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1. Introduction

In 1986, Richard Stanley [Sta86] introduced two geometric objects associated to a finite par-
tially ordered set, or poset, known as the order polytope and the chain polytope. Since then,
the study of order polytopes has been an active area of research, e.g., geometric and algebraic
properties [DR16, HKT20, HLL+19, HM16, HMOS15], connections between flow polytopes
and order polytopes [LMSD19, MMS19], and lattice-point enumeration [CFS17, LT19].

One of Stanley’s fundamental observations is that the arrangement given by all hyperplanes
of the form xi = xj for i ̸= j induces a regular unimodular triangulation of the order polytope for
any poset. This triangulation is known as the canonical triangulation of an order polytope, see
Subsection 2.2. It is well-known that the set of all regular triangulations of a polytope correspond
to the vertices of its secondary polytope, and that these triangulations are connected via flips; def-
initions are given in Subsection 2.1 and further information can be found in [DLRS10]. Various
triangulations of order polytopes have been constructed or considered, often for special classes
of posets. See, for example, Santos, Stump, and Welker for products of chains [SSW17], Féray
and Reiner for non-unimodular triangulations related to graph-associahedra [FR12], Reiner and
Welker for graded posets [RW05], Bränden and Solus for s-lecture hall order polytopes [BS20],
disjoint unions of chains [DLRS10, Section 6.2], and others. However, the general space of
regular triangulations of an order polytope, i.e., the 1-skeleton of the secondary polytope of an
order polytope, does not appear to have been studied in detail and motivates our work.

Our contributions in this paper add to the literature on order polytopes and further the study
of the general space of regular triangulations of order polytopes. Specifically, we investigate
circuits, flips, and regular triangulations of order polytopes arising from a certain class of posets,
called generalized snake posets. These posets are constructed recursively by adding a square face
at the bottom and gluing it to an edge of the previous square. First, we prove results regarding the
volumes of their corresponding order polytopes. In particular, for generalized snake posets of the
same rank, Theorem 3.11 characterizes those with minimal and maximal normalized volumes.

Next, we turn our attention to the poset Q, whose lattice of upper order ideals is a gener-
alized snake poset P , and study the combinatorial properties of the corresponding order poly-
topeO(Q). Thus, the vertices ofO(Q) are given by the elements ofP . In Theorem 4.5, we prove
that there exists a bijection between the set of nonempty connected induced subgraphs associated
to the faces of P and the set of circuits of O(Q). As a consequence, we obtain Theorem 4.12,
which states that every vertex of the secondary polytope of O(Q) corresponds to a unimodular
triangulation. The combinatorial characterization of the circuits also implies that the canonical
triangulation of O(Q) admits the same number of flips as there are faces in P , see Theorem 5.1.
Then, in Theorem 5.2 we determine that the flip graph of the order polytope O(Q), when P is a
ladder, is in fact the Cayley graph of a symmetric group.

Finally, we introduce an action on the vertices of P given by the so-called twists. It extends
to an action on regular triangulations, and in Theorem 5.8 we prove that twists of a canoni-
cal triangulation of O(Q) are again regular triangulations. Moreover, twists preserve circuits
of O(Q), and hence they commute with applying flips, see Theorem 5.6. In particular, this im-
plies that twists give an action on the component of the flip graph of O(Q) containing all regular
triangulations.
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Because our posets are strongly planar, by work of Mészáros, Morales, and Striker [MMS19],
their order polytopes are unimodularly equivalent to flow polytopes for directed acyclic graphs
associated to the posets. While there are many triangulations known for flow polytopes [DKK12],
the structure of secondary polytopes for flow polytopes have not been widely studied. Thus, the
results above can also be interpreted in the context of circuits and triangulations for certain flow
polytopes. In this work, our focus is on using the structure of order polytopes and having results
about flow polytopes as implied corollaries, with the exception of the proof of Theorem 5.8,
where we use known results regarding regular triangulations of flow polytopes to make an ob-
servation regarding order polytopes.

The article is organized as follows. In Section 2, we review some background and estab-
lish notation for triangulations and order polytopes. In Section 3, we introduce the family of
generalized snake posets P and study volumes of their corresponding order polytopes. The
characterization of circuits of the order polytope O(Q) of the poset of upper order ideals of P
is given in Section 4. Section 5 is devoted to introducing twists, and then proving four theorems
regarding twists, flips, and triangulations of O(Q). Lastly, in Section 6 we conclude the paper
with conjectures for future work.

2. Background and Notation

2.1. Triangulations

Our primary focus in this paper is the study of triangulations for a particular family of order
polytopes. We begin by providing the necessary background for triangulations following the
presentation in De Loera, Rambau, and Santos [DLRS10, Section 2.4].

Definition 2.1. Given a point configuration A ⊆ Rd, let conv(A) denote the convex hull of A.
A triangulation of A is a collection T of d-simplices all of whose vertices are points in A that
satisfies the following two properties:

1. The union of all of these simplices equals conv(A). (Union Property)

2. Any pair of these simplices intersects in a (possibly empty) common face. (Intersection
Property)

A triangulation is unimodular if every simplex has normalized volume one. A triangulation of
a point configuration A ⊆ Rd is regular if it can be obtained by projecting the lower envelope
of a lifting of A from Rd+1.

Example 2.2. Consider the polytope generated by the convex hull of the points (0, 0, 0, 0),
(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), and (1, 1, 1, 1). A triangulation of this point con-
figuration consists of the simplices:

σ4231 = conv{(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 1, 1)}
σ4321 = conv{(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)}.
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Definition 2.3. A point configuration A with index set J has corank one if and only if it has an
affine dependence relation

∑
j∈J λjvj = 0 with

∑
j∈J λj = 0 that is unique up to multiplication

by a constant. This affine dependence partitions J into three subsets:

J+ := {j ∈ J : λj > 0}, J0 := {j ∈ J : λj = 0}, and J− := {j ∈ J : λj < 0}.

In the case when A has corank one, J+ and J− are the only disjoint subsets of J with the
property that their relative interiors intersect at the point∑

j∈J+

λjvj =
∑
j∈J−

|λj|vj,

where the λj are assumed to be normalized so that
∑

j∈J+ λj =
∑

j∈J− |λj| = 1. The set
J+

⋃
J− is called a circuit in J and the pair (J+, J−) is called the oriented circuit, or Radon

partition, of A.

Definition 2.4. Let A be a point configuration with index set J . In general, a subset Z of J
is a circuit if it is a minimal dependent set (that is, it is dependent but every proper subset is
independent). Let (Z+, Z−) be a partition of Z, such that conv(Z+) ∩ conv(Z−) is nonempty.
The partition (Z+, Z−) is called an oriented circuit. We say the circuit is of type (|Z+|, |Z−|).

From the circuits we can generate triangulations by using flips to locally transform one tri-
angulation into another.

Lemma 2.5. [DLRS10, Lemma 2.4.2] Let A be a point configuration of corank one and
J = J+ ∪ J0 ∪ J− be its label set, partitioned by the unique oriented circuit of A. Then the
following are the only two triangulations of A :

T+ = {J ∖ {j} : j ∈ J+}, and T− = {J ∖ {j} : j ∈ J−}.

Example 2.6. We return to Example 2.2, where we considered the convex hull of the corank
one point configuration

v0 = (0, 0, 0, 0), v1 = (1, 0, 0, 0), v2 = (1, 1, 0, 0),

v3 = (1, 0, 1, 0), v4 = (1, 1, 1, 0), v5 = (1, 1, 1, 1).

Since v1 − v2 − v3 + v4 = 0, then an oriented circuit is J+ = {1, 4} and J− = {2, 3}. The
circuit type is (2, 2) and the two triangulations are:

T+ = {J \ {j} : j ∈ J+} = {{0, 2, 3, 4, 5}, {0, 1, 2, 3, 5}}
T− = {J \ {j} : j ∈ J−} = {{0, 1, 3, 4, 5}, {0, 1, 2, 4, 5}}.

A triangulation of A is a simplicial complex on A. Recall that an (abstract) simplicial com-
plex ∆ on a set X is a collection of subsets of X such that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The
elements of a simplicial complex are called faces and a subcomplex ∆′ of ∆ is a subcollection
of ∆ which is also a simplicial complex. The link of a face σ ∈ ∆ is the simplicial complex

lk∆(σ) = {τ ∈ ∆ : σ ∪ τ ∈ ∆ and σ ∩ τ = ∅}.

If ∆ and ∆′ are simplicial complexes, then their join is ∆∗∆′ = {σ∪σ′ : σ ∈ ∆ and σ′ ∈ ∆′}.
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Theorem 2.7. [DLRS10, Theorem 4.4.1] Let T1 and T2 be two triangulations of a point config-
uration A. Then T1 and T2 differ by a flip if and only if there is a circuit Z of A such that

(i) They contain, respectively, the two triangulations T +
Z and T −

Z of Z.

(ii) All the maximal simplices of T +
Z and T −

Z have the same link L in T1.

(iii) Removing the subcomplex T +
Z ∗ L from T1 and replacing it by T −

Z ∗ L gives T2.

Two triangulations of A are adjacent if they differ by a flip. The set of all triangulations of
A, under adjacency by flips, forms the graph of triangulations, or flip graph, of A.

Example 2.8. Continuing from Example 2.6 we demonstrate a flip from T+ to T−. We have

T+ = {{0, 2, 3, 4, 5}, {0, 1, 2, 3, 5}} ∈ T .

The circuit Z = {1, 2, 3, 4} has triangulations T +
Z = {{2, 3, 4}, {1, 2, 3}} and T −

Z = {{1, 3, 4},
{1, 2, 4}}. The link of the simplices is L = {{v0,v5}}, so flipping at the circuit supported at Z
gives the triangulation

T −
Z ∗ L = {{0, 1, 3, 4, 5}, {0, 1, 2, 4, 5}} = T−.

In Sections 4 and 5, we will take a look at the secondary polytope whose vertices are in
bijection with regular triangulations of a point configuration. Recall that we can define for each
triangulation of a point configuration A a GKZ-vector. As stated in the following definition, the
convex hull of the GKZ-vectors for A is the secondary polytope. See De Loera, Rambau, and
Santos [DLRS10, Section 5.1] for a further discussion of secondary polytopes and GKZ-vectors.

Definition 2.9 (Secondary Polytope). For a point configuration A the secondary polytope of A
is conv{φA(T ) | T triangulation of A}, where φA(T ) represents the GKZ-vector of T in A.

The flip graph, which is the graph of all triangulations connected by flips, is in general not
connected, but the flip graph of regular triangulations is connected and contains the 1-skeleton
of the secondary polytope as a spanning subgraph [DLRS10, Theorem 5.3.1].

2.2. Order polytopes

Let P be a partially ordered set on the set of elements [d] := {1, . . . , d}. We abuse notation and
write P to denote the elements of P . The order polytope of P , introduced by Stanley [Sta86],
is defined as

O(P ) =
{
x = (x1, . . . , xd) ∈ [0, 1]d : xi ⩽ xj for i <P j

}
.

See Example 2.10. An upper order ideal of P , also called a filter, is a set A ⊆ P such that
if i ∈ A and i <P j, then j ∈ A. Let J(P ) denote the poset of upper order ideals of P ,
ordered by reverse inclusion. We use ⟨p1, . . . , pk⟩ to denote the upper order ideal generated by
elements p1, . . . , pk ∈ P . Let e1, . . . , ed denote the standard basis vectors of Rd. For an upper
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order ideal A ∈ J(P ), define the characteristic vector vA :=
∑

i∈A ei. The vertices of O(P )
are given by

V (O(P )) = {vA : A ∈ J(P )} .

Define a hyperplane Hi,j = {x ∈ Rd : xi = xj} for 1 ⩽ i < j ⩽ d. The set of all such hyper-
planes, called the d-dimensional braid arrangement of type A, induces a triangulation T ofO(P )
known as the canonical triangulation, which has the following three fundamental properties:

1. T is unimodular,

2. the maximal simplices are in bijection with the linear extensions of P , so the normalized
volume of the order polytope is

vol(O(P )) = # of linear extensions of P, and

3. the simplex corresponding to a linear extension (a1, . . . , ad) of P is

σa1,...,ad =
{
x ∈ [0, 1]d : xa1 ⩽ xa2 ⩽ · · · ⩽ xad

}
,

with vertex set {0, ead , ead−1
+ ead , . . . , ea1 + · · ·+ ead = 1}.

Example 2.10 (Order polytope and triangulations). Let P be the diamond poset

4

2 3

1

Then O(P ) = {(x1, x2, x3, x4) ∈ [0, 1]4 : x4 ⩽ x2 ⩽ x1 and x4 ⩽ x3 ⩽ x1}. The six upper
order ideals of P are

∅ 1
2

1

3

1 1

2 3 4

2 3

1

so O(P ) is the convex hull of the points (0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0),
and (1, 1, 1, 1). The poset P has two linear extensions, namely 4, 2, 3, 1, and 4, 3, 2, 1. The
canonical triangulation of O(P ) then consists of the following simplices:

σ4231 = conv{(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 1, 1)}
σ4321 = conv{(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)}.
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3. Generalized snake posets

We introduce the family of generalized snake posets P (w), which are distributive lattices with
width two, and give a recursive formula for the normalized volume of the order polytope ofP (w).
For generalized snake posets of the same rank, we characterize those with minimal and maximal
normalized volumes.

Definition 3.1. For n ∈ Z⩾0, a generalized snake word is a word of the form w = w0w1 · · ·wn

where w0 = ε is the empty letter and wi is in the alphabet {L,R} for i = 1, . . . , n. The length
of the word is n, which is the number of letters in {L,R}.

Definition 3.2. Given a generalized snake word w = w0w1 · · ·wn, we define the generalized
snake poset P (w) recursively in the following way:

• P (w0) = P (ε) is the poset on elements {0, 1, 2, 3} with cover relations 1 ≺ 0, 2 ≺ 0,
3 ≺ 1 and 3 ≺ 2.

• P (w0w1 · · ·wn) is the poset P (w0w1 · · ·wn−1) ∪ {2n + 2, 2n + 3} with the added cover
relations 2n+ 3 ≺ 2n+ 1, 2n+ 3 ≺ 2n+ 2, and{

2n+ 2 ≺ 2n− 1, if n = 1 and wn = L, or n ⩾ 2 and wn−1wn ∈ {RL,LR},
2n+ 2 ≺ 2n, if n = 1 and wn = R, or n ⩾ 2 and wn−1wn ∈ {LL,RR}.

In this definition, the minimal element of the posetP (w) is 0̂ = 2n+3, and the maximal element
of the poset is 1̂ = 0.

If w = w0w1 · · ·wn is a generalized snake word of length n, then P (w) is a distributive
lattice of width two and rank n+2. We point out two special cases of generalized snake posets.
For the length nword εLRLR · · · , Sn := P (εLRLR · · · ) is the snake poset, and for the length n
word εLLLL · · · , Ln := P (εLLLL · · · ) is the ladder poset. For an example, refer to Figure 3.1.

0

1 2
34

5 6
78

9 10
1112

13

ε

L
R

L
R

L

0

1
4

6
8

10
12

2
3

5
7

9
11

13

ε

L
L

L
L

L

Figure 3.1: The snake poset S5 = P (εLRLRL) and the ladder poset L5 = P (εLLLLL).

In this article, we consider the generalized snake posets in two contexts. In the next subsec-
tion, we consider the order polytope of the generalized snake posets, O(P (w)). More precisely,
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we give a recursive formula for the volume and obtain tight lower and upper bounds for the vol-
umes of O(P (w)) when w is of fixed length. In the remaining sections, we study the order
polytope of a related poset Qw, which is the poset of join-irreducibles of the generalized snake
poset.

3.1. Volume of the order polytope of generalized snake posets

Recall that the volume of an order polytope O(P ) is determined by the number of linear exten-
sions of the poset P . Thus, to study the volume of O(P (w)) we consider the recursive structure
of the poset of upper order ideals of P (w). Because of the definition of the generalized snake
posetP (w), the minimal element of J(P (w)) is 0̂ = ⟨2n+3⟩ = P (w) and the maximal element
is 1̂ = ∅.

Lemma 3.3. Let w = w0w1 · · ·wn be a generalized snake word. If k ⩾ 0 is the largest index
such that wk ̸= wn, then J(P (w)) is equal to

J(P (w0w1 · · ·wn−1))∪{⟨2n+ 3⟩, ⟨2n+ 2⟩, ⟨2n+ 2, 2k + 2⟩}∪ {⟨2n+ 2, 2k + 2i+ 1⟩}n−k
i=1 .

Proof. First note that P (w) = P (w0w1 · · ·wn−1) ∪ {2n+ 2, 2n+ 3}, where 2n+ 3 ≺ 2n+ 1,
2n+3 ≺ 2n+2, and 2n+2 ≺ 2n or 2n+2 ≺ 2n− 1. One can see that J(P (w0w1 · · ·wn−1))
is contained in J(P (w)). The added elements 2n + 3 and 2n + 2 generate the upper order
ideals ⟨2n+3⟩ and ⟨2n+2⟩, respectively. Since 2n+3 is comparable with every other element
of P (w), it is not in the minimal generating set of any other upper order ideal. The only elements
of P (w0w1 · · ·wn−1) which are not comparable with 2n+ 2 are 2k + 2 and {2k + 2i+ 1}n−k

i=1 .
Hence, each pair {2n+2, 2k+2} and {2n+2, 2k+2i+1}n−k

i=1 generates an upper order ideal
of P (w). Since 2n+ 1 ≺ · · · ≺ 2k + 5 ≺ 2k + 3 ≺ 2k + 2, no additional minimal generating
sets of upper order ideals are possible.

Remark 3.4. Thus, we see that J(P (w)) can be constructed by adding a chain of n− k + 3
elements to the bottom of J(P (w0w1 · · ·wn−1)). In the Hasse diagram for J(P (w)), this corre-
sponds to drawing a strip of n− k + 1 squares. See Figure 3.2 for an illustration.

Notice that in the strip of the n− k + 1 newly added squares in J(P (w)), the lowest square
(consisting of the four elements ⟨2n+2, 2n+1⟩, ⟨2n+1⟩, ⟨2n+2, 2n−1⟩, ⟨2n, 2n−1⟩) lies di-
rectly below the topmost square of J(P (w)) (consisting of the four elements ⟨0⟩, ⟨1⟩, ⟨2⟩, ⟨1, 2⟩).
Hence from Lemma 3.3, we see that the Hasse diagram of J(P (w)) contains exactly n squares
which are lined up directly below the topmost square of J(P (w)). We will refer to these squares
as the central squares of J(P (w)). Swapping every letter from R to L and vice versa in w cor-
responds to reflecting J(P (w)) about this central line of squares.

The normalized volume of the order polytope O(P (w)) can be computed by a recursive
formula involving Catalan numbers.

Definition 3.5. For m ⩾ 0, the m-th Catalan number is Cat(m) = 1
m+1

(
2m
m

)
.

The Catalan number Cat(m) enumerates Dyck paths, which are lattice paths from (0, 0)
to (m,m) that do not fall below the line y = x.
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2k

2k + 22k + 1

2k + 32k + 4

2k + 5

2n

2n + 12n + 2

2n + 3

wk−1

wk

wk+1
. . .

...

wn

⟨2k, 2k − 1⟩

⟨2k + 1⟩

⟨2k + 1, 2k + 2⟩

⟨2n⟩

⟨2n + 2⟩

⟨2n + 2, 2k + 2⟩

⟨2n + 2, 2n − 3⟩

⟨2n + 2, 2n − 1⟩

⟨2n, 2n − 1⟩

⟨2n + 2, 2n + 1⟩

⟨2n + 1⟩

⟨2n + 3⟩

...
...

. . .

. . .

...

...

Figure 3.2: An illustration of Lemma 3.3. On the left is a portion of a generalized snake
poset P (w) and on the right is the corresponding poset of upper order ideals J(P (w)). To
construct J(P (w)) from J(P (w0 · · ·wn−1) is to add n − k + 3 elements, with cover relations
shown in red in the Hasse diagram on the right.

Theorem 3.6. For n ⩾ 0, let w = w0w1 · · ·wn be a generalized snake word. If k ⩾ 0 is the
largest index such thatwk ̸= wn, then the normalized volume vn ofO(P (w)) is given recursively
by

vn = Cat(n− k + 1)vk + (Cat(n− k + 2)− 2 · Cat(n− k + 1)) vk−1

with v−1 = 1 and v0 = 2.

Proof. The normalized volume of O(P (w)) is the number of linear extensions of P (w), and
the set of linear extensions of P (w) is in bijection with the set of maximal chains in J(P (w)),
so we enumerate the latter.

Let c(p1, .., pj) denote the number of maximal chains in J(P (w)) which contain the ele-
ments p1, . . . , pj . Each maximal chain in J(P (w)) contains at least one of ⟨2k, 2k − 1⟩
or ⟨2k+1, 2k+2⟩, as can be seen in Figure 3.2, so the total number of maximal chains in J(P (w))
is then c(∅) and is given by

c(∅) = c(⟨2k + 1, 2k + 2⟩) + c(⟨2k, 2k − 1⟩)− c(⟨2k + 1, 2k + 2⟩, ⟨2k, 2k − 1⟩).

Note that c(⟨2k + 1, 2k + 2⟩) is the product of the number of maximal chains in the interval
[⟨2n+3⟩, ⟨2k+1, 2k+2⟩] and the number of maximal chains in the interval [⟨2k + 1, 2k + 2⟩,∅].
There are vk many maximal chains in [⟨2k + 1, 2k + 2⟩,∅], and the maximal chains in
[⟨2n+3⟩, ⟨2k+1, 2k+2⟩] are counted by Cat(n−k+1), as they can be viewed as Dyck paths.
Therefore, c(⟨2k + 1, 2k + 2⟩) = Cat(n− k + 1)vk. Similarly, one sees that c(⟨2k, 2k − 1⟩) =
Cat(n− k + 2)vk−1.
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Finally, c(⟨2k + 1, 2k + 2⟩, ⟨2k, 2k − 1⟩) is given by 2Cat(n − k + 1)vk−1, as there are
two ways to form a maximal chain in J(P (w)) from a maximal chain in [⟨2k, 2k− 1⟩,∅] and a
maximal chain in [⟨2n+ 3⟩, ⟨2k + 1, 2k + 2⟩]. Therefore,

c(∅) = Cat(n− k + 1)vk + Cat(n− k + 2)vk−1 − 2Cat(n− k + 1)vk−1.

Focusing our attention on the snake poset Sn = P (εLRLR · · · ), the letters alternate so we
have n− k = 1 at every step, which leads to the following corollary.

Corollary 3.7. The normalized volume of O(Sn) with n ⩾ 0 is given recursively by

vn = 2vn−1 + vn−2,

with v−1 = 1 and v0 = 2. These are the Pell numbers.

In the case of the ladder poset Ln = P (εLLLL · · · ), we have k = 0 at every step, and hence
we have the following well-known result as a corollary.

Corollary 3.8. The normalized volume of O(Ln) with n ⩾ 0 is given by

vn = Cat(n+ 2).

Remark 3.9. The order polytope O(P (w)) is integrally equivalent to a flow polytope by the
work of Mészáros, Morales, and Striker [MMS19]. In particular, Corollary 3.8 appears in the
context of flow polytopes as the volume of the “caracol flow polytope” [BGDH+19, MM19].
Explicit flow polytope analogues of Theorem 3.6 and Corollary 3.7 do not seem to appear in the
literature.

We end this section by showing that the normalized volume of an order polytope O(P (w))
of a generalized snake poset is bounded above and below by the volume of the order polytope of
the ladder poset and the snake poset, respectively.

Let Wn denote the set of generalized snake words of length n. For i = 1, . . . , n, define a
swap operation fi : Wn → Wn by letting fi(w) be the word obtained from w by swapping all
letters with indices greater than or equal to i to the opposite letter.

Lemma 3.10. Let w be a generalized snake word. Then

vol(O(P (fi(w)))) ⩽ vol(O(P (w)))

whenever wi−1 = wi or i = 1. Furthermore, equality occurs only when i = 1.

Proof. Consider the maximal chains in J(P (w)) and for the moment assume i ̸= 1. Without
loss of generality assume that wi = wi−1 = L (the case wi = wi−1 = R is symmetric).

LetA = ⟨2i, 2i−1⟩ andB = ⟨2i−2, 2i−3⟩. In light of Remark 3.4 we see that J(P (fi(w)))
consists of a union of the upper order ideal generated by A in J(P (w)) and a reflected lower
order ideal generated by B. Figure 3.4 provides an illustration.

In J(P (fi(w))), all maximal chains contain at least one of A or B. Maximal chains contain-
ing A in J(P (w)) corresponds bijectively to chains containing A in J(P (fi(w))) by reflecting
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the portion of the chain after A. Similarly, the chains containing B are in bijection in both
posets. Since J(P (w)) contains maximal chains that pass through neither A nor B, there are
strictly more maximal chains in J(P (w)). Hence, vol(O(P (fi(w)))) ⩽ vol(O(P (w))).

Finally, in the case i = 1, P (w) and P (f1(w)) are isomorphic via a reflection, and so their
posets of upper order ideals are isomorphic.

ε

L0

ε
L

L1

ε
L

L

L2

ε
L
R

S2

ε
L
R

L

S3

ε
L
R
R

P (εLRR)

J(L0) J(L1) J(L2) J(S2) J(S3) J(P (εLRR))

Figure 3.3: Some generalized snake posets (top row) with their corresponding posets of upper
order ideals (bottom row). From left to right, the number of linear extensions of these generalized
snake posets (or maximal chains in the posets of upper order ideals) are 2, 5, 14, 12, 29, and 33.

Theorem 3.11. For any generalized snake word w = w0w1 · · ·wn of length n,

volO(Sn) ⩽ volO(P (w)) ⩽ volO(Ln).

Proof. First, we show that volO(Sn) ⩽ volO(P (w)). Let 2 ⩽ i1 < i2 < · · · < ik ⩽ n
be the set of indices such that wij = wij−1. Applying a swap operation at any index strictly
smaller then ij yields a word whose letters indexed by ij and ij − 1 are still the same. Then for
any j ∈ [k], the letters indexed by ij and ij−1 are also the same in the word fij−1

fij−2
. . . fi1(w).

By Lemma 3.10, we can conclude that

volO(P (fikfik−1
. . . fi1(w))) ⩽ volO(P (w)).

Moreover, by the construction of ij’s and the definition of the swap operation, no two
adjacent letters with indices up to ij are the same in fijfij−1

. . . fi1(w). This shows
that P (fikfik−1

. . . fi1(w)) equals P (εLRLR . . . ) = Sn or P (εRLRL . . . ) = f1(Sn). By
Lemma 3.10, applying f1 does not change the volume of the order polytope, so we conclude
that volO(Sn) ⩽ volO(P (w)).
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Now, we show the second part of the inequality that volO(P (w)) ⩽ volO(Ln). Let
2 ⩽ i1 < i2 < · · · < ik ⩽ n be the set of indices such that wij ̸= wij−1. Then for any j ∈ [k]
the letters in fij−1

. . . fi1(w) with indices strictly smaller then ij are the same, but the the letters
with indices ij and ij − 1 are different. Then the letters in fijfij−1

. . . fi1(w) with indices ij
and ij − 1 are the same and Lemma 3.10 implies that

volO(P (w)) ⩽ volO(P (fikfik−1
. . . fi1(w))).

Furthermore, by construction all letters in fikfik−1
. . . fi1(w) are the same so its generalized

snake poset equals P (εLLL . . . ) = Ln or P (εRRR . . . ) = f1(Ln). By the same reasoning as
above we conclude that volO(P (w)) ⩽ volO(Ln).

A

B

...
L

L
L

L
L

L

R
R

A

B

...
L

L
L

R
R
R

L
L

Figure 3.4: On the left is a snippet of a poset J(P (w)) where w contains the sequence
· · ·RLLLLLLRRL · · · . On the right is the corresponding snippet of J(P (fi(w))), where i
is the index of the red L in w. The corresponding portion in fi(w) is · · ·RLLLRRRLLR · · · .
The blue paths demonstrate the bijective correspondence between maximal chains in J(P (w))
through A or B with maximal chains in J(P (fi(w))).

4. A combinatorial interpretation of circuits

In the remainder of this article, we study the properties of the order polytope of a posetQw whose
lattice of upper order ideals is P̂ (w), which is defined to be the generalized snake poset P (w)

with 0̂ and 1̂ adjoined. When w is clear from context we write P̂ .
Givenw = w0w1 · · ·wn, P̂ = P̂ (w) is a distributive lattice with order 2n+6 because P̂ does

not contain a copy of the smallest non-modular lattice with five elements and does not contain
a sublattice isomorphic to a three-element antichain with a 0̂ and 1̂ added. Let Qw = Irr∧(P̂ )

denote the poset of meet-irreducibles of P̂ . For reference on meet-irreducibles, see [Sta97,
Chapter 3]. Heuristically, Irr∧(P̂ ) is obtained from P̂ by removing 1̂, and every vertex which
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is at the bottom of a bounded face in the Hasse diagram. See Figure 4.1. By the fundamental
theorem of finite distributive lattices, P̂ ∼= J(Qw), where J(Qw) is the lattice of upper order
ideals of Qw, ordered by reverse inclusion.

We construct a graph G = G(w) associated to P̂ = P̂ (w) as follows. If w = w0w1 · · ·wn,
the vertex set of G is V (G) = {w0, w1, . . . , wn}. The edge set of G is given by

E(G) ={(wi, wi+1) | i = 0, . . . , n− 1}∪
{(wi, wi+2) | wiwi+1wi+2 is given by xLR or xRL where x ∈ {ε, L,R}}.

In other words, G consists of the path of length n on the vertices w0, . . . , wn, with a 3-cycle for
each turn LLR or RRL in w. See Figure 4.1. We denote the set of nonempty connected induced
subgraphs of G(w) by G(w).

The Hasse diagram of P̂ (w) can be embedded on the plane so that its edges are non-crossing
where each bounded face of the embedded Hasse diagram has degree 4 given by the length of
the cycle bounding the face. We call these bounded faces the squares of P̂ (w).

There is a one-to-one correspondence between the squares of P̂ (w) and the letters of w
by realizing G = G(w) as follows. Consider each square in the Hasse diagram Hasse(P̂ )
as a vertex, then form an edge between squares when they intersect in the plane, as shown in
Figure 4.1. To each vertex wi of G, we denote by Sq(wi) the four elements of P̂ contained in
the 4-cycle which bounds the face of Hasse(P̂ ) corresponding to wi.
Remark 4.1. The volume of O(Qw) equals the number of maximal chains in P̂ (w) or, equiv-
alently, in P (w). By [Pro20, Section 4], maximal chains in P (w) are in bijection with perfect
matchings of the Hasse diagram of P (w∗), where w∗ denotes the dual of w. Informally, P (w∗)
is obtained fromP (w) by replacing three consecutive squares that form a ladder by three squares
that form a bend and vice versa. Perfect matchings of P (w∗) have been extensively studied be-
cause they play an important role in the theory of cluster algebras and their total number can
be computed via explicit formulas involving continued fractions [cS18, Theorem 3.4] or certain
admissible sequences [BFG+18, Theorem 4.6].

Next, we study the circuits of the vertices of the order polytope O(Qw). Understanding this
for arbitrary words w is a challenge, therefore we instead restrict our attention in this section to
the following set of words.

Definition 4.2. Let V denote the subset of words which do not contain the substring LRL
or RLR.

Theorem 4.5 shows that for w ∈ V , circuits in the vertices of O(Qw) have a combinatorial
interpretation as the nonempty connected induced subgraphs of the graph G(w).

Lemma 4.3. Let w ∈ V be a generalized snake word of length n. The poset Qw has order n+4.

Proof. A non-1̂ element of P̂ is meet-irreducible if and only if it is not the minimum element in
a square of P̂ (w). There are n+1 squares, thus |Irr∧(P̂ )| = 2n+6− 1− (n+1) = n+4.

Lemma 4.4. Let w ∈ V be a generalized snake word of length n. A circuit of the vertex set
of O(Qw) cannot contain the zero vector v∅ or vQw = (1, 1, . . . , 1).
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w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

w16

∅
⟨0⟩

⟨1⟩ ⟨2⟩

⟨3⟩

⟨4⟩

⟨5⟩

⟨6⟩

⟨7⟩

⟨8⟩

⟨9⟩

⟨10⟩

⟨11⟩

⟨12⟩

⟨13⟩

⟨14⟩

⟨15⟩

⟨16⟩

⟨17⟩

⟨18⟩

⟨19⟩

ε
L

L

L

R

R

L

L

L

L

R

R

R

R

R

L

L

0
1 2

3
4

5 6
78

9
10

11 12
13

14
15

17 16
18

19

Figure 4.1: In the center is the lattice P̂ (w) for w = εL3R2L4R5L2. Its poset of meet-
irreducibles Qw = Irr∧(P̂ ) is shown to the right, and the associated graph G(w) is shown
to the left.

Proof. Observe that v∅ is the zero vector in R|Qw|, so it cannot be in a minimal dependent set.
Also, vQw is the vector of all ones in R|Qw|, and in particular is the only vertex whose |Qw|-th
coordinate is nonzero, so it also cannot be in a minimal dependent set.

Let w = w0w1 . . . wn and let H ∈ G(w). For an upper order ideal A of Qw, we consider A
to be a point in J(Qw) ∼= P̂ . We sayA is compatible withH ifA is an element of an odd number
of squares in {Sq(wi) : wi ∈ H}. Consider the map Γ : G(w) → C(Qw) from the set G(w)
of nonempty connected induced subgraphs of G(w) to the set C(Qw) of circuits of the vertex
set of the order polytope O(Qw) where Γ(H) is defined to be the set of all vA such that A is
compatible with H . See Figure 4.2 for an illustration.

Theorem 4.5. Letw ∈ V be a generalized snake word of length n. The map Γ : G(w) → C(Qw)
is a bijection.

Proof. We split the proof into two parts.

Part I: Γ(H) is a circuit. We shall show by induction on |H| thatΓ(H) is a minimal dependent
set of vertices ofO(Qw). First, supposeH = {wk} is a single vertex ofG for some k = 0, . . . , n.



combinatorial theory 2 (3) (2022), #10 15

+

−

−

+

−

+

+

−

w1

w2

w3

w4

w6
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Figure 4.2: The connected induced subgraph H of G(w), depicted in blue, is embedded in
Hasse(P̂ ). The elements in the circuit Γ(H) are depicted in red.

Then for some upper order ideal A of Qw and distinct incomparable elements x, y ∈ Qw, we
have

Γ(H) = {vB : B ∈ Sq(wk)} = {vA,vA∪{x},vA∪{y},vA∪{x,y}} .

As

vA∪{x} = vA + ex,

vA∪{y} = vA + ey,

vA∪{x,y} = vA + ex + ey,

then vA − vA∪{x} − vA∪{y} + vA∪{x,y} = 0, and Γ(H) is a circuit.
Next, suppose H = {wi1 , . . . , wik} is a connected induced subgraph of G, with the as-

sumption that i1 < · · · < ik and k ⩾ 2. Observe that H contains the path wi1 , . . . , wik . We
will inductively assign signs to the squares of P̂ that contain vertices of H . Start by defin-
ing sgn(Sq(wi1)) = 1. For j = 2, . . . , k,

sgn(Sq(wij)) =

{
sgn(Sq(wij−1

)) , if ij − ij−1 = 1,

−sgn(Sq(wij−1
)), if ij − ij−1 = 2 .
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We note that since H is a connected subgraph, then Sq(wij) ∩ Sq(wij+1
) ̸= ∅. If

Sq(wij) =
{
Aij , Aij ∪ {xij}, Aij ∪ {yij}, Aij ∪ {xij , yij}

}
,

then
σij := vAij

− vAij
∪{xij

} − vAij
∪{yij } + vAij

∪{xij
,yij } = 0

is an affine dependence relation on the vertices of Sq(wij). Thus,

k∑
j=1

sgn(Sq(wij)) · σij = 0. (4.1)

Because of the definition of the sgn function, the terms which occur in the left hand side
of this expression with nonzero coefficient are indexed precisely by the elements of P̂ which
are compatible with H , i.e., Γ(H). Thus, Γ(H) is a dependent set with an affine dependence
relation (4.1).

Having shownΓ(H) is dependent, it remains to show thatΓ(H) is also minimal, i.e., a circuit.
We will use induction on |H| = k. If k = 1, then it is straightforward to verify that Sq(wi1) is a
circuit. Assume that k > 1. We consider three cases. For the first case, suppose that ik−1+1 = ik
and (wik−2

, wik) is not an edge in H . Thus, it follows that for some upper order ideal A and
elements a, b, c, we have

Sq(wik−1
) = {A,A ∪ {b}, A ∪ {a}, A ∪ {a, b}}

and
Sq(wik) = {A ∪ {b}, A ∪ {a, b}, A ∪ {b, c}, A ∪ {a, b, c}} .

A

A ∪ {a} A ∪ {b}

A ∪ {a, b} A ∪ {b, c}

A ∪ {a, b, c}

wik−1

wik

Figure 4.3: The first case, with ik−1 + 1 = ik and (wik−2
, wik) is not an edge in H .

In Γ(H), the only vectors supported on the c-coordinate are vA∪{b,c} and vA∪{a,b,c}. If we
restrict the vectors in {vC : C ∈ Γ(H)} to the coordinates in A ∪ {a, b}, then we obtain the
vectors {vC : C ∈ Γ(H \ wik)}. By induction, these vectors form a circuit with a unique
minimal dependence where the coefficients of vA∪{b} and vA∪{a,b} are equal and opposite in
sign. Thus, this is the only potential dependence (up to scaling) for {vC : C ∈ Γ(H)}, where the
coefficients of vA∪{b} and vA∪{a,b} become the coefficients of vA∪{b,c} and vA∪{a,b,c} respectively.
It is immediate that this choice of coefficients is a dependence with all non-zero coefficients, and
thus Γ(H) is a circuit.
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For the second case, suppose that ik−1 + 2 = ik, i.e., the last edge in H is the vertical edge
of a triangle in G. Thus, it follows that for some upper order ideal A and elements a, b, c, d, we
have

Sq(wik−1
) = {A,A ∪ {b}, A ∪ {a}, A ∪ {a, b}}

and
Sq(wik) = {A ∪ {a, b}, A ∪ {a, b, c}, A ∪ {a, b, d}, A ∪ {a, b, c, d}} .

A

A ∪ {a} A ∪ {b}

A ∪ {a, b}

A ∪ {a, b, d}A ∪ {a, b, c}

A ∪ {a, b, c, d}

wik−1

wik

Figure 4.4: Case two, with ik−1 + 2 = ik.

In Γ(H), the only vectors supported on the d-coordinate are vA∪{a,b,c,d} and vA∪{a,b,d}. Thus,
in any dependence for Γ(H), these two vectors have coefficients that are equal in magnitude and
opposite in sign. The only vectors supported on the c-coordinate are vA∪{a,b,c} and vA∪{a,b,c,d}.
Thus, these vectors have coefficients that are equal in magnitude and opposite in sign in any
dependence for Γ(H). Summing these three vectors with these equal and opposite coefficients
yields the vector vA∪{a,b} (scaled by the same coefficient). Thus, any dependence on Γ(H) arises
from a dependence on Γ(H \ wik). By induction, this set is a circuit with a unique minimal
dependence. This unique minimal dependence induces a unique minimal dependence on Γ(H),
for which every coefficient is non-zero.

For the third case, suppose that ik−1+1 = ik and (wik−2
, wik) is an edge in H , i.e., that wik−2

,
wik−1

, and wik form a triangle in H . Thus, it follows that for some upper order ideal A and
elements a, b, c, d, we have

Sq(wik−2
) = {A,A ∪ {b}, A ∪ {a}, A ∪ {a, b}}

and
Sq(wik−1

) = {A ∪ {b}, A ∪ {a, b}, A ∪ {b, c}, A ∪ {a, b, c}}

and
Sq(wik) = {A ∪ {a, b}, A ∪ {a, b, c}, A ∪ {a, b, d}, A ∪ {a, b, c, d}} .

In Γ(H), the only vectors supported on the d-coordinate are vA∪{a,b,c,d} and vA∪{a,b,d}. Thus,
in any dependence for Γ(H), these two vectors have coefficients that are equal in magnitude and
opposite in sign. Because A∪{a, b, c} is not compatible with H , the only non-zero vectors sup-
ported on the c-coordinate are vA∪{b,c}and vA∪{a,b,c,d}. Thus, these vectors have coefficients that
are equal in magnitude and opposite in sign in any dependence for Γ(H). Summing these three
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A

A ∪ {a}A ∪ {b}

A ∪ {a, b}A ∪ {b, c}

A ∪ {a, b, d}A ∪ {a, b, c}

A ∪ {a, b, c, d}

wik−2

wik−1

wik

Figure 4.5: Case three, with ik−1 + 1 = ik and (wik−2
, wik) is an edge in H .

vectors with these equal and opposite coefficients yields the vector vA∪{b} (scaled by the same
coefficient). Thus, any dependence on Γ(H) arises from a dependence on Γ(H \ {wik−1

, wik}).
By induction, this set is a circuit with a unique minimal dependence. This unique minimal
dependence induces a unique minimal dependence on Γ(H), for which every coefficient is non-
zero.

Part II: Γ is bijective. Having established that Γ is well-defined, we next show that Γ is in-
jective. Suppose Γ(H) = Γ(K) but H ̸= K. Since H and K are induced subgraphs, then
this means V (H) ̸= V (K). Without loss of generality, suppose wm ∈ H but wm /∈ K.
SinceH andK are each connected, thenwm must occur either at one of the ends of the main path
(wi1 , . . . , wik) of H , or is a corner of a triangle in H , where wi is a corner if wi−1 and wi+1 ∈ H .
In either case, this implies Γ(H)\Γ(K) ̸= ∅, a contradiction.

To see that Γ surjective, we induct on the length of w. If w = w0w1 · · ·wn, we
define ℓ(w) = n. Consider ℓ(w) = 0 so that w = ε. See Figure 4.6.

∅

⟨0⟩

⟨1⟩ ⟨2⟩

⟨3⟩

⟨1, 2⟩

εP̂ = P̂ (ε) :

0

1 2

3

Qε = Irr∧(J) :

Figure 4.6: The base case with w = ε.

The only circuit arises from Sq(ε):

v⟨0⟩ − v⟨1⟩ − v⟨2⟩ + v⟨1,2⟩ = (1, 0, 0, 0)− (1, 1, 0, 0)− (1, 0, 1, 0) + (1, 1, 1, 0) = (0, 0, 0, 0).

Suppose the map Γ : G(w) → C(Qw) is surjective for all w where ℓ(w) ⩽ n− 1.
Now, let u = w0 · · ·wn−1 ∈ V and w = uwn ∈ V . Suppose Sq(wn) = {A,B,C,D} so that

A ≺ B, A ≺ C, B ≺ D, C ≺ D, and C and B are incomparable. Without loss of generality,
there are two cases to consider; wn−1 = wn = R, or wn−1 = L and wn = R. These cases are
shown in Figure 4.7.
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D = ⟨d⟩

C = ⟨e, d⟩ B = ⟨b⟩

A = ⟨e, b⟩

Q

wn

wn−1

wn−2

P̂ = P̂ (w) :

F = ⟨f⟩

E = ⟨e⟩ D = ⟨f, g⟩

C = ⟨e, g⟩ B = ⟨b⟩

A = ⟨e, b⟩

Q

wn

wn−1

wn−2

or

Figure 4.7: The two cases in the induction step.

In both cases, A and C are not meet-irreducible, while B is meet-irreducible. In the
case wn = wn−1, D is meet-irreducible, so we have B = ⟨b⟩, D = ⟨d⟩, A = ⟨e, b⟩
and C = ⟨e, d⟩ for some b, d, e ∈ Q. In the case wn ̸= wn−1, D is not meet-irreducible. If
Sq(wn−1) = {C,D,E, F} with E ≺ F , then we have B = ⟨b⟩, E = ⟨e⟩, F = ⟨f⟩, A = ⟨e, b⟩,
C = ⟨e, d⟩ and D = ⟨f, d⟩ for some b, d, e, f ∈ Q. See the picture on the left in Figure 4.7.

Let T = Irr∧(P̂ (u)). If γ ∈ C(Qw) is a circuit that does not contain vA or vB, then γ is a
circuit of the vertex set of O(T ). By the induction hypothesis, there exists a connected induced
subgraph H ∈ G(u) ⊂ G(w) such that Γ(H) = γ.

We shall show that for any circuit γ that contains vA or vB, there exists a connected induced
subgraph H ⊆ G such that Γ(H) = γ. First, observe that vA or vB are the only vertices
in O(Qw) whose b-th coordinate is nonzero, aside from vQw (which by Lemma 4.4 we know
cannot be contained in any circuit). Thus, if one of these vectors is in γ, then they must both
be in γ. This also implies that any dependency relation involving vA and vB must be of the
form α(vA −vB) +R = 0 for some nonzero α ∈ R and where R is a linear combination of the
elements of γ ∖ {vA,vB}. Second, since vA ∈ γ and A = ⟨e, b⟩, then γ must contain a vertex
of the form v⟨e⟩ or v⟨e,x⟩ for some x ∈ Qw.

Consider the case wn = wn−1 = R, so that C = ⟨e, d⟩ and D = ⟨d⟩. If vC ∈ γ, then vD ∈ γ
as well, since these are the only vertices in O(T ) whose d-th coordinate is nonzero. Then by
minimality γ must be the circuit {A,B,C,D} as

vA − vB − vC + vD = 0.

In this case H = {wn} and Γ(H) = γ.
Otherwise, γ does not contain vC nor vD, so suppose γ gives rise to a minimal dependence

relation of the form
αvA − αvB +R = 0

for some nonzero α ∈ R, and R is a nonzero linear combination of vertices of O(T ) that does
not involve vA or vB. As vA − vB = vC − vD, then

αvC − αvD +R = 0

is another dependence relation which is minimal, because the initial dependence relation was
minimal. This new dependence relation consists of a set of vertices γ′ ⊆ O(T ), so by the induc-
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tion hypothesis, there is a connected induced subgraph H ′ ∈ G(u) such that Γ(H ′) = γ′. From
this, it follows that the connected induced subgraphH = H ′∪{wn} ∈ G(w) satisfies Γ(H) = γ.

Next, we consider the case wn−1 = L and wn = R. We have C = ⟨e, g⟩, D = ⟨f, g⟩,
E = ⟨e⟩ and F = ⟨f⟩. See the picture on the right in Figure 4.7. We consider four cases; in
each we will find an H with Γ(H) = γ, concluding the proof.

(i) Case vC ,vD ∈ γ: This implies γ contains {A,B,C,D}, which is a circuit. Thus, it must
be that γ = {A,B,C,D} and hence Γ({wn}) = γ.

(ii) Case vC ∈ γ, vD /∈ γ: Since vA = vF + eg + ee + eb, vB = vF + eg + eb, and
vC = vF + eg + ee, then γ must contain vF since vF is the only other vertex in O(T )
whose f -th entry is nonzero. In this case, γ gives rise to a minimal dependence relation
of the form

α(vA − vB − vC + vF ) +R = 0

for some nonzero α ∈ R, and R is a nonzero linear combination of vertices of O(T ) that
does not involve vA,vB,vC ,vD,vE , or vF . As vA − vB − vC = −vD, then

α(vF − vD) +R = 0

is another minimal dependence relation consisting of vertices γ′ ⊆ O(T ) so there exists
H ′ ∈ G(u) such that Γ(H ′) = γ′, and it follows that Γ(H ′ ∪ {wn}) = γ.

(iii) Case vC /∈ γ, vF ∈ γ: By a similar analysis as above, it must be that γ is the circuit
{A,B,E, F}, since

vA − vB − vE + vF = 0,

and H is the subgraph induced on {wn−1, wn}, where Γ(H) = γ.

(iv) Case vC ,vF /∈ γ: Since vC /∈ γ, we must have vE ∈ γ as vA = vB + ee and vE is the
only other vertex in O(T ) whose e-th coordinate is nonzero. Since A,B,E < F , then the
f -th entry of each of vA,vB,vE are nonzero. This implies that vD is in γ since the only
other vertex in O(T ) whose f -th entry is nonzero is vF .
Thus, γ gives rise to a minimal dependence relation of the form

α(vA − vB + vD − vE) +R = 0

for some nonzero α ∈ R, and R is a nonzero linear combination of vertices of O(T ) that
does not involve vA,vB,vC ,vD,vE , or vF . As vA − vB + vD = vC , then

α(vC − vE) +R = 0

is another minimal dependence relation consisting of vertices γ′ ⊆ O(T ), so there exists
H ′ ∈ G(u) such that Γ(H ′) = γ′, and Γ(H ′ ∪ {wn}) = γ.

Remark 4.6. Theorem 4.5 does not hold for a generalized snake word w outside of V . Com-
putational evidence suggests that the size of G(w) is an upper bound for the number of circuits
of O(Qw).
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Next, we obtain a number of corollaries about the structure of the circuits in the vertex set
of O(Qw).

Corollary 4.7. Let w ∈ V . A circuit Z with partition (Z+, Z−) in the vertex set of O(Qw) has
an affine dependence relation of the form∑

j∈Z+

vj =
∑
j∈Z−

vj.

In particular, |Z−| = |Z+|.

Proof. By proof of Theorem 4.5, a circuit Z = Γ(H) for some nonempty connected induced
subgraph H of G(w). Moreover, an affine dependence relation for Z is given in (4.1), where
by construction every vertex of Z appears with coefficient ±1. This shows that there is an
affine dependence relation for Z as in the statement of the corollary. Furthermore, we conclude
that |Z−| = |Z+|, because the dependence is affine.

Corollary 4.8. Let H = {wi1 , . . . , wik} be a connected induced subgraph of G induced by the
subword wi1 · · ·wik of w = w0 · · ·wn ∈ V such that i1 < · · · < ik. Suppose H ′ = H ∪ {wij}
is a connected induced subgraph of G such that ik < ij . Then

(a) If wij = wik , then |Γ(H ′)| = |Γ(H)|.

(b) If wij ̸= wik , then |Γ(H ′)| = |Γ(H)|+ 2.

In the case where H = {ε}, |Γ(H ′)| = |Γ(H)|. Thus, the smallest circuits in the vertex set
of O(Qw) have four vertices. The largest circuits have 4 + 2t vertices where t is the number of
turns (an occurrence of LLR or RRL) in w.

Using the bijection of Theorem 4.5, we can recursively compute the number of circuits in
the vertex set of O(Qw).

Corollary 4.9. Letu = w0 · · ·wn−1 ∈ V andw = uwn ∈ V . LetNk be the number of connected
induced subgraphs of G(u) that contain wk but not wk+1. Then |G(ε)| = 1, |G(εw1)| = 3, and

(a) If wn = wn−1, then |G(w)| = |G(u)|+Nn−1 + 1.

(b) If wn ̸= wn−1, then |G(w)| = |G(u)|+Nn−1 +Nn−2 + 1.

Proof.

(a) If wn = wn−1, then degG(w) wn = 1. Thus, for any connected induced subgraph H
of G(w) that contains wn, the connected induced subgraph H ′ = H\{wn} contains wn−1.
From the proof of Theorem 4.5, every circuit supported on the squares corresponding
to H has a corresponding circuit supported on the squares corresponding to H ′. The
claim follows as Nn−1 counts the subgraphs of G(u) which contain wn−1 and 1 counts the
subgraph {wn}.
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(b) If wn = wn−1, then degG(w) wn = 2. Thus, for any connected induced subgraph H
of G(w) that contains wn, the connected induced subgraph H ′ = H\{wn} contains at
least one of wn−2 and wn−1. From the proof of Theorem 4.5, every circuit supported
on the squares corresponding to H has a corresponding circuit supported on the squares
corresponding to H ′. The claim follows as Nn−2 is the number of connected induced
subgraphs of G(u) which contain wn−2 but not wn−1, Nn−1 is the number of connected
induced subgraphs of G(u) which contain wn−1, and 1 counts the subgraph {wn}.

Remark 4.10. When w = εRRLLRRLL . . ., the poset Qw = P (εRLRLRL . . .) = Sk is
the snake poset. The number of circuits of the order polytope of the snake poset is equal to
the number of nonempty connected induced subgraphs of the graph TS2k+1, defined as follows.
For odd n, let TSn denote the graph on n vertices formed by taking the the path graph on n
vertices Pn and adding edges (2i−1, 2i+1) for i = 1, . . . , (n−1)/2. The graph TSn is called a
triangular snake graph; see [Gal98] and the references therein for additional information about
triangular snakes.

The properties of circuits imply the following results regarding triangulations of O(Qw).

Lemma 4.11. Let w ∈ V . If two triangulations of the polytope O(Qw) are connected by a flip,
then they have the same number of simplices.

Proof. Let T1, T2 be a pair of triangulations of O(Qw) that differ by a flip at circuit Z.
Then T1, T2 are related as in Theorem 2.7. By Corollary 4.7, we have |Z−| = |Z+|, which
implies that the two triangulations T −

Z , T +
Z of Z have the same number of simplices. Therefore,

because by definition the link L is disjoint from both T −
Z , T +

Z , we see that T1 = T +
Z ∗ L and

T2 = T −
Z ∗ L also have the same number of simplices. This shows that the number of simplices

in a triangulation does not change when performing a flip.

Theorem 4.12. For w ∈ V , every vertex of the secondary polytope of O(Qw) is a unimodular
triangulation. Thus, every triangulation of O(Qw) is unimodular.

Proof. The vertices of a secondary polytope of O(Qw) correspond to regular triangulations
of O(Qw), see [DLRS10, Theorem 5.1.9]. Moreover, all regular triangulations are connected
by flips [DLRS10, Theorem 5.3.1]. In particular, because the canonical triangulation of O(Qw)
is regular and unimodular, then Lemma 4.11 implies that all regular triangulations of O(Qw)
are also unimodular. Finally, note that for a lattice polytope P , the following conditions are
equivalent: all full-dimensional simplices formed from the lattice points in P are unimodu-
lar; all triangulations of P are unimodular; all regular triangulations of P are unimodular; all
placing triangulations of P are unimodular. It is straightforward that each condition in this list
implies the next. To show that all placing triangulations being unimodular implies that all full-
dimensional simplices are unimodular, note that any full-dimensional simplex can be used as
the initial simplex in a placing triangulation, and thus we get a circle of equivalences. Hence,
all triangulations are unimodular.
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5. Flips and a twist action on triangulations

In this section we will take a deeper look at the 1-skeleton of the secondary polytope of O(Qw).
Starting from the canonical triangulation, we will see that for a length k word there are ex-
actly k + 1 flips, where a single flip corresponds to a local move along an edge in the flip graph.
As a consequence, we fully determine the flip graph of regular triangulations in the special case
of the ladder. We will also introduce the notion of twists which act globally by inducing auto-
morphisms on the flip graph.

5.1. Theorems regarding twists, flips, and triangulations

Using the notation from Section 4, let w be a generalized snake word in V and consider the
associated poset Qw. In this section, our goal is to prove four theorems about flips of regular
triangulations for O(Qw). We state the four theorems below; all undefined terms and proofs will
be given in later subsections. First, we classify the flips that can be made from the canonical
triangulation of O(Qw).

Theorem 5.1. Let w ∈ V have length k. The canonical triangulation of O(Qw) admits ex-
actly k + 1 flips.

As an application, we determine the flip graph of regular triangulations for the special case
of a ladder. When w = εLn−1, P̂\{0̂, 1̂} is the product of a (n + 1)-chain and a 2-chain.
Thus the next result is a rephrasing of the well-known result that the secondary polytope of the
Cartesian product of an n-simplex and 1-simplex is an n-dimensional permutahedron [GOT18,
Section 16.7.1].

Theorem 5.2. Let w = εLn−1, and Qw = Irr∧(P̂ (w)). The flip graph of triangulations
of O(Qw) is the Cayley graph of the symmetric group Sn+1 with the simple transpositions as
the generating set.

Third, we introduce the following group. Let P̂ = P̂ (w) be defined as in the previous
section. We can then think of P̂ as being made up of 0̂, 1̂, and laddersL1, . . . ,Lt for t ⩾ 1 defined
as follows. Given the vertices w0, . . . , wk of G(w), let wi1 be the first index such that there is
an edge from wi1 to wi1+2. Then L1 is the ladder in P̂ induced by the elements of ∪i1+1

j=0 Sq(wj).
Let wi2 be the next vertex where there is an edge from wi2 to wi2+2. Then L2 is the ladder in P̂
induced by the elements of ∪i2+1

j=i1+1Sq(wj). Inductively define Li in a similar fashion. Note that
by definition these ladders are disjoint except that Li∩Li+1 is a single square corresponding to a
corner box in P̂ . That is, Li∩Li+1 comes from the underlined letter . . . RRL . . . or . . . LLR . . .
in the expression for w. Moreover, we index the ladders so that y, the top element of L1, is
covered by 1̂ in P̂ . That is, y ≺ 1̂. Since w avoids subwords LRL and RLR, each Li, for
1 < i < t, consists of at least three squares and L1,Lt consist of at least two squares, except
for the case where w = ε, in which case we have one square and one ladder. For example,
in Figure 4.2 the poset P̂ consists of five ladders L1, . . . ,L5 made up of 4, 3, 5, 6, and 3 boxes
respectively.
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Figure 5.1: LadderLi in P̂ containing boxes with labelswp, . . . , wq, wherewp<wp+1< · · ·<wq.
The left (right) represents the case where wq = L (wq = R).

Let V0 denote the set of vertices of P̂ . Next, we define a collection of certain permutations
on elements of V0. Consider the ladder Li for i ∈ [t] in the poset P̂ . Then Li has the following
structure up to a reflection of P̂ in a vertical axis. Label the vertices of Li as x1, . . . , xs for some
even integer s as in Figure 5.1. In the case wherew = ε, we resolve the ambiguity of the labeling
by choosing the convention that the left and right elements in the antichain of the square have
labels x2 and x3 respectively.

Definition 5.3. Given a ladder Li, define τi ∈ S|V0| to be the permutation of V0 such that
for v ∈ V0,

τi(v) =


xj−1, if v = xj and j ∈ [s] is even,
xj+1, if v = xj and j ∈ [s] is odd,
v, otherwise.

Hence, τi acts on V0 by reflecting the vertices ofLi across a diagonal and fixing the remaining
vertices. The next lemma says that the set of τi for i ∈ [t] generate a commutative subgroup
of S|V0|.

Lemma 5.4. For all τi, τr ∈ S|V0|, the following properties hold.

(a) τ 2i = 1

(b) τiτr = τrτi

Proof. Part (a) follows directly from the definition of τi. Part (b) is straightforward when
|r − i| ⩾ 2 because the ladders Lr,Li have no vertices in common. The case r = i follows
from part (a), so it suffices to consider the case r = i + 1. Moreover, it is enough to check the
action of the τ ’s on the vertices of the square in Li ∩ Li+1. Label the vertices of this square
as xa, xb, xc, xd and consider the computations τiτi+1 and τi+1τi, as shown in Figure 5.2. This
shows that τiτi+1 = τi+1τi as desired.
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Figure 5.2: The action of τi and τi+1 commute.

Definition 5.5. Let T(w) denote the subgroup of S|V0| generated by the set of the τi’s. We
call T(w) the twist group of P̂ (w). Elements of T(w) are called twists and the elements τi are
called elementary twists.

Note that by Lemma 5.4, T(w) = ⟨τi | i ∈ [t]⟩ is isomorphic to Zt
2. The fact that elementary

twists commute will be an important factor in several proofs in this section. As the next theorem
demonstrates, the twist group acts on the component of the flip graph of triangulations ofO(Qw)
containing the canonical triangulation, and flips are preserved by twists. A priori, a simplex σ
in the triangulation T after twisting becomes a collection of vertices τ(σ) of O(Qw) that may or
may not also form a simplex. Hence, a twist τ(T ) of a triangulation T is a collection of subsets
of vertices obtained by applying the twist τ to every simplex in T , so τ(T ) is not necessarily
a triangulation. However, in the case when twisting results in a triangulation, the following
theorem says that twists and flips behave well with each other.

Recall that if Z is a circuit in O(Qw) and T is a triangulation of O(Qw) that admits a flip
using Z, then T = T +

Z and T −
Z are the triangulations related by flips at Z.

Theorem 5.6. Let w ∈ V , Qw = Irr∧(P̂ (w)), and let T and τ(T ) be two triangulations
of O(Qw) where τ is a twist. If T = T +

Z can be flipped at circuit Z and τ(T +
Z ) = τ(T +

Z )+τ(Z),
then τ(T +

Z )−τ(Z) = τ(T −
Z ). In other words, the following diagram commutes.

T +
Z

flip in Z //

twist
��

T −
Z

twist
��

τ(T+
Z ) = τ(T +

Z )+τ(Z)

flip in τ(Z) // τ(T +
Z )−τ(Z) = τ(T −

Z )

Corollary 5.7. Let w ∈ V , Qw = Irr∧(P̂ (w)), and let T and τ(T ) be two triangulations
of O(Qw) where τ is a twist. Then T and τ(T ) admit the same number of flips.

Proof. As will be seen later, a twist τ is an involution on J(Qw) that yields an involution on
circuits of O(Qw). Thus, we can apply τ to τ(T ) and recover T . This shows that there is a
bijective correspondence between flips from T and flips from τ(T ).
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Lastly, we show that twists of the canonical triangulation are also regular triangulations.

Theorem 5.8. Let w ∈ V and Qw = Irr∧(P̂ (w)). The canonical triangulation Tw of O(Qw)
is a regular triangulation, and for any twist τ , τ(Tw) is also a regular triangulation.

For each of these theorems, we have dedicated one subsection that follows to their proof.

5.2. Proof of Theorem 5.1

For the canonical triangulation ofO(Qw), simplices correspond to maximal chains in J(Qw). In
order for a circuit Z to be supported on a flip in the canonical triangulation, then
either T+ or T− must be a subcomplex of the canonical triangulation. Consider the circuits
corresponding to a single square Sq(wi) = {A,A ∪ {a}, A ∪ {b}, A ∪ {a, b}} in J(Qw).
If we assign the left A ∪ {a} and right A ∪ {b} vertices of the square to be have negative
signs in the circuit, and we assign positive signs to the upper vertex A and the lower vertex
A ∪ {a, b}, then the canonical triangulation contains T−, where T− consists of the two triangles
each formed by the positive vertices and one of the negative vertices in Sq(wi). Further, for
each of these triangles, the link in the canonical triangulation is the set of all chains contained in
{x ∈ J(Qw) | x < A ∪ {a, b}} ∪ {x ∈ J(Qw) | x > A}, and thus T− can be flipped at Sq(wi).
However, T+ is not contained in the canonical triangulation, because there is not a maximal chain
in J(Qw) that runs through the two negative vertices, which form an antichain in J(Qw). Thus,
for each of the k + 1 squares in J(Qw), we can flip the corresponding circuit.

If we have a circuit in J(Qw) that does not come from a square, then we consider two cases.
If the circuit is of size four, then the corresponding connected induced subgraph has vertices
wi1 , wi1+1, . . . , wi1+r. In this case, because there are elements of J(Qw) strictly between the
elements of the circuit and they lie in different ranks, the links are different for the two faces
in T−. For example, suppose that Sq(wi1) consists of the upper order ideals A, A∪{a}, A∪{c},
andA∪{a, c}. Suppose also that Sq(wi1+r) consists of the upper order idealsB,B∪{b},B∪{c},
and B∪{b, c}. See Figure 5.3 for an example. Then the upper order ideals A,A∪{c}, B∪{b, c}
form a triangle in T−, as does A,B ∪{b}, B ∪{b, c}. Note that B ∪{c} is in the link of the first
triangle but not the second. A similar argument holds in general, and thus this circuit does not
support a flip.

For a circuit of size greater than four, the word defining the corresponding induced subgraph
either contains a subword of the form wijwij+2 or contains a turn, i.e., contains one of RRL,
LLR, RLL, or LRR. Consider the first case, where a subword of the form wijwij+2 is present.
See Figure 4.2 for an example with w4w6. In this case, it is straightforward to verify that there
exist at least two incomparable pairs in the circuit, where the elements of each pair share the
same sign in the circuit and each pair has a different sign. Thus, both T+ and T− have simplices
containing antichains, and hence the canonical triangulation does not contain any triangulations
arising from circuits of this type.

Next consider the case where the induced subgraph contains a turn, i.e., contains one of
RRL, LLR, RLL, or LRR. Again see Figure 4.2 for an example with w2w3w4. In this case, the
existence of a turn implies that there are two antichains {A,B} and {B,C} where each upper
order ideal has the same sign in the circuit. Again, this implies that both T+ and T− have simplices
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Figure 5.3: A circuit failing the link condition.

containing antichains, and hence the canonical triangulation does not contain any triangulations
arising from circuits of this type.

Thus, the canonical triangulation admits only flips in circuits formed by the squares, and
each of the resulting triangulations is distinct, from which the result follows.

5.3. Proof of Theorem 5.2

Let w = εLn−1. Then P̂ (w)\{0̂, 1̂} is the ladder with n squares, and the graph G(w) associated
to P̂ (w) is the path graph with n vertices. By Theorem 4.5, the circuits of the vertex set of the or-
der polytope O(Qw) are in bijection with the nonempty connected induced subgraphs of G(w),
so in this context, every circuit has exactly 4 elements, corresponding to some nonempty con-
nected subgraph of the path graph with n vertices. Since the circuits never contain 0̂ or 1̂, then
without loss of generality we only need to concern ourselves with the remaining 2(n+1) vertices
of P̂ (w)\{0̂, 1̂}, which we label as [n+ 1] ∪ [(n+ 1)′]. See Figure 5.4.

1
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n+ 1

1′

2′

3′

n− 1′

n′

n+ 1′

. . .
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Sq2

Sqn−1

Sqn

Figure 5.4: The n-ladder J(Qw) = P̂ (w) of Theorem 5.2.
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There are
(
n+1
2

)
circuits; explicitly, the circuits are Zi,j = {i, i′, j, j′} for 1 ⩽ i < j ⩽ n+1.

In particular, it follows from Theorem 5.1 that the circuits which support a flip in the canonical
triangulation Tw are Zi,i+1 for i = 1, . . . , n.

Next, we define maps on the labels of P̂ (w)\{0̂, 1̂}. Given 1 ⩽ i ⩽ n, if the labels on the
four vertices of the i-th square Sqi are a, a′, b, b′, then πi swaps a with b, and a′ with b′. In other
words, πi permutes places, not values. See Figure 5.5. Compare this to the twist maps which
permute values, not places. It is clear from this definition that πi acts as a simple transposition
on the labels of P̂ (w)\{0̂, 1̂} so that π2

i = 1, and moreover, π1, . . . , πn generate the symmetric
group Sn+1.

a

b a′

b′

. . .
. . .

. . .
. . .

Sqi−1

Sqi

Sqi+1

−→
πi

b

a b′

a′
. . .

. . .

. . .
. . .

Sqi−1

Sqi

Sqi+1

Figure 5.5: The action of πi on the labels of P̂ (εLn−1).

Lemma 5.9. Let Tw denote the canonical triangulation of O(Qw). Let Ui denote the triangu-
lation of O(Qw) that differs from Tw by the flip supported at the circuit Zi,i+1 for 1 ⩽ i < n.
Then the simplices of Ui are the maximal chains of the poset πi · P̂ (w). Thus, Ui is a canonical
triangulation of an order polytope, and hence is regular.

Proof. Let
Zi,i+1 = ((Zi,i+1)+, (Zi,i+1)−) = ({i, (i+ 1)′}, {i+ 1, i′})

be the oriented circuit so that the canonical triangulation Tw contains T −
Z but not T +

Z . The n+1

maximal chains in P̂ (w) are of the form

Ci : 1, 2, . . . , i, i
′, . . . , n′, (n+ 1)′

for i = 1, . . . , n + 1. To make a flip from Tw to Ui, each maximal chain in P̂ (w) containing
{i, i + 1, (i + 1)′} has that triplet replaced by {i, i + 1, i′}, and every maximal chain in P̂ (w)
containing {i, i′, (i+1)′} has that triplet replaced by {i+1, i′, (i+1)′}. So the flip affects only
the two chains Ci and Ci+1, where effectively, (i + 1)′ is replaced by i′, and i is replaced by i′.
Thus the simplices of Ui are precisely the maximal chains in the poset πi · P̂ (w).

We will denote the triangulation Ui by πiTw.

Lemma 5.10. Let T be a regular triangulation of O(Qw) whose simplices are maximal chains
in a labeled n-ladder poset P̂T . There are exactly n regular triangulations that differ from T
by a circuit flip, and each of these triangulations have simplices which are the maximal chains
in πiP̂T for i = 1, . . . , n.
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Proof. Proceed by induction on the number of flips away from the canonical triangulation Tw.
The base case follows from Lemma 5.9. Suppose T = πiℓ · · · πi1Tc for some (reduced) sequence
of transpositions πiℓ , . . . , πi1 ∈ Sn+1. Let π = πiℓ · · · πi1 . The circuits of T are then

Zπ−1(j),π−1(k) = {π−1(j), π−1(j′), π−1(k), π−1(k′)}

for 1 ⩽ j < k ⩽ n + 1. In particular, for k = 1, . . . , n, the four elements of the cir-
cuit Zπ−1(k),π−1(k+1) are labels on the square Sqπ−1(k) of the poset P̂T , and these are the only
circuits which support a flip as they are the only ones whose links are the same for the two faces
in T −

Z . So a flip in this circuit yields a triangulation πT whose simplices are maximal chains in
the poset π · P̂T .

Since the transpositions π1, . . . , πn generate Sn+1, the proof of Theorem 5.2 now follows.

5.4. Proof of Theorem 5.6

We use the notation from Definition 5.5. We can naturally extend the action of T(w) on V0 to
the action of T(w) on subsets of V0. The following lemma states that the twist group also acts
on the circuits of the vertices of O(Qw).

Lemma 5.11. Let w ∈ V , Z = (Z+, Z−) be a circuit on V0, and τ ∈ T(w). Then
τ(Z) := (τ(Z+), τ(Z−)) is also a circuit on V0.

Proof. Because T(w) is abelian, it suffices to show that τk(Z) is a circuit for every k. We use
the labeling of the squares and vertices of Lk given in Figure 5.1. Also, by Theorem 4.5 we
have Z = Γ(Hw′), where Hw′ is an induced connected subgraph of G(w) corresponding to a
subword w′ of w.

Observe that if Z does not contain any vertex of Lk then τk(Z) = Z and the lemma holds. If
every vertex of Z is also a vertex of Lk, then Z consists of four vertices and we
have Z = ({xi, xj}, {xi+1, xj−1}) up to interchanging Z+, Z− for some i odd and j even. Then,

τk(Z) = ({xi+1, xj−1}, {xi, xj}) = (Z−, Z+)

which is the same circuit as Z. It remains to consider the case where Z contains vertices both
in Lk and outside of Lk. In this case, it must be that Z = Γ(Hw′) where w′ contains one or both
of wp−1 and wq+1.

If w′ contains wp−1 and no letter in Lk, then τk applied to Z replaces x1, x3 with x2, x4

respectively. Hence, τk(Z) = Γ(Hw′wp) is again a circuit. Similar computation holds if w′

contains wq−1 and no letter in Lk. Since τ 2k = 1 by Lemma 5.4(a), this also resolves the case
when w′ ends in wp−1wp or starts with wqwq+1.

The cases when w′ contains wp−1, wp+1 but not wq+1 or w′ contains wq−1, wq+1 but not wp−1

follow similarly to the case when w′ contains both wp−1 and wq+1; therefore, we only provide
a detailed proof for the latter case. Suppose that w′ contains both wp−1 and wq+1. Then w′

contains wp+1, . . . , wq−1 and it may or may not contain each of wp, wq. We treat the situation
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Figure 5.6: Two cases for proof of Lemma 5.11.

when w′ contains wq but not wp, and the other possibilities follow similarly. Up to interchang-
ing Z+ and Z−, we have the following situation where x1, xs−2 ∈ Z− and xs−1, x4 ∈ Z+ and no
other vertex in Lk appears in the circuit Z. This is depicted in the left-hand side of Figure 5.6.

In this case,
τk(Z−) = (Z− \ {x1, xs−2}) ∪ {x2, xs−3}

and
τk(Z+) = (Z+ \ {x4, xs+1}) ∪ {x3, xs} .

In particular, τk(Z) = Γ(Hw′′) where w′′ is obtained from w′ by adding wp and removing wq.
Therefore, τk(Z) is a circuit. The remaining cases are proved in a similar fashion. This completes
the proof of the lemma.

Proof of Theorem 5.6. Let T = T +
Z and T −

Z be triangulations related by a flip at the circuit Z.
Let T |Z denote the restriction of T to the circuit Z. Since we can flip T at Z, the links of
simplices of T |Z in T match. By Lemma 5.11, the twist τ(Z) is also a circuit, so the links
of τ(T )|τ(Z) in τ(T ) are obtained from the links of T |Z in T by applying the permutation τ .
Thus, they also match. Therefore, we obtain two triangulations related by a flip through τ(Z),
denoted τ(T ) = τ(T )+τ(Z) and τ(T )−τ(Z). It suffices to show that τ(T )−τ(Z) and τ(T −

Z ) are the
same as sets.

Every full-dimensional simplex σ in T = T +
Z that does not contain a simplex supported

on Z remains a simplex in T −
Z . Hence τ(T −

Z ) contains τ(σ) as a subset. Also, τ(σ) is a sim-
plex of τ(T ) = τ(T )+τ(Z) that does not a simplex supported on τ(Z), so it remains a simplex
in τ(T )−τ(Z) after the flip. Every full-dimensional simplex σ in T that contains a simplex sup-
ported onZ becomes (σ\{σ+})∪{σ−} after the flip, for some appropriate pair of subsets σ+, σ−
obtained from Z by removing a single element in Z+, Z− respectively. Similarly, τ(σ) con-
tains a simplex supported on τ(Z), and after the flip supported at the circuit τ(Z) it becomes
(τ(σ) \ {τ(σ+)}) ∪ {τ(σ−)} which equals τ((σ \ {σ+}) ∪ {σ−}).
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5.5. Proof of Theorem 5.8

We thank an anonymous referee for highlighting the fact that the Hasse diagrams of the posetsQw

are strongly planar, and thus the work of Mészáros, Morales and Striker [MMS19] shows that
the order polytope O(Qw) is integrally equivalent to a flow polytope. An earlier version of this
article contained a much longer direct proof of the regularity results, but a more elegant proof
is possible through the connection with flow polytopes and the work of Danilov, Karzanov and
Koshevoy [DKK12], which we now explain. We follow the definitions and notations as set forth
in [DKK12] and [MMS19].

Given a directed acyclic graph G, a framing of G is a collection of linear orders on the
incoming and outgoing edge sets at every non-source and non-sink vertex of G. For any directed
acyclic graph with a fixed framing, Danilov, Karzanov and Koshevoy constructed a triangulation
of the flow polytope FG, and showed that the triangulation is regular and unimodular [DKK12,
Theorem 2].

A poset Q is strongly planar if, after adjoining 0̂ and 1̂, the Hasse diagram of Q∪{0̂, 1̂} has
a planar embedding such that its y-coordinates respect the order of the poset. Let GQ denote the
truncated dual graph [MMS19, Section 3.3] arising from the Hasse diagram of Q∪{0̂, 1̂}. Then
Theorem 3.14 of Mészáros, Morales and Striker states that the order polytope O(Q) is integrally
equivalent to the flow polytope FGQ

.
Since Qw is strongly planar, then by Theorem 1.3 of Mészáros, Morales and Striker, the

canonical triangulation Tw of O(Qw) maps to the Danilov–Karzanov–Koshevoy triangulation
of the flow polytope FGQw

with the planar framing [MMS19, Section 6.2] of the graph GQw

under an integral equivalence map. Since the planar-framed triangulation of FGQw
is regular,

then so is the canonical triangulation of O(Qw).
The twist group T(w) = ⟨τi | i ∈ [t]⟩ acts on the canonical triangulation Tw of O(Qw), so it

is natural to ask how T(w) acts on the planar-framed triangulation of FGQw
. If P̂ = P̂ (w) has t

ladders, then the truncated dual GQw has t vertices (one for each ladder of P̂ ) together with an
additional source vertex a and a sink vertex b. In particular, for i ∈ [t], if the i-th ladder of P̂ is
a ladder of the form Lm (respectively Rm), then there are exactly two edges (a, i) (respectively
two edges (i, b)) in Qw.

In the flow polytope setting, the twist τi transposes the framing on the pair of edges in GQw

of the form (a, i) or (i, b), and this pair of edges is determined by the two vertices at the top of the
i-th ladder of P̂ . Hence, for any twist τ , τ(Tw) corresponds to a framed triangulation of FGQw

.
By Theorem 2 of Danilov, Karzanov and Koshevoy, we can conclude that the triangulation τ(Tw)
is regular.

Corollary 5.12. For w ∈ V , the component of the flip graph of O(Qw) containing all regular
triangulations admits a Zt

2 action given by twists.

Proof. By Theorem 5.8, a twist of a canonical triangulation is a regular triangulation of O(Qw),
so both triangulations lie in the same connected component of the flip graph. Any two triangu-
lations in this component are connected by a sequence of flips, hence Theorem 5.6 allows us to
extend the action of twists on all triangulations in this component. Moreover, this action respects
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the edge structure of the flip graph. This implies that this component admits a Zt
2 action given

by twists as claimed.

6. Future Directions

We conclude with several conjectures. Throughout this article, we studied generalized snake
posets P̂ (w), with our main goal being to study the secondary polytope of O(Qw).

In Theorem 5.2, when w = εLn−1 and P̂ (w) is the n-ladder, we saw that the 1-skeleton
of the secondary polytope of O(Qw) is the Cayley graph of Sn+1, which is an n-regular graph.
Furthermore, Corollary 5.7 showed that each triangulation which is generated by applying twists
to the canonical triangulation admits the same number of flips as the canonical triangulation. In
light of these results, along with a limited number of other examples, we conjecture that the
secondary polytope of O(Qw) is simple, and the degree of each vertex is equal to the dimension
of the secondary polytope.

Conjecture 6.1. For w ∈ V , the flip graph of regular triangulations for O(Qw) is k-regular,
where k is the dimension of the secondary polytope of O(Qw).

In the case when P̂ (w) is the n-ladder and its secondary polytope is a permutohedron,
Lemma 5.10 implies that the dual graph of every triangulation of O(Qw) is the same as the
dual graph of the canonical triangulation. When P̂ (w) contains a turn, our computations sup-
port the following conjecture.

Conjecture 6.2. If J(Qw) = P̂ (w) contains a turn, then O(Qw) has a regular triangulation
whose dual graph is not isomorphic to the dual graph of the canonical triangulation.

Naturally, the next case to study in-depth is when P̂ (w) is nearly a ladder. We have verified
the following conjecture for n = 3, 4, 5, 6, 7.

Conjecture 6.3. If J(Qw) = P̂ (w), where w = εLRn−2 for n ⩾ 3, then the number of
triangulations of O(Qw) whose dual graph is isomorphic to the dual graph of the canonical
triangulation is 4n(n− 2)!.

We know that, by Theorem 4.12, all triangulations of O(Qw) are unimodular. Moreover, all
of our computations support the following conjecture.

Conjecture 6.4. If w ∈ V , all triangulations of O(Qw) are regular.

When w ∈ V , a twist of a canonical triangulation of O(Qw) again yields a regular triangula-
tion, by Theorem 5.8. Therefore, if the above conjecture holds, we obtain an action of the twist
group on the set of all (regular) triangulations. Hence, the number of triangulations would be
divisible by the order of the twist group. In the special case when Qw = Sn the twist group has
order 2n+1. We make the following conjecture about the precise number of regular triangula-
tions of O(Sn) where there appears to be a relationship between regular triangulations of O(Sn)
and odd Catalan numbers. We have verified this conjecture for n = 1, 2, 3.

Conjecture 6.5. The number of regular triangulations of O(Sn) is 2n+1 · Cat(2n+ 1).
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