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1. Introduction

The subject of this paper is the nonlinear analysis of thin walled membrane shells with
arbitrary geometry. Many applications in engineering and biomechanics are structures
which are subjected to large displacements and large strains. These problems (e.g.,
the inflation of a rubber balloon) are characterized by a nonlinear behavior. Thus,
the formulation has both geometrical and material nonlinearity. Constitutive models
for finite elasticity written in terms of principal stretches are very useful to model
rubberlike materials (e.g., see Treloar [11] and Ogden [5]). The strain energy function
of Ogden [5] describes a broad class of incompressible isotropic elastic materials with
finite strains. This representation includes as special cases the well known Neo-Hookean

and Mooney-Rivlin materials.

For plane strain, axisymmetric, and three dimensional applications a finite element
formulation is given by Simo and Taylor [10]. A closed-form expression for the tangent
moduli is presented and the numerical solutions are based on a three-field variational
principle.

Needleman [4] studies the inflation of spherical rubber balloons used in meteorological
applications. The axisymmetric equilibrium is determined numerically within a Ritz-

Galerkin method. Wriggers and Taylor [12] present a finite element formulation for this

class of problems using a simple conical axisymmetric membrane element.
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Our formulation for general shaped membranes requires the computation and lin-
earization of the principle stretches. The principle stretches are eigenvalues of the right
stretch tensor U, which is defined by the polar decomposition of the material deformation

gradient.

First we discuss the kinematics of thin membranes with arbitrary shape. The
eigenvalues of the membrane strains are derived using an orthogonal transformation.
This computation may be achieved in the tangential plane associated with a point on
the membrane surface. Thus the transformation can be written as a function of one
plane rotation angle. Singularities, which occur with this approach, are avoided by a
small pertubation within the numerical process. Furthermore, the linearization of the

principal stretches is presented in a closed form.

The constitutive model is written in terms of the principal values of the right stretch
tensor. We are able fo satisfy incompressibility in an exact manner using the plane
stress condition. For isotropic material response the contravariant components of the
Second Piola-Kirchhoff stress tensor are recovered by an orthogonal transformation of
the principal stresses. We also derive the linearization of the stress vector as a function

of the work conjugate strains.

The variational formulation of equilibrium is formulated in a material description.
We consider displacement dependent pressure loads acting normal to the deformed
membrane surface. Thus the linearization of the weak form of equilibrium yields an

unsymmetric tangent matrix.

A finite element formulation of the membrane theory is presented. The aim of the
numerical formulation is to obtain a robust finite element implementation which allows
large load steps. We construct isoparametric four and nine node elements based on
the displacement method. Several numerical examples are presented that illustrate the

effectiveness of the proposed formulation.



2. Surface Geometry of an Arbitrary Curved Membrane Shell

In this section the kinematics of thin membrane shells are described. The membrane
is assumed to be a smooth, continuous, and differiantiable surface. The thickness hg
of the initial configuration, denoted as p, is small compared to the smallest radius
of curvature. Material points of the membrane surface are labeled with convective
coordinates (£,7). In the definitions and relations that follow Greek superscripts and
subscripts refer to contravariant and covariant surface tensor components, respectively.
The summation convention applies to each repeated pair of contravariant and covariant
indices. Commas are used to denote partial differentiation based on the geometry of

the undeformed membrane.

The position vectors x(€,7) = z;e; and X(£,7) = X;e; of the current and initial
configuration, respectively, are related through the expression x = X +u. Here, u = u; e;
denotes the displacement vector with respect to the fixed cartesian basis e;. Then the

membrane strain tensor Eqg is defined by (e.g., see Budianski [1])

1
Eap = 5(9ap = Gap) (2.1)
where the metric coefficients of the deformed and undeformed membrane are given with

gop = X,a "X, Gaﬂ = X,a 'x,ﬂ . (2-2)

With (2.2); the principal stretches A; and ); of the right stretch tensor U are
determined. These quantities are used in section 3 to compute the stresses. Since U
may be obtained with the symmetric right Cauchy-Green tensor C = U2, the principal

values A, follow from the orthogonal transformation

C =RCRT. (2.3)
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Within a matrix notation the following matrices are used

o 1 -~ 2
c=|m o] | g_[fese —sime]l g A 0]
g21 g22 sin cos 0 A3
Inversion of (2.3) yields the vector of the principle stretches
A=RG, (2.5)
where R
Ci A% 911
A= 022 = )\3 ’ G= g22 ’
2C12 0 2912
cos? ¢ sin? ¢ SIn p cos
R= sin? ¢ cos? ¢ —singpcosp | . (2.6)
—2sinpcosp 2sinpcosp cos? p —sin? ¢
Using the constraint
- -~ 1 o
Cio=Cy = ~3 (911 — g22) sin 2 + g13 cos 20 =0 (2.7)

we get the angle ¢

2
¢ = — arctan 12

s 2.8
2 gi1 — 922 ( )

The denominator in (2.8) may take the value zero, however in the numerical process

this singularity can be avoided by a small pertubation.

Incompressibility is expressed by the identity J = detF = A\; A, A3 = 1 where F
is the material deformation gradient. Thus the principle stretch )3, normal to the

membrane, is given

Az = (M)t (2.9)

Furthermore, we are able to compute the current thickness of the membrane h =

ho(A1X2)~! as a function of the principle stretches and the initial thickness hq.
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In the last part of this section we present the derivatives of Ao With respect to

aC. 8C,; aC. VAE:? VR W) VR W D ¥
=11 &1L
0911 922 8(2g12) 18E1: 1 3E,, 1 3(2E;2)

8C5, aC. aC. Ay 22 ), 8%y _aA =

22 22 — o | =

8911 89322 3(29:2) 2 iEu 2 ign 2 8(iE12) R. (2.10)
8(2C12) 9(2C12) 9(2Ch2) 8(2Ci2)  8(2Ci,) 8(2C:)

6911 ag22 3(29125 0F 1, OFE,, 6(2E1§j

It should be noted, that the differentiation of A2 with respect to ¢ yields the identity

(2.7) and therefore vanishes. Furthermore we compute the derivative of Cj, with respect

3612 3512 Oy
= 2.11
OEqg + Op OE.p (2.11)
With (2.7) and (2.11) the linearization of ¢ follows
3¢ 8Cy;
9E1, PYe 0Fn 9 —sin 2p
8 9 e = cos 2¢ .
5B |=—(72)" ) 8Gu | =B | a0, (2.12)
e _ O¢ - 911~ 922 cos 2p
0C;2
a(2E‘12) 3(2E12)

These matrices are used to linearize the constitutive equations in the following section.

Remark:

The principal stretches )\, are the eigenvalues of the right stretch tensor U. Thus it is
also possible to accomplish the multiplicative decomposition of the material deformation
gradient, which yields a symmetric stretch tensor and a rotation tensor. In this case it
is useful to formulate the weak form of the equilibrium in terms of the Biot stress tensor,
which is work conjugate to U (e.g., see Gruttmann [2]). Subsequently, the eigenvalue

problem can be solved to recover the stretches Aoy



3. Constitutive Equations and Linearization

In this section we present constitutive equations for an incompressible rubberlike
material. The application of these equations to thin membranes and the linearization

of the stress strain relations are also given.
3.1 Computation of the Stresses

For the isotropic incompressible elastic solids considered here, the existence of a
strain energy function W is postulated. The strain energy is an isotropic function of

the principal stretches A; and Here, W is written as
Hr oy a a
W) = —[A7" + A2+ A5 = 3]. 3.1
() = 2 LED8 43874257 -9 (3.1)

This presentation was first proposed by Ogden [5] where p, and a, are constants. The
summation on r extends over as many terms as are necessary to characterize a particular

material. The exponents a, may take any nonzero real value.

Using the incompressibility constraint (2.9) the strain energy can be expressed as

a function of the independent stretches \; and ).
Hrry o, o —ay
W) =D EDE 4257 + (ade)™ - 3], (32)

Since we assume hyperelastic material response, the Second Piola-Kirchhoff stress tensor
S follows from differentiation of W with respect to the work conjugate Green Lagrangian
strain tensor E. The components of S are given by the chain rule -

gos _ OW(\) _ OW 0\ | W o),
T "0Eay 0\ 0E.; | 09X 0Fa.p -

(3.3)

Due to the plane stress assumption the stresses S are vanishing. Using (3.3) we are
able to define the principal values S, of the Second Piola-Kirchhoff stress tensor

1 W - a —a
S“Y = )\71 8_/\-7 = A,YZ ,ur[)\v’ = (/\1/\2) "] (’)’ = 1,2) ; (34)

T



Hence, the principal values of the Cauchy stress tensor o are given by the transformation
oy =8, = pA% — (Ahg)7o]. (3.5)

The derivatives of the stretches A, with respect to E.s are presented in (2.10). Thus

we are able to compute the stresses SF

S =RTS, (3.6)
where
Sll R 51
S=1|5 , S=1{(S5,1]. (3.7
S12 0
Remark:

It is also possible to derive equation (3.6) by transformation of the principal stresses

S =RSRT, (3.8)
where
= _ | S1 st2 _|eosp —singp = |S1 0
Hl= [521 522] » B= [sincp cos 8 P 0 Spf° (3.9)

Substituting (3.9) into (3.8) we obtain the transformed stresses (3.6). For isotropic
material response the rotation angle ¢ is given by (2.8), since C and S have the same

eigenvectors.

3.2 Linearization of the Second Piola-Kirchhoff Stresses

In this section the linearization of the stresses defined by (3.6) is derived. Therefore
we need to determine the derivatives of S*# with respect to the work conjugate strains
Eqap. Using (2.10), (2.12), and (3.5) the linearization of S, and ¢ yields the symmetric

material tangent matrix
8511 asll asll
0F1, 0E,; 8(2F;:2)

—_DTch _ | 8522 822 8522
CT i R CR - 3E11 aEzz B(ZEES ) (310)

85 psi2 8512
8E1, 8Ez; 0(2Ei1s)
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where

Bt 0
C=xtn &5 0
| © 0 —(51-5)(252)
(3.11)
AT Mg —201) AP GR 0
— A1—2/\2_2 (/\1 %f A;4 (/\2%:(-2' —20'2) 0
(S1—S2)cos?2
- 0 0 19112—;202 .
The derivatives of the Cauchy stresses o, follow from (3.5)
601 oy —Qr
6/\1 Z: ,“rar )‘ + (A1 Az) ]
60'2 oy —a
/\2 'aT = /J'rar[/\z + (/\1 ’\2) '] (312)
Ao —— Oy _ ,\1 Z prar(AA2) 7"
3/\2

Finally we derive the stiffness Cr for infinitesimal small deformations. The material

parameters y, and a, must fulfil

Z Pror =2p, (3.13)
=

where p is the shear modulus. The component Ci3(\y = 1) yields an undetermined

expression (C33(Aq = 1) = 3), however it is possible to derive the limit value

lim (S1 — S2) cos2¢p i
Aa—1 911 — g22

(3.14)

Using (3.13) and (3.14) the tangential matrix Cr yields classical Hooke’s law for in-

compressible material behavior

E

=1—1/2

| © ©

1

o = N
O N

0
CT(/\a = 1) = 2;1, l: 0
1
2

o R =

v
1 . (3.15)
0 2V v=0.5

Here, E = 24 (1+v) and v are Young’s modudus and Poisson ratio, respectively. Above
equations are used in section 5 to derive the tangent stiffness matrix for the finite

element formulation.



4. Variational Equation of Equilibrium

External loading is assumed on the membrane surface. We consider a pressure
p(x) = pn per unit deformed area, acting in the direction of the normal vector n to
the deformed membrane €. In this case the principle of virtual work, written for the

deformed configuration, is given by (e.g., see Budianski [1])

/S-&Ehodﬂo=/pn-6xd9. (4.1)
(20) (2)

The virtual membrane strains 6Eqp follow from (2.1) and (2.2)
1
5E0’ﬁ = § (5u)a X,8 +X,q '511,,9) (42)

Furthermore, the unit vector m, which is perpendicular to the deformed membrane, is
obtained by the cross product of the tangential vectors X,q

X,1 XX,2

n= ——.
“x’l XX,2 “

(4.3)
Hence, we can transform the current area element d) to the reference configuration as

s xxz |
dQ) = —2—" 22" dQ, . 44
X =X [0 (44)

Using (4.3) and (4.4), the principle of virtual work becomes

= . ___pr i —
gl ) = / 8+ 8E ho — g (a xx2) - 6uldfly = 0. (4.5)
(R0)

A linearization procedure (e.g., see Hughes and Pister [3]) yields the expression

Dg(u,6u) - Au = /[(AS-&E +S-ASE ) ho

(S0) (4.6)
p

- m (Au,1 XX, +X,1 XAU,Q ) . 511] on =10,



The linearized stresses AS are presented in section 3 and the incremental virtual strains

follow from

ASE, =l du,q -Au,g +Au,, -bu,s). (4.7)
B 2 B B

For nonconservative loads (4.6) leads to unsymmetric matrices in the finite element

formulation (e.g., see Schweizerhof, Ramm [g]).
5. Finite Element Formulation

In this section we describe a finite element formulation of the membrane theory
presented above. We use a displacement model to construct four to nine node elements.
Initial geometry and displacements are approximated using the same shape functions.

With this approach we are able to discretize arbitrary curved surfaces.

The following presentation is formulated for a single element, 2.. Hence, the position
vector of the undeformed membrane and the displacement vector are approximated by
the mapping

n.
Xt =Y NrX;

I=1

o (5.1)
llthe = Z NIu1.
I=1

Here the functions Njy(£,n) are the isoparametric element shape functions, n. is the
number of nodes per element (4 to 9), and Xy, us, represent the nodal values of X", u”
within the element (2, respectively. Thus the position vector of the current configuration
is given by x*|g, = X*|q, + ut|q..

The finite element approximation of the virtual strains éeh = {6E11,6E2,28E;,}"

is written in a matrix notation as

n NI)l xha;r
65" = Z B] 5[1] y B] = N],z Xh,g . (52)
I=1

NI»l xh’; +NI32 xh’?
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Using the approximation for the displacements (5.1) and for the virtual strains (5.2) we
formulate the weak form of the equilibrium (4.5) as

h h

_— dQ2. =0. 5.3
I ) e =0 (5:3)

Ne
ge(u,éu) =Y suf /[B}"sh ho — p
I=1 (Qe)
A vector of stresses S* = {§11, 622 & 121k is obtained via the finite element approximation

of the material law expressed by (3.3) to (3.7).

To solve the nonlinear equation (5.3) we use a Newton-Raphson procedure. Therefore

the finite element approximation of the linearized weak form (4.6)

Ne Ne

Dg.(u,éu)Au = Z Z sul KrpAug (5.4)
I=1 K=1

needs to be evaluated for each iteration. In (5.4), K1k is the tangential stiffness matrix

for one node of an element and is deduced from

Kix = / [(B}PCTBK + Gix)ho — Prk]dQ.. (5.5)
(f2.)

The material matrix Cr is presented in (3.10) and the geometric matrix G can easily

be deduced from (4.7) and expressed as
grk 0 0
Grk=| 0 grx 0 (5.6)
0 0 gk

where g7 = SU N1y Nega +52%2 Ni,2 Ng,2 +512 (NI71 Nk,2+ N2 Niy ) Finally the

linearization of the virtual work of the external loads yields the skewsymmetric matrix

p p [ 03 “I?K P%K:l 5.7)
IK = Pik —PIk 3.7
Xk xX*t,
X1 2| —Pix Pk O

where p?}{ =($2’1 NI72 '_m:lzﬂ NI)I)NK (n=172a3)'

In the last part of this section we describe the computation of the shape function

derivatives Nj,o. It is useful to introduce an orthonormal basis system T,; (i=1,2,3)
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with associated coordinates s; in the undeformed configuration of each element. In
this case the covariant and contravariant components of the stress and strain tensors

are identical. Using the chain rule we obtain the derivatives of the shape functions

ANy = Ni,a (@ = 1,2)

08a
ds ds
[NI,I =31 N1 I = [79—51 _"’_fz] X (5.8)
NI;Z NI”I ’ %s—nl %5;72

Thus to complete the process the Jacobian transformation matrix J needs to be evaluated.

We compute the tangential vectors

X 0X

G1 = —a? 1y G2 = = (59)

by partial differentiation of the position vector of the undeformed membrane X(&,m)
with respect to the convective coordinates { und 7. The vectors G; and G are neither
unit vectors nor orthogonal. However, we are able to compute an orthonormal basis

system T; as follows:

G] X G2 Gl

y O Btk HENPI, (S P I
1G1 x Ga| LG

T, = Tn x T;. (5.10)
Using (5.9) and (5.10) we express the components of the Jacobian matrix Jap =
G, Tp (o, =1,2) (e.g., see Zienkiewicz and Taylor [13]).

Finally the area element df). is transformed by the relation

X 00X

and substituted into (5.3) and (5.5). The element tangent matrices and the element
residual vectors are computed using Gauss quadrature. Each element is assembled to

form the global problem using standard procedures.
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6. Numerical Examples

In this section we present several numerical examples, which demonstrate effective-
ness of the finite element formulation presented above. The finite element scheme was
implemented using an enhanced version of the program FEAP [13]. All computations

were performed using a VAX 8650 computer.

6.1 Simple Tension, Equibiaxial Tension and Pure Shear

In the first three examples homogeneous stress states are considered to demonstrate
the agreement of our finite element solutions with exact solutions given in the literature.
We use the three-term constitutive model of Ogden formulated in principal stretches,
as described in section 3. Table 1 summarizes the material constants, chosen by Ogden

([5],[6]) to fit an incompressible rubber material.

Table 1 Material Properties for an Ogden Model

X Er ar

11 +46.29947 | +1.3
2 | +0.01267 | +5.0
31 -0.10013 | -2.0

These material data give excellent agreement with experimental data on rubber by
Treloar [11] for a variety of homogeneous stress states. The following three plane stress
states are considered and compared with exact solutions given by Ogden [5]. Figure
1, 2 and 3 show the results for simple tenson, equibiaxial tension and pure shear,
respectively. As shown there is exact agreement between the theoretical solution and
our finite element solution. These patch test examples verify the correctness of the

finite element implementation.
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6.2 Inflation of a Spherical Balloon

The inflation of a rubber balloon, loaded by an internal pressure p, is considered in
the next example. This problem, which shows an instability, is extensively studied in
the literature. A closed form theoretical solution for a spherical "balloon” is given by
Ogden [6]. Needleman [4] investigates the axisymmetric equilibrium state numerically
by means of a Ritz-Galerkin method. A finite element solution with axisymmetric finite

elements may be found in the paper of Wriggers and Taylor [12].

We consider a balloon with radius R = 1 and thickness ho = .01 composed of a
three-term Ogden model with material constants given in Table 1. Since the stress state
is axisymmetric, it is sufficient to approximate a sector of the sphere. We use 20 4-node
bilinear isoparametric elements to model a 5° segment of the sphere. To pass the limit
point, which occurs in this problem, an arc-length procedure is used in combination
with a standard Newton method of solution. The use of the tangential stiffness matrix,
derived analyticaly in the previous section, provides a quadratically convergent solution
process. Figure 4 shows the plot of the dimensionless pressure p* against the stretch

A. According to [4], the dimensionless pressure p* is defined

S LI L
2% Erﬂrar

It should be noted that our results agree with those of Ogden [5], Needleman [4] and

p

Wriggers and Taylor [12].
6.3 Inflation of a Circular Cylinder

In this example a circular cylinder is loaded by internal pressure (see Wriggers and
Taylor [12]). The upper end of the cylinder is fixed in the axial direction and the lower
end in the axial and radial directions. The geometrical data are: radius R = 10, height

H = 20 and thickness ho = .1. The material properties are given in Table 1. Since
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the problem is axisymmetric, we use a 1 x 20-mesh of 4-node elements to model a 5°

sector of the cylinder.

In Figure 5 the internal pressure is plotted as a function of the upper radial
displacement. To compute the entire shape of the load displacement curve, we again use
an arc-length method and a Newton solution process. The maximum radial displacement
of the upper edge corresponds to a circumferential strain of more than 800%. In addition

deformed configurations are shown in Figure 6.
6.4 Inflated Shallow Spherical Cap

A shallow spherical cap with material data given in Table 1 is considered in this
example (see Wriggers and Taylor [12]). The radius of the cap is R = 10 and the thickness
is hop =.1. We assume an initial displacement of the center point of wg = R/100 . The
cap is loaded normal to the current configuration by a uniform pressure. By symmetry
considerations a 5° sector of the cap is modeled with 20 4-node elements. The computed
curve of pressure versus displacement of the center point is shown in Figure 7, and

plots of deformed meshes are contained in Figure 8.
6.5 Inflation of a Torus between two Plates

In the following example the inflation of a tire between two frictionless rigid plates
is considered. Assuming membrane behavior in a simple model we discretize a thin
walled torus, which is loaded by an internal constant pressure. The geometrical data of
the torus are: inner radius R; = 40, outer radius R, = 60, and thickness hy = 0.1. The
material is an incompressible Ogden model with constants for the stored energy function
as given in Table 1. We consider rigid plates at z; = £60. The contact constraint
is enforced by means of a classical penalty method. Considering symmetry, only one

quarter of the upper part of the torus is modeled using 100 4-node bilinear isoparametric
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elements. The nodes at R; = 40 are fixed. The computed curve of contact force versus
internal pressure is shown in Figure 9 and a plot of the deformed mesh is contained in
Figure 10. This plot shows that the structure undergoes large displacements and large

strains.
6.6 Stretching of a Square Sheet with a Circular Hole

The last example is concerned with the stretching of a square sheet with a circular
hole. This problem has been analyzed previously by Parisch [7]. The length of the
square is 2L = 20, the radius of the circle is R = 3, and the thickness is hg =.1. The
edge at r; = %20 is fixed in both directions. The material constants for a Mooney-Rivlin

model are shown in Table 2.

Table 2 Material Properties for Mooney-Rivlin Model

r Pr ar
1] +50.000 | +2.000
2| -14.000 | -2.000

Because of the symmetry of the structure we discretize one quarter of the sheet
with 50 9-node elements. In Figure 11 the stretching force F' of the computed quarter

is plotted against the strain u/L and the deformed configuration is shown in Figure 12.
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7. Conclusion

In this paper we present a theory for rubberlike membranes which undergo finite
elastic strains. For hyperelastic material response a strain energy function formulated in
terms of the principal values of the right stretch tensor is used. The incompressibility
constraint is enforced exactly by use of the plane stress condition. The linearization of
the stresses is derived analytically, which preserves the quadratic rate of convergence in
a Newton solution process of the finite element equations. Since the initial geometry
is approximated using an isoparametric approach, we are able to discretize arbitrarily
shaped membranes. The numerical examples with nonconservative pressure loads are

performed in a very effective process.
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Figure 5 Inflation of a circular cylinder. Internal pressure versus upper radial displace-

ment.
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Figure 6 Inflation of a circular cylinder. Deformed configurations.
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Figure 7 Inflation of a shallow spherical cap. Pressure versus displacement of the

centerpoint.
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Figure 8 Inflation of a shallow spherical cap. Deformed configurations.
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Figure 9 Inflation of a torus between two rigid plates. Contact force versus internal

pressure.
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Figure 11 Stretching of a square sheet with a circular hole. Load displacement curve.



Figure 12 Stretching of a square sheet with a circular hole. Final deformed mesh.





