solve 

outside the lab. 

Study 1 

Studies of deep immersion and incubation often cite anecdotes of mathematicians to 

illustrate the power and usefulness of these practices to reach insight, but the majority of these 

studies use anagrams, RAT items, or other divergent thinking assessments—all of which rely on 

verbal ability to solve (Sio & Ormerod, 2009). In study 1, I extend a classic creative incubation 

and insight paradigm into a mathematical context by administering a novel creative math puzzle, 

and examine how a break in problem solving in the lab may boost students’ problem-solving 

rates. Students who were unable to solve the math puzzle in lab were enrolled in a subsequent 

phase of the study where they were given three days to solve the puzzle outside of the lab. I also 
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investigate how affective factors (such as math anxiety) and trait measures of cognitive 

engagement (such as Need for Cognition) may relate to processes that lead to incubation and 

insight. 

Research Questions and General Design  

There were three primary research questions in this first study, 1) Does a classic 

incubation manipulation boost solve rates in math? 2) Do individual differences measures of 

affect and cognitive engagement relate with solve rates of the math puzzle inside and outside the 

lab? 3) How do students arrived at creative insights in math, and what are their experiences? To 

answer these questions, undergraduate participants were brought into the lab and randomly 

assigned to one of three conditions— 1) a low-demand (LD) incubation condition that required 

students to complete a task that requires little cognitive effort halfway through the puzzle-solving 

attempt, 2) a high-demand (HD) incubation condition that required participants to complete a 

task that required a lot of cognitive effort half-way through, or 3) a control condition that had 

participants continuously work on the problem without interruption.  

All three conditions received the same amount of total time spent working on the puzzle, 

the only difference between the conditions was whether they received a break half-way through, 

and what task they completed during this break. Note, this manipulation both serves to test the 

efficacy of different incubation conditions as well as the benefits of receiving a long period of 

uninterrupted immersion (as opposed to interjecting this period with an opportunity for 

incubation). Students who did not solve the problem during the lab portion of the experiment 

were enrolled in a second phase of the study, where they went about their everyday lives and 

were asked to take a follow-up survey either immediately after arriving at the solution, or if three 

days had passed and they had not solved. Subsequently, I refer to the first phase of the study as 
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the “lab” portion of the study, and refer to the second phase of the study as the “wild” portion of 

the study. Students who solved in the lab will thus be referred to as “lab solvers” and those in the 

wild as “wild solvers,” the two of which are mutually exclusive (but not exhaustive) groups of 

participants.  

Hypotheses 

For the first research question – which asked whether an incubation manipulation in the 

lab predicts solve rates in the math puzzle – I predicted that students assigned to the conditions 

with the incubation break would show better solve rates in the lab compared to students in the 

control condition. Between the two incubation conditions (LD and HD), I predicted that students 

assigned to the LD condition would out-solve the HD condition. This hypothesis was informed 

by findings from a meta-analysis of incubation that found low-demand conditions show the 

highest rates of problem-solving (Sio & Ormerod, 2009).  

For the second research question, I hypothesized that for students with a negative 

emotional disposition or negative reaction to math (i.e., high math anxious, negative PANAS 

scores) would generally show a lower solve rate compared to students with less of a negative 

emotional disposition. I surmised that the relationship between math anxiety and solve rates 

would be more pronounced for students assigned to either of the incubation conditions, given 

that rest periods have been found to lead to suppression/forgetting of information that is stressful 

(Ramirez, 2017). In addition to this, I predicted that students who were more curious to know the 

solution after failing to solve in the lab, and those generally higher in need for cognition would 

be more likely to solve in the wild. The third research question – what are students solve 

experiences like outside of the lab – was exploratory in nature and designed to examine whether 

the students’ solve experiences were consistent with literature in the insight problem solving 
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literature, such as solving during periods of rest, while doing activities that are low in cognitive 

demand, or during the five b’s (bed, bathroom, bus, bars, and boring meetings). 

Method 

Participants and Sample Size Justification 

Participants consisted of 252 undergraduate students enrolled in an undergraduate 

psychology course who completed the study for course credit. Because the math puzzle used in 

this study had not been used in prior empirical research, the estimated solve rate was unknown, 

and thus, the effect size of such incubation conditions to conduct a power analysis was not 

available. Thus, my goal for the total sample size was to have at least 60 participants in each 

incubation condition (control, LD, HD conditions) totaling 180 participants. However, because 

there is also a wild component to this study, I ran as many participants past 180 as was 

logistically possible (within constraints) so that follow-up analyses could be as well-powered as 

possible. The resulting sample was comprised of 252 students, 180 which were females (71 

males, 1 other), with an average age of 20 years old, representing race/ethnicity of Black/African 

American (2%), Asian (34%), Indian (4%), Middle Eastern (6%), Latino (15%), White (28%), 

and Biracial or Other (10%, with an additional participant preferring to not report). 

Procedure 

Participants were tested in groups of up to five students at a time. The experimenter 

began the lab session by providing participants with an overview of the experiment (including an 

overview of the wild phase of the study) and set up each participant at a station with a computer 

and scratch paper to work on the math puzzle. Participants began by filling out questionnaires 

that measures their math anxiety, math identity, need for cognition, and the PANAS (measures 

discussed in more detail in the subsequent measure section). Afterwards, they viewed a video 
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with instructions to the puzzle, and were randomly assigned to one of three conditions. Those 

assigned to the LD incubation condition worked on the puzzle for three minutes, then completed 

a signal detection task for 2.5 minutes, before being given another three minutes to work on the 

math puzzle. Students randomly assigned to the HD condition had a similar procedure, except 

instead of completing a signal detection task during the incubation break, they read an advanced 

microbiology passage and answered difficult questions about the passage. Participants randomly 

assigned to the control condition worked on the problem for an uninterrupted 6 minutes, similar 

to other controls in incubation studies (e.g. Bos et al., 2008; Dijksterhuis & Meurs, 2006; 

Gilhooly, Georgiou, & Devery, 2013). The allotted times of work and the breaks associated with 

the conditions were informed by a meta-analysis of incubation that provided estimates of the 

optimal time of breaks (Sio & Ormerod, 2009) and by previous pilot testing. 

If participants believed they had solved the math puzzle during the lab session, they 

raised their hand and the experimenter either confirmed the solution, or pointed out the rule they 

violated and instructed the participant to keep trying to solve. After the puzzle-solving part of the 

lab study, participants ended the session by reporting on their experience with the math puzzle 

(state measures) and filled out demographic information. Participants who did not solve the 

puzzle during the lab session were enrolled in the second phase of the study, and were provided 

with a survey link to the follow-up wild survey. Students were instructed to take the survey as 

soon as they had arrived at the solution to the problem, but if they had not found the solution 

after three days, I followed up with them three days later to take the follow-up survey. 

Participants were not instructed to try to come up with the solution, but rather live their lives as 

normal and take the survey if they happened to think of the solution. See Figure 1 for an 
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illustration of the lab procedure, as well as when various measures were administered to the 

participant. A description of the measures is included below.   

 

Figure 1. An overview of when trait and state measures appeared in study 1 

 

Measures 

Math puzzle. The math puzzle used in the current study presents participants with four 

digits (2 3 4 5) and two symbols (+ =) and asks them to create a balanced equation using each digit 

and symbol once and only once, without adding any digits or symbols (Miller, n.d.). Participants 

were encouraged to use any mathematical procedure they could think of, as long as it satisfied the 

rules. The solution to this problem is the equation 32 = 4 + 5. To solve the puzzle, students must 

adopt a creative problem-solving approach that requires escaping conventional algorithmic 

procedures to overcome the common fixation of combining the numbers to create larger numbers 

(e.g. 4 + 5 = 23). This puzzle also requires inhibition of fixations, interference management, and 

can benefit from executive switching—processes found to play a large role in creative processes 

(e.g. Beaty & Silvia, 2012). Additionally, this puzzle can also be solved analytically through 

gradual steps and hypothesis testing which allowed me to measure variation in students’ problem-

solving attempts as well as how they came to solve the puzzle.  
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Trait individual differences. 

Math anxiety. Math anxiety was measured using the Abbreviated Math Anxiety Scale 

(Hopko, Mahadevan, Bare, & Hunt, 2003). This scale presents nine items to the participant and 

asks them to rate how anxious each item would make them feel (e.g. opening a math textbook, 

going up to the front of the class to solve a problem on the board, etc.) on a scale from 1 (low 

anxiety) – 5 (high anxiety). These items were averaged across the nine items to create a 

composite score of math anxiety. 

PANAS. I used the International Positive and Negative Affect Schedule Short Form (I-

PANAS-SF; Thompson, 2007) to assess participants general tendency to feel negative and 

positive emotions. This version of the general PANAS presents five positive affect adjectives 

(determined, attentive, alert, inspired, and active) and five negative affect adjectives (afraid, 

nervous, upset, ashamed, and hostile) and asks the participant to rate how much they generally 

feel each of the adjectives, on a scale of 1 – 5. Averages for the positive and negative adjectives 

are then calculated to create a composite score for trait positive and negative emotion.   

Math identity. To measure a positive disposition towards math, I administered a 

commonly used set of items to capture the degree to which math is an important part of students’ 

self-concept (Ramirez, McDonough, & Jin, 2017). This scale consists of six items that 

participants rate on a scale from 1 – 7 based on how much they agree with each statement. 

Examples of these statements include, “It is important to me that I am good at mathematics” and 

“Compared to others, I feel I understand mathematics well.” 

Need for cognition. I also assessed how much participants generally like to engage in 

cognitively effortful activities using a modified version of the Need for Cognition scale 

(Cacioppo, Petty, & Kao, 1984). Participants were presented with 10 items (e.g. “I prefer 
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complex to simple problems”, “thinking is not my idea of fun”) and were asked to rate on a scale 

of 1 to 5 how characteristic each statement was of them. Half of the items presented were 

statements reverse scored. Averages were taken from the ten items to make a composite score. 

Cognitive reflection task. Students were asked to complete three items from CRT-2, an 

updated alternative cognitive reflection task (Thomson & Oppenheimer, 2016) designed to 

measure a participant’s ability to override intuitive responses to reach correct solutions. This 

measure may help explain if students are able to reach a solution, as it requires students to 

overcome the impulse to try to combine numbers (e.g. making 2, 3 into 23) and extend their 

thinking to other mathematical properties not immediately apparent (specifically, an exponent).  

State measures. After completing the problem solving attempt, students who did not solve 

in the lab were asked to report on a variety of state measures (listed below) and proceeded to 

answer demographic questions.  

Puzzle stress and puzzle positive. Participants who did not solve in the lab were asked to 

rate how much they agreed with the following two prompts: “I thought that the math problem 

was overall really stressful and challenging,” and, “I thought that the math problem was overall 

challenging, but in a positive way” on a scale from 1 (strongly disagree) – 7 (strongly agree). 

The first measure, that I will now refer to as Puzzle Stress, aims to capture the state-level 

maladaptive stress the student may experience with the math puzzle. This is distinctive from 

trait-level differences in negative affect as it is related to stress and the student’s experience with 

math puzzle. The second measure, now referred to as Puzzle Positive, teases apart students who 

may have found the lab environment and math puzzle challenging, but found this challenge 

enjoyable.  
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Puzzle affect. Students were additionally asked to rate the extent to which the math 

puzzle made them feel frustrated, stupid/dumb, inferior, unsure, or doubtful on a scale of 1 

(strongly disagree) to 7 (strongly agree). These measures were included to capture different state 

measures of affect, and were informed from pilot data where students reported the math puzzle 

made them feel these different emotions. A composite variable was then created by averaging 

across these five items.  

Relieved lab attempt is over. Participants who did not solve in the lab were additionally 

asked to rate on a scale from 1 (not at all) to 7 (a great deal) how relieved they felt that the 

problem-solving attempt in the lab was over. This measure stands in contrast to the puzzle affect 

measure, as it captures positive feelings associated with a potentially negative experience in the 

lab, which may explain later solve rates in the wild.  

Puzzle difficulty. Students also reported how difficult they found the problem on a scale 

from 1 (very easy) to 5 (very difficult). This measure was included to ascertain the role of ability 

perceptions in subsequent problem solving in the wild.    

Figure out on own and curious to know solution. After answering the previous state 

measures, participants who did not solve in lab were asked to indicate how much they agreed, on 

a scale from 1 – 5, with the following statement: “I would rather figure out the math problem I 

was previously presented on my own instead of being told the answer.” I also collected 

information as to how curious students were to know the solution before they left the lab on a 

scale of 1 (not curious at all) to 7 (very curious). Curiosity and desire for independent problem 

solving are important measures to capture as past research has suggested that motivation to solve 

is a necessary component for incubation periods and solve experiences (e.g. Bos et al., 2008; 
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Zeigarnik, 1938). I reasoned that these measures may hold some explanatory power as to 

whether a participant solves in the wild. 

Demographic information. At the end of the lab section, participants reported 

demographic information such as age, gender, and race/ethnicity. They were also asked to report 

the average grade they received across previous math courses. This measure, referred to as 

average math grade, was quantified by assigning values to these grades on a scale from 1 (Below 

a C-) to 9 (A+). Participants additionally reported which math courses they had taken and passed 

from a list of courses (algebra, geometry, algebra 2, pre-calculus, calculus, or statistics) to 

potentially account for any differences in math background. Participants additionally completed 

the Content Knowledge for Teaching in Mathematics (CKTM), a measure of basic mathematical 

understanding of participants. The CKTM is comprised of 14 math questions that test student’s 

knowledge of fractions, patterns and functions, as well as algebra. Students solve math problems 

on the CKTM, which are scored and summed to create a percent correct, representing a students’ 

understanding of basic mathematics. This measure was included to characterize the sample in 

terms of their math knowledge beyond courses taken and passed.   

Wild measures. As a reminder, students who were unable to solve the math puzzle in the 

lab session were subsequently dismissed and told to go about their day. These participants were 

provided a link to a follow-up wild survey with instructions to take the survey as soon as possible 

if they happened to solved the puzzle. If three days had passed since their lab visit and they had 

not reported solving, I contacted each participant and asked them to take the wild follow-up survey.  

The primary function of this survey was to ask students if they solved in the wild (and confirm 

their solution). However, I also included other measures, such as whether the participant googled 

information or solved it with someone else (used to filter out cheaters), a memory test of digits 
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and rules (used to filter out students who did not remember the problem), as well as how often 

they thought about the problem outside the lab. Students who reported solving the puzzle in the 

wild were additionally asked to indicate if they were consciously thinking of the problem before 

solving, how the solution came, and were asked to describe what they were doing right before 

they solved (see below). After showing students the correct solution, they were asked why they 

did not think to use exponents (used for filtering out students who thought to use exponents, but 

believed it was against the rules because of the “^” symbol that is sometimes used). These 

measures are discussed in more detail below.  

How often thought about puzzle. All students who took the wild survey were asked to rate 

how often they thought about the puzzle after the lab session on a Likert scale from 1 = never 

thought about it, 5 = thought about it a great deal. This information was collected to ensure that 

any potential differences between conditions in wild solve rates was not due to one condition 

simply thinking about the puzzle for longer outside the lab.  

Consciously thinking about puzzle. Students who reported solving were asked to report if 

they were thinking of the puzzle right before they solved (Yes/No). This measure was included 

to investigate if students experienced a spontaneous insight when solving, which is characterized 

by the solution suddenly and unexpectedly coming to conscious awareness, without consciously 

thinking of the problem beforehand.   

How Solution Came. Related to the previous item, participants were also asked to report 

which of their solve experiences best matches from a list of three different experiences.   

• “I could feel myself slowly getting closer to the solution, until the solution came.” 

• “I tried many different things until it seemed like there were no solutions. Then it 

came to me.”   

• “The solution seemed to come out of nowhere.” 
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The first option was designed to illustrate an analytical problem-solving method that 

captures gradual progression without a sense of unexpectedness. The second statement was a 

designed to illustrate a mix of both analytical problem-solving and classic definitions of the aha! 

moment. The third statement was designed to illustrate a sudden and unexpected solve 

experience representing a classic insight moment.  

Solve Experience (open-ended description). Wild solvers were asked to report, in as 

much detail as possible, what they were doing right before they solved through an open-ended 

response question. These descriptions are exploratory in nature, and were collected to shed light 

on the variety and diversity of students’ solve experiences.  

Solve Experience (open-ended description). Students who did not report solving in the 

wild were asked why they did not think to use exponents to solve, presented through a multiple-

choice question. They chose a response from the following statements: 

• “It just never came to mind”  

• “I did think of using exponents, but I couldn't get the math to work out” 

• “I did think of using exponents, but I did not think exponents were allowed”  

• [Other, where a participant reported a description] 

 

 This question was used to filter out students who selected “I did think of using 

exponents, but I did not think exponents were allowed.” This decision was made to ensure the 

integrity of the data, as these students may have been able to solve in lab but because of the 

variety of ways one can signal an exponent (such as “3^2” or 32) they may have discarded the 

idea (contributing to false negatives in lab solve).  

 



 

 21 

Data Analysis Plan 

The first research question of study 1 was whether students assigned to incubation 

conditions were more likely to solve the math puzzle compared to students randomly assigned to 

a control condition. To test for the presence of an incubation effect, a logistic regression was first 

run predicting lab solve rate from the participant’s randomly assigned condition. If this model is 

significant, it would indicate that the condition each participant was assigned to helped explain 

variability in the lab solve rates. For the second research question – which asked whether 

negative dispositions towards math and other trait individual differences could explain solve 

rates – logistic regressions were run with the individual difference measures predicting solve rate 

in the lab. A significant model among any of these measures would suggest that the individual 

difference plays a significant role in whether a students solved the math puzzle. I additionally ran 

these analyses predicting wild solve rates as well, to see if condition and individual differences 

not only affected solve rates in lab, but also outside of the lab. Descriptive statistics for solvers 

were examined to better answer the final research question which asks about students’ 

experience of solving in the wild.    

Data exclusion rules. Participants were excluded from all analyses if 1) they reported 

seeing the puzzle before, and 2) if they reported thinking of exponents, but believed they were not 

allowed because of the carrot symbol. Participants were also excluded from wild analyses if they 

1) reporting googling the problem, or reported solving it with someone else, 2) if they failed the 

memory test (defined as not reporting the correct digits and symbols). In addition to these noted 

data exclusion rules, one participant was removed from the total study, and another removed from 

the wild analyses because both failed to follow instructions (e.g. did not report solving in lab after 

solving). 
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Results 

Math Experiences 

Part of the demographic measures included in this study concerned information about 

participant’s math backgrounds, which were included to characterize the sample. Results for the 

CKTM revealed a highly skewed distribution with an overwhelming majority of the sample 

performing very well on the measure (median score was 100%). Further, 88% of the sample 

reported having taken and passed calculus, suggesting students had the prior knowledge in 

mathematics to solve the math puzzle. To further ensure that solve rates were not simply a 

function of past experience in math, I ran logistic regressions predicting solving in lab and in the 

wild from successfully taking and passing different math courses (algebra, geometry, 

trigonometry, pre-calculus, calculus, and statistics). None of these models were significant, 

indicating that variation in past math experience could not predict solve rates in the math puzzle. 

Interestingly, student’s self-reported general GPA for their average math class predicted wild 

solve rates (p = .03), such that for every one unit increase in reported GPA (e.g. B+ to A-, or A 

to A+), the expected odds of solving increase by 56%, though this did not predict solving in the 

lab (p = .28). 

Division of the Sample and Solve Rate 

Division of the sample can be found in Figure 2. In total, 252 participants were recruited 

and took part in this study. Data from 231 students were used in analyses of the lab phase of 

study, and 166 of the participants were followed up with outside of the lab for wild analyses. Of 

the total 231 participants in the study, 22% of students solved the puzzle in the lab. Of the 166 

students who did not solve in the lab, 52% of students successfully solved the math puzzle in the 

wild.  
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Figure 2: Division of total sample across study 1. Sections that appear in gray represent 

participants who had been kicked from analyses. 

 

Effect of Incubation Break 

To test the first research question – whether an incubation manipulation improved math 

puzzle solve rates – I ran a logistic regression predicting lab solve from condition. This model 

was not significant (LD vs. Control p = .574, HD vs. Control p = .282), indicating that there was 

no effect of incubation condition on solve rates in the lab. However, when I ran a model 

predicting wild solve rates from condition, there was a significant effect. Specifically, 

participants in the control condition had higher odds of solving in the wild compared to those in 

the low-demand incubation condition (p = .04), such that the expected odds of the control group 

solving was 31% higher than for those in the LD condition. Participants in the control condition 

(64%) solved the puzzle at a higher rate than those in the HD condition (48%) but this difference 

was not significant (p =.10). Figure 3 shows the solve rates by condition for both wild and lab 

solve.  
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Figure 3: Solve rates in lab and in the wild by condition for study 1. 

One initial explanation for why control participants showed higher rates of solve in the wild 

could be that participants in the control condition were more curious to know the solution, or 

thought about the problem longer after leaving the lab. This is not the case, however, as students 

in the control condition did not differ in their level of curiosity to know the solution compared to 

students in the low-demand condition (p = .08), nor did they differ in the amount they reported 

thinking about the problem in the wild (p = .30). In terms of the hypothesis that math anxiety 

might affect incubation students disproportionally, I tested the interaction between math anxiety 

and condition, and found no significant interaction predicting lab solve or wild solve rates (p = 

.24 - .80).  

Trait Individual Differences  

For the second research question – whether trait individual difference measures predict 

solve rates – I ran a series of logistic regressions predicting lab solve from trait measures, and 

predicting wild solve rates from trait individual difference measures. Table 1 presents the 



 

 25 

descriptive statistics of these measures, and Table 2 presents the outcomes of these measures 

predicting lab and wild solve rates. In the context of lab solve, two trait individual differences 

measures helped explain the odds of solving  – math anxiety (“marginally” significant at p = 

.048) and PANAS positive (p = .02). These measures negatively predicted the odds of solving— 

meaning that the more math anxious a participant was, or the more positive emotion they 

reported on the PANAS, the less likely the odds of solving in the lab. None of the other measures 

predicted the odds of solving in the lab. In terms of solving in the wild, none of the trait 

individual difference measures were significant predictors.  

State Measures 

I next examined how state measures taken after a failed attempt at solving the puzzle in 

the lab predicted odds of solving in the wild (see Table 2). Of all state measures taken, only two 

significantly predicted the odds of solving in the wild. The first was the extent to which students 

reported being curious to know the solution to the puzzle (taken at the end of the lab session), 

such that for every 1 unit increase in curious to know the solution, there was an expected 

increase in wild solve rates by 60%. The second significant state measure was the extent to 

which participants reported feeling relieved the math puzzle was over in the lab. Unlike curious 

to know solution, feeling of relief negatively predicted wild solve rates, such that for every one 

unit increase in feelings of relief, there was a predicted decrease in solve rate by 45%. Other state 

measures that were not significant included puzzle stress, puzzle positive, puzzle affect, puzzle 

difficulty, and the extent to which participants wanted to figure out the solution on their own.  

Context for Solving in the Wild 

While only 22% of students could solve the problem in the lab, 52% of the remaining 

students solved the problem after leaving the lab. As a reminder, all students who were enrolled  
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Table 1 

Descriptive statistics of trait individual difference measures used for lab and wild solve analyses in study 1, 

and state measures used in wild solve analyses. 

 

   n mean s median min max range 

Trait Individual Differences        

  Math Anxiety 231 2.53 0.76 2.4 1 4.9 3.9 

  PANAS Positive 231 17.02 3.28 17 5 23 18 

  PANAS Negative 231 10.97 3.32 11 5 23 18 

  Math Identity  231 4.38 1.32 4.7 1 7 6 

  Need for Cognition 231 3.52 0.59 3.6 1.6 4.8 3.2 

  CRT Sum 231 1.54 0.70 2 0 3 3 

        

State Measures             

Puzzle Stress 166 4.08 1.70 4 1 7 6 

Puzzle Positive 166 4.95 1.65 5 1 7 6 

Puzzle Affect 166 4.35 1.46 4.4 1 7 6 

Relieved 166 3.05 1.82 3 1 7 6 

Difficult for You 166 4.20 0.59 4 2 5 3 

Figure Out Own 166 3.61 1.21 4 1 5 4 

Curious 166 6.48 0.91 7 2 7 5 

Note: Math Anxiety, Math Identity, Need for Cognition, scores are averaged across a series of items, whereas PANAS items are 

summed across 5 items, and CRT across 3 items.  
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Table 2 

  

Outcomes of logistic regressions predicting lab solve and wild solve rates from individual difference measures 

in study 1.  

 

 Lab Solve                      Wild Solve 

   b estimate SE Sig. b estimate SE Sig. 

Trait Individual Differences       

  Math Anxiety -0.45 0.29  p = .048 -0.20 0.20 p = .32 

  PANAS Positive -0.10 0.05  p = .02 0.01 0.05 p = .72 

  PANAS Negative -0.04 0.05  p = .36 -0.05 0.05 p = .30 

  Math Identity  0.06 0.12  p = .58 0.15 0.12 p = .20 

  Need for Cognition 0.02 0.27  p = .95  0.16 0.27 p = .55 

  CRT Sum -0.07 0.23 p = .75 0.21 0.22 p = . 34 

        

State Measures       

  Puzzle Stress -- -- -- -0.05 0.09 p = .53 

  Puzzle Positive -- -- -- 0.02 0.09 p = .80 

  Puzzle Affect -- -- -- 0.05 0.11 p = .65 

  Relieved -- -- -- -0.18 0.09 p = .04 

  Difficult for You -- -- -- -0.24 0.27 p = .38 

  Figure Out Own -- -- -- 0.22 0.13 p = .09 

  Curious -- -- -- 0.39 0.18 p = .04 

 

Note: Output in bold represent findings that were statistically significant.
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in the wild portion of the study left the lab with the link to the follow-up wild survey. If students 

solved the puzzle, they were instructed to take the survey at their earliest convenience and report 

that they had solved the puzzle. If students did not solve, they were contacted after three days to 

take the follow-up survey, where they reported they had not solved and answered relevant survey 

items. It is important to note here that none of the students were explicitly instructed to continue 

solving the problem outside the lab. They were simply told to complete the follow-up wild 

survey should they arrive at the solution. 

All students who were enrolled in the wild phase of the study reported how often they 

thought about the puzzle after leaving the lab in general, their responses were varied—11% 

reported “rarely or never”, 27% reported “occasionally”, 25% reported “a moderate amount”, 

and 36% reported “a great deal.” Students’ responses on this measure did significantly predict 

solve rates in the wild, such that for every one unit increase on this measure, the expected odds 

of solving increased by 67%. This suggests, not surprisingly, that the more often students 

thought about the puzzle the greater likelihood they were to solve it.  

While students who did not report solving were asked why they did not think to use 

exponents (used for filtering purposes), those who did solve were asked a series of questions 

about their wild experience. Surprisingly, 82% of students who solved the puzzle in the wild 

reported that they were consciously thinking about the problem right before solving, 11% 

reported they were not, and 6% could not remember. Wild solvers were then asked to choose a 

statement that best characterized how the solution came to them— one option described an 

insight moment (“The solution came out of nowhere”), one described an analytical problem-

solving experience (“I could feel myself slowly getting closer to the solution, until the solution 

came”), and a third provided a mix of the two (“I tried until it seemed like there were no 
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solutions. Then it came to me”). In total, 29% of participants selected the statement describing 

insight solving, 36% selected the statement describing analytical solving, and 35% chose the 

statement that represented a mix of the two.  

Solve Experiences (open-ended) 

As a reminder, students who solved in the wild were provided with an open-ended 

question asking what they were doing right before they solved the math puzzle. These open-

ended responses showed a diverse range of experiences and activities. Some students reported 

consciously working on the problem outside of the lab, and it was this work that led to the 

solution. For example, one student wrote “I was sitting in my tutoring session for my psychology 

class. I wrote the numbers and symbols out repeatedly until I saw how I could arrange the 

numbers without adding or taking anything away.” Another student, shared: 

“I walked out of lab and threw out that flyer [the debrief form] and like damn I can’t 

solve it there’s gotta be some trick with combining the numbers somehow. I tried 

thinking to combine digits like 23=45 but then the rules kinda reminded me I need to 

use the + So then I’m like oh man let me try exponents and I tried a bunch of 

combinations and found the answer.” 

 

Other students reported experiences of doing everyday activities when they thought of the 

solution. For example, students reported solving when they were walking to class, eating, 

driving, cleaning, and reading email. Many students listed activities that fit well with the finding 

that incubation and insight happens during periods of rest. For example, students provided 

evidence of four of the five B’s of incubation— one student reported solving in the shower 

(bath), six were sitting in bed or about to fall asleep, and another student reported they solved on 

the bus while zoning out. Nine students reported solving during lectures (which likely falls under 

“boring meetings”), but for the “bar” category, no student reported drinking alcohol.  
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In addition to students solving through conscious work and during periods of rest, some 

students shared that relevant clues in their environment had helped them to solve. Overall, eight 

students had shared that something in their environment had helped them to solve or reported 

doing an activity related to math right before they solved. For instance, one student reported, “I 

was helping my friend do her math homework and I saw a problem that just helped me click the 

solution in my head.” Another student stated,  

I was in my dorm's floor lounge playing a game on my laptop where I had to 

avoid obstacles and my floormates were working out a math problem on the 

board, where at one point they talked about squaring both sides of an equation 

and I thought of the problem. 

 

These experiences illustrate how incidental encounters with relevant stimuli can help facilitate 

insight, even when the clues in the environment are not the exact solutions and require a 

connection (in contrast to a line of studies that find hints do not help students solve unless they 

are explicitly made aware of them; see Dodds et al., 2002). One student shared a particularly 

telling example of this:,  

I was doing my homework for English 4W and the main topics for this class are 

‘Form and Power.’ Then that was when it hit me, that taking the power of a 

number doesn't require another symbol and I smacked myself in the face. 

 

Discussion 

Study 1 provides encouraging results for the use of the math puzzle in studying creative 

problem-solving by demonstrating good variability in the lab and in the wild, and by eliciting 

differences in how students arrive to the solution of this problem (insight, analytical, mix). The 

manipulation of incubation condition in the lab did not show differences in solve rate within the 

lab, rejecting the hypothesis that students in the incubation conditions would outperform students 

in the control condition in lab solve. One possible explanation is that using math puzzle instead 
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of a task like RAT requires longer periods of an incubation break to show an effect, or longer 

periods of uninterrupted time for immersion and impasse (such as in the control condition) 

provided a benefit equal to the benefit of an incubation break. Another interpretation of this 

finding is that if incubation effects do exists, they might be weaker and unreliable in the lab.  

Although all three conditions led participants to perform relatively the same within the 

lab, students in the control condition outperformed the other two conditions in terms of raw solve 

rates in the wild, and showed a statistically significantly greater solve rate in the wild compared 

to students in the low-demand condition. In his work on scientific insights and reasoning, Dunbar 

(2001a) noted the importance of capturing information from naturalistic settings, but also found 

that that scientific insights can often happen when control conditions counteract hypothesized 

results (Dunbar, 2001b; see also Buckner, Andrews-Hanna, & Schacter, 2008).  

So what might explain the benefits of the control condition? Although all three conditions 

received the same amount of total time to work on the puzzle in lab (6 minutes), providing 

students with an uninterrupted amount of time (control condition) may provide added value in 

helping students to immerse themselves deeper, exhaust more ideas, and better reach an impasse 

(Beeftink, Van Eerde, & Rutte, 2008; Segal, 2004). Indeed, some research has found that only 

when students exhaust ideas and bring themselves to impasse are they able to solve, as this 

impasse sensitizes students to hints in the environment that help them solve (Moss, Kotovsky, & 

Cagan, 2011; Seifert et al., 1994).  

Study 1 also revealed that students solved the math puzzle in the wild under a diverse 

array of conditions and activities. When students were asked to characterize their solve 

experience using a multiple-choice measure, students indicated solving the puzzle via 

descriptions that represent an insight, analytical thinking and or a combination of the two at a 
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roughly equal rate. Another interesting finding from the open-ended description measure is that 

some students reported that chance encounters with math and other hints (e.g. “Form and 

Power”) sparked an aha! moment for them. This is particularly interesting, as some lab studies of 

hints have found that hints do not improve solve rates unless participants are told that they may 

encounter hints (e.g. Dodds et al., 2002; Smith, Sifonis, & Angello, 2012).  

However one theory, termed opportunistic assimilation, suggests that when an individual 

reaches an impasse, this sensitizes them to hints in their environment, and it is only through the 

diverse environment of everyday life that they encounter chance hints that trigger insight 

moments (Seifert et al., 1994). This may explain why students in the control condition only 

showed a benefit of solving when they were in a naturalistic setting, opposed to the lab—they 

may be more likely to exhaust ideas and reach an impasse (as they are not interrupted during the 

problem-solving period to take a break), which may help them benefit more from potential hints 

in their everyday lives compared to participants in the other two conditions. 

 Lastly, it was found that trait individual differences known to relate to problem solving 

in the lab did not relate with creative problem-solving in the wild. Specifically, math anxiety and 

PANAS positive was negatively predictive of solving the math puzzle in the lab, but these 

relationships did not hold for solving the math puzzle in the wild. These measures were 

administered again in study 2 in an effort to replicate findings. 

Study 2 

The primary goal of study 2 was to replicate and expand upon the findings of study 1. 

The decision to replicate study 1 was based on a few factors. Notably, the most interesting 

finding of study 1 – a difference between control and LD condition on rates of solving the math 

puzzle in the wild – was statistically significant at p = .04. Although this falls under conventional 
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thresholds for significance (p < 𝛼), such a value has been argued to represent weaker evidence of 

a finding, requiring replication (see Simonsohn, Nelson, & Simmons, 2019). In addition, the 

main theoretical account that may explain this finding, the opportunistic assimilation hypothesis, 

would argue that control participants show better solve rates in the wild because they were more 

likely to reach an impasse compared to the other groups, sensitizing them to information in the 

environment that helps them solve. But to properly evaluate this theory, measures of impasse and 

information about participants’ wild environment are required.  

Thus, it was decided that study 2 be a replication of study 1 to ensure the primary finding 

replicates, and collect new information to shed light about a potential mechanism (impasse) that 

would explain this finding. And of course, study 2 expands upon the (mostly null) findings of 

study 1 trait individual difference measures by including new trait individual difference measures 

that capture a participants’ tendency to engage with abstract information and perceptual 

information, providing valuable information that may help explain whether participants pick up 

on cues from their environment. 

Although the two studies have almost identical procedures, study 2 differs in a few key 

ways. Notably, in study 2 participants were randomly assigned to only two of the original three 

lab conditions—control and LD. The high-demand (HD) condition was removed from the second 

study as there was no difference between control and HD in the wild in study 1, and assigning 

students to two groups increase statistical power to detect differences between the control and 

LD condition. In addition to this change, I also provided students explicit instructions to report 

on their experience in the wild in greater detail, asked them to report information on their 

environment when they solved, as well as report any potential hints or cues that may have helped 

them to solve in the wild. 
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If deeper immersion periods sensitize students to incidental hints in the wild 

environment, and this is responsible for the wild solve rates in study 1, then it would be 

important to measure how well students attend to sensory and perceptual information in their 

environment. Therefore, I extend individual differences measures to ascertain potential variation 

in pattern recognition, attendance to sensory and perceptual information, and openness to new 

experiences. These additional measures can help predict why some students may see greater 

connections between the puzzle and pertinent information in the environment.   

Research Questions and Hypotheses 

The first research question of study 2 asks about the effect of providing participants 

longer periods of time working on the math puzzle (i.e., the original control condition) relative to 

requiring a break in between (LD Condition). I predict that the findings from study 1 will 

replicate, including no difference between conditions for lab solve, but a difference in wild solve 

rates. If the primary finding from study 1 replicates, the next step will be to evaluate one account 

of why individuals in the control condition may be outperforming students in the LD condition in 

the wild. Thus, the second research question asks if reaching an impasse is responsible for an 

effect of condition on wild solve rates. Drawing on the opportunistic assimilation hypothesis, I 

predict that participants in the control condition will reported reaching an impasse more often, 

and to a greater extent than LD participants, and that this impasse can explain the relationship 

between condition and wild solve rates. However, if the finding from study 1 does not replicate, I 

will evaluate a more general research question about the role of impasse on wild solve rates.   

In terms of new trait individual difference measures, I ask whether openness to sensory 

and abstract information (openness / intellect), feelings of anxiety at having to think creatively 

(creativity anxiety), and two facets of curiosity (interest and deprivation) predict solve rates. I 
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predict that openness and intellect will be positively associated with solving in the wild, as 

openness may benefit more from sensory information and intellect benefit from increased 

tendency to reason with abstract information, which may require more time than the lab session 

allowed. I also predict that greater creativity anxiety will be associated with worse solve rates in 

the lab and wild, as anxiety is known to impede performance. Moreover, I have no a priori 

predictions regarding measures of curiosity trait measures (discussed below), so these results 

should be considered exploratory. 

My last research question remains the same from study 1: How do students arrived at 

creative insights in math, and what are their experiences like? This is an exploratory research 

question designed to evaluate whether this study’s data align with traditional laboratory data, 

which suggest that creative insights happen after deep immersion periods, commonly following a 

break or periods of rest, and often come suddenly and unexpectedly (Dijksterhuis & Meurs, 

2006; Ritter & Dijksterhuis, 2014; Smith & Blankenship, 1989). Based on the results of study 1, 

I predict about half of students who do not solve in the lab will end up solving in the wild, and 

their experiences will represent a diverse array of solve experiences. Further, to build off the 

results of study 1, I added a few new measures in study 2 to better characterize how the solution 

came to participants (see below). 

Method 

Participants and Sample Size Justification 

A power analysis was conducted using Stata’s powerlog function with an 𝛼 of .05 and a 

P1 = .64 and a P2 = .44 to represent wild solve rates in the control condition and in the LD condition 

found in study 1. For 80% power, an a priori sample size was estimated at 57 students per 

condition. As the goal for study 2 is a replication, I aimed for 85 - 90% power which was estimated 
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to require 65 - 76 participants per condition. As study 1 initially recruited 252 students and ended 

up with 76 - 78 participants per condition for wild solve analyses, I aimed to recruit 280 

participants to ensure I met the necessary sample size.  

The resulting sample began with 280 students, but 23 were removed from all analyses 

because they had either seen the puzzle before, or later reported they had thought to use 

exponents but believed it broke the rules. Thus, the total sample sized used in analysis consisted 

of 257 undergraduate students enrolled in an undergraduate psychology course and took place in 

the study for course credit. The sample was comprised of 195 females (58 males, 4 non-binary), 

with an average age of 20 years old, representing race/ethnicity of Black/African American 

(2%), Asian (43%), Indian (5%), Middle Eastern (4%), Latino (19%), White (21%), and Biracial 

or Other (7%, with an additional 4 participants preferring to not report). 

Measures 

 

Trait individual differences. In order to replicate some of the findings from study 1, I 

retained the two individual difference measures from study one that were significant in relation 

to lab solve: math anxiety and PANAS positive. Additional measures of individual and state 

differences were included to expand upon the findings of study 1. For example, measures of 

openness to experience (openness / intellect), curiosity (interest / deprivation) were included to 

explain differences in students’ ability to pick up information from their environment. Moreover, 

a new measure that assessed apprehension towards creative thinking was also included 

(creativity anxiety). Below, I provide greater detail on the trait individual difference measures. 

See Figure 4 for an illustrative example of when these measures appeared during the procedure.  

 Openness and Intellect. Openness to experience is one of the five personality traits from 

the five factor model of personality (also known as the Big Five), and is primarily made up of 



 

 37 

two constructs— openness and intellect. Openness captures a person’s tendency to engage with 

perceptual and sensory information as well as with fantasy and emotions (Kaufman et al., 2016; 

McCrae & Costa, 1997). In contrast, intellect describes a person’s natural tendency to engage 

with abstract and semantic information through reasoning (Kaufman et al., 2016). Openness and 

intellect are distinct but related constructs (DeYoung, Quilty, & Peterson, 2007; Johnson, 1994; 

Saucier, 1992) that collectively capture cognitive exploration. To measure openness and intellect, 

the Big Five Aspect Scales (BFAS) for both constructs (DeYoung et al., 2007) will be 

administered. This involves presenting ten items for each construct which participants rate on a 

scale of 1 –  5 how much they agree with each of the ten statements (e.g. “I formulate ideas 

clearly” for intellect, “I get deeply immersed in music” for openness). Four of the ten items are 

reversed scored, and then averaged to create a composite variable.  

Curiosity interest and deprivation scale. This 10-item Likert scale (Litman, 2008) 

measures two facets of epistemic curiosity (described as curiosity related to a drive to learn 

information, take on intellectual challenges, and eliminate gaps in understanding; Berlyne, 

1954). The first is I-type, henceforth referred to as curious-I, and captures a person’s curiosity to 

learn for the simple joy of learning something new. Example interest items include asking 

participants to a rate on a scale from 1 –  4 how often they generally “enjoy exploring new ideas” 

and find it “fascinating to learn new information.” Those who score high on this subscale 

represent students who engage and learn for pleasure, engage in divergent information seeking, 

and feel enjoyment in these activities. In contrast, those who score high on deprivation type, to 

which I will now refer to as curious-D, represent those who are more focused on solving a 

specific problem in an effort to eliminate a gap of knowledge or feelings of uncertainty. Example 

curious-D items ask participants to rate how often they “work like a fiend at problems that I feel 
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must be solved” and “feel frustrated if I can’t figure out the solution to a problem, so I work even 

harder to solve it.” Those who score high on curious-D are considered to be motivated by a 

desire to decrease negative emotions associated with not knowing, rather than for the joy of 

knowing (as is the case with interest). Researchers have made connections between curious-I and 

mastery-oriented learning, characterized by intrinsic motivation, and curious-D and 

performance-oriented learning, characterized by a focus on outcomes and persistence of studying 

(Elliot & McGregor, 1999). 

Creativity anxiety scale. This eight-item scale measures trait-level anxiety that is specific 

to creative thinking (Daker, Cortes, Lyons, & Green, 2019). Participants are provided a series of 

statements and are asked to rate how much anxiety they would feel for a given situation on a 

scale from 1(none at all) – 5(very much). Example items include “Having to come up with a 

creative solution to a problem” and “Focusing on novelty over precision when doing something”. 

Scores are averaged across items to create a composite measure.  

State measures. State measures that were previously listed and described in study 1 that 

were included again in study 2 are puzzle stress, puzzle positive, feelings of relief, difficulty of 

the puzzle, how much the participant wanted to figure out the puzzle on their own, as well as a 

measure of how curious the participant was to know the solution. I also added a new state 

measure (lab impasse; see below) that was design to assess the extent to which students have 

exhausted strategies and reached an impasse. See Figure 4 for an account of when these 

measures appeared.  

Lab impasse. In addition to the above measures, study 2 included two measures of 

impasse in the lab. The first comes from a question that asks students who did not solve the 

puzzle in the lab if they reached an impasse and ran out of ideas (yes / no). Students who 
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reported that they did not reach an impasse moved onto the next question, but for those who did 

report reaching one, they were additionally asked to report how great of an impasse on a scale 

from 1 (not stuck at all/ I still have lots of ideas) – 4 (very stuck/completely out of ideas). These 

two measures were included to test the hypothesis that reaching an impasse may explain the 

control condition’s solve rate in the wild, and may generally be related to solving in the wild.   

 

Figure 4. Overview of lab procedure in study 2, including when measures appeared for 

participants. 

 

Wild measures. Many of the measures taken in the wild of study 1 were present in study 

2. For instance, participants reported how often they thought about the puzzle after leaving the 

lab (1 = never thought about it, 5 = thought about it a great deal), and if they reported solving, 

whether they were consciously thinking about the problem (yes/no), how the solution came 

(analytical, insight, mix of both), and their solve experience (open-ended). New measures were 

added to study 2 (and slight modifications of measures from study 1) which described below in 

more detail.  

 Thinking episodes and total thinking time. In study 1, all wild participants reported how 

long they thought about the math puzzle. This measure was included again, but I also included an 

additional measure to capture how many times participants thought about the math puzzle 
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(“thinking episodes”) and reported their best guess as to the total time they spent thinking about 

the problem (“total thinking time”: “Please enter your best estimate of how long in total you 

thought about the math puzzle outside the lab”). These estimates were meant to capture a more 

concrete measure of time spent thinking about the problem, compared with the subjective 

measure “How often thought about it” used in study 1.  

Tried to solve in the wild. Through the open-ended descriptions of solve experiences from 

study 1, we learned that some participants reported actively trying to solve the problem in the 

wild, whereas others arrived at a solution without conscious effort, or sometimes, without even 

thinking about the problem (e.g. a spontaneous insight, or hint from the environment). To better 

quantify this in study 2, all participants who took the wild survey were asked if they tried to 

solve the math puzzle after leaving the lab. As attempts to solve may have occurred either by 

mentally reasoning about the puzzle, or writing the digits down and actively working the puzzle, 

this question was presented to participants as a multiple-choice question, in which they could 

choose from the following responses: 

• No, I didn’t think about it or try to solve it. 

• No, but I did think about it in general. 

• Yes, I tried to solve it in my head. 

• Yes, I even wrote down the digits and symbols to work on the math problem. 

• Other (please specify) 

 

Wild impasse. Participants who reported that they had tried to solve the problem outside 

the lab were additionally asked “When you were working on solving the math puzzle outside the 

lab, did you reach an impasse (i.e. felt stuck or ran out of ideas) at any point?” and responded 

with either yes or no. This measure was added to ensure that students who did not bring 

themselves to impasse in the lab, but may have outside the wild, were included in analyses that 

test the role of impasse on solve rates in the wild.   
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 How solution came (new modification and new additions). In study 1, participants were 

provided with three statements, one designed to represent an analytical-problem solving 

approach, one an insight experience, and one a mix of both and participants were asked to select 

which statement best represented their solve experience. These measures were retained in study 

2, but instead of asking participants to select the one that best characterized how the solution 

came to them, they were asked to agree/disagree with each statement as it pertained to how the 

solution came to them. This change was made to better understand the complex solve 

experiences students reported in their open-ended responses, which may encompass more than 

one of these experiences. The three statements that they were asked to agree/disagree to were: 

 

• “I could feel myself slowly getting closer to the solution, until the solution came” 

• “The solution seemed to come out of nowhere” 

• “I tried many different things until it seemed like there were no solutions. Then it 

came to me” 

 

 In addition to the these three statements, two more statements were added to study 2 to 

tease apart nuance differences in solve experience. The first one, “The solution came suddenly 

and unexpectedly,” was reported with the other measures and participants either agreed or 

disagreed that this characterized how the solution came to them. This statement aimed at 

characterizing insight, was derived from the perspective of Kounios and Beeman (2015) who 

argue that a distinguishing difference between analytical problem solving and an aha! moment is 

the sense of suddenness and unexpectedness. It may not be enough to capture this feeling as I 

originally did (“the solution seemed to come out of nowhere”), so this measure explicitly asked 

about suddenness and unexpectedness. The second new measure simply asked participants, 

“When you solved the math problem, would you say it felt like an ‘aha’ moment?” for which 
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participants either reported yes or no. This measure comes from Gable, Hopper, and Schooler 

(2019) who captured the presence of an aha! moment by asking participants to simply report if 

they had one. I reasoned initially in study 1 that solutions that come suddenly would constitute 

an aha! moment, but this measure is more direct about their subjective experience and 

identification with an aha! moment.  

Solve experiences (open-ended). Whereas in study 1 wild solvers were asked to report 

what they were doing right before solving through an open-ended response item, wild solvers in 

study 2 received more thorough instructions, and were asked to, “describe in at least four 

sentences what were you doing right before you solved the problem. Please provide as much 

detail as possible (even if it does not seem relevant).” The goal with these more thorough 

instructions and minimum required number of sentences was to encourage students to write more 

about what they were doing, and avoid terse responses (e.g. “eating”).  

Wild solve activities. Wild solvers in study 2 were additionally asked to select from a list 

of specific activities what they were doing right before solving (i.e. walking, showering/bathing, 

cleaning, listening to a lecture, etc.). These items were derived from the open-ended descriptions 

of solving from study 1, and help to better estimate the most common activities students are 

engaged with when solving.  

Environmental description and potential hints. In addition to their solve experiences, 

wild solvers were asked if there was there anything in their environment that helped them solve 

the problem (e.g. someone having a conversation about math, seeing a formula written on a 

whiteboard, etc.) through a yes/no response item. Yet, one difficulty in capturing the influence of 

environmental hints with this method is that students are not always aware of environmental cues 

that might help them solve. Therefore, students were also asked to describe the environment 



 

 43 

around them when they solved in at least four sentences. These open-ended environmental 

descriptions were then coded for evidence of a potential hint (e.g. “I was helping a friend with 

their math homework”), creating a measure of hints that encompasses both students who reported 

a hint and students who reported information in their environment that could have acted as a hint 

to create a composite measure of potential hints. 

Procedure 

 

Participants began in the lab by filling out trait individual difference measures and then 

were randomly assigned to either a LD condition or the control condition. Participants assigned 

to the control condition worked on the math puzzle uninterrupted for 6 minutes. Participants 

assigned to the LD condition worked on the math puzzle for 3 minutes, then switched to a signal 

detection task for 2.5 minutes, before returning to the math puzzle for another 3 minutes. These 

conditions are identical to the control and LD condition in study 1. After the math puzzle attempt 

ended, participants who did not solve in the lab answered state measures (e.g. impasse, how 

curious they were to know the solution, etc). Participants then reported identical demographic 

information as in study 1 (e.g. age, gender, race/ethnicity, average math GPA, math courses 

taken, etc).  

Before participants left the lab, non-solvers were provided a survey link and instructed to 

take the follow-up survey as soon as possible if they found a solution to the problem. Participants 

were then tracked up to three days after they left the lab. If a participant had not reported solving 

the problem after three days had passed, they were emailed instructions to take the follow-up 

survey (same as study 1 protocol).  

Data Analysis Plan 
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 Given that study 2 is a replication of study 1, the data analysis plan largely reflects the 

same analyses from study 1. The main research question looking at the effect of condition on lab 

solve rates (a binary outcome of solved, did not solve) and wild solve rates (also a binary 

outcome of solved, did not solve ) will be tested using binary logistic regression, just as it was 

used in study 1. Similarly, trait individual difference measures will be used to predict lab solve 

rates and wild solve rates to examine whether they can significant predict solving in the lab or 

wild. State measures will then be used to predict solving in the wild (as they are collected after 

students’ lab solve attempt), and student’s experiences in the wild will be used in a descriptive 

and exploratory fashion to shed light on what these experiences are like for students. The same 

data exclusion rules from study 1 were applied in study 2.  

To aid with clarity, I have divided the results section in two parts. The first part details 

the analyses of trait individual differences and state measures on lab and wild solve rates, with 

findings generally organized findings between those that are consistent with study 1, those 

inconsistent with study 1, and new analyses of variables not previously collected. In part 2, I 

focus on measures collected in the wild (e.g. how often thought about it) as well as the 

experience of students who solve in the wild. 

 

Results 

Part I 

Division of the sample and solve rate. Division of the sample can be found in Figure 5.  

A total of 280 students were recruited for this study, but 23 were removed from overall analyses 

as three had reported seeing the problem before, and 20 later reported that they had thought to 

use exponents, but believed it was against the rules (as it may include an additional carrot “^” 
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symbol). Data from 257 students were used in analyses of the lab phase of the study. A total of 

86 students solved in the lab— a 33% solve rate compared to a solve rate of 22% in study 1 (see 

Figure 6). Students who did not solve in the lab were enrolled in the wild phase of the study (n= 

171). Of these students, five students were removed from analyses on wild solve rates because 

they never took the wild survey (after repeated attempts to follow up), a further 16 participants 

were removed from analyses as they had reported googling the problem or solving with someone 

else, and three students were omitted as they failed the memory test. This resulted in a sample 

size of n = 147 students for wild solve analyses (control = 72 participants, LD = 75 participants). 

Across conditions, 70 students solved in the wild (48%), a comparable rate to study 1 (52%). 

Effect of incubation break. To test my first research question about the effect of condition on 

solve rate, I used binary logistic regression to predict lab solve from condition. This regression 

tests for the relationship between condition and odds of solving the math puzzle. If the 

incubation break facilitated incubation and insight within the lab, the model would be 

statistically significant with a positive b coefficient (indicating that being in the LD group rather 

than the control group is positively related to solving in the wild). Replicating the results from 

study one, the model was not significant (LD vs. Control p = .62), indicating that there was no 

effect of incubation condition on solve rates in the lab. To test for differences in solve rates in 

the wild, I ran a separate binary logistic regression predicting wild solve rates from condition. If 

the results from study 1 replicated, this model would be significant with a negative b coefficient, 

indicating worse predicted solve rates for LD students compared to control students. However, 

this was not what I found, as the model was not significant (p = .28), suggesting that there was 

no statistically significant differences between the two conditions for wild solve rates in study 2. 

Table 3 shows the percent of the condition that solved in the lab and the wild for each study.  
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Figure 5: Division of total sample across study. Sections that appear in gray represent 

participants who were removed from analyses. 

 

 

        

 

Figure 6: Solve rates in the lab and in the wild by condition for study 2. 
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Table 3: Percent of Control condition and LD condition who solved in lab and 

wild by study. 

                
 Study 1  

Study 2 
        

  Lab Solve  Wild Solve  Lab Solve  Wild Solve 
        

Sample Size 231  166  257  147 

% solve: Control 18%  64%   35%  43% 

% solve: LD 22%  44%  32%  52% 

                

 

Trait individual measure differences and lab solve rate. I also examined whether trait 

individual differences (e.g. math anxiety, PANAS, openness) could predict solve rates in the lab 

(see Table 4 for descriptive statistics, and Table 5 for logistic regression statistics). Similar to 

study one, the PANAS Negative scale, which captures a participant’s trait tendency to 

experience negative emotions, was not significantly related to solve rates in the lab. On the other 

hand, the relation between math anxiety and solve rates in the lab was “marginally” significant (p 

= .053), with a similar strength of evidence as study 1 (p = .048). Both directionalities suggest 

that greater math anxiety is generally associated with lower expected odds of solving in the lab. 

Moreover, whereas study 1 found a negative relationship between PANAS Positive, and lab 

solve, study 2 did not find this relationship.  

In terms of the new trait measures, I found that intellect was statistically significantly 

related to lab solve, such that for every one unit increase in intellect, the expected odds of 

solving in the lab increased by 63%. Alternatively, intellect’s counterpart – openness – was 

unrelated to lab solve. The second new measure, curious-I, was also positively related to lab 

solve, such that for every one unit increase on curious-I, the expected odds of solving increased 
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by 61%. Alternatively, curious-D was not related to solve rate in the lab . Creativity anxiety also 

did not relate to solve rate in the lab.   

 Trait individual differences related to wild solve rates. In this section I continue to 

examine trait individual difference measures, but examine whether these measures relate to solve 

rate in the wild. In similar fashion to study 1, none of the trait individual differences predicted 

wild solve rates, except one. In study 1 math anxiety did not predict solve rates in the wild, 

however in study 2, this relationship was marginally significant (p = .048). None of the new trait 

measures in study 2 predicted solve rate in the wild (i.e., intellect, openness, creativity anxiety, 

curious-I, curious-D). Collectively, these results mirror those in study 1, which generally found 

trait measures were unable to predict solve rate in the wild.  

State measures related to wild solve rates. In this section I examine the relationship between 

the state-level measures and solve rates in the wild. As a reminder, only participants who did not 

solve the puzzle in the lab were asked to complete these measures (and thus, state measures were 

not used to predict lab solve). Consistent with findings in study 1, I found that there was no 

relationship between solve rate in the wild and puzzle stress, puzzle positive, puzzle difficulty, 

and the extent to which participants wanted to figure out the solution on their own. Study 1 found 

that feelings of relief that the problem-solving attempt had ended in lab was negatively 

associated with wild solve rates, and level of curiosity to know the solution was positively related 

to wild solve rates. In study 2, neither of these measures predicted solve rates in the wild. 
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Table 4 

  

Descriptive statistics of trait individual difference measures used for lab and wild solve analyses in study 2, 

 and state measures used in wild solve analyses. 

 

   n mean s median min max range 

Trait Individual Differences        

  Math Anxiety 257 2.57 0.72 2.4 1.1 4.8 3.7 

  PANAS Positive 257 16.74 3.05 17 8 24 16 

  PANAS Negative 257 11.44 3.15 11 5 21 16 

  Openness  257 3.80 0.63 3.8 2 5 3 

  Intellect 257 3.29 0.65 3.3 1.5 4.8 3.3 

  Creativity Anxiety 257 2.70 0.92 2.6 1 5 4 

  Curious (Interest) 257 2.69 0.63 2.5 1.3 4 2.8 

  Curious (Deprivation) 257 2.33 0.66 2.3 1 4 3 

        

State Measures             

Puzzle Stress 147 4.27 1.50 4 1 7 6 

Puzzle Positive 147 5.10 1.56 5 1 7 6 

Relieved 147 3.31 1.82 3 1 7 6 

Puzzle Difficulty 147 4.14 0.54 4 3 5 2 

Figure out on Own 146 3.56 1.29 4 1 5 4 

Curiosity 147 6.41 1.06 7 1 7 6 

Lab Impasse 147 0.78 0.41 1 0 1 1 

Lab Impasse (Continuous) 147 3.09 0.69 3 1 4 3 

 

Note: Math Anxiety, openness, intellect, creativity anxiety, curious (Interest) and curious (Deprivation) scores  

are averaged across a series of items, whereas PANAS items are summed across 5 items.  
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Table 5 

  

Outcomes of logistic regressions predicting lab solve and wild solve from individual difference measures  

in study 2 

 

 Lab Solve Wild Solve 

   b estimate SE Sig. b estimate SE Sig. 

Trait Individual Differences       

  Math Anxiety -0.37 0.19 p = .05 -0.45 0.23 p = .05 

  PANAS Positive 0.02 0.04 p = .62 -0.02 0.05 p = .76 

  PANAS Negative -0.05 0.04 p = .26 -0.01 0.05 p = .92 

  Openness  0.08 0.21 p = .69 -0.11 0.27 p = .67 

  Intellect 0.60 0.21 p < .01 -0.07 0.26 p = .79 

  Creativity Anxiety -0.07 0.15 p = .64 -0.05 0.18 p = .76 

  Curious (Interest) 0.43 0.21 p = .04 -0.13 0.27 p = .65 

  Curious (Deprivation) 0.32 0.20 p = .11 -0.00 0.27 p = .99 

       

State Measures             
  Puzzle Stress -- -- -- -0.91 0.51 p = .09 

  Puzzle Positive -- -- -- -0.03 0.10 p = .77 

  Relieved -- -- -- 0.05 0.09 p = .61 

  Puzzle Difficulty -- -- -- -0.39 0.31 p = .22 

  Figure Out on Own -- -- -- -0.06 0.13 p = .63 

  Curious -- -- -- -0.12 0.16 p = .43 

  Lab Impasse -- -- -- 0.19 0.40 p = .62 

  Lab Impasse (Continuous) -- -- -- 0.10 0.24 p = .67 

Note: Output that appears in bold represent statistically significant findings. 
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Lab impasse. A new and unique research question addressed by study 2 was whether 

reaching an impasse in the lab boosted solve rates in the wild. As a reminder, students who did 

not solve the problem in the lab were asked whether or not they had reached an impasse, and 

rated how great of an impasse they had reached. I found that neither the binary measure of lab 

impasse (yes/no), nor the continuous measure, was predictive of solve rate in the wild (p = .62,   

p = .66 respectively). Surprisingly, I found that condition was significantly related to reaching an 

impasse in lab, but in the opposite direction predicted. Specifically, students assigned to the 

control condition were less likely to report an impasse in lab (p < .001), and LD students 

reported reaching a greater impasse (p <.001) compared to control students. The interaction 

between lab impasse and condition on solve rate in the wild was not significant (p = .40). Results 

related to bringing oneself to impasse in the wild are discussed in a subsequent section.  

Math background on lab solve. For study 2, students overall had high levels of math 

background with 91% of the overall sample having taken and passed calculus. This is consistent 

with study 1 (where 88% had taken and passed calculus). Across both studies, specific math 

courses taken solve rate in the lab or wild (e.g. taking calculus did not relate to solving the math 

puzzle). The relationship between self-reported average math grade and solve rate in the lab was 

not significant in study 1 but was significant in study 2 (p < .005). For every one unit increase on 

reported math GPA (one unit being B to B+, B+ to A-, A- to A, etc.) the expected odds of 

solving increased by 59%. Furthermore, the relationship between self-reported GPA and solve 

rate in the wild was not significant in study 1 but was significant in study 2 (p = .02). For every 

one unit increase in self-reported GPA, the expected odds of solving outside the lab increased by 

58%. 
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Part II 

The first set of results examined trait state differences captured in the lab, and their 

relationship to solve rate in the lab and in the wild. In this section, I shift focus away from 

measures captured in lab and toward measures taken in the wild.   

How often thought about problem. Replicating the findings from study 1, students who 

reported thinking about the problem to a greater degree in general (“How often did you think 

about the math problem since you left the lab session?”) were more likely to solve in the wild (p 

<.001). In contrast, new measures of their total estimated thinking time about the problem and 

the number of reported independent thinking episodes were not related to solve rate in the wild 

(p= .82 and p =.14 respectively). These results suggest that students’ general perceptions of how 

often they thought about the math puzzle, but not their quantitative estimates of time thinking 

about the puzzle, predicts solve rate in the wild.  

Tried to solve in the wild. Participants were also asked explicitly if they tried to solve 

the problem after leaving the lab, as this may differ from reports of generally thinking about the 

puzzle. Across solvers and non-solvers in the wild, 74% of participants reported trying to solve 

the problem in the wild. Of the students who reported trying to solve in the wild, 37% reported 

that they even wrote down the symbols and digits of the puzzle in an attempt to solve. Students 

who reported trying to solve outside the lab showed greater solve rates compared to those who 

did not try to solve outside the lab (p <.001), such that there is an expected increase of wild solve 

rate of 83% for students who reported either trying to solve the problem in their head or on paper 

compared to those who did not report trying to solve it at all.  

Wild impasse. Another measure included for analyses was whether students brought 

themselves to impasse after leaving the lab (regardless if they already reached an impasse). 
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Across all participants enrolled in the wild portion of the study, 70% of participants reported 

bringing themselves to impasse in the wild, but this was not predictive of whether students 

solved in the wild (p = .17). Interestingly, while there was a difference between the two 

conditions for lab impasse, there was no difference between the two conditions when it came to 

bringing oneself to impasse outside the lab (p = .13) 

Context for solving in the wild.  

Consciously thinking of the puzzle. Wild solvers were asked whether they were 

consciously thinking of the puzzle before solving. In study 2, 89% of wild solvers reported that 

they were thinking of the puzzle right before solving. This is comparable to study 1, which found 

that 82% of wild solvers reported consciously thinking of the puzzle before solving.  

How solution came. In study 1, participants were presented with three statements 

designed to describe an insight moment experience, an analytical problem-solving experience, 

and a mix of both, and participants selected which one best described their experience. For study 

2, these measures were included, but instead of asking students to choose the best description 

that matched their experience, they were allowed to check all that applied. Over half (56%) of 

students agreed that “I could feel myself slowly getting closer to the solution, until the solution 

came” (analytical problem-solving). Within the same sample, 69% reported that “The solution 

seemed to come out of nowhere” (insight), and 51% agreed that “I tried many different things 

until it seemed like there were no solutions. Then it came to me” (mix). This conceptually 

replicates the findings in study 1, where there was good representation among all three categories 

(which were roughly chosen equally among participants). Results further revealed that 33% of 

students freely chose only one of these options, while 46% selected two and 17% selected all 

three options. This suggests that some students felt a mix of these experiences, or phases of these 
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experiences leading up to their solve experience or were simply unable to adequately describe 

their experience.  

To better capture whether students subjectively experienced an aha moment, I asked 

them to agree or disagree that their solve experience felt like an aha! moment. The majority 

(89%) agreed that their solve moment felt like an aha! moment. However, when asked if “the 

solution came suddenly and unexpectedly,” only 71% agreed, suggesting some students 

experienced an aha! moment without the sense of suddenness and unexpectedness.  

Wild solve activities. In addition to reporting information about what best characterized 

their solution experience, wild solvers in study 2 were asked to check all activities they were 

engaged in before solving from a list generated from the open-ended responses in study 1. 

Previous research has found themes of the five b’s of insight moments— bed, bath, buses, boring 

meetings, and bars. Overall, these insight activities tend to capture moments where one is at rest 

and not cognitively engaged with any particular task. Table 6 contains the full list and percent of 

participants who reported each activity. 

Most notably, walking was the top activity for solving (46%), which may be explained by 

instances of students solving when they are walking away from the lab (see solve experiences 

section). The second and third most popular activity was waiting for something (30%) and taking 

a break or resting (24%). These accounts fit well with the findings of past research that aha! 

moments happening during brief moments of rest or breaks from engagements. 
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Table 6: Percent of all wild solvers who was doing each of the following activities before solving 

in study 2. 

Activity 
% of Wild 

Solvers 
Activity 

% of Wild 

Solvers 

Walking 46% 
Actively engaged with something 

(besides math problem) 
10% 

Waiting for something 30% Drinking 9% 

Taking a break / resting 24% Listening to a lecture / sitting in class 6% 

Talking to others 19% 
Sitting on the bus / in the passenger 

seat of a car 
4% 

Sitting / Lying in bed 17% Driving 1% 

Eating 13% 
Working on the problem with 

another person 
1% 

Doing homework / studying 11% Showering 0% 

Listening to a podcast / 

music 
11% Watching TV 0% 

Checking email / social 

media 
10% Smoking 0% 

 

Solve experiences (open-ended). Similar to study 1, wild solvers in study 2 reported a 

diverse array of experiences solving, with some consistent themes of how students arrived at the 

solution. For example, study 2 found that many students reported working on the problem 

outside of the lab. One student said: 

I was walking around for about 10 minutes until I sat down and started thinking 

about different methods to solve the problem and realized that I could do "to the 

power of" and took out different pieces of paper. I started focusing on 

combinations of to the power of and forgot about the addition symbol. As soon 

as I remembered about that symbol, I realized that 3 to the power of 2 = 4+5. 

 

Other students echoed this conscious work theme by stating that they mentally thought of 

different ways to rearrange the numbers. A few students reported thinking about different kinds 

of math, which led them to think of PEMDAS (parentheses, exponents, multiplication, division, 

addition, and subtraction) which led them to think of exponents. Other students reached the 

solution by simply trying to mentally rearrange numbers. For instance, one participant said  
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I was in the back of a car with friends who picked me up from campus after I 

participated in the study. I had continued thinking about the problem as I left the 

study and got into the car. I was mentally trying to rearrange the digits and 

symbols. I realized that exponents do not require additional symbols. 

 

 These examples illustrate how some students arrived at the solution by mentally 

grappling with the problem, in line with an analytical-problem solving approach. Additionally, 

other students reported having experiences more akin to spontaneous insights, where the solution 

felt like it came to them unexpectedly, without conscious effort. For example, one participant 

reported that their morning routine included dancing before the start class, which is when the 

insight moment came to them. The participant explained, “While I was dancing, I thought of the 

math problem and just brushed it off for a bit. 10 minutes later, the solution just came to me.” 

Another student reported a more traditional insight moment (e.g. not necessarily having the 

solution come without previous conscious thought), reporting 

“I was walking around outside back to my dorm room from dinner. I was think[ing] about 

my day. I thought about how I did not solve the problem and then it came to me in a couple 

of minutes. It just came to me.” 

 

Study 2 also found evidence for some of the five B’s” of insight— bed, bathroom, bus, 

bars, and boring meetings (though evidence for the few students who reported drinking indicates 

that they were most likely drinking coffee). Although no participant reported solving in the 

bathtub/ shower, some participants reported solving in bed either before sleep or after 

awakening. For example, one participant recalled what they had done right before they solved, 

stating: 

“I was preparing for bed. I'd already gone through my night routine (meds, brushing 

teeth, shower, skincare). I climbed into bed to listen to My Brother, My Brother, 

and Me, the comedy podcast that I like to listen to in free time while walking to and 

from classes and before going to bed. I was drifting off to sleep while thinking 

about the problem.”  
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Another student reported “I had just woken up and remembered the problem. I decided to 

look at it one more time. All of a sudden I realized the solution to the problem. I was still very 

sleepy.”  

When it came to solving on the bus, or in cars in general, several participants reported 

solving during this time. One of the most notable accounts comes from a participant who 

reported being stuck in traffic for an hour while trying to drive to visit their parents for the 

weekend. This participant explained that they had become bored, and began to think about the 

problem: “I visualized "23" in my head and thought about how you could use *any* 

mathematical method to solve it. Then, it hit me—I could use exponents.” Similarly, another 

participant reported that they had an hour-long bus ride to and from campus, and after 

daydreaming for a little while, they grabbed a notebook and started working on the math puzzle, 

finding the solution afterwards. 

The theme of “boring meetings” was also common among wild solvers. For instance, one 

participant wrote:  

I was in class taking notes and listening to the professor talk. Some students were 

saying their opinions. Then we watched a video. At some point I got bored and I 

was thinking about the problem, then I started to try solving it. I started using all 

the numbers and combining them on a piece of paper until I thought I had an 

answer. 

 

Another participant, in a moment of irony, reported solving during another campus experiment 

when they became bored. They stated, “while I was watching the video doing the experiment, I 

thought about what other types of mathematical rules don't need a sign, and I suddenly came up 

with the rule of power.”  
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Environmental description and hints. In addition to finding evidence of some of the five 

b’s, participants in study 2 also reported hints in their environment had helped them to solve (see 

Figure 7 for an image). For instance, one participant reported: 

I went outside and sat [on] the benches that is intersected between Franz Hall and 

Psychology Building. I listened to music and stared at the UCLA tour group 

where my attention was caught when the tour guide pointed at the Kinsey 

Pavilion. I looked up and realized the equation written on the mural. Then I 

configured combinations of symbols and numbers to solve the equation. 

 

   

  Figure 7. The Kinsey Pavilion Mural with exponent formula 

 

Another participant had reported doing a homework assignment that had an equation with an 

exponent, which helped them make the connection and solve. Other participants reported hints 

that were less direct. For example, one participant said:  

“I was watching Pewdiepie play a 12 hour minecraft stream. I went to heat up 

some ramen and as I was eating, my boyfriend called. I told him about the study… 

and I started staring at this corner on my desk. Then, I thought about the 

Pythagorean theorem and wrote down the 4 digits and 2 symbols to solve it.” 

 

In this case, the participant had seen the right angle of the desk corner, which had triggered the 

idea of Pythagorean’s theorem, which uses exponents (𝑎2 + 𝑏2 = 𝑐2). The environmental hint of 
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a desk corner is much weaker than seeing an exponent in the wild, but it still helped this student 

reach an insight moment. These qualitative accounts suggest that students do not necessarily 

need to see the solution to solve (often used in previous research), but can make remote 

connections given the right hint.  

 In addition to describing their solve experiences, students who solved in the wild were 

also asked to describe their environment and report if there was something in their environment 

that helped them solve. This was included as another measure to test the opportunistic 

assimilation hypothesis, which suggests that diverse environments are helpful for problem 

solving, as they provide useful environmental cues for individuals who have reached an impasse 

on a problem but are unable to solve (and thus, are more sensitized to information that could help 

them solve). Out of the 70 students who solved in the wild, only 15 reported that there was 

something in their environment that helped them solve. Two examples have already been 

provided above. Another example comes from a participant who said:  

My roommate next to me was doing his math homework on a late Sunday night, 

and I glanced at it a couple times out of curiosity. I can’t say that this was the 

direct cause, but seeing exponents written down probably jogged my memory that 

they even existed. 

 

To test one of the tenants of the opportunistic assimilation hypothesis – that students need 

to reach impasse before picking up on hints in the environment – I ran a binary logistic 

regression predicting whether a participant reported a hint in the wild from impasse. The 

resulting model was not significant, indicating that students did not need to reach impasse to pick 

up on hints. 

Open-ended responses about the environment were then reviewed for any evidence of 

math-related stimuli in the environment, and were coded as to whether it may have possibly 
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helped the student solve the problem. Only two participants who did not self-report a hint had 

listed information in their environment that could have been an environmental cue, resulting in 

17 participants with a potential hint in the environment that aided them. This suggests than less 

than one out of four participants who solved in the wild may have benefitted from a hint in their 

environment.  

Study 2 Discussion 

The purpose of study 2 was to investigate whether the results of study 1 were replicable, 

and evaluate the predictive power of new trait individual difference measures that may better 

explain solve rates in the wild. Study 2 also included new measures of impasse and hints in the 

environment in order to evaluate aspects of the opportunistic assimilation hypothesis. With a 

close to identical procedure as study 1, the results of study 2 confirm some findings, while 

casting doubt on other important findings of study 1. 

One of the most notable takeaways from study 2 was that I was unable to replicate the 

original finding that students who are not interrupted during their problem solving attempt in the 

lab (control condition) show higher solve rates in the wild compared to those whose thinking is 

broken up with an incubation break (LD condition). Results revealed that the condition students 

were assigned to did not explain solve rates in the lab or in the wild. One explanation for the 

discrepancy between studies for wild solve rates is that the results of study 1 were a type 1 error 

(false positive), or that the results of study 2 were a type 2 error (false negative). Without further 

follow-up, it is difficult to ascertain which of these possibilities is true, but it is worth 

remembering the real-life context in which this aspect of the study took place. Replicating 

research even in the strictest lab settings has proven to be a difficult task (e.g. Altmejd et al., 
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2019; Open Science Collaboration, 2015). Replication may be even more difficult for studies 

that take place outside the lab in the more chaotic context of everyday life. 

Relatedly, study 2 found that both state and trait measures largely did not predict solve 

rates in the wild. The only significant predictor identified in study 2 was math anxiety, and the 

evidence was relatively weak (p = .048). As this is comparable to the strength of evidence of 

study 1 (p = .052), the combined results of the two studies suggest that math anxiety might play a 

small, but perhaps a significant role as to whether or not students solve in the wild. Further study 

is needed to explain why math anxiety seems to be teetering on the edge of significance. One 

possibility is that the math puzzle may not have been aversively stressful enough to trigger 

students’ math anxiety more uniformly. While some math anxious students may show an acute 

negative reaction to even benign situations that require math (i.e., calculating a tip, see math 

symbols) others may not feel much anxiety towards situations like calculating a tip or solving the 

math puzzle. In fact, the majority of students in the sample felt quite positive about the math 

puzzle as they indicated that the puzzle was a positive challenge and showed a willingness to 

continue thinking about the puzzle, rather than the traditional avoidance response that has 

traditionally been found to characterize math anxious students.  

Trait individual difference measures showed more promise at predicting solve rate within 

the lab rather than outside of the lab. Of the new trait individual measures included in study 2 – 

openness, intellect, curious-I, and curious-D, creativity anxiety – two were significantly related 

to solving in the lab. The first was intellect, a personality trait that measures a person’s natural 

tendency to engage with abstract and semantic information through reasoning (Kaufman et al., 

2016). It is not surprising that students higher in intellect would be show better odds at solving in 

the lab, as past research has been linked intellect to academic achievement, GPA, critical 
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thinking, and effort regulation (see Bidjerano & Dai, 2007). In fact, the effect of intellect on lab 

solve was still significant, even when controlling for students’ self-reported math GPA. In 

addition, students who reported greater scores on curious-I were more likely to solve in lab. This 

measure captures a person’s curiosity to learn for the simple joy of learning something new. 

Research on curious-I has found that it is associated with a focus on mastery and learning, rather 

than performance (Litman, 2008), and is positively associated with the acceptance of uncertainty 

(Litman, 2010). Thus, the current finding aligns well with past research on curious-I, as the math 

puzzle is an ill-defined problem that students may have had an easier time solving if they 

enjoyed the challenge of solving something new and were unbothered by any ambiguity related 

to the problem.    

Study 2 collected measures of impasse and information about the environment in order to 

evaluate whether students ability to reach an impasse might be driving the increased wild solve 

rates of students in the control condition. However, I did not find this to be the case. Reaching an 

impasse in the lab or the wild did not predict wild solve rates. There were differences between 

the two conditions in terms of lab impasse, such that students randomly assigned to the LD 

condition were more likely to report reaching an impasse while in the lab (the opposite direction 

predicted). Yet, there were no differences in impasse rates recorded in the wild between the two 

conditions. It is difficult to ascertain why students in the LD condition may be reaching a higher 

rate of impasse in the lab (or report one). Perhaps giving students a break from solving the 

problem provides students with the mental space to reflect on their lack of progress and lead to 

greater sense of impasse. If this is the case, then future research should consider using more 

objective measures of reaching an impasse that provide visible and measurable evidence of 

progress (i.e., pauses in writing, pauses in a think-out-loud paradigms).  
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Student descriptions of the context and method by which they solved the puzzle in their 

everyday lives revealed some interesting findings. For instance, some participants reported 

examples of environmental hints triggering insight moments. Yet, this was not the most 

predominant experience as only 17/70 students reported a hint (or provided information that 

signaled a hint was present at the time of solve). While not all students may have benefitted from 

hints, the opportunistic assimilation hypothesis may help to explain at least some students’ solve 

experiences. In addition, students’ description of the context for solving provided additional 

evidence for the observation that insights and solve moments occur during benign daily moments 

such as boring meetings, bus and car rides, and before and after sleep. No participants reported 

solving in the shower, which has been popularly referenced experience (see Kaufman & 

Gregoire, 2016; Ovington, Saliba, Moran, Goldring, & MacDonald, 2018) or while at a bar or 

when drinking alcohol (see Jarosz, Colflesh, & Wiley, 2012). These results reveal that problem 

solving happens quite regularly in the diverse context of informal settings, and is an area that 

would benefit from additional future research.   

General Discussion 

Math instruction is viewed by many students as a rigid subject in which success depends 

on conventional thinking and rote memorization (Rodriguez, 2019). However, mathematics 

draws heavily on creativity, insight, and long periods of thoughtful deliberation (Mann, 2006). 

Expert mathematicians who work at the forefront of mathematics can struggle with a problem for 

months or even years, later reporting sudden and seemingly unexplained insight experiences 

(Mackenzie, 2006). Students also report these moments in math, reporting aha! moments that 

reflect sudden solutions, or an understanding concepts (Liljedahl, 2005). 
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Beyond anecdotal evidence that creative insights occur in math classrooms, much of what 

we know about these moments is informed by research conducted in controlled laboratory 

settings that use abstract verbal tasks. Traditional laboratory experiments find that students can 

solve insight problems in a matter of minutes, but without further follow-up, our understanding is 

limited to those who can solve such problems in short periods of time, artificially approximating 

the creative experiences in the outside world. More naturalistic research methods suggest that 

authentic aha! moments are often the end result of complex cognitive processes that occur over 

the span of days or even weeks of struggle (Gable, Hopper, & Schooler, 2019). Because creative 

problem-solving can take naturally longer periods of time, what we learn from hour-long lab 

experiments we may not be able to generalize to the experiences that happen in everyday life.  

In the current dissertation, I sought to paint a more holistic picture of the creative 

problem-solving process by expanding previous research through two studies. I shifted away 

from abstract lab tasks toward a mathematics puzzle task and built upon prior lab work by 

following students outside of the lab to capture information about their solve experiences in their 

everyday lives. In short, I attempted to diversify the lab research on creativity and insight 

moments by testing if previous findings could hold when students were faced with a creative 

math puzzle, and extend this body of work by providing rich information about how students 

come to experience aha! moments outside the lab.    

Across both studies, I found that students randomly assigned to an incubation break did 

not show improved solve rates compared to students who were not given an incubation break in 

the lab. This finding contrasts previous studies that find that providing students a brief break 

from a problem partway through their solve attempt can facilitate insight within a controlled 

laboratory setting (see Sio & Ormerod, 2009). Instead, the results of study 1 revealed that 
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students who are not provided this break during their problem solving attempt (control condition) 

showed a higher solve rate in the wild, relative to both experimental conditions. As seemingly 

anomalous results from control conditions have led to important discoveries and findings 

(Dunbar, 2001b; see also Buckner, Andrews-Hanna, & Schacter, 2008), I attempted to replicate 

this effect in study 2, but was unsuccessful. It is difficult to know whether the results of study 1 

are the result of a type 1 error, or perhaps capture some real effect of an incubation condition vs. 

control condition on solving in the wild that study 2 was unable to capture. However, as the 

replication was unsuccessful, this finding is inconclusive and warrants further research.   

Lab vs. Wild 

Averaging across both studies, I found that 28% of students could solve the math puzzle 

in the lab. This is a promising sign that the math puzzle can be used as a suitable measure for 

studying math-related creativity as it produces good variability and requires aspects of creative 

thinking to solve (e.g., overcoming fixations, inhibit interference, and make remote connections 

to solve). In addition, it led students to report aha! moments when solving. Importantly, if the 

experiment had ended after the lab visit, it would seem that only about one in four students at a 

world-renown academic institution could reason creatively enough to solve a math problem that 

largely draws upon basic-level math. By following students in the wild, this inference changes. 

Whereas a lab-only inference would conclude than only 28% of participants could successfully 

solve the math puzzle, across both studies, I find that when we follow students in to the wild, 

another 32% of all students go on to solve, creating an overall solve rate of 60%.   

The disconnect between lab experiments and everyday life in the wild is not a new 

revelation. Many researchers struggle to replicate classic lab findings in real-world contexts. For 

example, Fries, DeCaro, and Ramirez (2019) studied whether providing students with interesting 
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but irrelevant “seductive details” during instruction helps with the learning of core material. In 

previous laboratory research, the use of seductive details has been found to distract attention 

away from core material and harm learning (see Sundararajan & Adesope, 2020). A similar 

negative impact of using seductive details was also found by Fries et al. (2019) when they 

attempted to replicate the finding in a low-stakes environment. However, when they attempted to 

approximate a more ecological setting using a high-stakes environment that mirrored the 

environmental pressures often found in classrooms, they found a very different pattern of results 

– the inclusion of seductive details largely helped with learning.  

In a similar fashion, Hulleman and Cordray (2009) found that while an intervention to 

improve student motivation was successful in the lab (hedge’s g = .45), there was no effect when 

this intervention was applied within the classroom (hedge’s g = .05). While Hulleman and 

Cordray (2009) suggest that implementation and the diverse environment of the classroom may 

wash out effects from lab to the field, other researchers have argued that students might process 

information differently inside and outside the lab altogether. Dunbar (2001b), for instance, found 

that when doing analogies, students in the lab tend to focus on superficial details, but when they 

solve them outside the lab, they tend to focus more on underlying structure between them. 

Differences between the lab and the wild in the current dissertation (as well as past studies) may 

be due to differences in processing, differences in the environment, or even due to the fact that 

participants often have more time to think outside the lab. The larger picture is that the 

laboratory context is a critical and important step for investigating psychological phenomenon. 

Nevertheless, psychologists interested in understanding psychological processes related to 

education should also extend their work to the classroom or the wild as well, given the disparate 

results that can arise.    
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Trait and State Measures 

A consistent pattern of results across the two studies was that trait individual difference 

measures could not predict whether a student would solve outside the lab. For example, study 1 

found that only math anxiety and PANAS positive traits predicted solve rate within the lab, but 

neither could predict solve rate in the wild. In turn, study 2 found that measures of intellect and 

curious-I could predict solve rates in the lab, but similarly, failed to predict whether students 

would go on to solve in the wild.  

As none of these measures predicted solve rate in the wild, it is likely that the wild 

environment in combination with the math puzzle task might be too varied for trait measures to 

explain. For example, reports from students who solved in the wild revealed that insight could 

potentially derive from different mechanisms, such as whether a student decides to work hard to 

solve the problem after leaving the lab, or if they happen to be aware enough of their 

environment to pick up on hints, or if they are processing the problem outside conscious 

awareness. Because of the various paths and processes that can lead to solving in the wild, 

identifying a trait or state measure that explains all potential mechanisms that lead to solving is 

very difficult.   

A second point to consider is that many traditional individual difference measures are 

developed specifically for laboratory research, and are validated in the lab. As lab-based 

experiments fundamentally control variation (Falk & Heckman, 2009), trait measures may be 

able to explain more variation in the lab because there is simply less variation that needs 

explaining. However, the drawback to laboratory procedures is that such control over variation 

reduces the ecological validity when using these measures more broadly. While a number of 

psychological measures exist that were developed for the lab and predict field data as well (e.g., 
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test anxiety, expectancy-value costs), future field research could benefit from utilizing 

psychological measures that were specifically validated using field data or informed by focus 

groups consisting of the populations of interest (Yeager et al., 2016).   

Wild Solve Experiences 

As previously mentioned, data collected from students who solved in the wild showed 

that students have a diverse array of solve experiences. Some students reported experiencing a 

spontaneous insight, where the solution suddenly came to them without consciously thinking 

about the problem beforehand. Others reported struggling with the problems outside of the lab, 

and solving either through conscious effort, or from hints in their environment (e.g. seeing an 

exponent sign). Some of the literature still views insight moments as synonymous with the 

sudden realization of a solution (Chein & Weisberg, 2014) or assumes that participants’ aha! 

moments reflect specifically insight moment and not analytical problem-solving (e.g. Jung-

Beeman et al., 2004; Kounios & Beeman, 2009). This dissertation shows that this assumption 

might not be entirely accurate, as 89% of students in study 2 reported having an aha! moment, 

but many of these students reported solving through an analytical problem approach (45% of 

those who reported an aha! moment), where they worked on the puzzle outside the lab. This 

corroborates past work that there is overlap between characteristics of insight experiences and 

analytical problem-solving experiences, suggesting there is more overlap between the two than 

previously thought (see Chein, Weisberg, Streeter, & Kwok, 2010). My findings reveal that, 

given an interesting challenge to overcome, students will take conscious action to solve the 

problem outside of the laboratory even when unprompted. This finding is especially interesting 

in the context of everyday life, as it suggests that sometimes students do not wait for insight to 

strike – but rather try to bring themselves to a solution through conscious work. 
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My findings align better with work that proposes that aha! moments can happen both 

when solutions suddenly come to mind, but also when someone discovers a new direction of 

thinking about the problem (Csikszentmihalyi & Sawyer, 2014; Fleck & Weisberg, 2013). For 

example, some students reported thinking of PEMDAS operations, which led them to think of 

exponents. Their aha! moment may have been to think outside of addition, rather than to 

suddenly come up with the idea of 32. This aligns with more recent work done in lab 

experiments using RAT items that questions the assumption that solutions always “pop” into 

students’ head as an insight moment. Rather, insights could be the result of a series of different 

strategies that eventually lead to the correct solution (Davelaar, 2015). Collectively, this 

dissertation contributes evidence to the accumulating idea that insight moments can reflect an 

array of different experiences, and there is not a “one-insight-fits-all” characterization. 

Opportunistic Assimilation 

In study 1, participants assigned to the control condition showed stronger solve rates in 

the wild compared to those assigned to incubation conditions. The opportunistic assimilation 

hypothesis may explain this finding, as it posits that insight moments arise when individuals 

exhaust ideas to solve a problem and reach an impasse, which then sensitizes them to helpful hint 

in their environment that they later encounter (Seifert, et al., 1994). It could have been that 

control participants were more likely to reach impasse because they were not interrupted with an 

incubation break halfway through their lab solve attempt, and that this in turn, sensitized them to 

hints in the environment that helped them solve. We saw that environmental hints helped some 

participants solve the math puzzle in both studies. For example, in study 1, a participant reported 

attending a lecture about “Form and Power” which sparked an aha! moment for them that taking 

the power of a number was the solution to the problem.  
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Much of the literature that focuses on the role of hints on insight moments has found that 

they generally do not help. For example, Smith et al., (2012) provided students with hints to 

RAT Items during incubation breaks, and found that solve rates were not significantly different 

between the items that students did and did not receive hints for. This null finding is difficult to 

interpret though, as students were given multiple problems to solve in a single session, which 

may make sensitization to a hint difficult (as students have a limitation on the number of “open 

goals” they can process; Moss et al., 2007). In addition, students were only allowed 10 seconds 

to read each RAT item and attempt to solve. Though this has been commonly accepted as a 

standard timing for a RAT item, it does not allow students the opportunity to immerse in the 

problem and reach an impasse (Moss et al., 2011), which is a fundamental aspect of the 

opportunistic assimilation hypothesis. 

 With student attention divided between numerous problems, and without enough time to 

struggle with these problems, it is difficult to evaluate the effectiveness of hints and make 

conclusions about the opportunistic assimilation hypothesis from much of the extant literature. 

The current dissertation circumvents both of these issues and provides an earnest attempt to 

investigate the opportunistic assimilation hypothesis by providing students the opportunity to 

reach impasse, allowing them to go back into their lives and experience the diverse environment 

of everyday life, and identifying whether hints encountered by chance helped students solve.  

In study 2, I found that impasses and condition did not predict whether a student reported 

a hint in the wild, and that only a small portion of students who solved in the wild reported a hint 

(or provided an environmental description the described a potential hint). Thus, there is not 

enough evidence to show that the opportunistic assimilation hypothesis is responsible for all 

solving events in the wild. Despite this, a small number of students continued to report that 
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environmental hints had helped them solve. For example, in study 2, some participants reported 

seeing exponents in the wild, or even reported that seeing a shape reminded them of 

Pythagorean’s theorem, which made them think of exponents.  

Ultimately, the findings of this study align with previous lab research findings, such that 

hints are not significantly related to the odds that a student solves the math puzzle. But they do 

still seem to play a small role. Perhaps a more interesting line of questions about the 

opportunistic assimilation hypothesis is not whether hints can explain all insight moments or 

solve experiences, but how common are hint-related insight experiences? What percent of 

students are aware of such environmental hints? And how do we better measure hints in the 

environment without relying on self-reports?  

Limitations 

 The work reported in this dissertation represents an important first step toward bridging 

the literature between creative problem-solving, the field, and mathematics research. Yet, there 

are some limitations that need to be highlighted. The first is that the two current studies used a 

math puzzle to approximate students’ ability to reason creatively in mathematics. Although an 

authentic math problem (e.g. functions, proofs) would better speak to the authentic nature of 

creative problem-solving in math, the ability to solve such problems would be undoubtedly 

influenced by students’ prior math knowledge. Using a more difficult math problem would have 

inadvertently rewarded students who had higher math knowledge, and the goal for this study was 

to study how the everyday students came to insights in math, not just students who have taken 

many math courses. In addition, a more advanced math problem could require a solution that was 

not within all students’ knowledge base. Thus, to avoid problems with students lacking 
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awareness or understanding of mathematical concepts needed for solving, the current  math 

puzzle was used. 

 Another limitation of this study is that I relied on students’ self-reported experiences to 

characterize solving in the wild, which is subject to bias and human error. For example, to 

evaluate the potential aid of environmental hints in the wild, students could only report the 

presence of a hint if they were aware of a hint, or aware enough to report them in the description 

of their environment. Likewise, their reports of solve experiences in the wild may not be entirely 

accurate, even though most participants took the wild follow-up survey immediately after finding 

the solution. Without invasive data collection methods (e.g. visual and audio recordings), it is 

difficult to estimate how accurate their accounts are.  

 A third limitation of these studies was that the two samples consisted entirely of UCLA 

undergraduate students. While the population of interest for this dissertation are students, 

undergraduate students at UCLA might not encompass the full range of trait and state measures 

compared to students at a community college, CSU, or even in K-12. For example, students who 

rate themselves as math anxious at UCLA compared to those who rate themselves as math 

anxious in community college might represent fundamentally different levels of underlying math 

anxiety. As UCLA students must meet strict criteria in order to earn admission, the results of this 

dissertation do not necessarily generalize to all students. 

Future Directions 

The findings of this study inform a host of future directions. For example, future research 

should consider administering math problems or concepts that align with students’ current 

knowledge, requiring them to struggle in their zone of proximal development to capture insight 

moments. This work would align with the interest of educators who strive to identify how 
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students finally come to understand and solve problems right at the edge of their understanding. 

Using more authentic problems could also provide more nuanced context as to when students 

have insights about concepts in different areas of mathematics, such as algebra, calculus, or 

statistics. This information could then be used to bolster mathematical pedagogy in these 

different domains of mathematics.  

Relatedly, researchers can utilize technology in classrooms to capture insight experiences 

when they happen, such as by probing students using online textbooks or even using screening 

technology such as facial recognition software to identify the exact moment students have an 

insight moment. This would not only help us to study insight moments exactly when they occur, 

but knowing when these insights happen can help educators identify content in the class that 

helps students to make connections. Along these same lines, educators might be able to identify 

long stretches of time when students are not having these moments. When identified, educators 

can either revise materials to help students make more explicit connections to promote 

understanding, or even provide struggle opportunities and hints to help trigger insight moments 

for students.  

Another interesting follow-up to this line of research would be to study how reaching 

insight moments in mathematics affects subsequent engagement and persistence of students. 

Aha! moments represent positive experiences, and are often the reward of hard work on the part 

of the student. Thus, they may likely help motivate students to stay engaged and persist even 

when an answer or solution does not feel close. Despite previous findings that aha! moments 

sometimes constitute the only positive experiences in math classrooms (Liljedahl, 2004), we 

know nothing about the critical role they may play in students’ experiences in mathematics 

classrooms. Future work can remedy this by studying insight moments as a process of interest 
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that goes on to affect subsequent outcomes educators care about, rather than an outcome in and 

of itself.  

Conclusion 

Understanding the methods by which we promote creative thinking in mathematics is an 

important mission for psychologists who wish to create a bridge between creativity and 

education. This dissertation highlights the complex nature of creative problem-solving in 

mathematics, and how different aspects of data collection (lab and wild) can contribute to a 

richer understanding of students’ creative cognition. Embedding math creativity research within 

ecological context will allow us to make important contributions that will translate well in the 

various ways in which students reason about mathematics.  
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