
UNIVERSITY OF CALIFORNIA,
IRVINE

Feature Bias in Machine Learning Models: An In-depth Exploration for Software
Engineering Tasks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Jiri Gesi

Dissertation Committee:
Iftekhar Ahmed, Chair

Sam Malek
Ian Harris

2023

© 2023 Jiri Gesi

DEDICATION

This dissertation is dedicated to my wife, Jiahui Li, who has been a constant source of
support and encouragement during the challenges of doctoral study and life. I am truly

thankful for having you in my life. This work is also dedicated to my parents, Shuijin Hua
and Yilatu Wu, who have always loved me unconditionally and whose good examples have

taught me to work hard for the things that I aspire to achieve.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Background . 6

1.1.1 Data Bias in Software Engineering 6
1.1.2 Interpret Machine Learning Models 7
1.1.3 Self-attention-based Transformer Model 7

1.2 Dissertation Structure . 9

2 Feature Bias in Software Engineering Machine Learning Model 11
2.1 Introduction . 11
2.2 Related Work . 14

2.2.1 ML for Defect Prediction . 14
2.2.2 Few-shot learning and Siamese Network 18

2.3 Methodology . 19
2.3.1 Prediction Technique Selection . 19
2.3.2 Characteristics Selection . 19
2.3.3 Investigating Di↵erence in Characteristics between Correct and Incor-

rect Prediction . 21
2.3.4 Investigating Impact of Characteristics on Prediction 23
2.3.5 Improving Defect Prediction Considering Few-shot class 25

2.4 Results . 30
2.4.1 RQ1: Do commit characteristics have an impact on defect prediction

performance? . 31

iii

2.4.2 RQ2: Considering di↵erent commit characteristics, which one a↵ects
defect prediction performance the most? 32

2.4.3 RQ3: How well can DL techniques predict defects by explicitly con-
sidering few-shot classes? . 35

2.5 Discussion . 36
2.6 Threats to Validity . 39
2.7 Conclusions and Future Works . 40

3 Leveraging Feature Bias to Interpret Model Misprediction 42
3.1 Introduction . 42
3.2 Preliminaries . 46
3.3 BGMD: Bias Guided Misprediction Diagnoser 48

3.3.1 Data Feature Imbalance . 49
3.3.2 Bias Guided Misprediction Diagnoser 50
3.3.3 Implementation . 55

3.4 MAPS: Mispredicted Area uPweight Sampling 55
3.4.1 Overview of the baseline algorithms 55
3.4.2 MAPS: Mispredicted Area uPweight Sampling 57

3.5 Evaluation . 59
3.5.1 ME rule generation technique comparison 60
3.5.2 E↵ectiveness of Mispredicted Area Upweight Sampling 64
3.5.3 Impact of Upweight Value on MAPS 66

3.6 Discussion . 69
3.6.1 Why BGMD works better? . 69
3.6.2 Why MAPS is a good method to fix models? 70

3.7 Related Work . 71
3.8 Threats to Validity . 72
3.9 Conclusion . 72

4 Attention Bias in Transformer-based Models for Software Engineering 74
4.1 Introduction . 74
4.2 Background . 78

4.2.1 Pre-training Language Model . 78
4.2.2 CodeBERT . 79

4.3 Empirical Analysis for Attention Weights . 79
4.3.1 Study Design . 80
4.3.2 Measuring attention weights . 81
4.3.3 Experiment tasks . 82
4.3.4 Selected syntax types and AST structures 83
4.3.5 Attention weight analysis . 84
4.3.6 Attention bias analysis results . 84

4.4 SyntaGuid: Syntax Pattern Attention Guiding 86
4.4.1 Masked Language Modeling (MLM) 86
4.4.2 Syntax Pattern Attention Guiding . 87
4.4.3 Syntax attention patterns . 90

iv

4.5 Evaluation . 91
4.5.1 Experimental setup . 92
4.5.2 Evaluation results for syntax pattern attention guiding 93
4.5.3 Ablation study results . 97

4.6 Implications . 98
4.6.1 Implications for researchers . 98
4.6.2 Implications for users . 99

4.7 Related Works . 100
4.7.1 Analyzing self-attention weight . 100
4.7.2 Guiding self-attention weight . 101

4.8 Threats to Validity . 101
4.9 Conclusion . 102

5 Conclusion 104

Bibliography 106

v

LIST OF FIGURES

Page

1.1 Long-tail distribution of number of changed files in a commit. 2
1.2 Overview of this dissertation . 3

2.1 Overview of SifterJIT . 26
2.2 Siamese network with three hidden layers . 27
2.3 AUC distribution for di↵erent characteristics using OPENSTACK 37
2.4 AUC distribution for di↵erent characteristics using QT 37

3.1 Overview of Mispredicted Area Upweight Sampling 45
3.2 Commit count frequency for dataset [137] . 49
3.3 SE models (“MCP” represents Merge Conflict Prediction; “BRCTP” repre-

sents Bug Rreport Close Time Prediction). 63
3.4 Non-SE models (“WQ” represents Warter Quality; “CJ” represents Change

Job; “BM” represents Bank Market; “HB” represents Hotel Booking; and
“SE” represents Spam Email). 63

3.5 F1 score change patterns when increasing weight times value in MAPS . . . 68

4.1 Illustration of attention guiding mechanism 76
4.2 Empirical results for syntax token assigned attention weights comparison be-

tween correctly predicted and mis-predicted groups for cloze test. 81
4.3 Empirical results for abstract syntax tree elements assigned attention weights

comparison between correctly predicted and mis-predicted groups for cloze
test. 81

4.4 Example attention guiding patterns for the example code snippet “<s> sum
= num1 + num2; <\s>”, whose syntax type list is: [[CLS], identifier, oper-
ator, identifier, operator, identifier, separator, [SEP]]. Note that the first two
patterns are proposed in [53] for natural language, and the last two syntax
token patterns are proposed in this study for programming language. 84

4.5 Results of CodeBERT and CodeBERT with various syntax AG on di↵erent
amounts of training data . 99

vi

LIST OF TABLES

Page

2.1 Summary of the dataset . 19
2.2 Commit characteristics used in this study . 20
2.3 Regular expression implemented to filter out comments 21
2.4 Training and testing data of OPENSTACK dataset calculated based on thresh-

olds . 24
2.5 Training and testing data of QT dataset based on thresholds 24
2.6 Comparison between correct and incorrect prediction’s mean values of char-

acteristics in OPENSTACK dataset. * indicates statistical significance. . . . 32
2.7 Comparison between correct and incorrect prediction’s mean values of char-

acteristics in QT dataset. * indicates statistical significance. 32
2.8 The AUC results on all testing data . 33
2.9 AUC variance of divided classes on OPENSTACK 34
2.10 AUC variance of divided classes on QT . 34
2.11 Prediction Performance Comparison on OPENSTACK few-shot classes . . . 35
2.12 Prediction Performance Comparison on QT few-shot classes 36

3.1 Samples from a dataset used to train a ML model that predicts whether a
merge commit is likely to lead conflict . 46

3.2 Example of universe atomic predicates based on the dataset in Table 3.1 . . 52
3.3 Generated misprediction explanation rule coverage metrics by BGMD and

EXPLAIN. DT represents decision tree, RF represents random forest, SVM
for Support Vector Machine. 59

3.4 Representative rule from each technique . 61
3.5 “Default” denotes o↵-the-shelf model; “SMOTE” is trained with SMOTE [41];

“JTT” is trained with JTT [117]; “MAPS” is trained with this paper proposed
algorithm. The darker the color, the higher the value. 65

3.6 Summarized information of comparing MAPS with SMOTE [41], JTT [117]
based on the result in table 3.5 . 65

4.1 Details of datasets of evaluate tasks . 83
4.2 Evaluation results on software engineering tasks. AG represents attention

guiding patterns. AGglobal and AGlocal attention patterns are proposed
in [53]. AGsyntax and AGAST are proposed in this study. The number
with * means statistically significant (paired t-test) with corresponding de-
fault CodeBERT value. 94

vii

4.3 Attention guiding performance on fixing wrong predictions by default Code-
BERT . 94

4.4 Ablation study results for cloze test. The number with * means statistically
significant (P-value < 0.05) . 98

viii

LIST OF ALGORITHMS

Page
1 BGMD (D,A,M, �) . 51
2 ExtractBiasFeatures (A, I,↵) . 52
3 MAPS training . 58

ix

ACKNOWLEDGMENTS

Obtaining a Ph.D. degree is a tough journey. As I reflect on the past four years, I realize that
I have made numerous mistakes, rejections, and self-doubt regarding my potential to become
a competent researcher. However, I owe my perseverance and progress to the unwavering
support and guidance of many people who have accompanied me throughout this journey.
I am deeply grateful to all those who have played a part in my academic journey and the
successful completion of this PhD dissertation.

First and foremost, I would like to express my heartfelt gratitude to my advisor, Iftekhar
Ahmed, for his unwavering guidance, patience, and support throughout my doctoral study.
His expertise, knowledge, and insightful feedback have been invaluable in shaping this dis-
sertation. I especially admire his endless energy and resilience in pursuing higher standards
in research and career, making him a perfect role model for my upcoming research career. I
am extremely fortunate to have him being my advisor.

I am also indebted to the members of my dissertation committee, Sam Malek and Ian Harris,
for their invaluable feedback, constructive criticism, and thoughtful suggestions, which have
helped me to refine and improve this work.

I am especially grateful to my friend Hanzhang Wang, whose constant support and inspira-
tion have played a significant role in my decision to pursue software engineering studies.

I extend my sincere appreciation to my fellow colleges in the ICS department at UC Irvine,
Ningfei Wang, Junze Liu, Aodong Li, Zhe Wang, Yunhan Zhao, Ke Jin, Zhaoyuan Su,
Xiangyi Yan, and Haoyu Ma, whose intellectual contributions, stimulating discussions, and
camaraderie have enriched my academic experience.

I would also like to express my gratitude to the members of my research group and other
students I have had the pleasure of working with at STAIRS lab: Jiawei Li, Xinyun Shen,
Yunfan Geng, Andrew Truelove, Shiyue Rong, Qihong Chen, Mahan Tafreshipour, and Jina
Chun.

I am also grateful to my family and friends for their unending love, encouragement, and
understanding throughout my academic journey. Their support has been a constant source
of motivation and inspiration.

Finally, I would like to acknowledge the financial support provided by the UC Irvine ICS
department and eBay, which have enabled me to pursue my doctoral studies and carry out
this research.

To all who have contributed, encouraged, and supported me throughout my journey, I extend
my deepest thanks and appreciation.

x

VITA

Jiri Gesi

EDUCATION

Doctor of Philosophy in Software Engineering 2019 - 2023
University of California, Irvine California

Master of Science in Computer Science 2016 -2017
University of Michigan Michigan

Bachelor of Science in Mechanical Engineering 2012 - 2016
Xi’an Jiao Tong University Xi’an, China

RESEARCH EXPERIENCE

Graduate Student Researcher 2019 - 2023
University of California, Irvine Irvine, California

Graduate Student Researcher 2021 - 2023
eBay San Jose, California

Applied Scientist Internship 2022
Amazon Science Palo Alto, California

TEACHING EXPERIENCE

Teaching Assistant 2019–2021
University of California, Irvine California

Teaching Assistant 2016–2017
University of Michigan Michigan

xi

REFEREED CONFERENCE PUBLICATIONS

Leveraging Feature Bias for Scalable Misprediction Ex-
planation of Machine Learning Models

May 2023

the 45th IEEE/ACM International Conference on Software Engineering, is the premier
software engineering conference (ICSE)

An empirical examination of the impact of bias on just-
in-time defect prediction

November 2021

Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM)

REFEREED Other PUBLICATIONS

Code Smells in Machine Learning Systems October 2020
arxiv

xii

ABSTRACT OF THE DISSERTATION

Feature Bias in Machine Learning Models: An In-depth Exploration for Software
Engineering Tasks

By

Jiri Gesi

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2023

Iftekhar Ahmed, Chair

The increasing popularity of machine learning techniques in software engineering research

promises to improve software development practices by automating various tasks, such as

defect prediction, code completion, bug localization and etc. However, the susceptibility of

these models to feature bias can significantly a↵ect their performance and reliability. This

dissertation delves deep into the realm of machine learning in software engineering, focusing

on the profound e↵ects of feature bias on model performance. Feature bias, characterized by

the uneven distribution of features in training datasets, can inadvertently skew the results

of machine learning models, leading to potential inaccuracies in predictions.

In the first of the three studies, we embark on a journey to uncover the presence and impli-

cations of feature bias in software engineering tasks. Our findings are revelatory, indicating

that feature bias is not just a theoretical concern but a tangible issue that can significantly

hamper the performance of machine learning models. By analyzing both traditional statis-

tical models and advanced deep learning algorithms, we underscore the pervasive nature of

feature bias. The implications of these findings are vast, especially when considering the

increasing reliance on machine learning models in software engineering. Ensuring the per-

formance and reliability of these models is paramount, and as such, understanding the role

xiii

of feature bias becomes crucial.

In our second study, rather than viewing feature bias as a mere impediment, we harness its

characteristics as an advantage. We delve into the mispredictions of machine learning models,

using feature bias as a lens to interpret these inaccuracies. This unique approach allows us

to gain deeper insights into the areas where models are most susceptible to errors. Building

on these insights, we introduce a novel technique aimed at bolstering model performance,

especially in regions that are traditionally vulnerable to mispredictions. This proactive

approach not only mitigates the negative e↵ects of feature bias but also leverages it to refine

and enhance model accuracy.

In the third segment of our research, we delved into feature bias within Transformer-based

models. These recent advancements in machine learning have set benchmarks in various

software engineering tasks, such as code clone detection, code generation, and code transla-

tion. Central to their functionality is the attention mechanism, which allows them to focus

on relevant input segments during training and prediction. Despite their impressive perfor-

mance, we sought to determine if an ’attention bias’ exists during predictions. Our findings

highlighted a notable attention bias towards specific source code tokens, potentially a↵ecting

their e�cacy in software engineering tasks. In response, we devised a strategy to enhance

Transformer-based model performance by directing their attention to crucial source code

tokens, aiming to bolster their reliability in real-world applications.

Our study underscores the criticality of recognizing and mitigating both feature bias and

attention bias when crafting machine learning models for software engineering endeavors.

The methodologies we introduced serve to enhance the e�cacy and dependability of these

models, making them more apt for deployment in practical software engineering scenarios.

xiv

Chapter 1

Introduction

Machine learning (ML) methodologies have increasingly been integrated into software en-

gineering tasks, mirroring their adoption across diverse disciplines. Notable applications

of ML within software engineering encompass defect prediction [78, 79, 62], automatic

code completion [44, 178], merge conflict prediction [139], and program synthesis and re-

pair [195, 189, 185, 159]. The e�cacy of these ML models is intrinsically tied to the caliber

of their training data [28, 38]. A recurrent challenge in data is the imbalanced class dis-

tribution, where dominant classes overshadow the dataset, leaving the minority class, often

termed as few-shot classes, underrepresented [180].

This paucity of representation for few-shot classes during training is a recognized impedi-

ment, critically a↵ecting the model’s performance on such classes [76]. This bias permeates

various domains, underscoring the complications introduced by imbalanced class distribu-

tions. For instance, within facial recognition, discerning individuals with a ”normal-sized

nose” from web images is markedly more straightforward than those with a ”large nose”.

This imbalance is attributed to the challenges in procuring ample images of individuals with

”large noses” during data collection [105]. Analogously, in vehicle recognition, pinpointing

1

Figure 1.1: Long-tail distribution of number of changed files in a commit.

crashed vehicles is more arduous than identifying standard vehicles due to the dearth of

training data encompassing crashed vehicle instances, thereby hindering the model’s gener-

alization capabilities [194].

Previous studies in software engineering have explored strategies to counteract data imbal-

ance. For instance, Wang et al.[175] probed the enhancement of defect prediction through

imbalance learning methods, encompassing resampling techniques, threshold adjustments,

and ensemble algorithms. Their empirical findings suggest that these imbalance learning

methodologies can bolster defect prediction performance. Consequently, subsequent defect

prediction research began incorporating these imbalance learning techniques[164, 125].

Nevertheless, these studies predominantly concentrated on the class imbalance, such as buggy

and non-buggy classes, cloned and not cloned classes . We contend that other dataset

attributes might also exhibit imbalance, potentially undermining the prediction model’s

e�cacy. For illustration, Figure.1.1 delineates the frequency in conjunction with the number

of modified files in each commit from the OPENSTACK [15] defect prediction dataset. It’s

evident that a majority of modified files are fewer than 10, with only a handful of commits

altering more than ten files. Our objective is to discern whether such attributes influence

the performance of defect prediction models and to identify other potential characteristics

2

Figure 1.2: Overview of this dissertation

that might similarly impact defect prediction.

Grasping these nuances is paramount, as such attributes could curtail a prediction model’s

optimal performance by persistently mispredicting commits with specific attributes. Rec-

ognizing these limitations can pave the way for devising strategies and tools to address

them. Sole reliance on feature importance measurement techniques, such as information

gain [150, 119], is inadequate, as these methods are not specifically designed to measure

bias. The significance of a metric doesn’t necessarily imply its potential for imbalance.

The key insight of our research is the meticulous evaluation of feature bias and its implica-

tions on machine learning models tailored for software engineering tasks. Another pivotal

insight is derived from the extensive body of research aimed at fortifying the robustness of

these models. The technique of explanation generation has emerged as a particularly e↵ec-

tive tool, as it elucidates the reasoning behind a prediction [151, 160, 47, 48, 61]. While

numerous explanation generation techniques have been explored to illuminate a model’s

global behavior [151, 160], only a handful, such as [46, 45], have zeroed in on elucidating the

mispredictions of an ML model.

Figure 1.2 provides a comprehensive overview of this dissertation’s contributions. Drawing

from the aforementioned insights, the initial segment of this dissertation empirically assesses

source code commit characteristics that could introduce bias in the pivotal software engi-

neering task of defect prediction. Our empirical findings underscore that biases stemming

from commit characteristics can profoundly influence the performance of defect prediction

models. For instance, in our analyzed dataset, the majority of commits modified fewer than

3

ten files, with only a scant few modifying over 20. Despite the overarching commendable

performance of the defect prediction model, it faltered when assessing commits that modified

in excess of 20 files. To counteract this, we introduced a Siamese-based network, SifterJIT.

Our empirical results attest to its e�cacy in enhancing the model’s performance on data

with under-represented features, without compromising its performance on other data [62].

From feature bias study, we found that this knowledge can be used to detect the weakness

of prediction model. Cito et al. [46] proposed one model weakness explanation technique,

i.e., misprediction explanation. However, the limitation of their study is that they blindly

evaluating all available features for misprediction explanation. Thus, we utilized our previous

perception that model tends to perform poorly on the biased features and proposed Bias

Guided Misprediction Diagnoser. Through empirical comparison, the result shows that bias

guided misprediction diagnoser not only generate better explanation rules that can cover

most of mispredicted instances, but also use less than 90% generation time [63].

Recently, pre-trained Language Models (PLMs) such as BERT [54], GPT [145], and T5 [146]

have exhibited notable performance gains in various Natural Language Processing (NLP)

tasks [49, 107, 192]. This trend has been further extended to software engineering ap-

plications, including but not limited to code summarization [25, 122, 24], code transla-

tion [57, 142, 179], and code search [59, 71, 81]. These models are built on the Transformer

network architecture [168], featuring a self-attention mechanism that learns the weight and

interdependence of attention among tokens within an input sequence. The self-attention

mechanism uses attention weight to capture inter-relationships and long-range dependencies

among tokens in a sequence. Thus, a natural question raises: do transformer based models

have attention bias on inputs source code? Following the similar study methodology with

previous two studies, we analyzed the attention weight assigning bias on di↵erent part of

input source code. And we found that when transformer based model assigns more attention

on particular part of the code, the model can perform significantly better.

4

The main contribution of this dissertation are:

• Analysis of Feature Bias for ML4SE models: The paper o↵ers a meticulous

evaluation of feature bias, emphasizing its implications on machine learning models

specifically designed for software engineering tasks. This foundational insight under-

scores the importance of understanding and addressing biases in the data to ensure

model robustness.

• Introduction of SifterJIT: To counteract the observed biases, the paper introduces

a novel Siamese-based network, SifterJIT. This architecture is designed to enhance

the performance of machine learning models on data with under-represented features,

ensuring that the model remains robust across diverse data sets.

• Bias Guided Misprediction Diagnoser: Building on the insights from the fea-

ture bias study, the paper proposes the Bias Guided Misprediction Diagnoser. This

innovative approach is tailored to generate superior explanation rules for model mis-

predictions, achieving this e�ciency in a reduced time frame compared to traditional

methods.

• Mispredicted Area Upweight Sampling: The paper presents a novel technique,

Mispredicted Area Upweight Sampling (MAPS), designed to make the original model

allocate more attention to instances pinpointed by the Bias Guided Misprediction

Diagnoser. By emphasizing these areas, MAPS ensures that the model is more attuned

to potential pitfalls and areas of misprediction, thereby enhancing its overall accuracy

and robustness.

• Analysis of Attention bias in Transformer-based Models: The research delves

into the attention mechanisms of pre-trained Language Models (PLMs) like BERT,

GPT, and T5. It scrutinizes the attention weight distribution across di↵erent segments

5

of input source code, revealing that heightened attention to specific code segments leads

to superior model performance.

• Program Syntax-based Attention Guiding Mechanism: The research introduces

a pioneering mechanism based on program syntax. This mechanism is designed to guide

the model to allocate more attention to specific syntax tokens. By emphasizing these

particular tokens, the mechanism ensures that the model captures essential syntactic

nuances, further refining its prediction capabilities.

Chapter 2 provides an exhaustive examination of the Analysis of Feature Bias for ML4SE

models and delineates the architecture and implications of SifterJIT. Chapter 3 meticulously

presents the nuances of the Bias Guided Misprediction Diagnoser and explicates the mecha-

nisms behind the Mispredicted Area Upweight Sampling technique. Chapter 4 is dedicated

to a rigorous assessment of Attention Bias in Transformer-based Models and unveils the pi-

oneering Program Syntax-based Attention Guiding Mechanism. At the last, the summative

conclusions and reflections on the research are articulated in Chapter 5.

1.1 Background

We start by introducing the necessary backgrounds for this dissertation.

1.1.1 Data Bias in Software Engineering

In recent years, with the advent of ML, numerous studies have analyzed the biases within

ML related software [40, 165, 39]. This type of biases mainly results from biased ML

model training/evaluation processes and data distribution imbalance in the training or

testing datasets [40, 23, 165, 39, 32, 74]. In addition, the data labeling, model train-

6

ing, and model evaluation may contribute to building a biased model [166, 28, 129, 171].

Data-driven decisions have the potential to negatively impact already disadvantaged popu-

lations [169, 149, 28, 129, 38] as they are relatively less represented in the training data.

1.1.2 Interpret Machine Learning Models

Interpreting ML models has been a popular topic for the past couple of years. Local in-

terpretability techniques, such as LIME [151] and Integrated Gradients [160], use several

simple, explainable models to simulate complex models. However, the problem with local

interpretability techniques is that they can not completely represent the complex models.

On the other hand, global interpretability techniques, such as GALE [167], DENAS [43] and

BETA [106] help to understand the distribution of the target outcome based on the features.

Some techniques try to explain the models by generating counterfactual explanations via

modifying the inputs [47, 124, 153]. However, only a few studies investigated explaining

model mispredictions. Cito et al. [46] proposed EXPLAIN based on rule generation. How-

ever, EXPLAIN ’s rule deducing e�ciency is low because it “blindly” analyzes all features.

Thus, we proposed an e�cient model Misprediction Explanation method that leverages data

feature bias in this study.

1.1.3 Self-attention-based Transformer Model

The Transformer [168] architecture, which relies on the self-attention mechanism, has emerged

as a popular choice for learning representations of source code. Let c = {t1, t2, ..., tn} denote

a code snippet consisting of a sequence of n code tokens. A Transformer model comprises

L layers of Transformer blocks that transform the code snippet into contextual represen-

tations at di↵erent layers, denoted by H l = [hl
1, h

l
1, ..., h

l
n], where l denotes the lth layer.

The layer representation H l for each layer is computed using the lth Transformer block, i.e.,

7

H l = Transformer(H l�1), l 2 {1, 2, ..., L}, where L is the total number of layers.

In each layer of the Transformer model, self-attention heads are utilized to aggregate the

output vectors from the previous layer. Given an input sequence of code tokens c =

{t1, t2, ..., tn}, the self-attention mechanism computes a set of attention weights for each

token wi over the tokens in the input, represented as:

Atten(wi) = (↵i,1(c),↵i,2(c), ...,↵i,n(c))

Here, ↵i,j(c) represents the attention that token wi pays to token wj, which is computed

from the scaled dot-product of the query vector of wi and the key vector of wj, followed by

a softmax. The general form of the attention mechanism is expressed as the weighted sum

of the value vector V , using the query vector Q and the key vector K:

Att(Q,K, V) = softmax(
QKT

p
dmodel

) · V

Here, dmodel denotes the dimensionality of the hidden representation. For self-attention, the

query, key, and value vectors are obtained by mapping the previous hidden representation

H l�1 using di↵erent linear functions, i.e., Q = H l�1 · W l
Q, K = H l�1 · W l

K , and V =

H l�1 · W l
V , respectively. Finally, the encoder produces the final contextual representation

H l = [hl
1, h

l
2, ..., h

l
n], which is obtained from the output of the last Transformer block.

To further clarify, the positional encoding of each token is calculated using sine and cosine

functions, as shown below:

wi = e(wi) + pos(wi)

8

where e denotes the word embedding layer, and pos denotes the positional embedding layer.

Typically, the positional encoding implies the position of the code token based on sine and

cosine functions.

Overall, the combination of self-attention mechanism, multi-head attention, and positional

encoding enables Transformer models to e↵ectively capture both the syntactic and semantic

features of source code, making them a popular choice for many software engineering tasks.

1.2 Dissertation Structure

This dissertation is based on the following papers:

Chapter 2 is based on our paper “An Empirical Examination of the Impact of Bias on

Just-in-time Defect Prediction”, which was published at the 15th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement in 2021. This is the first

study to empirically validate a set of commit characteristics that potentially bias the defect

prediction performance. In addition, we propose an end-to-end DL framework (SifterJIT)

aimed towards improving the prediction performance for few-shot classes.

Chapter 3 is based on our paper “Leveraging Feature Bias for Scalable Misprediction Expla-

nation of Machine Learning Models”, which was published at the 45th IEEE/ACM Inter-

national Conference on Software Engineering in 2023. This study introduces a scalable ML

model misprediction explanation rule generation technique named BGMD, and introduces

a new upweight sampling method that improves model performance on data prone to be

mispredicted without requiring extra annotated training data named MAPS.

Chapter 4 is based on our paper “Beyond Self-learned Attention: Enhancing Transformer-

based Models Using Attention Guidance”, which was submitted to the 46th IEEE/ACM

9

International Conference on Software Engineering in 2024. In this study, we firstly provide

the first empirical evidence of attention weight bias towards source code syntax tokens and

AST elements in fine-tuned language models. Secondly, we propose a novel attention-guiding

technique, SyntaGuid, which enables PLMs to focus attention weight on critical source

code syntax tokens and AST elements. Thirdly, we demonstrate the e↵ectiveness of the

proposed attention guiding mechanism across multiple software engineering datasets and

tasks, establishing its potential as a generalizable solution for improving fine-tuned PLMs

performance.

10

Chapter 2

Feature Bias in Software Engineering

Machine Learning Model

2.1 Introduction

Assuring the reliability of software is very important due to its omnipresence. However, it

is also inherently a resource-constrained activity. Real-world software systems have more

bugs than developers can identify and fix [110]. Moreover, bug fixing is e↵ort-intensive;

Kim et al. [98] reported that the time to fix a bug ranges from 100 to 200 days. Therefore,

any technique that allows developers to reliably identify buggy parts of the code to guide

their bug-fixing e↵orts is helpful. One such technique is defect prediction. In the last

decade, researchers have investigated a wide range of defect prediction models based on

di↵erent types of metrics, such as metrics about the code [200], historical data [75, 133],

and developers’ interaction information [147, 112]. These defect prediction techniques aim

to isolate the parts of the code that are likely to be buggy so as to facilitate bug-fixing

e↵orts. Just-in-time (JIT) defect prediction [87] is one such technique to predict if a commit

11

will introduce defects in the future. Such commit level predictions are useful in allocating

resources to prioritize fixing the riskiest commits.

Researchers have been investigating ways to improve the JIT defect prediction model’s e↵ec-

tiveness. Applying Deep Learning (DL) to automatically extract the semantic and syntactic

structure of the actual code changes has been the focus of one such e↵ort [191, 115, 78, 79]

and is the state-of-art in terms of performance. For example, Yang et al. [191] utilized Deep

Belief Network, Hoang et al. [78] proposed “DeepJIT” which implements Convolutional Neu-

ral Network (CNN) to extract features from both commit messages and code changes for

defect prediction. Hoang et al. also introduced a hierarchical attention network to construct

distributed representations of code changes for JIT defect prediction [79].

All defect prediction techniques, including JIT, relies on the quality of data [28, 38]. However,

data often exhibit highly skewed class distribution, i.e., most data belong to majority classes.

In contrast, the minority class only contains a small number of instances, also known as few-

shot classes [180]. For example, in JIT defect prediction, defect inducing commits would fall

in the few-shot class, and non-defect inducing commits would be in the majority class.

Since the few-shot class is under-represented during the training phase [76], trained models

perform poorly on the few-shot class. Such bias is well-known in various domains. For

example, in face recognition, it is comparatively easier to detect humans with a “normal-sized

nose” from web images compared to someone with a “big-nose” since it is easier to obtain

face images of “normal-sized nose” than faces with “big-nose” during data collection [105].

For vehicle recognition, it is more di�cult to detect crashed vehicles than regular vehicles

since training data rarely contain crashed vehicles [194].

Prior studies have investigated ways to deal with data imbalance. Wang et al. investigated

how to benefit defect prediction from such imbalance via implementing imbalance learning

methods, such as resampling techniques, threshold moving, and ensemble algorithms [175].

12

Their experimental result shows that these class imbalance learning methods could improve

overall defect prediction performance. From there on, more defect prediction studies started

using imbalance learning techniques [164, 125].

However, these works only focused on the class imbalance between the buggy and non-buggy

classes. We posit that other characteristics of the dataset can also be imbalanced and can

have an adverse e↵ect on the prediction model’s performance. For example, Figure.1.1 shows

the frequency along with the number of modified files in each commit from OPENSTACK [15]

defect prediction dataset. We can observe that the major number of modified files is less than

10, and only a few commits modified more than ten files. Our goal is to understand whether

characteristics such as these impact defect prediction models’ performance and whether other

characteristics can a↵ect defect prediction. Understanding this is important because such

characteristics can limit the maximum performance of a prediction model by consistently

incorrectly predicting commits with certain characteristics. Being aware of them can help

alleviate the issue and help devise techniques and tools to deal with them. Simply applying

feature importance measuring techniques (such as information gain [150, 119]) will not su�ce

since these techniques are not tailored for measuring bias (i.e., if a metric is important, it

does not mean that the metric must be imbalanced).

In order to identify characteristics that may make the defect prediction dataset biased, we

conduct experiments to answer the following research questions:

RQ1: Do commit characteristics have an impact on defect prediction perfor-

mance?

RQ2: Considering di↵erent commit characteristics, which one a↵ects defect pre-

diction performance the most?

RQ3: How well can DL techniques predict defects by explicitly considering few-

shot classes?

13

To improve the prediction performance for the few-shot class, we relied on the Siamese

network, which is the most e�cient technique for few-shot learning, and we call our new

Siamese-based few-shot learning “SifterJIT”. We also compared SifterJIT’s result with state-

of-art JIT techniques. Specifically, this paper makes the following contributions:

• This is the first study to empirically validate a set of commit characteristics that

potentially bias the defect prediction performance.

• An end-to-end DL framework (SifterJIT) aimed towards improving the prediction per-

formance for few-shot classes.

The remainder of the paper is structured as follows. Section 2.2 describes the related work.

Section 2.3 presents details of our methodology. Section 4.7 reports the findings. Section 4.6

places our results in the broader context of work to date and outlines the implications for

practitioners and researchers. Section 4.8 is the threats to validate our results. Section 4.9

concludes with a summary of the key findings and an outlook on our future work.

2.2 Related Work

In this section, we first give an overview of ML-based defect prediction studies. Then, we

describe the biases studied in software engineering, ML, and defect prediction. Finally, we

provide background about the few-shot learning and Siamese Network.

2.2.1 ML for Defect Prediction

ML based defect prediction techniques have been proposed to predict software defects to

reduce the manual e↵ort for identifying defects and reduce software development and main-

14

tenance cost [75, 85]. A large number of research studies were performed to boost the

performance of ML defect prediction models. In these studies, ML models were built from

past software data (e.g., software codebase, issue tracking systems, etc.) and then used to

predict whether new instances of code regions (e.g., files, changes, and functions) contain or

introduce defects [100, 75, 199]. Researchers have investigated on how to manually design

new features or combinations of features to represent defects [128]. Prior research also looked

into using DL algorithms to learn features or new representations automatically [78, 79]. Be-

sides these approaches, researchers also explored transfer learning [86], Personalized [84] for

defect predictions.

To further reduce the costs of software development by identifying defects as soon as they

are introduced, research studies [97, 90, 191] in recent years proposed JIT defect prediction

techniques. JIT techniques can predict whether a particular code region (e.g., file, code

line, and function, etc.) involved in a code change (e.g., commit) will introduce defects in

the future. JIT defect prediction allows developers to check and resolve defects as soon as

they are introduced. In an ideal scenario, JIT helps to pinpoint the most likely defective

commits [89] before those commits are introduced into the codebase. The convenience of

providing early feedback to software developers allows them to prioritize and optimize e↵orts

for code review and testing, especially when they are restricted by limited resources [78]. As a

result, JIT defect prediction research has gained much attention in recent years [58, 163, 93].

ML techniques such as Support Vector Machine [65], Random Forest [29] and Nearest-

Neighbor [154] have been widely used in existing work for building JIT defect prediction

models. Similar to regular defect prediction, a common theme of existing JIT defect pre-

diction work is to rely on manually crafted features/metrics to characterize a code change

and use them to predict defects [131, 90, 143]. DL techniques have also been adopted in JIT

defect prediction [191, 183, 144, 78, 79]. Yang et al. [191] integrated DL in JIT defect predic-

tion by constructing a Deep Belief Network-based approach. Qiao et al. [144] employed a DL

15

neural network for JIT defect prediction to overcome the di�culty of selecting useful change

metrics and mapping between the input (metrics of code changes) and the output (defective

or non-defective). Hoang et al. proposed [78, 79] techniques based on deep representation

learning to extract semantic feature representations from both commit message and commit

code change.

Among the aforementioned DL based JIT defect prediction techniques, we picked the state-

of-the-art DeepJIT [78] and CC2Vec [79] with respect to performance. DeepJIT [78] is a

DL-based JIT defect prediction technique. It trains on the information of both commit

message and code change [78]. DeepJIT uses two separate Convolutional Neural Networks

(CNN) for feature extraction and concatenation [111]. Using the resulting vector, the output

layer computes the probability of a commit being defective. CC2Vec [79] is an improvement

over DeepJIT which uses a Hierarchical Attention Network (HAN) for extracting features.

The resulting features are concatenated to form a representation of the code change, which

is then concatenated with the commit message vector and the code change vectors generated

by DeepJIT. Concatenated vector is then fed into DeepJIT’s feature combination layers to

predict whether the given commit is defective.

Although the two techniques mentioned above achieved fairly good performance, these frame-

works did not improve the prediction performance for classes with a small number of instances

(few-shot classes). Since under-represented classes with particular characteristics may neg-

atively impact the JIT defect prediction model’s overall performance, improving prediction

performance for under-represented classes can boost the overall performance. In our study,

we implement the SifterJIT approach to improve the overall performance of DL-based JIT

defect prediction.

In the software defect prediction field, there are mainly two popular research branches of

analyzing data bias. We provide detailed explanations of these two branches below.

16

One type of bias in defect prediction datasets stems from the construction of the datasets [31].

Identifying defect-fixing changes is a key to the identification of defect code regions in the

codebase to construct a historical dataset for defect prediction models [128, 148]. However,

multiple factors (e.g. severity of the defect or the experience of the fixer) can impair the

automated identification of defect-fixing changes and further impact the performances of

defect prediction models [187]. For instance, suppose only experienced developers annotate

their changes as defect-fixing or not. Automated tools only identify defect-fixing changes

made by experienced developers. Therefore, there will be an under-representation of the code

regions fixed by inexperienced developers in defect prediction datasets; and the resulting bias

may negatively a↵ect the performances of the models. Rahman et al. [148] proposed a set

of bias-influence metrics to measure the aforementioned bias in file-level defect prediction

techniques. Inspired by their work, we identify several commit characteristics to see how does

bias among these commit characteristics a↵ects the performances of JIT defect prediction

techniques.

Another category of bias studied in defect prediction is mostly the class imbalance problem.

Previous studies on defect prediction demonstrate that most of the defects occur in very few

modules [200], which indicates that the number of defective instances is much less in number

compared to non-defective instances, which results in imbalanced datasets. In such cases,

the imbalanced distribution of classes may result in incorrect predictions of the minority

class instances. Therefore, handling imbalanced datasets to obtain improved results has

received much attention among Software Engineering researchers. Various methods have

been developed to deal with imbalanced data like data sampling, cost-sensitive learning, and

ensemble methods [88, 157, 60, 121, 175, 103]. To the best of our knowledge, researchers

have used the methods mentioned above to mitigate the class imbalance issue [191, 143].

However, in this study, our goal is to investigate the e↵ect of biased commit characteristics

on JIT defect prediction and, in addition, we aim to propose an approach to overcome such

e↵ect on the performance.

17

2.2.2 Few-shot learning and Siamese Network

The performances of ML models may be hampered when there are few training instances.

However, in some certain areas (e.g. drug discovery [27], image classification [101]), labelled

data instances may be di�cult or impossible to acquire. Few-shot Learning is proposed to

tackle this issue with the help of prior knowledge [180].

As a representative method of few-shot learning, the concept of Siamese networks was pro-

posed by Bromley et al. [34]. Koch [101] and Neculoiu et al. [135] pointed out that the

Siamese network is a type of twin framework with two or more identical sub-networks and

every sub-network has the same parameters and weights. The parameters of Siamese net-

works are updated based on the joint performance of all sub-networks. Its classification

powers are learned through similar and dissimilar information between data pairs [130].

Moreover, they proved that Siamese networks are good at learning on a dataset where a

small amount of data is available [101, 135, 173].

Siamese network has also been used in defect prediction field, Zhao et al. [198] proposed

Siamese Dense neural networks (SDNN) based defect prediction model, which integrates

similarity feature learning and distance metric learning. After comparison experiments,

SDNN outperformed other state-of-the-art defect prediction models on NASA datasets [70].

However, their approach does not leverage the true notions of DL as they still employ the

numeric features/metrics that are manually engineered. Our goal is to improve the learning

e�ciency of the few-shot class with respect to commit characteristics. While SDNN is a

few-shot learning model dealing with a lack of su�cient training data, they did not consider

the bias existing in the dataset and its impact on the model’s performance. In this study,

we investigate such bias to fill this gap in existing research.

18

2.3 Methodology

We use the following process during our study: (A) First, we select state-of-art JIT defect

prediction techniques, (B) we select characteristics to investigate; (C) we explore if commit

characteristics have an impact on the state-of-the-art DL defect prediction techniques; (D)

we measure how much these characteristics can impact the prediction technique by splitting

the data based on characteristics; (E) we propose a new DL framework called SifterJIT and

compare our framework’s performance with existing techniques.

2.3.1 Prediction Technique Selection

Among many available DL-based JIT defect prediction techniques, we picked DeepJIT [78]

and CC2Vec [79] since they are state-of-the-art. These two studies use the same train-

ing/testing datasets originally curated by McIntosh et al. [128] and have been widely used

in JIT defect prediction [78, 79, 143] literature. In the dataset, McIntosh et al. manually

filtered and analyzed commits from two well-known software projects QT [19] and OPEN-

STACK [16]. The dataset contains 25,150 commits from the QT project and 12,374 commits

from the OPENSTACK project. Table 2.1 presents summary statistics of the dataset.

Table 2.1: Summary of the dataset

Dataset
Timespan Commits

Start End Total Defect
OPENSTACK 11/2011 02/2014 12,374 1,616 (13%)

QT 06/2011 03/2014 25,150 2,002 (8%)

2.3.2 Characteristics Selection

JIT defect prediction techniques predict whether a commit will introduce defects in the future

by identifying the most likely defective commits [143]. We focused on extracting character-

19

Table 2.2: Commit characteristics used in this study

Commit
characteristics

Definition

File Count
Number of changed files that contain non-comment
and non-blank-line edits

Edit Count
Number of lines edited that are non-comment or
non-blank

Multiline Com-
-ments Count

Number of new added multiline comment chunks

Outward Depen-
-dency Sum

Total number of dependents modified files are
depended on.

Inward Depen-
-dency Sum

Total number of dependents depending on the modified files.

istics relevant to a commit since JIT prediction is performed after every new commit. We

relied on the study conducted by Motwani et al. [132] for this purpose. They conducted a

comprehensive study to identify characteristics that are important for developers while fixing

a bug. Some of the characteristics are not available when a new commit is pushed into the

code base, such as Time to fix, Priority, Reproducible, Triggering test count etc. Therefore,

all defect characteristics proposed by Motwani et al. [132] can not be directly used in our

analysis. The first and second authors carefully examined each characteristic mentioned by

Motwani et al. and selected the characteristics applicable to JIT defect prediction after

reaching a complete agreement. Our selected characteristics are listed in Table 2.2.

To extract Edit Count and File Count, we first collected the information (e.g., added code

lines, deleted code lines, the names of the changed files) of commits in the dataset from

Github by using Github API1. However, the information gathered contains modified files

that only modified comments. According to [132], comment changes play a negative role in

characterizing changes since they do not a↵ect program behaviors. Therefore, we designed

regular expressions to filter out the modified files that only edited comments. The resulting

Edit Count is the sum of the number of non-comment added and deleted code lines, while

File Count is the number of changed files in a commit that contain at least one line of

non-comment code change. In addition, git di↵ -w command is used to ignore whitespace

1
https://docs.github.com/en/rest

20

Table 2.3: Regular expression implemented to filter out comments

Single Line Comment (C/C++) “(ˆ[+-][[:blank:]]*\/\/)—(ˆ[+-][[:blank:]]*$)”
Multi Line Comment (C/C++) “\s*(\/*)(.*?)*\/”
Single Line Comment (Python) “(ˆ[+-][[:blank:]]*#)—(ˆ[+-][[:blank:]]*$)”
Multi Line Comment (Python) “\s*([\’\”])\1\1(.*?)\1{3}”

di↵erences between commits and their parents to ensure blank line changes do not impact

the counting of Edit Count and File Count. The detailed implementation of the regular

expressions is showed in Table 2.3.

Prior research identified comments when modified with source can act as a significant feature

for defect prediction [97]. Thus, we also want to explore if multiline comment blocks in the

source code can impact the performance of JIT defect prediction. So we extracted the

number of multiline comment blocks as Multiline Comments Count.

To ensure the reliability of results for Inward Dependency Sum and Outward Dependency

Sum, we used a widely adopted static analysis tool, Understand2. The tool analyzes every

reference in a project and builds dependency data structures for every file and architecture.

This includes the nature of the dependency and the references that cause the dependency.

Therefore, we summed all files that the edited files depend on and summed files that depend

on the edited files as Outward Dependents Sum and Inward dependents Sum, respectively.

2.3.3 Investigating Di↵erence in Characteristics between Correct

and Incorrect Prediction

Next, we investigated the impact of the selected characteristics on prediction. We replicated

DeepJIT [78] and CC2Vec [79] with their original training and testing datasets so that we

can compare the characteristics’ impact on these two techniques.

2
https://www.scitools.com/

21

DeepJIT [78] relies on both commit message and code change for prediction. We encoded

commit messages and code changes and fed them into the input layer of two separate Convo-

lutional Neural Network (CNN) [111] for feature extraction. Then, the two extracted feature

vectors were concatenated to form a unified feature representation. The new vector is then

fed into a fully connected layer, which outputs a probability score for a given commit being

defective.

We followed the process described by Hoang et al. [79] to replicate CC2Vec. Specifically,

we took information from the code change of the given commit as an input and output a

list of files, including a set of removed code lines and added code lines. Each changed file is

then encoded as a three-dimensional matrix to be given as input to a hierarchical attention

network (HAN) for extracting features. The resulting features are then concatenated to form

a vector representation of the code change. Then, we map the vector representation of the

code change to a word vector extracted from the log message; the word vector indicates the

probabilities with which various words describe the commit. Finally, we concatenated the

vector representation of the code change extracted by CC2Vec with two embedding vectors

extracted from the commit message and code change to form a new feature, which is fed

into DeepJIT’s feature combination layers to predict if a commit is buggy.

Next, we split the classification results into correctly and incorrectly classified groups. Then

for each characteristic, we compare between correctly and incorrectly classified groups. Since

we perform multiple tests, we have to adjust the significance value accordingly to account

for multiple hypothesis correction. We use the Bonferroni correction [33], which gives us an

adjusted p-value of 0.01. For all five characteristics, we find significant di↵erences (Mann-

Whitney test, ↵¡0.01) between the means of correctly and incorrectly classified commits. We

use the non-parametric Mann-Whitney test since our population is not normally distributed.

We also calculated Cli↵’s Delta between the mean values to check the e↵ect size, where a

delta less than 0.147 is considered “negligible”, less than 0.33 is considered “small”, less than

22

0.47 is considered “medium”, and a delta greater than 0.47 is considered “large” [152].

2.3.4 Investigating Impact of Characteristics on Prediction

To measure how much the characteristics a↵ect the performance of DL defect prediction tech-

niques, we leveraged the mean values of characteristics identified for correctly and incorrectly

classified commits in the previous step.

We posit that for any characteristic, a value close to the mean value of the wrongly classified

group will have a more negative impact on prediction performance. Whereas a commits

characteristic value close to the mean value of a correctly classified group does not have a

significant negative impact on DL predictions.

Following the above intuition, we divided OPENSTACK and QT datasets using the previ-

ously calculated mean values for correctly and incorrectly predicted groups, separately for

each characteristic. In this study, we tried multiple threshold calculation approaches, such

as calculating the mean of mean or median of mean values. However, through our empirical

investigation, we found that predictions based on di↵erent threshold calculation approaches

were similar because the di↵erence between the mean values of characteristics for correctly

and incorrectly classified groups was big. So we use the median of mean values for calculating

the threshold using the following equation:

Threshold = median[
X

i

X

j

mean(CV Cdj

mi) +
X

i

X

j

mean(CVW dj

mi)] (2.1)

In the equation above, CVW is a Characteristic Vector for Wrongly classified data, CVC is a

Characteristic Vector for Correctly classified data, m is DL model (i.e., DeepJIT, CC2Vec),

23

Table 2.4: Training and testing data of OPENSTACK dataset calculated based on thresholds

Characteristics
Divide
Threshold

Smaller than
threshold
(train/test)

Bigger than
threshold
(train/test)

Edit Count 143.35 84.29%/82.34% 15.71%/17.66%
File Count 5.68 85.84%/84.07% 14.16%/15.93%
Multi-line
Comments Count

8.84 87.92%/86.03% 12.08%/13.97%

Inward Depen-
-dency Sum

22.81 81.45%/79.79% 18.55%/20.21%

Outward Depen-
-dency Sum

46.78 77.75%/74.98% 22.25%/25.02%

d is dataset (i.e., OPENSTACK, QT). For example, mean values calculated for File Count

characteristic in OPENSTACK data is 2.71 for correct classification, and 8.58 for wrong clas-

sification on DeepJIT (Table 2.6). For CC2vec, the values are 3.09 for correct classification

and 8.28 for incorrect classification. Thus, the threshold of File Count characteristic in the

OPENSTACK dataset is 5.68. The thresholds for each characteristics for OPENSTACK is

shown in second column of table 2.4, and for QT is in Table 2.5.

Table 2.5: Training and testing data of QT dataset based on thresholds

Characteristics
Divide
Threshold

Smaller than
threshold
(train/test)

Bigger than
threshold
(train/test)

Edit Count 247.35 92.25%/93.38% 7.75%/6.62%
File Count 13.22 94.39%/94.32% 5.61%/5.68%
Multiline
Comments

58.13 93.37%/93.81% 6.63%/6.19%

Inward Depen-
-dency Sum

71.71 88.23%/86.84% 11.77%/13.16%

Outward Depen-
-dency Sum

69.24 82.41%/84.11% 17.59%/15.89%

After splitting, we observe that for each characteristic, the group with values smaller than the

threshold always occupies the majority parts of data (third column in table 2.4 and table 2.5).

For example, in the case of File Count, the group below threshold in OPENSTACK contains

84.29% of training data and 82.34% of testing data. The majority group based on Outward

Dependency Sum occupies a relatively low percentage of total data, but it still occupies

24

77.75% of training and 74.98% of testing data. A similar pattern is observable for the QT

dataset. Table 2.5 shows that the data below the File Count threshold occupies 94.39% of all

QT training data and 94.32% of all QT testing data. Thus, we call the divided data below the

threshold as Majority Class. Furthermore, the group with a value bigger than the threshold

is named as Few-shot Class since a smaller part of the dataset belongs in this group. Next,

we trained both DeepJIT and CC2Vec for both of the Majority Class and Few-shot Class.

We did the training for each characteristic and compared the AUC score to investigate the

impact of characteristics on prediction. To deal with variance in DL prediction results, we

validated each dataset 15 times and reported the mean values in the results.

2.3.5 Improving Defect Prediction Considering Few-shot class

SifterJIT aims to improve the state-of-the-art DL defect prediction models, specifically by

improving the prediction on the few-shot class. The intuition behind our approach is that

focusing on the few-shot class will help improve the overall performance since DL models

tend to perform worse for the few-shot class compared to the majority class when trained

together.

The SifterJIT schema is shown in Figure 2.1. First, we divide the training dataset into

majority and few-shot classes based on their characteristics (Section 2.3.4). Then, we trained

a Siamese network on the few-shot class since state-of-the-art DL models (DeepJIT, CC2Vec)

perform poorly on the few-shot class as they have fewer training instances compared to the

majority class. We selected the Siamese network since Koch et al. [101] and Neculoiu et

al. [135] showed that Siamese networks are suitable for few-shot learning where a little data

is available. The trained Siamese network was then used for testing commits that belonged

to the few-shot class. For the majority class, we continue using DeepJIT since it is a state-

of-the-art technique. Below we present the details of Siamese networks and SifterJIT.

25

Figure 2.1: Overview of SifterJIT

Siamese network

The Siamese network consists of two identical base networks which process the same training

instances in pairs. However, the weights of the two networks are shared. This model accepts

distinct inputs and joins them by a similarity measure function. This similarity measure

function measures the distance di between the learned features h1 and h2 on each side.

Figure 2.2 shows a Siamese network with three hidden layers, and each layer contains two

neurons. The depicted Siamese network performs binary classification with a similarity

function s =
Pn

i=1 di, where n is the number of learned attributes.

Similarity measure

Siamese network measures the distance between learned features on each side. If X1 and X2

are two input vectors, w represents shared parameter vector, and the mapping of X1 and X2

in the feature space are represented by Hw(X1) and Hw(X2). Then the Siamese networks can

be considered as a scalar similarity function Dw(X1, X2) to measure the distance between

X1 and X2, and the distance is defined as:

26

Figure 2.2: Siamese network with three hidden layers

Dw(X1, X2) = ||Hw(X1)�Hw(X2)||

SifterJIT uses Euclidean distance to learn the metric of similarity features from input pairs

of data.

Loss function

: For the Siamese network loss function, we use the most popular Contrast loss function [182].

The loss function is defined as:

Lcontr(w, y,X1, X2) =
1

N

NX

i=1

((1� yi) ⇤ (D(i)
w

2

+ yi ⇤ (max(m � D(i)
w , 0))2) (2.2)

where y is a binary label, y = 0 if a pair of data(X1, X2) belongs to the same class and y = 1

if it is di↵erent. m > 0 is a pre-set threshold, Dw is the Euclidean distance. The minimum

of Lcontr(w, y,X1, X2) will decrease Dw when pairs of data come from the same character

class and increase Dw when pairs of data come from a di↵erent class. More concisely, the

27

minimization of Lcontr(w, y,X1, X2) would result in low values of Dw for similar pairs and

high values of Dw for dissimilar pairs. Using this loss function, two commits will have low

Euclidean distance if they introduce similar defect, and non-defect introducing commits have

large Euclidean distances with a defect introducing commits.

SifterJIT Model Training

The SifterJIT’s base network is similar to DeepJIT [78], which includes a convolutional layer

with multiple filters and a nonlinear activation function (i.e., Relu). This paper uses a normal

distribution with zero mean and a standard deviation 0f 10�2 to initialize all neural network

weights. We set the dimension of word vectors and the number of filters to 64 since Hoang

et al. [78] showed they got the best performance at these values. We set the batch size to 32

and the size of the fully connected layer to 512. Since our goal was to compare performance,

we used same hyperparameters settings that were used by prior work [80, 78].

Data Oversampling:

To evaluate if SifterJIT can outperform state-of-the-art techniques, we compared with orig-

inal DL defect prediction techniques and applied oversampling on the dataset for original

DL techniques. Previous studies [125, 64] show that oversampling is an e↵ective approach

to improve performance on imbalanced data. Thus, we also compared SifterJIT with models

trained on over-sampled data. SMOTE [41] has been proved as one of the most popular

oversampling techniques. SMOTE works by selecting examples close in the feature space,

drawing a line between the examples in the feature space, and drawing a new sample at a

point along that line [41]. However, the input data we used is the representation of code

changes and commit messages, and it is di�cult to draw a meaningful line between data

samples of this type. Thus, we did not use SMOTE for oversampling; instead, we imple-

28

mented a random oversampling scheme [64]. The random over-sampling technique randomly

duplicates examples from the few-shot class and adds them to the training dataset [64]. We

applied oversampling on DeepJIT and CC2Vec but not on SifterJIT. Because SifterJIT com-

pares pairs of inputs and predicts via calculating their distance. If random over-sampling

with SifterJIT is used, the duplicates will have no distance between them, and it will not

improve SifterJIT’s performance. On top, it will increase training time. So we did not use

over-sampling with SifterJIT.

Evaluation Metric:

We report the standard precision, recall, and AUC (Area Under the receiver operating char-

acteristic Curve) to assess the performance of the prediction models because it is independent

of prior probabilities [30]. Also, AUC is a better measure of classifier performance than ac-

curacy because it is not biased by the size of test data. Moreover, AUC provides a “broader”

view of the performance of the classifier since both sensitivity and specificity for all threshold

levels are incorporated in calculating AUC. Other work related to JIT prediction have used

AUC for comparison purposes [55, 66, 67, 196, 78, 79].

We list the formula used for calculating precision, recall, and F-measure below. AUC Com-

putes the area under the curve plotting the true positive rate against the false positive

rate, while applying multiple thresholds to determine if a commit is defective or not. The

AUC curve is created by plotting the recall against the false positive rate (FPR) at various

threshold settings.

• Precision (P): A measure of whether the commits classified as defect are actually

defective commits.

29

precision =
tp

tp + fp
(2.3)

• Recall (R): A measure of the percentage of defect instances that the approach man-

aged to correctly predict.

recall =
tp

tp + fn
(2.4)

• F1 score (F1): The F1 score is the harmonic mean of the precision and recall.

F1 = 2 ⇤ Precision ⇤Recall

Precision+Recall
(2.5)

• False positive rate (FPR): A measure of the ratio of the number of defects wrongly

categorized and the total number of actual defect commits.

FPR =
fp

fp + tn
(2.6)

2.4 Results

Here we discuss the results of our study by placing them in the context of three research

questions, which investigate the impact of characteristics on prediction performance (RQ1),

which characteristic a↵ects prediction performance the most (RQ2), and whether we can

improve the prediction of defects by explicitly considering few-shot classes identified using

the aforementioned characteristics (RQ3).

30

2.4.1 RQ1: Do commit characteristics have an impact on defect

prediction performance?

To answer this question, we replicated the work of DeepJIT and CC2Vec using their original

training and testing data. Then we split the classification results into two groups based on

whether they were correctly or incorrectly classified. Next, we investigate if characteristics

(i.e., Edit Count, File Count, Multiline Comments Count, Inward Dependency Sum, and Out-

ward Dependency Sum) have any impact on classification performance. The calculated mean

characteristic values for correctly and incorrectly classified instances are shown in table 2.6

and in table 2.7. For example, in terms of File Count characteristic, the mean number of the

modified files is 2.71 for the correctly classified group and 8.58 for the incorrectly classified

group.

The next column on table 2.6 and 2.7 shows the P-values from the Mann-Whitney test, indi-

cating whether there is a statistically significant di↵erence between the characteristic’s value

between correct and incorrect classification groups. Our results indicate that for OPEN-

STACK, the distribution of mean values between correctly and incorrectly classified groups

are significantly di↵erent for all characteristics (Table 2.6). The Ci↵’s Delta of the these

characteristics’ mean values between correctly and wrongly classified data is 0.42, when us-

ing DeepJIT and 0.38, when using CC2Vec, both of which show a medium di↵erence in

e↵ect size. However, for the QT dataset, only Outward Dependency Sum has a statistically

significant di↵erence between correctly and incorrectly classified groups (Table 2.7).

31

Table 2.6: Comparison between correct and incorrect prediction’s mean values of character-
istics in OPENSTACK dataset. * indicates statistical significance.

OPENSTACKDataset
Model DeepJIT CC2vec + DeepJIT

Correct
Classifi-
-cation

Wrong
Classifi-
-cation

P-value
Correct
Classifi-
-cation

Wrong
Classifi-
-cation

P-value

File Count 2.71 8.58 9.64e-14* 3.09 8.28 1.95e-09*
Edit Count 65.71 227.26 3.38e-13* 82.03 204.68 2.36e-10*
Multiline
Comments

3.50 15.04 3.40e-08* 4.94 12.74 3.26e-05*

Inward Dep-
-endents Sum

12.56 33.30 1.92e-08* 14.28 31.34 1.99e-05*

Outward Dep-
-endents Sum

27.67 64.36 3.6e-12* 29.41 64.16 1.97e-09*

Table 2.7: Comparison between correct and incorrect prediction’s mean values of character-
istics in QT dataset. * indicates statistical significance.

QTDataset
Model DeepJIT CC2Vec + DeepJIT

Correct
Classifi-
-cation

Wrong
Classifi-
-cation

P-value
Correct
Classifi-
-cation

Wrong
Classifi-
-cation

P-value

File Count 4.88 21.57 0.03 4.79 27.22 0.12
Edit Count 168.98 325.72 0.14 153.90 585.26 0.14
Multiline
Comments

41.80 74.47 0.28 34.83 150.52 0.06

Inward Depend-
-ents Sum

66.55 198.44 0.08 62.49 76.88 0.21

Outward Depen-
-dents Sum

48.13 151.16 1.98e-07* 40.53 90.36 6.79e-09*

2.4.2 RQ2: Considering di↵erent commit characteristics, which

one a↵ects defect prediction performance the most?

To answer this research question, we needed to measure how much the characteristics a↵ect

the defect prediction performance. After training the state-of-the-art DL defect prediction

techniques using their original training data, we evaluated the models on all testing data.

Their AUC score is shown in table 2.8. Then, we divided training and testing data into two

groups using the threshold shown in table 2.4 for OPENSTACK and table 2.5 for QT. We

call the group with values less than the corresponding threshold as Majority class since they

32

Table 2.8: The AUC results on all testing data

OPENSTACK QT
DeepJIT 75.1 76.8
CC2vec + DeepJIT 80.9 82.2

always occupied most of the data. Another group that is bigger than the threshold is named

as few-shot class since they always contain a small portion of the data.

From Table 2.9, we can observe that few-shot classes with respect to Edit Count, File count,

Multiline Comment Count, Inward Dependency Sum and Outward Dependency Sum have

a significant performance drop. When using the DeepJIT technique on OPENSTACK, the

AUC score on few-shot classes is between 52.4 to 65.3, a 22.7 drop compared to the AUC

achieved when all data is used (shown in table 2.8). Interestingly, the AUC scores on majority

classes increased, ranging between 76.8 to 79.1. When using CC2vec, for the majority classes

AUC score ranged between 80.1 and 83.2 (Table 2.9). Similar to DeepJIT, in the case of

CC2vec, few-shot classes saw a significant performance drop with AUC score ranging between

64.9 to 68.3. This is a 10.2 average drop compared to the AUC achieved when all data is

used in table 2.8. We also checked whether the di↵erence in AUC score between the majority

class and the few-shot class is statistically significant. The results are statistically significant

for both DeepJIT (Mann-Whitney test, p¡0.011) and CC2vec (Mann-Whitney test, p¡0.008).

Table 2.10 shows that for QT, DeepJIT have similar drop in AUC scores on few-shot classes

for Inward Dependency Sum characteristic. For Edit Count, File Count, and Multiline Com-

ment Count the drop is comparatively lower. However, both techniques have significantly

worse performance on the few-shot class than the majority class with respect to Outward

Dependency Sum characteristics. We also checked whether the di↵erence in AUC score be-

tween the majority class and the few-shot class is statistically significant. The results are

statistically significant for CC2vec (Mann-Whitney test, p¡0.007). However, for DeepJIT the

results are not statistically significant(Mann-Whitney test, p¡0.119).

33

Table 2.9: AUC variance of divided classes on OPENSTACK

DeepJIT CC2vec + DeepJIT
Few-shot
class

Majority
class

Delta
Few-shot
class

Majority
class

Delta

Edit Count 55.2 76.8 21.6 65.1 80.1 15
File Count 59.1 78.2 19.1 67.2 81.2 14
Multiline Com-
-ment Count

52.4 78.3 25.9 66.8 80.3 13.5

Inward Depend-
-ents Sum

65.3 79.1 13.8 68.3 82.9 14.6

Outward Depend-
-ents Sum

58.2 78.3 20.1 64.9 83.2 18.3

Table 2.10: AUC variance of divided classes on QT

DeepJIT CC2vec + DeepJIT
Few-shot
class

Majority
class

Delta
Few-shot
class

Majority
class

Delta

Edit Count 65.9 73.2 7.3 74.5 83.2 8.7
File Count 64.8 73 8.2 73.2 82.9 9.7
Multiline Com-
-ment Count

70.1 74.3 4.2 75.5 84.2 8.7

Inward Depend-
-ents Sum

76.7 74.8 -1.9 80.2 84.5 4.3

Outward Depend-
-ents Sum

59.3 74.8 15.5 64.1 83.5 19.4

From our results, we see that DL techniques are e↵ective on majority classes since their

AUC scores are close to aggregated classes AUC in table 2.8. However, few-shot classes have

poor classification performance, and several of them even close to random classification since

AUC scores of few-shot classes for Multiline Comment Count and Edit Count are 52.4 and

55.2 when using DeepJIT, which are close to 0.5.

When ranking the characteristics based on the total drop in AUC, we see that Edit Count,

Multiline Comment Count, and Outward Dependency Sum are the top three characteristics

a↵ecting the performance most for OPENSTACK. However, for QT, Edit Count, File Count,

and Outward Dependency Sum are the top three characteristics a↵ecting the performance

negatively.

34

Table 2.11: Prediction Performance Comparison on OPENSTACK few-shot classes

DeepJIT +
CC2vec
(Original)

DeepJIT +
CC2vec

(Oversampling)
SifterJIT

SifterJIT -
Original

SifterJIT -
Oversampling

AUC Score (%) 57.88 60.39 69.19 11.31 8.80
Precision (%) 32.09 33.33 42.57 10.48 9.24
Recall (%) 95.56 95.56 65.15 -30.41 -30.41
F1 Score (%) 47.43 48.99 51.50 4.07 2.51

2.4.3 RQ3: How well can DL techniques predict defects by explic-

itly considering few-shot classes?

Previous research questions show that both DeepJIT and CC2vec perform poorly on few-

shot classes. Thus, to improve prediction performance on these few-shot classes, we propose

a Siamese network-based few-shot learning framework for JIT defect prediction (SifterJIT).

Table 2.11 shows the comparison of defect prediction results on the OPENSTACK dataset

using CC2vec with and without random oversampling and SifterJIT framework. From this

table, we can see that SifterJIT improves the AUC score on few-shot classes from 57.88%

to 69.19% (an improvement of 11.31%). SifterJIT also improves precision and F1 score by

10.48% and 4.07%. Oversampling also improves compared to the original performance, but

the improvement is only 2.51% for AUC, 1.24% for precision, and 1.56% for F1 score. The

SifterJIT’s recall is worse than the original and oversampling. A closer look reveals that

SifterJIT is more conservative than original and oversampling methods, and since it predicts

less number of samples as “defect”, the recall is lower. Prior study shows that too many false

positive warnings can discourage developers from using a tool [77]. Thus, it is important to

reduce the false positives.

To better understand the improvement, we looked into the AUC distribution of few-shot

classes for individual characteristics, shown in Figure 2.3. From Figure 2.3 we can observe

that SifterJIT outperforms original and oversampling results for most characteristics.

35

Table 2.12: Prediction Performance Comparison on QT few-shot classes

DeepJIT +
CC2vec
(Original)

DeepJIT +
CC2vec

(Oversampling)
SifterJIT

SifterJIT -
Original

SifterJIT -
Oversampling

AUC Score (%) 63.14 64.71 69.12 5.98 4.41
Precision (%) 25.53 25.79 35.48 9.95 9.69
Recall (%) 88.33 90.00 63.16 -25.17 -26.84
F1 Score (%) 38.74 39.20 45.28 6.54 6.08

Table 2.12 shows the aggregated defect prediction results on QT dataset. From the table,

we can see that the SifterJIT classification AUC score improves from the original’s 63.14%

to 69.12% (5.98% improvement), and SifterJIT also improves the precision by 9.95% and

F1 score by 6.54%. Compared to oversampling, the AUC score increased by 4.41%, and it

improves precision by 9.69% and F1 by 6.08%.

Figure 2.4 shows the AUC score distributions for few-shot classes for individual character-

istics. From the figure, we can see that SifterJIT outperforms for characteristics Outward

Dependency Sum and File Count. However, unlike the OPENSTACK dataset, SifterJIT

did not outperform in the case of the other three characteristics, even though the overall

improvement using SifterJIT was non-trivial as shown in Table 2.11 and Table 2.12.

2.5 Discussion

To the best of our knowledge, we are the first to investigate whether and to what extent the

imbalance of commit characteristics impacts JIT defect prediction. We find that character-

istics such as File Count, Edit Count, Inward Dependency Sum, Outward Dependency Sum,

Multi-line Comment Count are some of the characteristics that impacted the performance

of the classifiers significantly, up to 25.9%.

Our analysis finds that along with other characteristics Inward Dependency Sum, Outward

Dependency Sum impact the performance of the classifiers. These two factors are related to

36

Figure 2.3: AUC distribution for di↵erent characteristics using OPENSTACK

Figure 2.4: AUC distribution for di↵erent characteristics using QT

37

dependency. We posit that a commit that modifies files with high dependency is likely to be

highly coupled with other parts of the code and has a high impact. Our results also identified

that the Edit Count significantly impacts the performance of the classifiers. Since classifiers

are sensitive to change size [131, 90, 128], such impact of Edit Count is not surprising. Since

we studied a small number of characteristics, one important direction for researchers is to

identify other characteristics and investigate their impact.

One interesting finding is that not all characteristics equally impact the classifier’s perfor-

mance across all datasets. Our results in RQ2 indicate that a characteristic can have varying

levels of impact, even for the same technique depending on the dataset. For example, Multi-

line Comment Count for DeepJIT applied on OPENSTACK resulted in a 25.9% drop in

AUC, however, for QT dataset, it resulted in a 4.2% drop, as shown in Table2.10. Another

interesting observation is that the impact is not always negative. For example, in case of

Inward Dependency Sum, few-shot class had a higher AUC compared to majority class as

shown in Table2.10. Further investigation is required to understand the underlying reason

for this. Also, the varying impact of characteristics can be leveraged to examine di↵erent

ranking schemes. An e↵ective ranking scheme can help practitioners prioritize their e↵ort

to more impactful characteristics when trying to minimize the imbalance.

Our results also highlight that di↵erent DL techniques have varying resistance to the im-

balance of commit characteristics. Table2.9 and 2.10 show that CC2vec on an average is

more resistant to the imbalance which is backed by the Mann-Whitney test (U = 22, p-val

= 0.03756). This similar to other researchers’ findings where they showed that di↵erent

machine learning classifiers have varying resistance to noise [99].

Our findings have implications for software practitioners and tool builders as well. Prac-

titioners should pay more attention to the imbalance of commit characteristics to achieve

the best prediction performance, which would allow them to save their e↵ort while sifting

through incorrect predictions. Also, it will reduce the number of bugs making it to the

38

production system.

There are tools to detect data imbalance issues for normal machine learning tasks to avoid

unfairness issues, such as in computer vision and natural language processing [21, 1]. How-

ever, to the best of our knowledge, no such tools exist for defect prediction tasks. Thus, it

is also necessary to build tools to detect data imbalance in the defect prediction dataset.

2.6 Threats to Validity

We have taken care to ensure that our results are unbiased and have tried to eliminate the

e↵ects of random noise, but it’s possible that our mitigation strategies may not have been

e↵ective.

Bias Due to Dataset: Our findings may not generalize to all software projects since we

evaluated our approach on two datasets (QT and OPENSTACK). However, we evaluated our

approach on a publicly available dataset that has been used in previous JIT defect prediction

research [78, 79, 143, 128]. On top, our considered projects are large and significantly

di↵erent in size, programming language, complexity, and revision history. So we believe that

the selected projects adequately address the concern.

Bias Due to Characteristics: Our set of characteristics are selected from literature [132].

However, results may di↵er depending on the characteristics used for evaluation. Also, we

did not compare our results with the e↵ects of other widely-used software metrics for ML

defect prediction models.

Bias Due to Threshold Selection: Our threshold selection in RQ2 may threaten the

internal validity. In order to mitigate this, we empirically investigated di↵erent formulas for

threshold calculation and found that the results do not significantly di↵er.

39

Bias Due to Implementation: To mitigate this bias, we reused existing implementations

of the DeepJIT and CC2Vec techniques whenever possible. We also tested our code and

data to ensure that there are no implementation errors; however, errors may remain. In

addition, the regular expressions used to identify comments might fail to identify all types

of comments in the source code.

2.7 Conclusions and Future Works

In this paper, we investigated whether and to what extent commit characteristics can im-

pact JIT defect prediction. Our results show that the performance of DL techniques got

negatively impacted by the imbalance of commit characteristics. DeepJIT’s performance

on OPENSTACK dropped down to 52.4% compared to the original performance of 75.1%

(22.7% drop). A similar pattern was observed for CC2Vec, where performance dropped down

to 65.1% compared to the original 80.9 (19.53% drop). On the QT dataset, DeepJIT’s per-

formance dropped down to 59.3% from 76.8% (17.5% drop), CC2vec’s performance dropped

to 64.1% from 82.2% (18.1% drop)

To improve their overall performances, we propose a Siamese-based Few-shot learning frame-

work named SifterJIT. Our choice of investigating the Siamese network was motivated by

the Siamese network’s power to learn from a limited number of training instances, which can

help to boost the model performance on few-shot classes with respect to commit characteris-

tics and boost the overall model performance. Our results show that SifterJIT outperforms

state-of-the-art CC2vec by an improvement of 11.31% AUC score, 11% improvement in pre-

cision, and 5% improvement in F1-score on OPENSTACK dataset. Similar improvements

were seen for the QT dataset with a 5.98% improvement of AUC score, 10% improvement

of precision, 6% improvement of F1-score.

40

In this work, we analyzed five characteristics. However, prior defect-prediction research has

identified a plethora of characteristics which is yet to be investigated. Our results identify the

need for further research to understand the impact of the imbalance of these characteristics

on the prediction model’s performance and understand the underpinning of why di↵erent

characteristics have varying levels of impact.

41

Chapter 3

Leveraging Feature Bias to Interpret

Model Misprediction

3.1 Introduction

Machine learning (ML) techniques, similar to other fields, have been gaining popularity in

software engineering tasks. Defect prediction [78, 79, 62], automatic code completion [44,

178], predicting merge conflicts [139], and synthesizing and repairing programs [195, 189, 185,

159] are some examples. While these models’ overall performance is good, interpreting and

debugging them is a challenge, which also impedes the real-world usage of these models [52,

114].

Specific characteristics of ML systems make them di�cult to debug. The opacity of the

learned models, high dimensionality of the input data, dependence on the data quality

[28, 38] are a few of them. Data often exhibits highly-skewed class distributions (class

imbalance), i.e., most data belong to the majority class, and the minority class only contains

a small number of instances [180]. To complicate things even more, imbalance not only

42

happens at class level but also on data features [62]. Since ML models are usually trained

by minimizing average training loss on all data, which is also known as Empirical Risk

Minimization (ERM), a feature imbalance can lead to models that achieve low test error but

still incur high error on instances that contain under-represented features. For example, Gesi

et al. [62] showed that in software defect prediction tasks, comparing with most commits,

the prediction model often performs significantly worse for the commits, which involve a

large number of modified files since the number of training instances with a large number of

modified files is very few during training. The similar situation has been observed in other

fields as well, such as a vehicle recognition model usually fails to detect crashed cars as a

car because of very few crashed car instances in the training dataset [194]. These varying

granularities of imbalance (i.e., class vs. feature) severely impact the robustness of models.

To ensure the robustness of the models, the explanation generation technique has been

proven to be one of the most e↵ective ways as it can help in explaining the rationale for a

prediction [151, 160, 47, 48, 61]. Researchers have been trying various explanation generation

techniques [151, 160] to shed light on the global behavior of a model either by highlighting

which features are the most important or by constructing a surrogate and simpler model

that emulates a complex model. However, except for [46, 45], none of the work focused on

explaining the mispredictions of a ML model.

In the most recent work, Cito et al. [46] proposed a technique named EXPLAIN, which

generates a set of decision rules based on features and mispredicted instances to explain

the reasons for mispredictions, i,e., Misprediction Explanation (ME) rules. However, one

of the limitations of EXPLAIN is that its generated ME rules are deduced “blindly” from

all features. Since ML models can have thousands or even millions of features [20], without

guiding the ME rule generation by incorporating some form of prior knowledge, techniques

like EXPLAIN will su↵er from scalability issues. Furthermore, due to data and model drift

over time [104], models must be retrained, and ME rules also must be regenerated. Additional

43

time requirements for approaches “blindly” relying on all features for rule deduction would

quickly add up when done many times over the lifetime of a model.

In another related line of work, researchers introduced various methods to improve the

model’s prediction performance on the instances containing under-represented features [62,

194]. However, previous approaches typically require additional annotations [46]. For exam-

ple, adding additional annotated code commits that modify a large number of files or adding

annotated crashed car pictures in the vehicle detection dataset. While these approaches

have been successful at improving the model’s performance for instances containing under-

represented features, the required additional annotated training data is often expensive [117].

Having Observed these limitations of the existing techniques, in this paper, we propose a

technique called Bias Guided Misprediction Diagnoser (BGMD), which leverages feature

imbalance as prior knowledge for generating rules to explain misprediction. Then, we use

generated rules from BGMD to guide a novel upweight sampling method that can improve

ML model’s performance on mispredicted data without requiring additional annotated in-

stances, named MAPS (Mispredicted Area UPweight Sampling).

Figure 3.1 shows the high-level overview of how BGMD and MAPS work together to resolve

the aforementioned limitations of existing techniques. Figure. 3.1-(a) presents a trained

model that classifies black and white points based on two features (x-axis and y-axis co-

ordinates). The model predicts points in green region as black points and white in blue

region. Next, BGMD identifies two regions (red square area in Figure. 3.1-(b)) that contain

instances that are prone to misprediction. Then, MAPS improves the weight of instances

within the identified regions (Figure. 3.1-(c)) so that the retrained model pays more atten-

tion to these part of instances. The retrained model result presents in Figure. 3.1-(d), which

could perform better on the instances that were identified by BGMD. A detailed description

of the MAPS algorithm is in Section 3.4.

44

Figure 3.1: Overview of Mispredicted Area Upweight Sampling

We empirically compared BGMD with the state-of-the-art EXPLAIN [46] technique and

the result shows that BGMD not only outperformed EXPLAIN in generating ME rules in

trms of rule coverage but also reduced 92% in rule generation time. Furthermore, we also

investigated if MAPS can successfully improve the ML model’s performance, specifically for

instances containing under-represented features that are prone to misprediction. We em-

pirically evaluated MAPS on three software engineering tasks and five general classification

tasks and the result shows that MAPS can significantly improve the model’s performance

without requiring extra annotation data.

The key contributions of this study are:

• Introduces a scalable ML model misprediction explanation rule generation technique

named BGMD.

• Introduces a new upweight sampling method that improves model performance on

data prone to be mispredicted without requiring extra annotated training data named

45

Table 3.1: Samples from a dataset used to train a ML model that predicts whether a merge
commit is likely to lead conflict

parallel changed
file num

added
file num

developer
num … conflicted pred

3 7 0 12 … True True
1 2 3 4 … False
1 3 2 3 … True

False
False

5 13 0 8 … False True

commit
num

MAPS.

• Empirically evaluates new proposed techniques with corresponding state-of-the-art

techniques.

The rest work is structured as follows. In Sec. 3.2, we introduce the necessary preliminary

information. Then, in Sec. 3.3, we introduce BGMD. In Sec. 3.4, we describe how MAPS

works. In Sec. 3.5, we show empirical evaluations and results. Then, In Sec. 4.6, we make

further discussions. In Sec. 3.7, we review some of the related works close to our problem.

In Sec. 4.8, we present threats to validity, and finally, in Sec. 4.9, the conclusions are drawn.

3.2 Preliminaries

In this section, we describe what a misprediction explanation (ME) rule generation technique

is and how the generated rules can be used to explain mispredictions of a ML model.

Imagine training a model to predict whether a merge commit is likely to cause a conflict.

The model may be based on features such as number of commits (“commit num”), number

of added files (“added file num”), number of changed files parallelly (“parallel changed file

num”), number of involved developers (“developer num”) and potentially dozens of addi-

tional features. Table 3.1 provides a small subset of the entire dataset, including the true

46

label (“conflicted”) and the model’s prediction (“pred”). We will use it as a running example

for the rest of this section.

We use instances x 2 X and corresponding labels y 2 Y to train aMLmodel. Let D : X ! Y

be the ground truth for the dataset. Given instances (x1, y1), ..., (xn, yn) 2 X , a trained ML

model M✓ : X ! Y parameterized by ✓, we define a misprediction indicator I : x! {0, 1} :

I(x) =

8
>><

>>:

1 if D(x) 6= M✓(x)

0 if D(x) = M✓(x)

(3.1)

In other words, I(x) is 1 iff when the ML model M✓ predicts the wrong label for instance

x.

Misprediction coverage: ME technique’s goal is to generate a decision list �, i.e., ME

rules. These rules are generated based on model training features. In the case of our

running example, these features would be all available features shown in table 3.1. Then ME

technique generated rules identifies a sub-dataset �(x), in which most of the instances are

prone to be mispredicted by the trained model:

P (�(x) = 1 | I(x) = 1, x 2 X) (3.2)

We refer to the value of Equation 3.2 as the ME coverage of rule � where �(x) = 1 when

the ME rule covers an instance x that is mispredicted by the model. The larger value of

Equation 3.2 means the more mispredicted instances are explained by decision list �. And

decision list � is composed of a set of rules:

47

� = {�1 ^ �2 ^ ...�n} (3.3)

where �i is a predicate based on feature i and defined as:

�! xc = c | xc 6= c | xn c | xn > c (3.4)

Where each condition is a conjunction of the atomic predicate of the form “x op c” where

x is a feature and c is a variable. The notation xc indicates categorical features, and xn

indicates numeric features. For example, in the running example, the best rule list is when

� = {commit num > 28 & added file num > 15 & developer num <= 15 & developer > 9}

which has a precision of 82% and a recall of 46%. This means that 82% of the instances

identified by the above-mentioned rule are mispredicted by the model, and the identified

instances contain 46% of all mispredicted instances. A good ME rule should have a higher

misprediction coverage, which means both high precision and recall.

3.3 BGMD: Bias Guided Misprediction Diagnoser

In this section, we present our proposedME rule generation technique BGMD. First, we show

an example of feature imbalance that occurs in merge conflict prediction datasets [137]. We

then introduce how BGMD exploits feature imbalances in ML models to achieve scalable

ME.

48

Figure 3.2: Commit count frequency for dataset [137]

3.3.1 Data Feature Imbalance

ML model performance heavily relies on data quality [28]. However, data often exhibit

highly-skewed feature distribution. For example, figure 3.2 shows the frequency of the Up-

dated commit count feature in a merge conflict prediction data set (we only present the

Updated commit count between 1 and 150 because of the space limitation).

From figure 3.2, we observe that 11,379 merge commit instances contain one update commit,

but only nine merge commit instances have 150 update commits. Additionally, instances with

less than 30 Updated commit count accounted for 98% of all data. Thus, in the merge conflict

prediction dataset, instances with Updated commit count less than 30 belong to the majority

group with respect to Updated commit count feature, while instances with Updated commit

count over 30 belong to the minority group. The minority group of data is usually under-

represented during model training, and as a result, the trained model is biased towards the

majority group, causing the model to perform poorly on data containing under-represented

features [62, 194]. Despite such bias, these features should not be removed because that

might negatively impact the model’s overall performance. For example, in case of the data

shown in figure 3.2, Updated commit count is one of the most important features for merge

49

conflict prediction [113]. So removing the Updated commit count will adversely impact the

overall model’s performance. Therefore, directly removing the biased features is not advised

in literature [41, 117].

3.3.2 Bias Guided Misprediction Diagnoser

The general ME rule generation for ML model is formulated in Section 3.2. At a high level,

the first step of BGMD is to select a subset of features whose part of data are prone to

be mispredicted based on imbalanced features, such as the Updated commit count feature

in the merge conflict prediction data set (Section 3.3.1). Then, BGMD deduces a list of

explanation rules to explain when a data contains what particular features that the model

tends to mispredict. Note that, to the best of our knowledge, BGMD is the first method to

use the feature imbalance for model ME rule generation.

Algorithm 1 presents the procedure of BGMD method. This procedure takes labeled data

set D containing ground truth label, all attributes A, an ML model M , and a target ME

coverage � (percentage of mispredicted data) as inputs. We now explain the procedure of

BGMD.

Construct misprediction indication vector. The first step (line 1 in Algorithm 1) is

to build a misprediction indication vector I : X ! 0, 1 for the model M , such that:

I(x) = 1, (D(x) 6= M(x))

In other words, the extracted indication vector I maps each input in D to a boolean value

indicating whether the instance is mispredicted by the given model M .

Extract biased features. Next, our algorithm calls a procedure named ExtractBiasFea-

50

Algorithm 1 BGMD (D,A,M, �)

Input: Labeled dataset D : X ! Y ;
ML model M : X ! Y ;
Data attributes: A;
Target coverage: �.

Output: Misprediction explaination for model M .

1: I I{D, M(A)}
2: BA ExtractBiasFeatures(A, I)
3: Atom GenAtoms(BA)
4: � []
5: cvg 0
6: cur D
7: while cvg � do
8: � LearnRule(Atom, cur)
9: cur Filter(�, cur)
10: cvg ComputeCoverage(I, cur)
11: end while

return Misprediction Explanation �

tures (line 2 in Algorithm 1) to select a subset of features that the trained model is biased

on, i.e., the model M performs significantly better on the feature’s majority group than its

minority group. The detail of the procedure ExtractBiasFeatures is in Algorithm. 2.

First, ExtractBiasAttributes separates all data into mispredicted and correctly predicted

groups. Then, iterate each feature in A and evaluate whether there is a significant fea-

ture distribution di↵erence (Mann-Whitney test, ↵ < 0.05) between the mispredicted and

correctly predicted groups. We use the non-parametric Mann-Whitney test since the data

population usually is not normally distributed. We consider the model is biased towards a

feature if the Mann-Whitney test shows there is a significant di↵erence (↵ < 0.05) between

mispredicted and correctly predicted instances.

Generate atomic predicates. Next, BGMD calls GenAtoms procedure (line 3 in Algo-

rithm 1) to generate candidate atomic predicates of the form “x op c”, where x is a feature

and c is a constant value. If x is a categorical variable, we generate predicates of the form

51

Algorithm 2 ExtractBiasFeatures (A, I,↵)

Input: Data features: A;
Mispredict indicator: I;
Significance threshold: ↵.

Output: Biased feature list BA.

1: BA []
2: mispredicted I(x) = 1
3: correctly-predicted I(x) = 0
4: for feature in A do
5: MG mispredicted[feature]
6: CG correctly-predicted[feature]
7: P-value Mann-Whitney(MG, CG)
8: if P-value < ↵ then
9: BA.insert(feature)
10: end if
11: end for

return Biased feature list BA

Table 3.2: Example of universe atomic predicates based on the dataset in Table 3.1

Atomic Predicates
commit num > 3
commit num <= 3
commit num > 18
commit num <= 18
commit num > 28
commit num <= 28

add file num > 5
add file num <= 5
add file num > 15
add file num <= 15
add file num > 30
add file num <= 30

developer num > 4
developer num <= 4
developer num > 9
developer num <= 9
developer num > 15
developer num <= 15

xc = cj and xc 6= cj, where cj 2 BA. For numerical features, we use operators , > and

generate constant cj using equal frequency binning [102]. For instance, if we have a numeri-

cal feature containing values V = {v1, v2, ..., vn}, we first partition the (sorted) set V into k

bins where each bin has roughly equal size. The value of k is a hyper-parameter and is set

to 4 by default. Then, we use the highest value in each bin as one of the constants in our

predicates to generate atoms of the form “xn op c”. Table 3.2 shows the universe of atomic

predicates that are generated based on the features illustrated in Table 3.1.

Rule Learning. During rule learning (line 8 in Algorithm 1), we want to learn rules that

52

are correlated with mispredictions. This problem is equivalent to maximizing the following

objective function:

precision =
|x 2 X|�(x) ^ I(x) = 1|

|x 2 X|�(x)| (3.5)

which tries to make identified instances by � contain a higher percentage of mispredicted

instances, and it corresponds to the precision value of ME rule.

However, if our rule learning algorithm solely aims to maximize precision, the BGMD may

lead to a small rule size that takes many iterations to converge. Moreover, it may produce an

over-fitted rule to a specific mispredicted instance (100% precision). Generating many rules

to meet the coverage threshold would also result in producing a large number of sub-rules in

�. This ultimately compromises the interpretability. Hence, instead of optimizing only on

precision, our rule learning algorithm also takes rule size and recall into account. The recall

is shown below:

recall =
|x 2 X|�(x) ^ I(x) = 1|

|x 2 X|I(x) = 1| (3.6)

which corresponds to the ratio between the identified mispredicted instances by generated

rules and all mispredicted instances by the given model.

Thus, our final rule learning optimization objective function is a linear combination of pre-

cision, recall, and rule size:

53

Obj = �1 · precision+ �2 · recall + �3 ·
1

size(�)
e (3.7)

where parameters �1, �2, and �3 are tunable hyper-parameters and they are depends on the

context and set to 1 by default. Precision is the primary factor that identifies mispredictions

instances density, i.e., reducing the number of correctly predicted instances in identified

instances. And recall controls the coverage of all mispredicted instances, i.e., increasing

the number of identified mispredicted instances. Furthermore, rule size is mainly used for

accelerating convergence and improving the explainability of generated rules.

Main learning loop. After the initialization phase (line 1 to 6), the algorithm enters a

loop (line 7 to 11) that iteratively adds previously generated atomic predicate into a decision

list until the learned rules achieve the desired coverage �. The learned decision lists � is a

list of predicates. For example, the list � = [�1,�2] corresponds to the following explanation:

if (�1) then 1 else if (�2) then 1 else 0

At a high level, the learning loop synthesizes the target decision list using a standard sequen-

tial covering method [36]. In particular, it first learns a rule �1 for the whole data set, then

filters out instances satisfying �1, then learns another rule �2 for the remaining instance, and

so on, until the target coverage is reached. Intuitively, the predicate in the i’th branch is

the best predictor for the mispredictions in the subset of the data not covered by the earlier

predicates. The algorithm terminates only when misprediction coverage cvg exceeds target

coverage �, thus the output of the BGMD procedure is guaranteed to satisfy the coverage

constraint.

54

3.3.3 Implementation

We implemented BGMD as a Python library that can be installed using pip command. It

takes a Pandas dataframe, a target coverage, and a set of optional parameters and returns

a set of decision lists paired with precision, recall, F1 score, and coverage metrics. An

implementation is available in accompany website [6]

3.4 MAPS: Mispredicted Area uPweight Sampling

In this section, we present Mispredicted Area uPweight Sampling (MAPS), which lever-

ages the ME information generated by BGMD to improve the ML model’s performance on

instances that contains under-represented features.

3.4.1 Overview of the baseline algorithms

In this study, we use a standard ML model training method and two sampling algorithms as

baselines.

Empirical Risk Minimization (ERM) is a standard approach to train a ML model by mini-

mizing the average training loss. ERM is trying to minimize the following loss function:

LERM(✓) =
1

n

nX

i=1

`(xi, yi; ✓) (3.8)

where ✓ is the parameter of the trained model.

Synthetic Minority Oversampling TEchnique (SMOTE) [41] is one of the most popular over-

55

sampling methods to improve the model’s robustness by synthesizing instances in minority

groups. The intuition of SMOTE is that it tries to balance the number of instances between

majority group and minority group by synthesizing artificial instances in the minority group.

So that the trained model can pay more attention to the instances in the minority group.

SMOTE is parameterized with K neighbors (the number of nearest neighbors it will consider)

and the number N of new instances that it wishes to create. The way SMOTE synthesizes an

instance is : (1) Randomly selects an instance in the minority group. (2) Randomly selects

any of its K nearest neighbors belonging to the same class and generates a temporary new

instance Xtemp using the average of selected K neighbors. (3) Randomly specifies a value

lambda in the range [0, 1]. (4) Generates and places a new instance on the vector between

the original and Xtemp, located lambda percent of the way from the original instance. In

this work, we consider the BGMD identified data groups as the minority group since these

groups are under-represented during model training.

Just Train Twice (JTT) [117] is a upweight sampling technique that was proposed in

PMLR’21 [17], whose goal is to improve model’s robustness via fixing model’s performance

on the mispredicted instances. We selected JTT as one of the baseline because JTT has

been proven to be the state-of-the-art technique which has been compared with several up-

weight and reweight methods such as CVaR DRO [56], and Group DRO [155]. JTT has

two-stages. In the first stage, it trains a ML model M̂ on training data and then constructs

a misprediction indication vector I on the validation data using equation 3.1, such that:

I(x) = 1, (D(x) 6= M̂(x))

where D is the ground truth label for validation data.

Next, JTT retrains a final model M with validation data by upweighting all instances in the

56

validation data that were mispredicted by the first trained model:

LJTT (✓, I) =

0

@�up

X

I(xi)=1

`(xi, yi; ✓) +
X

I(xi)=0

`(xi, yi; ✓)

1

A (3.9)

where �up 2 R+ is a tunable hyperparameter. The intuition of JTT is that for instances that

the first model mispredicted, the final model should pay more attention to them. However,

increasing the model’s weight only for mispredicted data instances can make the model

overfit to them. This could also result in the previously correctly predicted instances to be

mispredicted by the final model. This problem was also found in our experiments and details

are in Section 3.5.

3.4.2 MAPS: Mispredicted Area uPweight Sampling

MAPS is a novel upweight sampling method proposed in this paper based on the empirical

observation that ML models tend to perform poorly on subsets of data containing under-

represented features [62]. Therefore, MAPS first utilizes the ME rules generated by BGMD

to identify a subset of the dataset that is prone to misprediction due to feature under-

representation and then uses up-weight sampling to make the new model more aware of

data with under-represented features. Unlike JTT, the retrained model using MAPS avoid

focusing too much on a small subset of data that can lead to overfitting, and instead focus

more on balancing saliency and under-represented features. The MAPS details presents in

algorithm 3

Stage 1: Mispredicted Area identification. MAPS first trains a normal ML model M̂ .

Then it identifies groups of instances that tend to be mispredicted by using misprediction

57

Algorithm 3 MAPS training

Input: Training set D and hyperparameter �up.
Stage one: Mispredict area identification
1. Train M̂ on D via ERM (equation 3.8).
2. Extract the misprediction explaining rules � (equation 3.10).
Stage two: Upweighting points meet rules
3. Construct upweighted dataset Dup containing the training instances that meet the
misprediction explain rules �.
4. Set �up times in loss function for Dup training instances and one for other examples
(equation 3.11).
5. Train final model Mfinal using LMAPS as the loss function.

diagnosing techniques, such as BGMD (Section 3.3).

� = BGMD(xi, yi, M̂) (3.10)

Stage 2: Upweighting. After identifying the groups of instances that first model tends

to mispredict, MAPS retrains a final model Mfinal by upweighting the identified instances

during model training, using below loss function:

LMAPS(✓,�) =

0

@�up

nX

xi2�

`(xi, yi; ✓) +
X

xi /2�

`(xi, yi; ✓)

1

A (3.11)

Implementation. The MAPS training method is described in Algorithm 3. To implement

the upweighted objective (equation 3.11), we multiply a upweight value �up on identified

subset of data. However, it’s challenging to determine a universal upweight value �up for all

models, so we tried various upweight values and used the best performed retrained model.

Similar upweight value �up selection method was also used for JTT. In addition, we also

58

Table 3.3: Generated misprediction explanation rule coverage metrics by BGMD and EX-
PLAIN. DT represents decision tree, RF represents random forest, SVM for Support Vector
Machine.

Software
Engineering

EXPLAIN
BGMD
(ours)

Kaggle EXPLAIN
BGMD
(ours)

Task Model Prec. Recall F1 Prec. Recall F1 Task Model Prec. Recall F1 Prec. Recall F1
DT 33.08 62.46 43.25 58.40 72.99 64.89 SVM 49.24 82.60 61.70 49.24 82.60 61.70Merge Conflict

Pred. (Ruby) RF 93.02 94.83 93.91 92.06 95.84 93.91
Spam
Email DT 46.38 61.62 52.93 46.20 61.35 53.40

DT 67.64 71.45 69.49 64.56 78.76 70.96 SVM 33.13 98.58 49.60 33.13 98.58 49.60Merge Conflict
Pred. (Python) RF 98.74 95.58 97.13 98.74 95.58 97.13

Hotel
Booking DT 18.96 99.92 31.87 18.96 99.92 31.87

DT 54.47 67.14 60.15 61.06 64.33 62.65 SVM 45.90 38.48 41.86 45.90 38.48 41.86Merge Conflict
Pred. (Java) RF 89.26 94.32 91.72 92.62 90.83 91.72

Bank
Marketing DT 33.33 35.92 34.58 33.33 35.92 47.83

DT 65.25 63.17 64.19 60.25 68.68 64.19 SVM 42.19 89.54 57.36 42.19 89.54 59.51Merge Conflict
Pred. (PHP) RF 85.33 92.96 88.98 83.33 95.45 88.98

Change
Job DT 20.28 44.21 59.51 20.28 44.21 59.51

DT 30.60 19.53 23.84 31.89 31.00 31.44 SVM 55.51 47.87 49.74 48.95 83.93 62.55Bug Report
Close Time Pred. RF 7.51 38.14 12.55 41.97 40.69 41.32

Water
Quality DT 19.50 50.43 28.13 22.75 87.83 36.14

Average 62.49 69.96 64.52 68.49 73.42 70.72 Average 36.44 68.66 47.10 36.99 70.50 51.92

analyzed the impact of di↵erent upweight value �up on MAPS in Section 3.5.3.

3.5 Evaluation

In this section, we present empirical evaluation results that aim to answer the following

research questions:

• RQ1: How does BGMD perform compared to the state-of-the-art ME rule generation

method? (Section 3.5.1)

• RQ2: Can MAPS help improve the performance of ML models? (Section 3.5.2)

• RQ3: How do di↵erent upweight values a↵ect the performance of the model when

using MAPS? (Section 3.5.3)

To answer first research question, we compared BGMD with the state-of-the-art ME rule

generation method EXPLAIN [46] on two SE tasks and five Kaggle [14] classification tasks.

And to answer the second question, we compared MAPS method with a popular oversam-

pling method (SMOTE) and a state-of-the-art upweight-sampling method (JTT) [117].

59

3.5.1 ME rule generation technique comparison

ME techniques need to ensure (1) high model ME coverage (quality) by the generated rules,

and (2) less rule generation time (e�ciency).

In terms ofME coverage metric, the subset data covered by generatedME rules should ensure

that: (i) the majority of the covered data is mispredicted by the given model (precision),

and (ii) the covered data should account for as many mispredicted data by given model as

possible (recall). Thus, both precision (equation 3.5) and recall (equation 3.6) are important

for a good ME coverage metrci. Therefore, when comparing MAPS with the state-of-the-

art ME rule generation technique EXPLAIN [46], we use F1 score as it is a harmonically

balanced value of precision and recall.

F1 = 2 ⇤ Precision ⇤Recall

Precision+Recall
(3.12)

In terms of ME rule generation e�ciency, we use rule generation time as the evaluation

metric, i.e., the less time spent in the rule generation process, the more e�cient the technique

is.

Evaluation Subjects. For evaluation, we selected the two models that performed best

in the study that proposed EXPLAIN [46], i.e., Decision Tree (DT) and Random Forest

(RF). To replicate the study conducted by Cito et al. [46] and to evaluate whether our

approach can be extended to Non-SE models, we also evaluated on two publicly available

models from Kaggle [14]. We select the Kaggle models that still have room for improvement.

Thus, we select Support Vector Machine (SVM) and Decision Tree (DT). Since our goal is

to compare the e↵ectiveness of various ME rule generation approaches, we did not conduct

hyper-parameter tuning so that the models have room for improvement and there are mis-

60

Table 3.4: Representative rule from each technique

Rule Prec. Rec. F1. Time(s)

BGMD

EXPLAIN

If line_removed>332 & developer_num>88
& parallel_changed_file_num>12
elseif developer_num>45.0 & commit_num >
229 & parallel_changed_file_num>12

Feature #
If line_removed > 332 & developer_num
> 45 & commit_num>372 &
parallel_changed_file_num > 12

elseif line_removed>332 & developer_num
> 88 & commit_num>229 &
parallel_changed_file_num>12

29

8

0.93 0.94 0.93 203.48

0.92 0.95 0.94 38.53

predicted data that can be identified by the ME rules. So we used default hyper-parameters

in all models. In total, there are 57 hyper-parameters for the three models used in this paper.

Due to space constraints, we list them in the companion website [11]. To remove the model

variance, we used five-fold cross-validation (train-80%, test-20%) and repeated it five times

with random seeds, and finally reported the median value, which is a common approach used

by other studies [37].

Three SE data were evaluated in EXPLAIN, which are private to the Meta company and inac-

cessible to us. So, we use two publicly accessible SE datasets: merge conflict prediction [137]

and bug report close time prediction [72]. For non-SE tasks, EXPLAIN was evaluated on

two publicly available datasets from Kaggle [14]. However, the datasets they evaluated are

too small to highlight the e�ciency or scalability of di↵erent ME rule generation techniques.

So we decided to use larger datasets (Spam Email, Water Quality, Bank Marketing, Change

Job, and Hotel Booking) to compare our approach with EXPLAIN. Details of these datasets

are in the companion website [10].

Results: Table 3.3 shows the results of applying EXPLAIN and BGMD on five SE data sets

and five non-SE data sets collected from Kaggle. In SE related models, BGMD outperformed

EXPLAIN on all three metrics. From Table 3.3, we can observe that BGMD improved the

explanation rule result’s precision from 62.49 to 68.49, recall from 69.96 to 73.42, and F1

61

score from 64.52 to 70.72 on average. In addition, we also got similar results on non-SE

models. On average, the precision of rules generated by BGMD is 36.99, recall is 70.5, and

F1 score is 51.92. However, the precision of EXPLAIN generated rules is 36.44, recall is

68.66, and F1 score is 47.1.

For merge conflict prediction models, the BGMD ’s F1 score improves on three out of four DT

learners. For example, On Ruby data, BGMD ’s F1 score is 64.89, but EXPLAIN ’s F1 score is

43.25. However, for RF-based merge conflict prediction models, the performance of BGMD

and EXPLAIN are similar since EXPLAIN already achieved a very high F1 score (close

to 0.9), leaving small room for improvement. For bug report close time prediction models,

EXPLAIN got 23.84 F1 score with DT learner and 12.55 with RF learner. However, BGMD

received 31.44 and 41.32, respectively. In summary, BGMD generated rules from a smaller

number of biased features and performed better than EXPLAIN in terms of rule coverage.

Similar results can be observed for the Kaggle dataset in Table 3.3.

In addition, one thing to note is that both BGMD and EXPLAIN take an input parameter

that denotes target recall (i.e., percentage of mispredicted instances covered by generated

explanation). Thus, the generated rules prioritize improving the recall values, which hurts

the precision score. This is visible in table 3.3 where the average recall is 68.66 for EXPLAIN

for non-SE tasks, but its precision is only 36.44. The same is visible for SE tasks. This holds

true also for BGMD.

Figure 3.3 and 3.4 present the rule generation time comparison between BGMD and EX-

PLAIN. The average ME rule generation time by BGMD on SE models was 34 seconds.

In contrast, the average rule generation time by EXPLAIN was 238 seconds. The results

are significantly di↵erent (Mann-Whitney test, p-value<5.02e-14) [126], and the e↵ect size

is large (Cohen’s D = 9.28) [50]. In terms of non-SE models, BGMD spent four seconds

to generate ME rules, but EXPLAIN needed 60 seconds in average. The results are statis-

tically significantly di↵erent for BGMD (Mann-Whitney test, p-value<5.02e-14) [126], and

62

Figure 3.3: SE models (“MCP” represents Merge Conflict Prediction; “BRCTP” represents
Bug Rreport Close Time Prediction).

Figure 3.4: Non-SE models (“WQ” represents Warter Quality; “CJ” represents Change Job;
“BM” represents Bank Market; “HB” represents Hotel Booking; and “SE” represents Spam
Email).

63

the e↵ect size is large (Cohen’s D=9.28) [50].

Table 3.4 provides an illustrative overview of the representative ME rules for merge con-

flict prediction model produced by BGMD and EXPLAIN. BGMD spent 38.53 seconds to

generate the rules, but EXPLAIN needed 203.48 seconds. This happened because BGMD

induced rules from the identified eight biased features out of 29. In contrast, EXPLAIN tried

to infer rules from all 29 features. Furthermore, after running a large number of models,

we observed that the rules inferred by EXPLAIN contain the same features considered by

BGMD.

3.5.2 E↵ectiveness of Mispredicted Area Upweight Sampling

In this section, we present the results to answer the research question: Can MAPS fix the

model’s performance? We present the evaluation results on five SE tasks that were used in

RQ1 in table 3.5. Due to space constraints, we report the evaluation results for non-SE tasks

in the companion website [6]. We used models trained with ERM as the baseline, which is

named as “default” in table 3.5. In addition, we used oversampling method SMOTE and

upweight sampling method JTT for comparison.

To compare SMOTE, JTT, and MAPS performance, it is important that these methods

should not only improve the model’s performance on mispredicted data, but also ensure

model’s performance on all data. Thus, in table 3.5, we present each method’s performance

on both Mispredicted data and All data. To remove the model variance, we used 5 fold

cross-validation (train-80%, test-20%) and repeated 10 times with random seeds and finally

reported the median, which is a common approach used by other studies [37].

Table 3.6 summarizes the win times of each method on various metrics in table 3.5. If more

than one techniques get the highest value on a metric, we consider they all win for that metric.

64

Table 3.5: “Default” denotes o↵-the-shelf model; “SMOTE” is trained with SMOTE [41];
“JTT” is trained with JTT [117]; “MAPS” is trained with this paper proposed algorithm.
The darker the color, the higher the value.

Mispredicted Data All data
Task Model Algo

Pre. Rec. F1. Pre. Rec. F1
Default 0.54 0.57 0.55 0.63 0.68 0.64
SMOTE 0.51 0.52 0.52 0.7 0.68 0.69
JTT 0.53 0.55 0.55 0.72 0.7 0.71

DT

MAPS 0.56 0.58 0.57 0.78 0.79 0.79
Default 0.71 0.49 0.58 0.67 0.81 0.71
SMOTE 0.62 0.69 0.65 0.69 0.9 0.78
JTT 0.72 0.6 0.59 0.7 0.86 0.77

Merge
Conflict
Predic.
(Ruby)

RF

MAPS 0.72 0.52 0.6 0.7 0.83 0.76
Default 0.56 0.59 0.57 0.7 0.74 0.72
SMOTE 0.56 0.61 0.58 0.7 0.75 0.73
JTT 0.58 0.58 0.58 0.7 0.72 0.7

DT

MAPS 0.58 0.62 0.6 0.75 0.76 0.75
Default 0.75 0.57 0.65 0.82 0.81 0.81
SMOTE 0.64 0.73 0.68 0.78 0.81 0.79
JTT 0.75 0.56 0.64 0.82 0.84 0.83

Merge
Conflict
Predic.
(Java)

RF

MAPS 0.76 0.58 0.66 0.83 0.86 0.84
Default 0.44 0.46 0.44 0.6 0.59 0.59
SMOTE 0.42 0.47 0.46 0.55 0.55 0.55
JTT 0.45 0.46 0.45 0.57 0.61 0.61

DT

MAPS 0.46 0.48 0.48 0.64 0.62 0.63
Default 0.69 0.37 0.48 0.74 0.59 0.66
SMOTE 0.54 0.55 0.55 0.63 0.73 0.69
JTT 0.68 0.36 0.47 0.75 0.59 0.67

Merge
Conflict
Predic.
(Python)

RF

MAPS 0.69 0.38 0.49 0.78 0.61 0.72
Default 0.52 0.54 0.53 0.73 0.82 0.77
SMOTE 0.5 0.56 0.53 0.72 0.76 0.74
JTT 0.54 0.55 0.54 0.72 0.71 0.71

DT

MAPS 0.53 0.56 0.55 0.76 0.86 0.81
Default 0.7 0.5 0.58 0.7 0.88 0.75
SMOTE 0.59 0.69 0.64 0.71 0.95 0.84
JTT 0.71 0.51 0.59 0.65 0.86 0.74

Merge
Conflict
Predic
(PHP)

RF

MAPS 0.72 0.52 0.61 0.73 0.91 0.82
Default 0.69 0.66 0.68 0.71 0.67 0.69
SMOTE 0.65 0.72 0.69 0.7 0.73 0.72
JTT 0.69 0.71 0.7 0.74 0.73 0.73

RF

MAPS 0.71 0.7 0.71 0.75 0.71 0.73
Default 0.8 0.63 0.69 0.8 0.76 0.78
SMOTE 0.78 0.7 0.73 0.76 0.84 0.81
JTT 0.82 0.64 0.72 0.81 0.76 0.78

Bug
Report
Close
Time
Predic. XGB

MAPS 0.84 0.66 0.74 0.81 0.78 0.8

Table 3.6: Summarized information of comparing MAPS with SMOTE [41], JTT [117] based
on the result in table 3.5

Mispredicted data All data
Won on
Prec.

Won on
Rec.

Won on
F1

Won on
Prec.

Won on
Rec.

Won on
F1

SMOTE 0 6 4 0 6 3
JTT 2 0 0 2 1 1

MAPS 9 5 6 10 4 6

65

For example, MAPS received highest precision on all ten models, and JTT on two. However,

in terms on Recall, SMOTE received best performance on six, but MAPS got the highest

recall on four models. Since SMOTE balances the data via synthesizing instances in minority

groups, the trained model is biased towards the data that has been “duplicated” many times,

i.e., the previous minority data. Moreover, the new trained model performs worse on the

majority group that performed well before the retraining. This results in SMOTE gaining in

recall but lowering the precision. Similar a↵ect has been observed in prior studies involving

SMOTE [41, 116, 134]. While SMOTE outperforms MAPS in terms of recall, MAPS has

better combined results in terms of the overall performance measured using F1. Not only

does it improve the model’s performance on mispredicted data, it doesn’t corrupt data that

was previously correctly predicted. Based on the evaluation results shown in table 3.6,MAPS

won more times compared to SMOTE (Mann-Whitney test, p-value<3.8e-2) [126] and JTT

(Mann-Whitney test, p-value < 2.5e-4) [126].

3.5.3 Impact of Upweight Value on MAPS

MAPS algorithm contains an important hyper-parameter: upweight value (�up) in equa-

tion 3.11, which is a number multiplied by the ME rule identified instances. The higher the

upweight value, the retrained model pays more attention to the identified instances. How-

ever, the best upweight value has to be empirically determined. Thus, we investigated the

impact of weight hyper-parameter on MAPS algorithm.

Figure 3.5 shows four representative F1-score change patterns when increasing the upweight

value in MAPS. Note that when the upweight value is equal to one, all data have the same

weight during model training. So for each figure in Figure 3.5, the left most pair of dots is

the result for the default model without using MAPS. When the upweight value is equal to

five, the instances identified by ME rule have fives times weight than others during model

66

training. The higher the upweight value, the trained ML model pays more attention to the

instances that identified by ME rule generation tools. In each subfigure, we present the

model’s F1 score changes when using MAPS for all data and mispredicted data to show the

various upweight value’s impact when using MAPS.

Figure 3.5(a) is the F1 score changes for all data and mispredicted data in the Merge Conflict

Prediction (Ruby) dataset. The chart shows that F1 score grow gradually to a plateau.

Figure 3.5(b) is the F1 score changes for the Hotel Booking dataset, and both F1 scores

come to a plateau faster than Figure 3.5(a). These two patterns are the most common

patterns when increasing upweight value in MAPS algorithm. In addition, we also observe

other F1 score change patterns. Such as Figure 3.5(c), as the upweight value increases,

the mispredicted data’s F1 score increases, but all data’s F1 score only changes a little.

Figure 3.5(d) shows another interesting pattern. When the weight multiply is one, the F1

score of all data is higher than mispredicted data. But their performance drops drastically

when the upweight value is equal to three, and all data’s performance is even worse than

mispredicted data. Then, as the weight increases, the two F1 scores begin to grow together

and exceed the initial value until they enter a platform together. Figure 3.5 show the most

common F1 score change patterns. Although their patterns are di↵erent, main trends are

similar to the F1 scores increase and plateau after a particular point.

67

(a) MCP. (Ruby) (b) Hotel Booking

(c) BRCTP (d) Spam Email

Figure 3.5: F1 score change patterns when increasing weight times value in MAPS

68

3.6 Discussion

In this section, we first discuss why our proposed BGMD could perform better than the state-

of-the-art model ME and the benefits of using MAPS to improve the model’s robustness.

3.6.1 Why BGMD works better?

Focus only on useful features. BGMD deduces the ME rules only on biased features

instead of “blindly” trying on all features. For example, in table 3.4, BGMD generated

rules from eight biased features. In contrast, EXPLAIN generated rules from 29 features.

Although EXPLAIN tried to explain misprediction using 29 features, their generated ex-

planation rules were based on the same eight features that BGMD focused on. A similar

situation happened on all evaluated models that EXPLAIN tried to explain mispredictions

using all available features, but the constituent features for its generated rules were all con-

sidered by BGMD.

Make more attempts. Cito et al. [46] showed that with more granular predicates on

features, the generated ME rules can get better results on misprediction coverage but need

more computation time. Thus, given the same computation time, BGMD is able to de-

duce better ME rules. BGMD ignores many features that are not helpful to explain the

mispredictions. For example, in Spam Email dataset, it contains 232 features, and BGMD

only focuses on 23 features associated with the corresponding model’s mispredictions. Thus,

shown in Figure 3.4, EXPLAIN spent 180.79 seconds to generate ME rules. In contrast,

BGMD only took 15.74 seconds.

69

3.6.2 Why MAPS is a good method to fix models?

Competitive performance. According to our empirical evaluation results in table 3.6,

MAPS outperformed the popular oversampling method SMOTE [41] and state-of-the-art

method JTT [117] on ten models in terms of precision and F1 score on mispredicted data.

Thus, MAPS is a competitive method to improve the model’s robustness.

Uncompromising performance for all data: Table 3.5 shows MAPS not only improved

the model’s performance on mispredicted data but also on all data. In contrast, although

JTT used a similar upweight sampling approach as MAPS, it reduced the performance of

four models on all data. We attribute our success in this regard to making retrained model

pay more attention to the under-represented features instead of focusing more on particular

mispredicted instances. Thus, MAPS can improve the model’s misprediction performance

without compromising all data prediction performance.

No extra computation: Table 3.6 shows that SMOTE also did well in helping the model fix

performance on mispredicted data, especially on improving recall. Furthermore, if possible,

adding more manually annotated data in minority groups might improve model performance

even more than SMOTE. However, adding more data means more computation during model

training. One benefit of MAPS is that it does not require extra annotated or synthesized

data, which does not add computation overhead during model training. Note that MAPS

is not an alternative to SMOTE, but a complement. Because table 3.6 shows that SMOTE

performed best on improving the model’s recall on both mispredicted and all data.

Model agnostic: MAPS entirely focuses on identified data groups that are prone to be

mispredicted to fix the model’s performance on them. There are works where optimization

algorithms have been used to modify models [46]. These works are model specific and, most

of the time, combined with internal model logic. Thus MAPS is much more general as it

can be used for any kind of model.

70

3.7 Related Work

The study in the paper relates to several topics below.

Debugging ML Models. The goal of debugging a model is to identify the specific groups

of data on which ML model is likely to fail and then fix the model’s performance on identified

data. Tongshuang et al. [188] presented an error analysis for NLP models called Errudite.

However, Errudite requires users to tune the parameters in order to perform error analyses.

On the contrary, our proposed method automatically identifies the groups of data that

are prone to be mispredicted and uses a simple and e↵ective method to fix the model’s

performance on them. Kim et al [96] is close to our work. However, their approach is

tailored to Computer Vision, and adopting their approach for text/source code is not trival

due to the di↵erence between CV and text/source code. They can create permutations of

features (i.e., weather, car model, etc.). If the object of interest remains intact, they can

create new images without changing the meaning. In our case, the meaning is changed if

the context is changed.

Select data for upweight sampling. Increasing part of data instance’s weight dur-

ing model training has been proved as an e�cient approach to improve model’s perfor-

mance [35, 68, 51, 117]. For instance, Karan et al. [68] isolates features that di↵erentiate

subgroups within a class and then augment the minority groups. Jonathon et al. [35] tweaks

L2 regularization to produce the correct weighting e↵ect on minority groups. Fereshte et

al. [94] improves fairness and robustness by halving the loss across all the groups. Another

group of studies identifies the groups based on fairness [73, 186, 22, 94]. In addition, JTT

identifies mispredicted instances from a validation set through a trained model and then

retrains a model via upweighting only on mispredicted instances. In other words, JTT is

trying to make the retrained model focus more on mispredicted instances in the first model.

In contrast, our approach identifies the groups of data that tend to be mispredicted because

71

of some under-represented features during model training. Then, we increase these identified

data weights during model training and make retrained models pay more attention to those

under-represented features.

3.8 Threats to Validity

We have taken care to ensure that our results are unbiased and tried to eliminate the e↵ects

of random noise, but it’s possible that mitigation strategies may not have been e↵ective.

Bias due to dataset: Our findings may not generalize to all software projects since we

evaluate using 10 datasets. However, all these datasets are publicly available and have

been used in previous studies. Moreover, r considered projects are large and significantly

di↵erent in size, programming languages, complexity. So we believe that the selected projects

adequately address the concern.

Bias due to models: This work is based on binary classification and tabular data, which

are very common in ML software. We select the models that have been used by the papers

that introduced the dataset. In the future, we will test how our method performs in complex

neural network models.

3.9 Conclusion

We propose an e�cient model-agnostic technique for generating useful and interpretable mis-

prediction explanations for machine learning models. We demonstrate through case studies

that our proposed bias-guided misprediction explanation technique is significantly more ef-

ficient than the state-of-the-art technique and generates explanation rules that have higher

misprediction explanation capability. In addition, we introduce a mispredicted area upweight

72

sampling algorithm to improve the model’s robustness via fixing the model’s performance

on incorrectly predicted instances containing under-represented features. Our results show

that our proposed method outperforms the state-of-the-art techniques. We plan to conduct

studies on a broader range of tasks and datasets in the future.

73

Chapter 4

Attention Bias in Transformer-based

Models for Software Engineering

4.1 Introduction

Pre-trained Language Models (PLMs) such as BERT [54], GPT [145], and T5 [146] have ex-

hibited notable performance gains in various Natural Language Processing (NLP) tasks [49,

107, 192]. This trend has been further extended to software engineering applications, in-

cluding but not limited to code summarization [25, 122, 24], code translation [57, 142, 179],

and code search [59, 71, 81]. These models are built on the Transformer network architec-

ture [168], featuring a self-attention mechanism that learns the weight and interdependence

of attention among tokens within an input sequence.

The self-attention mechanism uses attention weight to capture inter-relationships and long-

range dependencies among tokens in a sequence. Prior research has investigated how at-

tention weights are distributed across di↵erent hidden layers of the PLM [170, 59, 71] and

di↵erent code syntax [197, 177]. In the most recent work, Zhang et al. [197] identified that

74

CodeBERT [59] pays more attention to certain types of tokens and statements such as key-

words and data-related statements.

To date, research on attention weight has concentrated on PLMs. In current practice, the

prevalent approach is to utilize the pre-training and then fine-tuning paradigm, wherein

PLMs are fine-tuned to attain optimal performance in downstream tasks. Despite this

widespread usage, the alteration of attention weight distribution during fine-tuning and

its distinction between correct and incorrect prediction groups remains poorly understood.

Therefore, understanding this could lead to the exploration of innovative techniques to lever-

age this information and enhance the overall performance of fined-tuned PLMs.

This paper details our analysis of attention-weight assignments in the fine-tuned CodeBERT.

Our research indicates that fine-tuned CodeBERT exhibits a discernible preference towards

certain syntax tokens, including identifiers, modifiers, and Abstract Syntax Tree (AST)

elements, such as method signatures when making correct predictions. Based on this ob-

servation, we propose an attention-guiding mechanism that promotes the allocation of more

weight by attention heads towards these crucial syntax tokens and AST elements to improve

the performance of the fine-tuned model.

A similar approach is presented by Deshpande et al. [53] for natural language text, where

a limited number of generic pre-defined attention patterns are proposed to guide the self-

attention heads towards paying more attention to global and local positions, such as the

first, last, previous, and next tokens. However, due to the inherent di↵erences between

programming languages and natural languages, their proposed attention guiding patterns

may not be suitable for software engineering tasks. Therefore, we introduce a set of specific

syntax attention guiding patterns for programming language PLMs that encourage fine-tuned

models to pay greater attention to critical source code syntax tokens and AST elements.

Figure 4.1 illustrates the attention-guiding mechanism we developed for fine-tuning source

75

[CLS] sum = num1 + num2; [SEP]

Pre-trained
model

Pre-trained
model

No attention guiding Attention guiding

... ...

Self Learned Attention Guided Learned Attention

Figure 4.1: Illustration of attention guiding mechanism

code PLMs. Specifically, the left-hand side of Figure 4.1 shows the input source code being

fed into a pre-trained model for fine-tuning without utilizing any attention-guiding tech-

niques. The resulting attention weight vectors are entirely self-learned, and darker colors

indicate higher attention weight assignments. Based on the findings of Sharma et al. [158],

self-learned attention heads tend to assign a substantial proportion of attention weight to

delimiters added by the tokenizer, such as [CLS] and [SEP], which represent the first and

last positions in the learned attention weight vectors. Conversely, the right-hand side of

Figure 4.1 shows the same source code input, but with the attention-guiding mechanism in

place. This mechanism aims to encourage the self-attention heads to assign higher attention

weights to pre-defined critical tokens.

In this study, we aim to investigate following research questions:

RQ1: How does the attention weight assignment of fine-tuned CodeBERT vary

in relation to program syntax tokens between correct and incorrect predictions?

RQ2: How the attention weight assignment of fine-tuned CodeBERT vary in

76

relation to AST elements between correct and incorrect predictions?

RQ3: What is the e�cacy of the proposed syntax pattern attention guiding

mechanism on software engineering tasks?

RQ4: Among the syntax patterns considered in this study, which pattern yields

the most notable impact on the downstream task performance?

Our study makes several significant contributions to the field of PLMs for software engineer-

ing:

• Firstly, we provide the first empirical evidence of attention weight bias towards source

code syntax tokens and AST elements in fine-tuned language models.

• Secondly, we propose a novel attention-guiding technique, SyntaGuid, which enables

PLMs to focus attention weight on critical source code syntax tokens and AST ele-

ments.

• Thirdly, we demonstrate the e↵ectiveness of the proposed attention guiding mechanism

across multiple software engineering datasets and tasks, establishing its potential as a

generalizable solution for improving fine-tuned PLMs performance.

The remainder of the paper is structured as follows. Section 2 describes the necessary

background. Section 3 presents details of the empirical analysis. Section 4 presents our

proposed approach SyntaGuid. Section 5 places results in the broader context of work to

date and Section 6 outlines the implications for practitioners and researchers. Section 7

presents the related works. Section 8 lists the threats to validate our results. Section 9

concludes with a summary of the key findings and an outlook on our future work.

77

4.2 Background

In this section, we explain the necessary backgrounds.

4.2.1 Pre-training Language Model

Given a corpus C, each sentence (or code snippet) is first tokenized into a series of tokens.

Prior to pre-training, the model takes the concatenation of two segments as the input, defined

as c1 = {t1, t2, ..., tn} and c2 = {w1, w2, ..., wm}, where n and m denote the lengths of the two

segments, respectively. The two segments are concatenated with a special separator token

[SEP]. Furthermore, the first and last tokens of concatenated sequence are padded with a

special classification token [CLS] and an ending token [EOS], respectively. Formally, the

input of each training sample can be represented as follows:

s = [CLS], t1, t2, ..., tn, [SEP], w1, w2, ..., wm[EOS].

The Transformer encoder is then used for pre-training with two self-supervised learning

objectives: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In

MLM, a certain percentage of the tokens in an input sentence is randomly selected and

replaced with the special token [MASK]. Specifically, BERT chooses 15% of the input tokens

for possible replacement, and among them, 80% are replaced with [MASK], 10% remain

unchanged, and the remaining 10% are randomly replaced with tokens from the vocabulary.

The purpose of MLM is to train the model to predict the masked tokens based on the

surrounding context. For NSP, it is modeled as a binary classification task to predict whether

two segments are consecutive. Positive and negative training examples are generated based

on the following rules: (1) if two segments are consecutive in a document, they are considered

78

positive examples; (2) otherwise, paired segments from di↵erent documents are considered

negative examples.

4.2.2 CodeBERT

Recently, self-supervised learning techniques using MLM have gained popularity for natural

language understanding and generation [136, 181, 118]. Similarly, in the field of software

engineering, several pre-trained code models have been proposed for program comprehension,

code generation and etc [9, 8, 2]. In this study, we have chosen to use the CodeBERT [59]

pre-trained model since this is one of the state-of-the-art code models for code representation

learning.

CodeBERT pre-trains the model on two tasks: MLM and Replaced Token Detection (RTD).

In MLM, two random tokens from the input pair of code and natural language comments are

masked, and the model aims to predict the original token from a large vocabulary. The RTD

task involves two generators and a discriminator. The generators predict the original token

for the masked token, while the discriminator predicts whether the tokens are original or not.

After pre-training, CodeBERT can be fine-tuned on downstream tasks, making it a versatile

model for a wide range of software engineering applications, such as defect detection [122],

clone detection [7, 122], code generation [8, 9, 136] etc.

4.3 Empirical Analysis for Attention Weights

In this section, we present our research methodology, experimental setup, and attention bias

analysis results of fine-tuned CodeBERT. The main objective of this empirical investigation is

to ascertain the extent to which CodeBERT exhibits disparate attention weights on distinct

positions in the source code syntax during both successful and unsuccessful predictions.

79

4.3.1 Study Design

Multi-head attention is a fundamental mechanism in Transformer-based models for language

modeling, which enables the quantification of token importance in a given sentence. This

attention distribution facilitates the learning and representation of a sentence by assigning

higher weights to tokens that carry greater significance. Extracting useful information from

PLMs requires an understanding of the important tokens within the code. As source code

can be analyzed at di↵erent levels of granularity, including tokens, statements, and AST

elements, this study focuses on the atomic unit of source code, i.e., syntax tokens and AST

elements. Examining attention weights at this level of granularity can provide insights into

CodeBERT’s performance with respect to the assigned attention on larger code blocks. To

this end, we seek to answer the following research questions through our analysis:

• RQ1: How does the attention weight assignment of fine-tuned CodeBERT

vary in relation to program syntax tokens between correct and incorrect

predictions?

• RQ2: How the attention weight assignment of fine-tuned CodeBERT vary

in relation to AST elements between correct and incorrect predictions?

To address our research questions, we utilize the attention weights from the Transformer

layers of CodeBERT after fine-tuning to measure the importance of each token. We sub-

sequently explore whether the collected attention weights exhibit significant di↵erences be-

tween correct and incorrect predictions.

80

Layers Layers Layers Layers

At
te

nt
io

n
w

ei
gh

ts
At

te
nt

io
n

w
ei

gh
ts

Figure 4.2: Empirical results for syntax token assigned attention weights comparison between
correctly predicted and mis-predicted groups for cloze test.

Layers Layers Layers Layers

At
te

nt
io

n
w

ei
gh

ts

Figure 4.3: Empirical results for abstract syntax tree elements assigned attention weights
comparison between correctly predicted and mis-predicted groups for cloze test.

4.3.2 Measuring attention weights

Our target PLM CodeBERT consists of 12 self-attention layers, each containing 12 heads

that compute attention weights for the same token. To yield a comprehensive estimate of

the attention weight for each token, we adopt an approach that aggregates the attention

scores across all layers and heads. This approach is consistent with prior studies in the

field [158, 170, 123, 92].

81

4.3.3 Experiment tasks

We chose to evaluate two code understanding tasks, namely code clone detection and cloze

test, as well as one code generation task, named code translation. Below is the comprehensive

description of each task and its associated dataset used in our study.

Task 1: Code clone detection. Clone detection is a crucial task in software engineering,

aimed at identifying instances of duplicate code within a software system. Such code dupli-

cation can arise from ad-hoc code reuse practices, such as copy-pasting, and can result in

numerous negative e↵ects on the software development process [156]. To address this issue,

binary classification algorithms are used to classify code pairs as either equivalent or not.

For the purposes of our study, we employ the BigCloneBench dataset, which is a large-scale

benchmarking dataset for clone detection tasks [161]. This dataset contains 6 million true

clone pairs and 260 thousand false clone pairs, and covers ten di↵erent functionalities or

”cases”. The benchmark can be found at the GitHub repository [7].

Task 2: Cloze test. Cloze tests involve predicting the correct answer for a masked word

or phrase given the context. This method has been extended to the source code domain

in the CodeXGlue [122] dataset, with two cloze testing datasets, namely ClozeTest-maxmin

and ClozeTest-all, each comprising instances of masked code functions, their corresponding

docstrings, and the target words to be predicted. We focus our study on the more complex

ClozeTest-all dataset, which includes a larger set of 930 target words as compared to only two

in ClozeTest-maxmin. The CodeXGlue dataset has been introduced by Microsoft Research

and encompasses six di↵erent programming languages. The dataset can be accessed in the

CodeXGLUE repository [122].

Task3: Code translation. Code translation aims to migrate legacy software from one pro-

gramming language and platform to another [83]. To this end, we rely on the CodeXGLUE

dataset, which has been widely adopted in recent research e↵orts [122]. Specifically, we uti-

82

Table 4.1: Details of datasets of evaluate tasks

Task Dataset Size Language
Cloze test CodeXGlue 50k Java
Code Clone Detection BigCloneBench 901k Java
Code Translation CodeTrans 11.5k Java-C#

lize the Code2Code translation dataset, which involves the translation of Java code to its

equivalent in the C# programming language. This dataset has been curated from publicly

available repositories such as Lucene [3], POI [4], and Antlr [18], with a focus on identifying

parallel functions between the two languages. Furthermore, to ensure the quality of the

dataset, duplicates and functions with empty bodies have been removed in Code2Code.

Table 4.1 summarizes the details of the datasets used in the evaluation for the three above

mentioned tasks.

4.3.4 Selected syntax types and AST structures

Drawing upon the prior work by Aljehane et al. [26], which investigated the variance in atten-

tion behavior between expert and novice programmers when perusing source code, our study

scrutinizes syntax tokens and AST that bear relevance to software development. Specifically,

we assess the salience of various syntax tokens, namely identifiers, modifiers, operators, data

types, separators, keywords, strings, and Booleans. To extract these syntax tokens from the

input source code, we utilize Javalang [13], a well-known Java syntax collection library. Fur-

thermore, we explore the elements of AST, such as method signature, if-else elements, while

elements, and return elements, in determining the attention behavior of fine-tuned Code-

BERT. To identify these AST elements, we employ a commonly used Java AST structure

identification library, tree-sitter-java [12].

83

[CLS] sum = num1 + num2; [SEP]

['[CLS]', 'identifier', 'operator', 'identifier', 'operator', 'identifier', 'separator', '[SEP]']

(a) [CLS] (b) [NEXT] (c) Identifier syntax tokens (d) Operator syntax tokens

Figure 4.4: Example attention guiding patterns for the example code snippet “<s> sum
= num1 + num2; <\s>”, whose syntax type list is: [[CLS], identifier, operator, identifier,
operator, identifier, separator, [SEP]]. Note that the first two patterns are proposed in [53]
for natural language, and the last two syntax token patterns are proposed in this study for
programming language.

4.3.5 Attention weight analysis

We start by fine-tuning three distinct downstream models for the aforementioned tasks with

their respective original training datasets and hyper-parameters used in the CodeXGLUE [122]

benchmark. All hyper-parameter details are in our study’s companion website [5]. Sub-

sequently, we partitioned the prediction data into two groups based on the model’s per-

formance: correct and incorrect predictions. We then analyze the attention assigned to

each syntax token and AST element and compare the attention weights between the two

aforementioned groups. Since we perform multiple tests, we account for multiple hypoth-

esis corrections and adopt the Bonferroni correction [33], resulting in an adjusted p-value

of 0.01. To determine whether significant di↵erences exist between the correctly and incor-

rectly predicted groups for all syntax tokens and AST elements, we utilize the non-parametric

Mann-Whitney test [126], considering that our population is not normally distributed.

4.3.6 Attention bias analysis results

Figure 4.2 and Figure 4.3 visualize the attention weights assigned by 12 attention heads in 12

layers to di↵erent syntax tokens and AST elements for cloze test. Due to space constraints,

84

we provide the visualization of the attention weights for the other tasks in the companion

website [5]. The triangle t symbol represents the average attention values assigned by

self-attention heads to the syntax tokens of correctly predicted instances, and the solid line

represents the average attention values of all 12 heads in 12 layers. On the other hand,

the circle l symbol represents the average attention values assigned to the syntax tokens of

mispredicted instances, and the dashed line represents the average attention values of all 12

heads in 12 layers.

From Figure 4.2, we can infer that the self-attention heads exhibit a bias toward assigning

higher attention weights to certain syntax tokens, such as Identifier, Modifier, Operators,

Basic Datatype, Separator, Keywords, and String, when the fine-tuned model successfully

makes predictions on the cloze test. However, we do not observe any significant di↵erence in

attention weights assigned to Boolean syntax tokens. To evaluate the statistical significance

of these di↵erences, we performed a paired t-test [126] on the attention weights assigned to

each syntax token by self-attention heads between the correctly and incorrectly predicted

groups. Our analysis revealed that self-attention heads assign attention weights that are

significantly di↵erent on identifier tokens (p-value ¡ 2.13e-20), modifier tokens (p-value ¡

1.12e-16), operator tokens (p-value ¡ 4.82e-21), basic data type tokens (p-value ¡ 4.16e-13),

separator tokens (p-value ¡ 3.37e-17), keyword tokens (p-value ¡ 5.06e-16) and string tokens

(p-value ¡ 1.73e-08), but not on boolean tokens (p-value ¡ 0.31). We see similar results for

the other two tasks (Code Clone detection and Code translation).

In terms of AST elements, Figure 4.3 illustrates that self-attention heads exhibit a greater

attention weight on specific AST elements, such as method signatures, if else elements,

and return elements, when the CodeBERT model is able to successfully make predictions.

Statistical analysis was conducted to investigate the di↵erence in attention assigned by the

self-attention heads to these AST elements between the correctly and incorrectly predicted

instances. The results indicate that there is a significant di↵erence in attention assigned

85

to method signatures (p-value ¡ 4.70e-26), if else elements (p-value ¡ 2.43e-12), and return

elements (p-value ¡ 0.92e-3). However, no significant di↵erence in attention assigned to

while elements were observed (p-value ¡ 0.36). Similar findings were also obtained for the

code clone detection and code translation tasks, and the detailed results can be found in the

companion website [5].

CodeBERT’s self-attention heads assign significantly greater attention weights to method

signatures, if else elements, and return elements AST elements.

4.4 SyntaGuid: Syntax Pattern Attention Guiding

In this section, we present our novel approach for fine-tuning Transformer-based models on

source code by utilizing attention guiding. Specifically, we begin by formally defining the

MLM set up within the context of Transformers [168] and proceed to describe the atten-

tion guiding technique. Subsequently, we introduce our proposed Syntax Pattern Attention

Guiding (SyntaGuid) technique, which leverages the syntactic structure of source code to

guide the attention mechanism during fine-tuning.

4.4.1 Masked Language Modeling (MLM)

The application of Transformers in sequence-to-sequence prediction tasks involves training

on a dataset D comprising pairs of sequences x and their corresponding labels y. In the case

of MLM, the input sequence x1, x2, ..., xn of length n consists of individual tokens, and the

output labels y1, y2, ..., yn are identical to the input sequence, i.e., yi = xi. A certain fraction

k of the input tokens, randomly selected, are masked by replacing them with a special

¡MASK¿ token. These masked indices are grouped together in a set C. The MLM objective

is defined as a cross-entropy loss on the model’s predictions ŷi at the masked locations j 2 C

86

and is employed to optimize all the parameters ✓ of the model by minimizing the loss:

LMLM(x, y) = �
X

j2c

logP (yj|x; ✓) (4.1)

The Transformer architecture used for MLM involves l layers, each containing h self-attention

heads. Let sk be the input activations to layer k of this model, with |sk|= n. The initial

input activations s1 are equivalent to the input sequence x, such that s1 = s = x. For every

position p in the output, each attention head in layer k induces a probability distribution

over all positions in the input sk. Specifically, the attention activations for a single head,

denoted as a function of s and described by Equation 1 in Vaswani et al. [168], can be

expressed as follows:

H(s) = softmax(
QKT

p
dk

) 2 Rn⇥n (4.2)

the query and key matrices of dimension dk are denoted by Q and K, respectively. For

notational convenience, we drop the dependence on the input sequence s in the following

sections. The attention paid by token p in the head’s output layer to token q in the head’s

input layer is represented by the scalar H(s)[p, q].

4.4.2 Syntax Pattern Attention Guiding

The technique of attention guiding has been introduced to encourage self-attention heads

to allocate more attention to predefined important positions of tokens [53]. This approach

87

can function as an auxiliary objective to regularize the fine-tuning process of downstream

tasks [53, 174]. To guide an attention head, a mean squared error (MSE) loss is applied to

H using a pre-defined pattern P(s) ⌘ P 2 Rn⇥n, where ||·||F denotes the Frobenius norm:

Lag = ||H�P||F (4.3)

Figure 4.4 presents four examples of attention guiding patterns for a given code snippet.

Specifically, Figure 4.4-(a) illustrates the attention guiding pattern that makes self-attention

heads focus on the first [CLS] token. On the other hand, Figure 4.4-(b) depicts the pattern

that guides self-attention heads to focus on the next tokens.

In Section 4.3, our analysis of attention weights reveals a bias in the self-attention heads of

CodeBERT towards certain syntax tokens, such as identifiers and modifiers, as well as specific

AST elements like method signatures. In order to capitalize on this insight and encourage

the self-attention heads to focus more on critical programming language information, we

introduce two sets of syntax attention guiding patterns: syntax token attention patterns and

AST elements patterns.

• Syntax token attention patterns guide self-attention heads focusing on specific

syntax type token positions, such as idetifier, keywords, operator, data types in a given

source code sequence. As an example:

PSyntax[p, q] =

8
><

>:

1 qSyntax = Identifier

0 otherwise
(4.4)

where qtype is the syntax type of source code token q. Two attention guiding patterns

that focus on identifier and operator syntax tokens are presented in Figure 4.4-(c) and

88

(d), respectively.

• Abstract syntax tree elements attention patterns guide attention heads focusing

on token positions belong to particular AST elements, such as method signatures, if

else elements, and return elements. As an example:

PAST [p, q] =

8
><

>:

1 qAST = Return

0 otherwise
(4.5)

where qast belongs to the return elements in AST for input source code sequence.

SyntaGuid Loss Function. We apply the attention loss in Equation 4.3 to each head in

each layer to obtain the overall source code syntax attention guidance (SAG) loss:

LSAG(x) =
X̀

k=1

hX

j=1

Lag ⇥ I(k, j) (4.6)

where I(k, j) denotes an indicator function which is 1 only if the jth head in layer k is being

guided.

In principle, this loss permits any choice of patterns for each Pkj. However, for the sake of

simplicity in our experiments, we guide a specific head number to the same pattern across

all layers. That is, Pj is constant for all layers. We use the gradients from this loss to

update all the model’s parameters, including the feedforward and input embedding layers.

It is important to note that this loss depends solely on the input x and not on the labels y.

Finally, the overall optimization objective is obtained by combining the attention guidance

(AG) loss with the MLM loss:

89

L(✓) = E(x,y)D[LMLM + ↵ · LSAG] (4.7)

where ↵ is a hyper-parameter that controls the scale that we apply on selected heads for

attention guiding. According to Deshpande et al. [53], the LSAG converges faster than LMLM .

We linearly decay ↵ from an initial value ↵0 = 1 to 0 as the fine-tuning progresses.

4.4.3 Syntax attention patterns

Based on the attention bias results presented in Section 4.3, we have observed that the

self-attention heads of fine-tuned CodeBERT assign significantly higher attention weights

to certain syntax tokens, including identifiers, modifiers, operators, basic data types, sep-

arators, keywords, and string tokens. Additionally, the self-attention heads of CodeBERT

also assign greater attention weights to specific code structures, such as method signatures,

if-else elements, and return elements. Therefore, we propose the following attention guiding

patterns for syntax token attention guiding during pre-trained model fine-tuning:

1. [Modifier] attends to the modifier syntax tokens.

2. [Separator] attends to the separator syntax tokens.

3. [Key] attends to the keyword syntax tokens.

4. [Identifier] attends to the identifier syntax tokens .

5. [DataType] attends to the basic data type syntax tokens.

6. [Operator] attends to the operator syntax tokens.

7. [String] attends to the string syntax tokens.

90

And, following abstract syntax tree attention guiding patterns:

1. [MethodSignature] attends to tokens belonging to the method signature AST

elements.

2. [IfElseElement] attends to tokens belonging to the if else AST elements.

3. [ReturnElement] attends to tokens belonging to the return AST elements.

Furthermore, to enable a comprehensive evaluation of our proposed attention guiding pat-

terns, we compare their performance with the local and global attention patterns proposed

by Deshpande et al. [53]. The global attention patterns focus self-attention heads on global

position, such as [First], [CLS], and [SEP]. And the local attention patterns either focus

on the next or previous tokens, such as [NEXT] and [PREV]. This enables us to conduct

a fair and thorough analysis of the e↵ectiveness of our proposed attention guiding patterns

compared to other existing patterns.

4.5 Evaluation

In this section, we first outline the experimental setup details to empirically evaluate the

e�cacy of our proposed syntax pattern Attention Guiding (AG) mechanism, and then present

the experimental results for the following research questions:

• RQ3: What is the e�cacy of the proposed syntax pattern attention guiding

mechanism on software engineering tasks?

• RQ4: Among the syntax patterns considered in this study, which pattern

yields the most notable impact on the downstream task performance?

91

4.5.1 Experimental setup

In this study, we employ the software engineering tasks of code clone detection, cloze test, and

code translation, which were previously described in Section 4.3, along with their respective

datasets. It is noteworthy that the AG patterns proposed by Deshpande et al. [53] are

intended for natural languages, whereas our guiding patterns are specifically designed for

source code. As a result, we replicated their AG patterns to compare their e↵ectiveness with

our code-specific patterns. Furthermore, we conducted an ablation study to determine the

significance of each syntax token and AST AG patterns.

Implementation details

To ensure comparability across di↵erent experimental settings, we select CodeBERT [59]

as the foundational pre-trained model for all our evaluations. CodeBERT is a promi-

nent pre-trained model specifically designed for code, and has served as the foundation

for RoBERTa [120], a widely-used language model in other programming language modeling

studies [71, 91, 190, 172, 170, 177].

Basic model fine-tune. We tune the learning rate is 5e-5 for two epochs. The batch size

for training is 16 and for testing is 32.

AG model. For attention guiding models, we guide a fraction of � 2 {1
4 ,

2
4 ,

3
4 , 1} of heads

in each layer. We choose ↵ for equation 4.7 from the set {1, 10, 100} such that scales of the

MLM loss and auxiliary loss are comparable at the beginning of the fine-tuning. To achieve

fair comparison and reduce deep learning model’s variance impact [141], we used five-fold

cross validation for each basic and AG model.

92

Evaluation metrics

Consistent with prior works on code clone detection [82, 184, 176, 59], we evaluate the

performance of our models using precision, recall, and F1 score [69]. Precision measures

the accuracy of the predicted clone pairs. Whereas recall represents the proportion of actual

clone pairs correctly predicted by the model. The F1 score is the harmonic mean of precision

and recall, providing a balanced assessment of the model’s performance.

The objective of the Cloze test is to predict the appropriate code token for a blank position

in the context of the surrounding code. Consequently, we evaluate the prediction accuracy,

which is calculated using the same formula as precision (i.e., the number of correct predictions

divided by the total number of predictions).

Regarding the code translation task, we adopt the evaluation metrics proposed in CodeXGLUE.

Specifically, we report three metrics: BLEU [140] score, CodeBLEU score [122], and accu-

racy (ACC). BLEU score is a commonly used metric for machine translation tasks, which

measures the similarity between the generated code and the target code based on n-gram

precision. CodeBLEU is a variant of BLEU proposed by CodeXGLUE, which takes into

account not only surface-level matching but also grammatical and logical correctness, uti-

lizing the AST and data-flow structure. In addition, we also evaluate the accuracy which

calculates the exact match between generated code and the target code.

4.5.2 Evaluation results for syntax pattern attention guiding

Table 4.2 presents the empirical results of the three software engineering tasks. The baseline

model, CodeBERT, is fine-tuned on all three tasks without the use of any attention guiding

techniques. The global and local AG patterns are derived from Deshpande et al. [53]. Ad-

ditionally, we propose syntax token and AST elements attention patterns that are tailored

93

Table 4.2: Evaluation results on software engineering tasks. AG represents attention guiding
patterns. AGglobal and AGlocal attention patterns are proposed in [53]. AGsyntax and
AGAST are proposed in this study. The number with * means statistically significant (paired
t-test) with corresponding default CodeBERT value.

Task name
Cloze
test

Code clone
detetcion

Code
translation

Evaluation
metrics

Acc.
Acc. Delta

(%)
Pre. Rec. F1

F1 Delta
(%)

BLEU CodeBLEU Acc.
Acc. delta

(%)
CodeBERT 64.57 - 0.947 0.935 0.941 - 71.99 85.10 59.00 -

CodeBERT + AGglobal 64.71 0.14 0.951 0.933 0.942 0.10 74.83 85.35 59.31 0.3
CodeBERT + AGlocal 64.86 0.29 0.935 0.940 0.938 -0.34 72.05 86.79 59.73 0.7

CodeBERT + AGglobal + AGlocal 64.95 0.38 0.948 0.947 0.948 0.70 73.95 86.73 60.21 1.21
CodeBERT + AGsyntax 65.88* 1.31 0.959 0.934 0.946 0.54 74.36 87.82 60.55 1.55
CodeBERT + AGAST 66.27* 1.70 0.954 0.931 0.942 0.13 72.91 86.55 60.82 1.8

CodeBERT + AGsyntax + AGAST 67.82* 3.25 0.962* 0.938 0.950* 0.88 76.88* 88.23* 61.93* 2.9

Table 4.3: Attention guiding performance on fixing wrong predictions by default CodeBERT

Task
Name

Cloze
test

Code clone
detection

Code
Translation

Correct
prediction

Wrong
prediction

Fixed
prediction

Fix
%

Correct
prediction

Wrong
prediction

Fixed
prediction

Fix
%

Correct
prediction

Wrong
prediction

Fixed
prediction

Fix
%

CodeBERT 2,412 1,323 - 393,399 22,017 - - 590 410 -
CodeBERT + AGglobal 2,417 1,318 5 0.40% 395,061 20,355 1,662 7.55% 593 407 -3 0.76%
CodeBERT + AGlocal 2,423 1,312 11 0.82% 388,414 27,002 -4,985 -22.64% 597 403 -7 1.78%
CodeBERT + AGglobal

+ AGlocal
2,426 1,309 14 1.07% 392,568 22,848 -831 -3.77% 602 398 -12 2.95%

CodeBERT + AGsyntax 2,461 1,274 49 3.70% 398,259 17,157 4,860 22.08% 606 395 -16 3.78%
CodeBERT + AGAST 2,475 1,260 63 4.80% 396,431 18,985 3,033 13.77% 608 392 -18 4.44%
CodeBERT + AGsyntax

+ AGAST
2,533 1,202 121 9.17% 399,630 15,786 6,231 28.30% 619 381 -29 7.15%

specifically for software engineering tasks.

In the context of cloze test, our experimental results reveal that AG patterns enhance Code-

BERT’s predictive accuracy. Specifically, the application of global AG patterns improves

CodeBERT’s prediction accuracy from 64.57 to 64.71, while local attention patterns lead to

an accuracy improvement to 64.86. Notably, when both local and global AG patterns are

utilized concurrently, the resulting accuracy is further enhanced to 64.95.

In contrast, the incorporation of syntax token AG patterns results in a significant improve-

ment in CodeBERT’s prediction accuracy, achieving a score of 65.88 (p-value ¡ 5.24e-07).

Similarly, the utilization of AST AG patterns leads to an accuracy improvement of 66.27

(p-value ¡ 1.94e-08). Moreover, the simultaneous integration of syntax token and AST AG

patterns results in an accuracy improvement to 67.82 (p-value ¡ 3.19e-10).

In our investigation of code clone detection, we found that the use of global AG patterns

94

improved the F1 score of CodeBERT from 0.941 to 0.942, while the application of local

attention patterns resulted in a decrease in F1 score to 0.938. However, when both global

and local attention patterns were applied simultaneously, the F1 score increased to 0.948.

Interestingly, we observed that the use of our proposed syntax token and AST elements

attention patterns resulted in a higher F1 score of 0.946 and 0.942, respectively. When both

sets of attention patterns were applied simultaneously, the F1 score further increased to 0.950

(p-value ¡ 6.53e-05). It is worth mentioning that the default CodeBERT already achieved a

very high F1 score of 0.941 in code clone detection, and the addition of AG patterns only

resulted in a marginal improvement.

In the task of code translation, our empirical results show that the application of global AG

patterns enhances the BLEU score of the default CodeBERT model from 71.99 to 74.83,

CodeBLEU score from 85.10 to 85.35 and accuracy from 59.00 to 59.31. Similarly, local

AG patterns improve the BLEU score to 72.05, CodeBLEU score to 86.79, and accuracy to

59.73. By using both patterns simultaneously, we achieve a further improvement in BLEU

score (73.95), CodeBLEU score (86.73) and accuracy (60.21).

In contrast, our proposed syntax token AG pattern improves the default CodeBERT’s code

to code translation BLEU score to 74.36, CodeBLEU to 87.82, and accuracy to 60.55. Fur-

thermore, the AST AG pattern enhances the BLEU score to 72.91, CodeBLEU to 86.55, and

accuracy to 60.82. Finally, when both patterns are applied to the CodeBERT model, the

BLEU score reaches 76.88, CodeBLEU score reaches 88.23 and accuracy improves to 61.93.

Our proposed attention guiding mechanism aims to improve CodeBERT prediction perfor-

mance by fixing incorrect predictions by the model. In addition to evaluating the performance

of the fine-tuned models using commonly used evaluation metrics for each software engineer-

ing task, we also investigated the e↵ectiveness of the AG patterns in rectifying mispredicted

samples. Table 4.3 presents an overview of the incorrectly predicted instances by the default

CodeBERT model and the fine-tuned models incorporating various AG patterns. Notably,

95

for the cloze test, our proposed syntax token AG and AST AG patterns were successful in

rectifying 9.17% of the mispredicted instances, outperforming the 1.07% instances corrected

by the global and local AG patterns. For code clone detection, our proposed syntax attention

patterns were e↵ective in fixing 28.3% of the mispredicted instances. Interestingly, the global

and local attention patterns resulted in an increased 3.77% of the mispredicted instances.

Finally, for code translation, our proposed syntax AG patterns led to the correction of 7.15%

of the mispredicted instances, whereas the global and local attention patterns only corrected

3.78% of the mispredicted instances.

Syntax token and AST attention guiding patterns have demonstrated significant performance

improvements over the default CodeBERT model. Notably, these patterns have exhibited

better performance on software engineering tasks than previously proposed global and local

attention guiding patterns.

One interesting observation from Table 4.2 was that the e�cacy of the proposed syntax token

and AST elements AG patterns is more prominent for the Cloze test as compared to code

translation. We posit that this is due to the relatively larger data size of Cloze test (50k)

as compared to code translation (around 11.5k). So we sought to investigate the impact of

training data size on the proposed AG patterns’ e↵ectiveness.

For this purpose, we randomly selected 25%, 50%, 75%, and 100% of the training set for Cloze

test fine-tuning and conducted experiments. Our findings indicate that both syntax token

AG patterns and AST AG patterns improve the fine-tuned CodeBERT model’s performance

on the Cloze test at di↵erent training data sizes. Combining both AG patterns always

resulted in the best performance. When only 25% of training data was used, syntax token

AG patterns performed better than AST AG patterns. However, after using 50% of training

data, the AST AG patterns consistently outperformed the syntax token AG patterns. For a

detailed breakdown of our findings, we refer the reader to Figure 4.5.

96

Syntax token and AST element AG patterns can improve fine-tuned CodeBERT model’s

performance with di↵erent training data sizes.

4.5.3 Ablation study results

To perform a comprehensive analysis of the e↵ectiveness of the AG patterns on the Code-

BERT model, we conducted an ablation study on each task using the best model, which con-

sists of CodeBERT, syntax token AG patterns (AGsyntax), and AST AG patterns (AGAST).

Due to space limitations, we present the ablation study results for only one task, and the

results for other tasks are available on our companion website [5]. The results for cloze are

presented in table 4.4.

Our study revealed that the fine-tuning process of CodeBERT benefits significantly from

both syntax token and AST AG patterns, as the removal of either of them led to a decrease

in accuracy. Specifically, for syntax token AG patterns, the most significant drop in accuracy

was observed when [Identifier], [Operator], and [Modifier] patterns were removed. Meanwhile,

for AST AG patterns, method signatures were found to be the most impactful, followed by

return elements and then if-else elements.

Furthermore, for code clone detection, our analysis showed that [Identifier], [Operator], and

[Data type] were the most important syntax token AG patterns, while method signatures

were the most important AST AG patterns. Similarly, for code translation, [Identifier],

[Operator], and [Modifier] were the most important syntax token AG patterns, and method

signatures were the most important AST AG patterns. Because of the limited space, their

detailed experiment results are in our companion website [5].

97

Table 4.4: Ablation study results for cloze test. The number with * means statistically
significant (P-value < 0.05)

Accuracy Accuracy drop
CodeBERT + AGsyntax

+ AGAST
67.8213 -

Syntax token
attention patterns

(AGsyntax)

w/o Identifier 64.7859 -3.04
w/o Operator 64.8960* -2.93
w/o Modifier 64.9447* -2.87
w/o Data type 66.6900* -1.13
w/o Keyword 66.9548 -0.87
w/o Separator 67.5993 -0.22
w/o String 67.6523 -0.17

Abstract syntax
element

attention patterns
(AGAST)

w/o Method
signature

64.6881* -3.13

w/o If else
element

64.9564* -2.86

w/o Return
element

64.9806* -2.84

4.6 Implications

Based on our findings and analyses, we provide the following implications for researchers

and practitioners.

4.6.1 Implications for researchers

We demonstrate that fine-tuned CodeBERT assigns significantly greater weights to specific

types of syntax tokens and AST elements when making correct predictions in Section 4.3.

This provides a new perspective for interpreting attention-based models and analyzing the

attention weight distribution in Transformer-based models. One intriguing future research

entails investigating the applicability of these syntax tokens and AST elements and their

associated weights for building defect prediction models. Another interesting future research

direction would entail utilizing this information to build a tool for explaining the model’s

decisions to a developer. Also, we believe a study on a more extensive group of software

engineering tasks and language models can uncover more syntax tokens and AST elements

98

Data size

Ac
cu

ra
cy

 s
co

re

Figure 4.5: Results of CodeBERT and CodeBERT with various syntax AG on di↵erent
amounts of training data

and opportunities to further improve the performances of fine-tuned models.

We propose a method to guide self-attention heads to pay more attention to critical token

positions, though our approach only guides a fraction of the self-attention heads to focus on

input source code sequence positions. However, there is potential for more fine-grained atten-

tion guidance, such as directing identifier tokens to pay attention to operator tokens or if-else

elements. Such granular token-to-token attention analysis may prove valuable for guiding

attention. Additionally, researchers have proposed utilizing contrastive learning methods or

pruning unimportant source code to retrain the pre-trained language models. Combining

syntax-based attention guidance with other methods may lead to further improvements in

Transformer-based models for programming languages.

4.6.2 Implications for users

Based on the results presented in Table 4.3, it is evident that incorporating syntax at-

tention guiding patterns can e↵ectively rectify erroneous predictions without adding extra

99

data. Oversampling has been demonstrated to be an e↵ective approach for enhancing the

performance of machine learning models. However, utilizing Transformer-based models to

automatically learn representation features for programming languages presents a challenge

in achieving oversampling, as the learned representation features are challenging to employ

for this purpose, in contrast to tabular data. Hence, our proposed attention guiding mech-

anism, which does not require any extra data, represents a promising option for improving

Transformer-based models for software engineering tasks. Moreover, as illustrated in Fig-

ure 4.5, our attention guiding approach exhibits a robust performance across di↵erent data

sizes, further highlighting its e�cacy.

4.7 Related Works

4.7.1 Analyzing self-attention weight

Recent studies [24, 127, 138, 92] have investigated the attention assignment patterns of

Transformer-based language models trained for software engineering tasks. For instance,

Karmakar etal [92] applied four probing tasks on pre-trained code models to investigate

whether pre-trained models can learn di↵erent aspects of source code such as syntactic,

structural, surface-level, and semantic information. Wan et al. [170] showed that Code-

BERT’s attention aligns strongly with syntax structure of the code and it preserves the

syntax structure of code in the intermediate representations of each Transformer layer. In

addition, Zhang et al [197] and Sharma et al [158] reveal that CodeBERT, in general, pays

more attention to certain types of tokens and statements. However, none of the prior studies

investigated the alteration of attention weight distribution between correct and incorrect

prediction groups and our study sets itself apart by showing that CodeBERT demonstrates

a noteworthy bias toward assigning greater attention weights to particular syntax tokens and

100

statements when making correct predictions.

4.7.2 Guiding self-attention weight

Several studies have explored methods for guiding self-attention heads on important syntax

tokens and statements in source code. For instance, Zhang et al.[197] propose a new pre-

trained model for source code that guides attention to important syntax tokens by excluding

unimportant or high-frequency tokens in the input source code sequence during pre-training.

Similarly, Wang et al. [177] proposed another pre-trained model that guides self-attention

heads’ attention on symbolic and syntactic properties of source code using contrastive learn-

ing [95]. In contrast to focusing on the pre-training phase, our approach targets the fine-

tuning stage for attention guiding and can improve the performance of the fine-tuned model

more e�ciently since fine-tuning requires significantly less time, computational resources,

and data compared to pre-training.

4.8 Threats to Validity

We have taken care to ensure that our results are unbiased and have tried to eliminate the

e↵ects of random noise, but it’s possible that our mitigation strategies may not have been

e↵ective.

Dataset Bias: It is important to note that our findings may not necessarily apply to

all software engineering datasets and tasks, as we have only evaluated our approach on

the publicly available BigCloneBench [176], CodeXGLUE code translation, and cloze test

datasets [122]. However, these datasets have been used in previous studies [108, 193, 172,

42, 197]. Thus their quality and reliability are well-established. Moreover, the software

engineering datasets we have considered are diverse in size, programming language, and

101

complexity, which mitigates concerns of bias due to dataset selection. Therefore, we believe

our selection is appropriate to address the research questions.

Bias Due to Syntax Extraction: One potential bias can arise from the syntax extraction

process. Specifically, we utilized javalang [13] to extract the source code token syntax types

and tree-sitter-java [12] to extract the AST elements, and the selected sets of syntax types

and structures were obtained from Aljehane et al. [26] study about the attention di↵erence

between expert and novice programmers’ when debugging. Even though di↵erent syntax

extraction libraries may yield di↵erent results, the libraries we used have been widely adopted

in previous research [158, 109, 162].

Bias Due to Pre-trained Language Model: Our study focuses on examining the

attention-weight assignment di↵erences in fine-tuned language models. Even though there

any many PLMs, we opted to use one of the state-of-the-art PLMs named CodeBERT which

may have introduced unwarranted bias to our study.

Bias Due to Implementation: To address the potential bias, we took several measures to

minimize errors in our study. First, we relied on existing implementations in CodeXGLUE

for fine-tuning CodeBERT without attention guiding and applying global and local attention

guiding patterns, as well as our proposed syntax attention guiding patterns. Additionally, we

thoroughly tested our code and data to identify and correct any potential errors. However,

we cannot completely rule out the possibility of implementation bias.

4.9 Conclusion

In this study, we conducted an investigation to ascertain the extent to which self-attention

heads in Transformer-based models allocate attention weights to source code syntax tokens

and AST elements during correct and incorrect predictions. Our empirical results revealed

102

that self-attention heads tend to assign significantly greater attention weights to particu-

lar syntax tokens and AST elements. Drawing on this knowledge, we proposed SyntaGuid,

which facilitates an improved performance of CodeBERT on downstream tasks by guiding

self-attention heads toward critical elements of source code. Our experimental results demon-

strate that SyntaGuid substantially enhances the performance of fine-tuned CodeBERT on

various software engineering tasks, which improves overall performance up to 3.25% and fixes

up to 28.30% of wrong predictions.

103

Chapter 5

Conclusion

In the rapidly evolving domain of machine learning, particularly as it intersects with software

engineering, the nuances and intricacies of feature bias have emerged as pivotal areas of

inquiry. This dissertation represents a comprehensive exploration into the realm of feature

bias, its manifestations, and its implications for machine learning models tailored specifically

for software engineering tasks.

Chapter 2 embarked on a meticulous dissection of feature bias, elucidating its multifaceted

nature and the potential ramifications it holds for the integrity and reliability of machine

learning models. The challenges posed by feature bias are not merely theoretical but have

tangible repercussions, especially when models are confronted with under-represented fea-

tures in datasets. The introduction of ”SifterJIT” in this chapter stands as a testament to

the innovative approaches that can be harnessed to counteract these challenges, o↵ering a

beacon of hope for more balanced and unbiased machine learning applications.

Building upon the foundational insights gleaned from Chapter 2, Chapter 3 transitioned our

focus towards the nuanced methodologies of ”Bias Guided Misprediction Diagnoser” and

the ”Mispredicted Area Upweight Sampling” technique. These tools, borne out of rigorous

104

research and empirical testing, were presented as groundbreaking solutions to address areas of

misprediction. By leveraging the knowledge of feature bias, these methodologies underscore

the dissertation’s commitment to not only identifying challenges but also proactively seeking

solutions to enhance the robustness and reliability of machine learning models.

In Chapter 4, our exploration delved deeper into the sophisticated world of Transformer-

based models. These state-of-the-art architectures, while formidable in their capabilities, are

not immune to biases. The chapter’s exploration of potential attention biases and the subse-

quent introduction of the ”Program Syntax-based Attention Guiding Mechanism” showcased

a pioneering approach. This mechanism, designed to optimize attention allocation, stands as

a testament to the continuous evolution and refinement of machine learning methodologies.

As we reflect upon the journey undertaken in this dissertation, it becomes evident that the

landscape of machine learning, especially in the context of software engineering, is rife with

challenges and opportunities. The insights, methodologies, and solutions presented herein

are not merely academic exercises but are foundational pillars that will undoubtedly shape

the trajectory of future research in this domain. As technology continues its relentless march

forward, it is our fervent hope that the findings of this dissertation will serve as a guiding

light, ensuring that machine learning models in software engineering remain robust, reliable,

and free from the shackles of bias.

105

Bibliography

[1] Ai fairness 360. https://aif360.mybluemix.net/. Accessed: 2021-05-1.

[2] Amazon codewhisperer: build applications faster with the ml-powered coding compan-
ion. https://aws.amazon.com/codewhisperer/. Accessed: 2023-03-29.

[3] The apache lucene™ project develops open-source search software. https://lucene.

apache.org/. Accessed: 2023-03-29.

[4] Apache poi - the java api for microsoft documents. https://poi.apache.org. Accessed:
2023-03-29.

[5] Attention bias analysis and attentiong guiding experiment results companion website.
https://github.com/syntaxGuiding/SytaGuid. Accessed: 2023-03-29.

[6] Bias guided misprediction explanation companion code and experimental results web-
site. https://github.com/Jirigesi/BGMD_MAPS. Accessed: 2022-08-27.

[7] Bigclonebench github webpage. github.com/clonebench/BigCloneBench. Accessed:
2023-03-29.

[8] Competitive programming with alphacode. https://www.deepmind.com/blog/competitive-
programming-with-alphacode. Accessed: 2023-03-29.

[9] Copilot: Your ai pair programmer. https://github.com/features/copilot. Accessed:
2023-03-29.

[10] Dataset details for experiments in this study. https://github.com/Jirigesi/BGMD_
MAPS/blob/main/README.md#:~:text=0.0%2C%20max_samples%3DNone-,Data,5%

2C940,-Footer. Accessed: 2022-08-27.

[11] Default parameters of support vector machines, decision trees and random forest
learners used in this study. https://github.com/Jirigesi/BGMD_MAPS/blob/main/
README.md#:~:text=SVM,0.0%2C%20max_samples%3DNone. Accessed: 2022-08-27.

[12] Java program for tree-sitter. https://github.com/tree-sitter/tree-sitter-java. Accessed:
2023-03-29.

[13] javalang python library for working with java source code.
https://github.com/c2nes/javalang. Accessed: 2023-03-29.

106

https://aif360.mybluemix.net/
https://lucene.apache.org/
https://lucene.apache.org/
https://github.com/syntaxGuiding/SytaGuid
https://github.com/Jirigesi/BGMD_MAPS
https://github.com/Jirigesi/BGMD_MAPS/blob/main/README.md#:~:text=0.0%2C%20max_samples%3DNone-,Data,5%2C940,-Footer
https://github.com/Jirigesi/BGMD_MAPS/blob/main/README.md#:~:text=0.0%2C%20max_samples%3DNone-,Data,5%2C940,-Footer
https://github.com/Jirigesi/BGMD_MAPS/blob/main/README.md#:~:text=0.0%2C%20max_samples%3DNone-,Data,5%2C940,-Footer
https://github.com/Jirigesi/BGMD_MAPS/blob/main/README.md#:~:text=SVM,0.0%2C%20max_samples%3DNone
https://github.com/Jirigesi/BGMD_MAPS/blob/main/README.md#:~:text=SVM,0.0%2C%20max_samples%3DNone

[14] Kaggle machine learning competitions. https://www.kaggle.com/. Accessed: 2022-
08-27.

[15] Open stack data set. https://docs.openstack.org/wallaby/?_ga=2.205840979.

1124305833.1619313296-1069099767.1617679651. Accessed: 2020-07-1.

[16] Openstack. https://www.openstack.org/. Accessed: 2021-05-1.

[17] Proceedings of machine learning research. https://proceedings.mlr.press/. Ac-
cessed: 2022-08-27.

[18] The project organization for the antlr parser generator. https://github.com/antlr/.
Accessed: 2023-03-29.

[19] Qt. https://www.qt.io/. Accessed: 2021-05-1.

[20] University of california at irvine machine learning dataset repository.
https://archive.ics.uci.edu/ml/datasets.php?format=&task=cla&att=&area=

&numAtt=&numIns=&type=&sort=attDown&view=table. Accessed: 2022-08-27.

[21] What-if tool. https://pair-code.github.io/what-if-tool/. Accessed: 2021-05-1.

[22] A. Agarwal, A. Beygelzimer, M. Dud́ık, J. Langford, and H. Wallach. A reductions
approach to fair classification. In International Conference on Machine Learning, pages
60–69. PMLR, 2018.

[23] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha. Black box fairness testing
of machine learning models. In Proceedings of the 2019 27th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 625–635, 2019.

[24] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. Unified pre-training for
program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.

[25] T. Ahmed and P. Devanbu. Multilingual training for software engineering. In Proceed-

ings of the 44th International Conference on Software Engineering, pages 1443–1455,
2022.

[26] S. Aljehane, B. Sharif, and J. Maletic. Determining di↵erences in reading behavior
between experts and novices by investigating eye movement on source code constructs
during a bug fixing task. In ACM Symposium on Eye Tracking Research and Applica-

tions, pages 1–6, 2021.

[27] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. Low data drug discovery
with one-shot learning. ACS central science, 3(4):283–293, 2017.

[28] S. Barocas, M. Hardt, and A. Narayanan. Fairness and machine learning: Limitations
and opportunities, 2018.

107

https://www.kaggle.com/
https://docs.openstack.org/wallaby/?_ga=2.205840979.1124305833.1619313296-1069099767.1617679651
https://docs.openstack.org/wallaby/?_ga=2.205840979.1124305833.1619313296-1069099767.1617679651
https://www.openstack.org/
https://proceedings.mlr.press/
https://www.qt.io/
https://archive.ics.uci.edu/ml/datasets.php?format=&task=cla&att=&area=&numAtt=&numIns=&type=&sort=attDown&view=table
https://archive.ics.uci.edu/ml/datasets.php?format=&task=cla&att=&area=&numAtt=&numIns=&type=&sort=attDown&view=table
https://pair-code.github.io/what-if-tool/

[29] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, and N. Ubayashi. Empir-
ical evaluation of cross-release e↵ort-aware defect prediction models. In 2016 IEEE

International Conference on Software Quality, Reliability and Security (QRS), pages
214–221. IEEE, 2016.

[30] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction using tem-
poral features and non linear models. In Ninth international workshop on Principles of

software evolution: in conjunction with the 6th ESEC/FSE joint meeting, pages 11–18.
ACM, 2007.

[31] C. Bird, A. Bachmann, E. Aune, J. Du↵y, A. Bernstein, V. Filkov, and P. Devanbu.
Fair and balanced? bias in bug-fix datasets. In Proceedings of the 7th joint meeting of

the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pages 121–130, 2009.

[32] S. Biswas and H. Rajan. Do the machine learning models on a crowd sourced platform
exhibit bias? an empirical study on model fairness. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 642–653, 2020.

[33] J. M. Bland and D. G. Altman. Multiple significance tests: the bonferroni method.
Bmj, 310(6973):170, 1995.

[34] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification us-
ing a” siamese” time delay neural network. Advances in neural information processing

systems, 6:737–744, 1993.

[35] J. Byrd and Z. Lipton. What is the e↵ect of importance weighting in deep learning?
In International Conference on Machine Learning, pages 872–881. PMLR, 2019.

[36] J. Cendrowska. Prism: An algorithm for inducing modular rules. International Journal
of Man-Machine Studies, 27(4):349–370, 1987.

[37] J. Chakraborty, S. Majumder, and T. Menzies. Bias in machine learning software: why?
how? what to do? In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 429–440, 2021.

[38] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies. Fairway: a way to build fair
ml software. In Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 654–665, 2020.

[39] J. Chakraborty, K. Peng, and T. Menzies. Making fair ml software using trustwor-
thy explanation. In 2020 35th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 1229–1233. IEEE, 2020.

108

[40] J. Chakraborty, T. Xia, F. M. Fahid, and T. Menzies. Software engineering for fairness:
A case study with hyperparameter optimization. arXiv preprint arXiv:1905.05786,
2019.

[41] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

[42] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and C. L. Goues. Varclr:
Variable semantic representation pre-training via contrastive learning. In Proceedings

of the 44th International Conference on Software Engineering, pages 2327–2339, 2022.

[43] S. Chen, S. Bateni, S. Grandhi, X. Li, C. Liu, and W. Yang. Denas: automated rule
generation by knowledge extraction from neural networks. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 813–825, 2020.

[44] N. Chirkova and S. Troshin. Empirical study of transformers for source code. In Pro-

ceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 703–715, 2021.

[45] Y. Chung, T. Kraska, N. Polyzotis, K. H. Tae, and S. E. Whang. Automated data
slicing for model validation: A big data-ai integration approach. IEEE Transactions

on Knowledge and Data Engineering, 32(12):2284–2296, 2019.

[46] J. Cito, I. Dillig, S. Kim, V. Murali, and S. Chandra. Explaining mispredictions
of machine learning models using rule induction. In Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 716–727, 2021.

[47] J. Cito, I. Dillig, V. Murali, and S. Chandra. Counterfactual explanations for models
of code. In 2022 IEEE/ACM 44th International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 125–134. IEEE, 2022.

[48] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does bert look at? an
analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

[49] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555,
2020.

[50] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum
Associates, 1988.

[51] E. Creager, J.-H. Jacobsen, and R. Zemel. Environment inference for invariant learning.
In International Conference on Machine Learning, pages 2189–2200. PMLR, 2021.

109

[52] H. K. Dam, T. Tran, and A. Ghose. Explainable software analytics. In Proceedings of

the 40th International Conference on Software Engineering: New Ideas and Emerging

Results, pages 53–56, 2018.

[53] A. Deshpande and K. Narasimhan. Guiding attention for self-supervised learning with
transformers. arXiv preprint arXiv:2010.02399, 2020.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[55] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia. A
developer centered bug prediction model. IEEE Transactions on Software Engineering,
44(1):5–24, 2018.

[56] J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized
empirical likelihood approach. arXiv preprint arXiv:1610.03425, 2016.

[57] A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher, C. Angerer, S. Severini,
F. Matthes, and B. Rost. Codetrans: Towards cracking the language of silicon’s code
through self-supervised deep learning and high performance computing. arXiv preprint
arXiv:2104.02443, 2021.

[58] Y. Fan, D. A. da Costa, D. Lo, A. Hassan, and L. Shanping. The impact of misla-
beled changes by szz on just-in-time defect prediction. IEEE Transactions on Software

Engineering, 2020.

[59] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al. Codebert: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[60] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based ap-
proaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 42(4):463–484, 2011.

[61] A. Galassi, M. Lippi, and P. Torroni. Attention in natural language processing. IEEE
Transactions on Neural Networks and Learning Systems, 32(10):4291–4308, 2020.

[62] J. Gesi, J. Li, and I. Ahmed. An empirical examination of the impact of bias on
just-in-time defect prediction. In Proceedings of the 15th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–
12, 2021.

[63] J. Gesi, X. Shen, Y. Geng, Q. Chen, and I. Ahmed. Leveraging feature bias for
scalable misprediction explanation of machine learning models. In Proceedings of the

45th International Conference on Software Engineering (ICSE), 2023.

110

[64] A. Ghazikhani, H. S. Yazdi, and R. Monsefi. Class imbalance handling using wrapper-
based random oversampling. In 20th Iranian Conference on Electrical Engineering

(ICEE2012), pages 611–616. IEEE, 2012.

[65] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classification
techniques on the performance of defect prediction models. In 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, volume 1, pages 789–800.
IEEE, 2015.

[66] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction. In
Proceedings of the ACM-IEEE international symposium on Empirical software engi-

neering and measurement, pages 171–180. ACM, 2012.

[67] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source code changes
and code churn for bug prediction. In Proceedings of the 8th Working Conference on

Mining Software Repositories, pages 83–92. ACM, 2011.

[68] K. Goel, A. Gu, Y. Li, and C. Ré. Model patching: Closing the subgroup performance
gap with data augmentation. arXiv preprint arXiv:2008.06775, 2020.

[69] C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall and f-
score, with implication for evaluation. In Advances in Information Retrieval: 27th

European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain,

March 21-23, 2005. Proceedings 27, pages 345–359. Springer, 2005.

[70] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. Reflections on the nasa
mdp data sets. IET software, 6(6):549–558, 2012.

[71] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu, et al. Graphcodebert: Pre-training code representations with data flow. arXiv

preprint arXiv:2009.08366, 2020.

[72] M. Habayeb, S. S. Murtaza, A. Miranskyy, and A. B. Bener. On the use of hid-
den markov model to predict the time to fix bugs. IEEE Transactions on Software

Engineering, 44(12):1224–1244, 2017.

[73] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[74] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim. Is neuron coverage a
meaningful measure for testing deep neural networks? In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 851–862, 2020.

[75] A. E. Hassan. Predicting faults using the complexity of code changes. In 2009 IEEE

31st international conference on software engineering, pages 78–88. IEEE, 2009.

[76] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 21(9):1263–1284, 2009.

111

[77] K. Herzig and N. Nagappan. Empirically detecting false test alarms using association
rules. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineer-

ing, volume 2, pages 39–48. IEEE, 2015.

[78] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi. Deepjit: an end-to-end
deep learning framework for just-in-time defect prediction. In 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), pages 34–45. IEEE,
2019.

[79] T. Hoang, H. J. Kang, D. Lo, and J. Lawall. Cc2vec: Distributed representations of
code changes. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, pages 518–529, 2020.

[80] X. Huo, M. Li, Z.-H. Zhou, et al. Learning unified features from natural and program-
ming languages for locating buggy source code. In IJCAI, volume 16, pages 1606–1612,
2016.

[81] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. E. Gonzalez, and I. Stoica. Contrastive code
representation learning. arXiv preprint arXiv:2007.04973, 2020.

[82] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In 29th International Conference on Software Engi-

neering (ICSE’07), pages 96–105. IEEE, 2007.

[83] N. Jiang, T. Lutellier, and L. Tan. Cure: Code-aware neural machine translation
for automatic program repair. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), pages 1161–1173. IEEE, 2021.

[84] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 279–289.
Ieee, 2013.

[85] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu. Dictionary learning based
software defect prediction. In Proceedings of the 36th International Conference on

Software Engineering, pages 414–423, 2014.

[86] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A. E. Hassan.
Studying just-in-time defect prediction using cross-project models. Empirical Software

Engineering, 21(5):2072–2106, 2016.

[87] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan.
Revisiting common bug prediction findings using e↵ort-aware models. In 2010 IEEE

international conference on software maintenance, pages 1–10. IEEE, 2010.

[88] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Matsumoto. The e↵ects
of over and under sampling on fault-prone module detection. In First International

Symposium on Empirical Software Engineering and Measurement (ESEM 2007), pages
196–204. IEEE, 2007.

112

[89] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and future challenges. In
2016 IEEE 23rd international conference on software analysis, evolution, and reengi-

neering (SANER), volume 5, pages 33–45. IEEE, 2016.

[90] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi.
A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on

Software Engineering, 39(6):757–773, 2012.

[91] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi. Learning and evaluating con-
textual embedding of source code. In International conference on machine learning,
pages 5110–5121. PMLR, 2020.

[92] A. Karmakar and R. Robbes. What do pre-trained code models know about code? In
2021 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 1332–1336. IEEE, 2021.

[93] C. Khanan, W. Luewichana, K. Pruktharathikoon, J. Jiarpakdee, C. Tantithamtha-
vorn, M. Choetkiertikul, C. Ragkhitwetsagul, and T. Sunetnanta. Jitbot: An ex-
plainable just-in-time defect prediction bot. In 2020 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 1336–1339. IEEE, 2020.

[94] F. Khani, A. Raghunathan, and P. Liang. Maximum weighted loss discrepancy. arXiv
preprint arXiv:1906.03518, 2019.

[95] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan. Supervised contrastive learning. Advances in neural information

processing systems, 33:18661–18673, 2020.

[96] E. Kim, D. Gopinath, C. Pasareanu, and S. A. Seshia. A programmatic and semantic
approach to explaining and debugging neural network based object detectors. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11128–11137, 2020.

[97] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes: Clean or buggy?
IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

[98] S. Kim and E. J. Whitehead Jr. How long did it take to fix bugs? In Proceedings

of the 2006 international workshop on Mining software repositories, pages 173–174.
ACM, 2006.

[99] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In
2011 33rd International Conference on Software Engineering (ICSE), pages 481–490.
IEEE, 2011.

[100] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting faults from
cached history. In 29th International Conference on Software Engineering (ICSE’07),
pages 489–498. IEEE, 2007.

113

[101] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image
recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

[102] S. Kotsiantis and D. Kanellopoulos. Discretization techniques: A recent survey. GESTS

International Transactions on Computer Science and Engineering, 32(1):47–58, 2006.

[103] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al. Handling imbalanced datasets: A
review. GESTS International Transactions on Computer Science and Engineering,
30(1):25–36, 2006.

[104] P. Kourouklidis, D. Kolovos, N. Matragkas, and J. Noppen. Towards a low-code solu-
tion for monitoring machine learning model performance. In Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems: Companion Proceedings, pages 1–8, 2020.

[105] N. Kumar, A. Berg, P. N. Belhumeur, and S. Nayar. Describable visual attributes
for face verification and image search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(10):1962–1977, 2011.

[106] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec. Interpretable & explorable
approximations of black box models. arXiv preprint arXiv:1707.01154, 2017.

[107] G. Lample and A. Conneau. Cross-lingual language model pretraining. arXiv preprint

arXiv:1901.07291, 2019.

[108] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi. Coderl: Mastering
code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

[109] Q. Le Dilavrec, D. E. Khelladi, A. Blouin, and J.-M. Jézéquel. Hyperast: Enabling
e�cient analysis of software histories at scale. In 37th IEEE/ACM International Con-

ference on Automated Software Engineering, pages 1–12, 2022.

[110] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of auto-
mated program repair: Fixing 55 out of 105 bugs for $8 each. In Software Engineering

(ICSE), 2012 34th International Conference on, pages 3–13. IEEE, 2012.

[111] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[112] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction metrics for defect pre-
diction. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pages 311–321, 2011.

[113] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. Indicators for merge
conflicts in the wild: survey and empirical study. Automated Software Engineering,
25(2):279–313, 2018.

114

[114] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead. Does bug
prediction support human developers? findings from a google case study. In 2013

35th International Conference on Software Engineering (ICSE), pages 372–381. IEEE,
2013.

[115] J. Li, P. He, J. Zhu, and M. R. Lyu. Software defect prediction via convolutional neural
network. In 2017 IEEE International Conference on Software Quality, Reliability and

Security (QRS), pages 318–328. IEEE, 2017.

[116] K. Li, W. Zhang, Q. Lu, and X. Fang. An improved smote imbalanced data classi-
fication method based on support degree. In 2014 international conference on iden-

tification, information and knowledge in the internet of things, pages 34–38. IEEE,
2014.

[117] E. Z. Liu, B. Haghgoo, A. S. Chen, A. Raghunathan, P. W. Koh, S. Sagawa, P. Liang,
and C. Finn. Just train twice: Improving group robustness without training group
information. In International Conference on Machine Learning, pages 6781–6792.
PMLR, 2021.

[118] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35, 2023.

[119] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen. Fecar: A feature selec-
tion framework for software defect prediction. In 2014 IEEE 38th Annual Computer

Software and Applications Conference, pages 426–435. IEEE, 2014.

[120] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692, 2019.

[121] V. López, A. Fernández, S. Garćıa, V. Palade, and F. Herrera. An insight into clas-
sification with imbalanced data: Empirical results and current trends on using data
intrinsic characteristics. Information sciences, 250:113–141, 2013.

[122] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain,
D. Jiang, D. Tang, et al. Codexglue: A machine learning benchmark dataset for code
understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

[123] W. Ma, M. Zhao, X. Xie, Q. Hu, S. Liu, J. Zhang, W. Wang, and Y. Liu.
Is self-attention powerful to learn code syntax and semantics? arXiv preprint

arXiv:2212.10017, 2022.

[124] N. Madaan, I. Padhi, N. Panwar, and D. Saha. Generate your counterfactuals: Towards
controlled counterfactual generation for text. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, pages 13516–13524, 2021.

115

[125] R. Malhotra and S. Kamal. An empirical study to investigate oversampling methods for
improving software defect prediction using imbalanced data. Neurocomputing, 343:120–
140, 2019.

[126] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, pages
50–60, 1947.

[127] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshyvanyk, R. Oliveto,
and G. Bavota. Studying the usage of text-to-text transfer transformer to support
code-related tasks. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pages 336–347. IEEE, 2021.

[128] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target? a longitudinal
case study of just-in-time defect prediction. IEEE Transactions on Software Engineer-

ing, 44(5):412–428, 2017.

[129] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias
and fairness in machine learning. arXiv preprint arXiv:1908.09635, 2019.

[130] I. Melekhov, J. Kannala, and E. Rahtu. Siamese network features for image matching.
In 2016 23rd International Conference on Pattern Recognition (ICPR), pages 378–383.
IEEE, 2016.

[131] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, 2000.

[132] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun. Do automated program
repair techniques repair hard and important bugs? Empirical Software Engineering,
23(5):2901–2947, 2018.

[133] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change bursts
as defect predictors. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st

International Symposium on, pages 309–318. IEEE, 2010.

[134] M. Naseriparsa and M. M. R. Kashani. Combination of pca with smote resampling
to boost the prediction rate in lung cancer dataset. arXiv preprint arXiv:1403.1949,
2014.

[135] P. Neculoiu, M. Versteegh, and M. Rotaru. Learning text similarity with siamese
recurrent networks. In Proceedings of the 1st Workshop on Representation Learning

for NLP, pages 148–157, 2016.

[136] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2017.

[137] M. Owhadi-Kareshk, S. Nadi, and J. Rubin. Predicting merge conflicts in collaborative
software development. In 2019 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), pages 1–11. IEEE, 2019.

116

[138] M. Paltenghi and M. Pradel. Thinking like a developer? comparing the attention of
humans with neural models of code. In 2021 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 867–879. IEEE, 2021.

[139] R. Pan, V. Le, N. Nagappan, S. Gulwani, S. Lahiri, and M. Kaufman. Can program
synthesis be used to learn merge conflict resolutions? an empirical analysis. In 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
785–796. IEEE, 2021.

[140] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, pages 311–318, 2002.

[141] H. V. Pham, M. Kim, L. Tan, Y. Yu, and N. Nagappan. Deviate: A deep learning
variance testing framework. In 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 1286–1290. IEEE, 2021.

[142] L. Phan, H. Tran, D. Le, H. Nguyen, J. Anibal, A. Peltekian, and Y. Ye. Cotext: Multi-
task learning with code-text transformer. arXiv preprint arXiv:2105.08645, 2021.

[143] C. Pornprasit and C. Tantithamthavorn. Jitline: A simpler, better, faster, finer-grained
just-in-time defect prediction. arXiv preprint arXiv:2103.07068, 2021.

[144] L. Qiao and Y. Wang. E↵ort-aware and just-in-time defect prediction with neural
network. PloS one, 14(2):e0211359, 2019.

[145] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[146] C. Ra↵el, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[147] F. Rahman and P. Devanbu. Ownership, experience and defects: a fine-grained study
of authorship. In Proceedings of the 33rd International Conference on Software Engi-

neering, pages 491–500. ACM, 2011.

[148] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu. Sample size vs. bias in defect
prediction. In Proceedings of the 2013 9th joint meeting on foundations of software

engineering, pages 147–157, 2013.

[149] A. Rajkomar, M. Hardt, M. D. Howell, G. Corrado, and M. H. Chin. Ensuring fairness
in machine learning to advance health equity. Annals of internal medicine, 169(12):866–
872, 2018.

[150] Z. A. Rana, M. M. Awais, and S. Shamail. Impact of using information gain in software
defect prediction models. In International Conference on Intelligent Computing, pages
637–648. Springer, 2014.

117

[151] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[152] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate statistics for
ordinal level data: Should we really be using t-test and cohen’sd for evaluating group
di↵erences on the nsse and other surveys. In annual meeting of the Florida Association

of Institutional Research, volume 177, 2006.

[153] A. Ross, A. Marasović, and M. E. Peters. Explaining nlp models via minimal con-
trastive editing (mice). arXiv preprint arXiv:2012.13985, 2020.

[154] D. Ryu, J.-I. Jang, and J. Baik. A hybrid instance selection using nearest-neighbor
for cross-project defect prediction. Journal of Computer Science and Technology,
30(5):969–980, 2015.

[155] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case general-
ization. arXiv preprint arXiv:1911.08731, 2019.

[156] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcerercc: Scaling
code clone detection to big-code. In Proceedings of the 38th International Conference

on Software Engineering, pages 1157–1168, 2016.

[157] N. Seliya and T. M. Khoshgoftaar. The use of decision trees for cost-sensitive clas-
sification: an empirical study in software quality prediction. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 1(5):448–459, 2011.

[158] R. Sharma, F. Chen, F. Fard, and D. Lo. An exploratory study on code attention
in bert. In Proceedings of the 30th IEEE/ACM International Conference on Program

Comprehension, pages 437–448, 2022.

[159] D. Song, W. Lee, and H. Oh. Context-aware and data-driven feedback generation for
programming assignments. In Proceedings of the 29th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 328–340, 2021.

[160] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319–3328. PMLR, 2017.

[161] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. Towards a big
data curated benchmark of inter-project code clones. In 2014 IEEE International

Conference on Software Maintenance and Evolution, pages 476–480. IEEE, 2014.

[162] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan. Intellicode compose: Code
generation using transformer. In Proceedings of the 28th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1433–1443, 2020.

118

[163] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song. An investigation
of cross-project learning in online just-in-time software defect prediction. In 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages
554–565. IEEE, 2020.

[164] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online defect prediction for imbalanced data.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 2, pages 99–108. IEEE, 2015.

[165] Y. Tian, Z. Zhong, V. Ordonez, G. Kaiser, and B. Ray. Testing dnn image classifiers
for confusion & bias errors. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, pages 1122–1134, 2020.

[166] F. Tramer, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Humbert, A. Juels,
and H. Lin. Fairtest: Discovering unwarranted associations in data-driven applications.
In 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 401–
416. IEEE, 2017.

[167] I. van der Linden, H. Haned, and E. Kanoulas. Global aggregations of local explana-
tions for black box models. arXiv preprint arXiv:1907.03039, 2019.

[168] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[169] M. Veale and R. Binns. Fairer machine learning in the real world: Mitigating discrim-
ination without collecting sensitive data. Big Data & Society, 4(2):2053951717743530,
2017.

[170] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin. What do they capture? a
structural analysis of pre-trained language models for source code. In Proceedings of

the 44th International Conference on Software Engineering, pages 2377–2388, 2022.

[171] A. Wang, A. Narayanan, and O. Russakovsky. Revise: A tool for measuring and
mitigating bias in visual datasets. In European Conference on Computer Vision, pages
733–751. Springer, 2020.

[172] D. Wang, Z. Jia, S. Li, Y. Yu, Y. Xiong, W. Dong, and X. Liao. Bridging pre-trained
models and downstream tasks for source code understanding. In Proceedings of the

44th International Conference on Software Engineering, pages 287–298, 2022.

[173] Q. Wang, J. Gao, and Y. Yuan. Embedding structured contour and location prior
in siamesed fully convolutional networks for road detection. IEEE Transactions on

Intelligent Transportation Systems, 19(1):230–241, 2017.

[174] S. Wang, Z. Chen, Z. Ren, H. Liang, Q. Yan, and P. Ren. Paying more attention to
self-attention: Improving pre-trained language models via attention guiding. arXiv

preprint arXiv:2204.02922, 2022.

119

[175] S. Wang and X. Yao. Using class imbalance learning for software defect prediction.
IEEE Transactions on Reliability, 62(2):434–443, 2013.

[176] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin. Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 261–
271. IEEE, 2020.

[177] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu, J. Liu, and
X. Jiang. Syncobert: Syntax-guided multi-modal contrastive pre-training for code
representation. arXiv preprint arXiv:2108.04556, 2021.

[178] Y. Wang and H. Li. Code completion by modeling flattened abstract syntax trees as
graphs. Proceedings of AAAIConference on Artificial Intellegence, 2021.

[179] Y. Wang, W. Wang, S. Joty, and S. C. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

[180] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A
survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):1–34, 2020.

[181] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai,
and Q. V. Le. Finetuned language models are zero-shot learners. arXiv preprint

arXiv:2109.01652, 2021.

[182] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin
nearest neighbor classification. In Advances in neural information processing systems,
pages 1473–1480, 2006.

[183] M. Wen, R. Wu, and S.-C. Cheung. How well do change sequences predict defects?
sequence learning from software changes. IEEE Transactions on Software Engineering,
46(11):1155–1175, 2018.

[184] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code frag-
ments for code clone detection. In Proceedings of the 31st IEEE/ACM international

conference on automated software engineering, pages 87–98, 2016.

[185] C.-P. Wong, P. Santiesteban, C. Kästner, and C. Le Goues. Varfix: balancing edit
expressiveness and search e↵ectiveness in automated program repair. In Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 354–366, 2021.

[186] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-
discriminatory predictors. In Conference on Learning Theory, pages 1920–1953.
PMLR, 2017.

120

[187] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links between bugs
and changes. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, pages 15–25, 2011.

[188] T. Wu, M. T. Ribeiro, J. Heer, and D. Weld. Errudite: Scalable, reproducible, and
testable error analysis. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, 2019.

[189] Y. Xiong and B. Wang. L2s: A framework for synthesizing the most probable pro-
gram under a specification. TOSEM: ACM Transactions on Software Engineering and

Methodology, 2021.

[190] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN International

Symposium on Machine Programming, pages 1–10, 2022.

[191] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. Deep learning for just-in-time defect
prediction. In 2015 IEEE International Conference on Software Quality, Reliability

and Security, pages 17–26. IEEE, 2015.

[192] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. Xlnet:
Generalized autoregressive pretraining for language understanding. Advances in neural

information processing systems, 32, 2019.

[193] Z. Yang, J. Shi, J. He, and D. Lo. Natural attack for pre-trained models of code.
In Proceedings of the 44th International Conference on Software Engineering, pages
1482–1493, 2022.

[194] Y. Yao, M. Xu, Y. Wang, D. J. Crandall, and E. M. Atkins. Unsupervised tra�c
accident detection in first-person videos. arXiv preprint arXiv:1903.00618, 2019.

[195] B. Yu, H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, and J. Zhao. Deeprepair: Style-
guided repairing for deep neural networks in the real-world operational environment.
IEEE Transactions on Reliability, 2021.

[196] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards building a universal defect
prediction model. In Proceedings of the 11th Working Conference on Mining Software

Repositories, pages 182–191, 2014.

[197] Z. Zhang, H. Zhang, B. Shen, and X. Gu. Diet code is healthy: Simplifying programs for
pre-trained models of code. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 1073–1084, 2022.

[198] L. Zhao, Z. Shang, L. Zhao, A. Qin, and Y. Y. Tang. Siamese dense neural network
for software defect prediction with small data. IEEE Access, 7:7663–7677, 2018.

121

[199] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process. In Proceedings of

the 7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pages 91–100, 2009.

[200] T. Zimmermann, N. Nagappan, and A. Zeller. Predicting bugs from history. In Software

evolution, pages 69–88. Springer, 2008.

122

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Data Bias in Software Engineering
	Interpret Machine Learning Models
	Self-attention-based Transformer Model

	Dissertation Structure

	Feature Bias in Software Engineering Machine Learning Model
	Introduction
	Related Work
	ML for Defect Prediction
	Few-shot learning and Siamese Network

	Methodology
	Prediction Technique Selection
	Characteristics Selection
	Investigating Difference in Characteristics between Correct and Incorrect Prediction
	Investigating Impact of Characteristics on Prediction
	Improving Defect Prediction Considering Few-shot class

	Results
	RQ1: Do commit characteristics have an impact on defect prediction performance?
	RQ2: Considering different commit characteristics, which one affects defect prediction performance the most?
	RQ3: How well can DL techniques predict defects by explicitly considering few-shot classes?

	Discussion
	Threats to Validity
	Conclusions and Future Works

	Leveraging Feature Bias to Interpret Model Misprediction
	Introduction
	Preliminaries
	BGMD: Bias Guided Misprediction Diagnoser
	Data Feature Imbalance
	Bias Guided Misprediction Diagnoser
	Implementation

	MAPS: Mispredicted Area uPweight Sampling
	Overview of the baseline algorithms
	MAPS: Mispredicted Area uPweight Sampling

	Evaluation
	ME rule generation technique comparison
	Effectiveness of Mispredicted Area Upweight Sampling
	Impact of Upweight Value on MAPS

	Discussion
	Why BGMD works better?
	Why MAPS is a good method to fix models?

	Related Work
	Threats to Validity
	Conclusion

	Attention Bias in Transformer-based Models for Software Engineering
	Introduction
	Background
	Pre-training Language Model
	CodeBERT

	Empirical Analysis for Attention Weights
	Study Design
	Measuring attention weights
	Experiment tasks
	Selected syntax types and AST structures
	Attention weight analysis
	Attention bias analysis results

	SyntaGuid: Syntax Pattern Attention Guiding
	Masked Language Modeling (MLM)
	Syntax Pattern Attention Guiding
	Syntax attention patterns

	Evaluation
	Experimental setup
	Evaluation results for syntax pattern attention guiding
	Ablation study results

	Implications
	Implications for researchers
	Implications for users

	Related Works
	Analyzing self-attention weight
	Guiding self-attention weight

	Threats to Validity
	Conclusion

	Conclusion
	Bibliography

