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Raoult Was Right After All
Anthony S. Wexler*

Air Quality Research Center and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering and
Land, Air and Water Resources, University of California, Davis, California 95616, United States

ABSTRACT: Raoult’s law, published in 1887, is taught in chemistry and chemical
engineering fields as a first approximation to the vapor pressure and activity of solutes
and solvents in mixtures. In ideal solutions, it is exact but many solutions are known to
have substantial deviations from Raoult’s law as conventionally interpreted. In 1908,
Callendar showed that water hydrated to the solute can explain some of the departures
from Raoult’s law in aqueous solution. Here, we show that by simply assuming equilibria
between the free water in solution and its hydrated forms, Raoult’s law and Callendar’s
extension are valid over the full range of concentrations, while also showing how water
and solutes interact in solution. This model of solutions has importance in highly
concentrated solutions common in atmosphere aerosols relevant to climate change and
air quality, and in numerous industrial processes.

■ INTRODUCTION

Highly concentrated solutions occur in a wide range of
industrial and natural processes including brines, carbon
capture, atmospheric aerosols, and food drying. These
solutions are typically labeled as exhibiting nonideal behavior
because the vapor pressures of the solute and solvent and their
corresponding activities in solution are not proportional to
their mole fraction. Raoult first proposed this linear mole
fraction−vapor pressure relationship in 18875 and Raoult’s law
has become a paradigm in chemistry and chemical engineering.
For dilute solutions, this relation holds but deviations grow as
the solution becomes more concentrated. In 1908, Callendar6

explained some of the deviations from Raoult’s model by
positing that in aqueous solutions, solute molecules are
hydrated such that some of the water is bound to the solute,
so it does not contribute to the vapor pressure. That is, only
the so-called “free water” contributes to the vapor pressure.
This paradigm extended the validity of Raoult’s law to higher
concentrations but it still failed at yet higher concentrations. In
1973, Stokes and Robinson7 extended this paradigm further by
assuming that for electrolytes there is an equilibrium between
the free and bound water and a power law relationship
between the equilibrium constants. As the concentration of the
solution increases, the water activity decreases and some of the
bound water falls off the solute and becomes free water.
Starting in 2011, we published a series of papers that used

statistical mechanical techniques to describe solutions over the
full range from the infinitely dilute limit to the pure solute
limit.8−10 These models were successful at describing solutions
of organics and electrolytes in water by assuming that one
water was bound to the solute or ion, the next water bound to
that water, and so on. Although a huge step forward, this
model has a shortcoming of not necessarily capturing
hydration the way we understand it. From the prior work of
Callendar,6 Stokes and Robinson,7 and many others, we know

that multiple waters can bind to solute molecules. They may
also bind to each other in a secondary layer, but the single
stacked water model of Dutcher and colleagues does not
capture what is known from the physics and chemistry of these
solutions. For instance, raffinose is thought to have a hydration
number (the average number of water molecules bound to the
solute molecule in dilute solutions) in excess of 10 but we do
not expect 10 waters to be stacked on top of each other to
hydrate raffinose.

■ RESULTS AND DISCUSSION
Here, we apply two assumptions to derive equations that
describe the “nonideality” of solutions to show that they are
actually ideal and fit Raoult’s law:
Assumption 1: Raoult’s law applies rigorously. That is, the

ratio of partial pressure to vapor pressure, the activity of all
constituents, ai, be they pure solute, hydrated solute, or free
water, is simply their mole fraction given by

= =a
i n

n
moles of

total moles of all distinct constitutentsi
i

t (1)

where ni is the number of moles of constituent i in solution and
nt is the total number of moles of all of the constituents in
solution. These constituents consist of free water, bare solute,
and hydrated solute.
Assumption 2: Each solute may be hydrated and this

hydration is governed by the following equilibria

=a K a ai i i1w 1w w (2.1)

=a K a ai i i2w 2w w 1w (2.2)
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=a K a ai i i3w 3w w 2w (2.3)

...

= −a K a aij ij i jw w w ( 1)w (2.4)

where aw is the activity of water, aijw is the activity of solute i
hydrated with j water molecules, and Kijw is the equilibrium
constant between the solute hydrated with j water molecules
and (j − 1) water molecules. All activities are given by eq 1.
We will now use eqs 1 and 2.1−2.4 to calculate the water
associated with each solute.
First, we multiply all of these equilibria in eqs 2.1−2.4 by

each other, so that the activities of the hydrated solutes cancel,
except for the most hydrated solute, giving

∏=
=

a a a Kij i
j

q

j

iqw w
1

w
(3)

Multiply both sides by nt and applying eq 1, we obtain the
number moles of each hydrated solute in terms of the number
of moles of free solute, water activity, and the equilibrium
constants

∏=
=

n n a Kij i
j

q

j

iqw w
1

w
(4)

where the number of moles of each constituent, nijw, contains
one mole of solute i and j moles of water.
By adding all of these together plus the number of moles of

bare solute, we obtain the total number of moles of solute i in
solution

∑ ∏= + =
=
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jjjjjjj
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zzzzzzzn n a K n S a1 ( )iT i
j

j

q

j

iq i iw
1

w w
(5)

where Si is the total number of moles of solute i per mole of
unhydrated solute i and is only a function of water activity.
Similarly, the total amount of water hydrated to solute i is
given by

∑ ∏= =
=

n n ja K n W a( )i T i
j

j

q

j

iq i iw w
1

w w
(6)

where Wi is the total number of moles of water hydrated to
solute i per mole of bare solute i and like Si is only a function of
water activity. Dividing eq 6 by eq 5 gives the hydration
number as a function of water activity

= =H a
n
n

W a
S a

( )
( )
( )i

i T

iT

i

i
w

w w

w (7)

That is, Hi(aw) is the total number of water molecules hydrated
to all of the hydrated forms of solute i per total number of
moles of solute i. The hydration number defined by Callendar
(1908) is the value of Hi at the limit of infinite dilution, Hi(aw
= 1). Marcus11 used isothermal compressibility to deduce how
hydration number depends on concentration fitting a linear
curve through his data.
Equation 7 is the number of bound water molecules per

solute molecule. We also need to know the number of free
waters in solution. Starting with the definition of water activity
from eq 1

= =
+ ∑

a
n
n

n
n ni iT

w
w

t

w

w (8)

where ∑iniT is the total number of all solutes in solution
regardless of their hydration state. Remember that nt is the
total number of moles of free water, free solute, and hydrated
solute in solution. Solving eq 8 for the number of moles of free
water gives

∑=
−

n
a

a
n

1 i
iTw

w

w (9)

The term aw/(1 − aw) appears in other derivations of the
thermodynamics of solutions, such as that by Dutcher and co-
workers.8−10 Here, we see that it represents the number of
moles of free water per mole of solute.
Now, we have the tools that we need to derive the

relationship between molality and water activity. The simplest
case is an aqueous solution containing a single solute A that
does not dissociate or associate. Many alcohols and sugars fit
this description. The total amount of water, nwTot, in a solution
containing solute A, its hydrated forms, and free water is

= +n n nA TwTot w w (10)

Combining this with eqs 7 and 9 gives

=
−

+n
a

a
n H a n

1
( )AT A ATwTot

w

w
w

(11)

Noting that the molality of solute in solution is given by Mwm
= nAT/nwTot, where Mw is the molar mass of water, yields an
equation for the molality as a function of water activity

=
+−

m
M

H a
1/

( )A a
a A

w

1 w
w

w (12)

The denominator is the amount of free water per total solute
plus the amount of water bound in hydrates per total solute.
The solute activity is obtained by taking the total number of
constituents in solution

+ =n n nATw t (13)

Dividing both sides by nt and combining with eq 5 to obtain

=
−

a
a

S a
1

( )A
A

w

w (14)

which can also be obtained using the Gibbs−Duhem equation,
eq 12, and noting that WA = awdSA/daw.
The values of the equilibrium constants, Kiqw, govern the

performance of eqs 12 and 14 via the functions HA(aw) and
SA(aw). For each water hydrated to each solute, there is a Kiqw
so that say for raffinose that has a hydration number of about
12, at least 12 Kiqw values are needed. For organic solutes, we
expect that roughly one water molecule will hydrogen bond to
each of the OH moieties and that the equilibrium constant will
be roughly the same for each hydrogen bond. As a result, the
Kiqw values should be roughly the same until q (the number of
hydrated waters) reaches a value, where all of the bonding
locations are taken, then it should precipitously drop in value
to zero. The logistic function neatly captures this behavior

=
+ − Δ

K
K
q q q1 exp( )/ )iq

i
x

w
w

0 (15)
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where Kiw
x is the equilibrium constant for each water hydrogen

bonded to the solute, q0 is the number of bound waters where
the value of Kiqw is half Kiw

x , and Δq governs how rapidly Kiqw
drops to zero as q increases. Since we expect the value of Kiqw
to drop precipitously to zero when q becomes larger than the
number of hydrogen bonding sites, q0, we set Δq = 0.1, an
arbitrary but small value. We now have only two fit parameters,
Kiw
x and q0, instead of the 12 or more equilibrium constants

needed for say raffinose. Figure 1 shows the fit for raffinose.

For this and subsequent solutes, osmotic coefficient defined as
φ = −ln(aw)/(Mwm) is displayed on the y-axis because it is a
very sensitive indicator of deviations between activity data and
fits to these data. The square root of the solute mole fraction is
displayed on the x-axis to better show the behavior at low
concentration, which is not relevant for raffinose but is for
other more-soluble solutes.
Due to scatter in the raffinose data, many combinations of

Kiw
x and q0 fit the data well, so here we picked Kiw

x = 2 and just
fit q0. For glycerol and NaCl, the values were simple fits to the
data. The fits minimized the sum of the squared error in
osmotic coefficient between the model and the data.
Figure 2a shows the fit for glycerol that is miscible in water,

so data exist for the full range of solute mole fractions. For
both raffinose and glycerol, the hydration number deduced
from these fits agrees well with the values reported in the
literature. Figure 2b shows the change in hydration as a
function of water activity for glycerol. The corresponding
figure for raffinose and NaCl is not shown because the change
over the water activity range is extremely small.
For two or more solutes in solutions A and B, what kind of

mixing rule applies? The total amount of water in solution is
now
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Dividing both sides by nwTot and rearranging gives
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Comparing this to eq 12, we see that the square-bracketed
quantities in the denominator are simply the single-solute
molalities; that is, the numerator in each term is the molality in
the solution mixture, whereas the denominator is the molality
in the single-solute solution. This is the ZSR mixing rule
posited independently by Zdanovski12 and Stokes and
Robinson,13 which has been shown to be valid for a wide
range of solutes that do not associate in solution. It also shows
the role that free water aw/(1 − aw) and hydrated water HA

play. In the work of Dutcher and colleagues,9 free water was
assumed to be associated with each solute. Here, we obtain the
same result without assumption.
Electrolytes can be thought of as multicomponent solutions,

wherein the salt dissociates into its ionic components and each
of these ions comprises a solute in solution. In contrast to

Figure 1. Osmotic coefficient as a function of solute mole fraction for
raffinose in water. Freezing point depression data from ref 2. Kiw

x was
fixed at 2, the fit value for q0 is 13.8, and the resulting hydration
number is 12.3.

Figure 2. (a) Osmotic coefficient as a function of solute mole fraction
for glycerol in water. Data from triangle,3 diamond.4 Parameter values
are Kiw

x = 0.553 and q0 = 5.1; the resulting hydration number is 1.0.
(b) Predicted hydration as a function of water activity for glycerol
using the same parameters as in (a).
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mixtures of nonionic solutes, the ions project their electrostatic
fields beyond the vicinity of the ion altering the thermody-
namics of the solution. This effect was first recognized by
Debye and Hückel in 1923.14,15 Pitzer16 evaluated a number of
forms for representing these long range forces and found that it
is well represented by

ρ
= −

+

i

k
jjjjj

y

{
zzzzzK

A I
I

exp
2

1
x

w
DH

3/2

1/2
(18)

where I is the ionic strength, Ax = 2.917 at 298 K and ρ is a fit
parameter related to the ion size and charge. The factor Kw

DH

modifies the water activity in the equations derived here.
Employing the stoichiometry of the electrolyte, the equations
derived above and this Debye−Huckel term yield an
expression for the molality as a function of water activity for
electrolytes

ν ν
=

+ + +
− −( ) ( )

m
M

H K a H K a

1/

( ) ( )A
K a

K a A B
K a

K a B

w

1 w
DH

w 1 w
DH

w
w
DH

w

w
DH

w

w
DH

w

w
DH

w

(19)

where vA and vB are the number of cations and anions in the
electrolyte, respectively, assuming that the electrolyte is only
comprised of one type of cation and one type of anion. More
complex electrolytes are an easy extension. Figure 3 shows the
fit for NaCl to saturation.

■ CONCLUSIONS
In summary, the theory presented here shows that Raoult’s
original idea, that the activity of solutes in solution is
proportional to the mole fraction, needs no correction if we
consider the hydrated forms of the solute in solution as
Callendar suggested and employ simple equilibria between the
hydrated forms.

Most models of solutes in solution use one of the forms
derived by Pitzer17 because they accurately model the
molality−activity relationship over a wide range of conditions.
For instance, the Clegg and Pitzer formulation is employed by
E-AIM, our popular model of aerosol thermodynamics that
performs about 100 000 calculations annually for scientists
worldwide working in the fields of air pollution and climate
change. The shortcoming of the Pitzer family of models is that
they do not extrapolate well to concentrations higher than the
available data because they are semiempirical. In fact, beyond
the physical data, they can give unphysical results. The
formulation by Dutcher and co-workers8−10 extrapolates well
at concentrations beyond the available data but does not
capture conceptually how we understand that solutes hydrate
in solution. The model presented here, based on the work
published more than 100 years ago, extrapolates well to
concentrations higher than the available data, represents
hydration of the solute realistically, covers both organic and
electrolyte solutes in water, and due to its simplicity shows the
role of free and bound water in solution.
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