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Abstract

Changes in gut microbiota have been associated with several diseases. Here the international 

Multiple Sclerosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients 

(36% untreated), and genetically unrelated household healthy controls (1,152 total subjects). We 

observed a significantly increased proportion of Akkermansia muciniphila, Ruthenibacterium 

lactatiformans, Hungatella hathewayi and Eisenbergiella tayi and decreased Faecalibacterium 

prausnitzii and Blautia species. The phytate degradation pathway was over-represented in 

untreated MS, while pyruvate-producing carbohydrate metabolism pathways were significantly 

reduced. Microbiome composition, function and derived metabolites also differed in response to 

disease modifying treatments. The therapeutic activity of interferon-β may in part be associated 

to upregulation of short chain fatty acid transporters. Distinct microbial networks were observed 

in untreated MS and healthy controls. These results strongly support specific gut microbiome 

associations with MS risk, course and progression, and functional changes in response to 

treatment.
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Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) 

characterized by demyelination, axonal damage, and progressive neurologic disability. The 

etiology and pathogenesis of MS is complex and remain elusive, although both genetic 

and environmental factors are involved. Gut microbiota, an important modulator of the 

immune response(Geva-Zatorsky et al., 2017) and brain function, has emerged as a likely 

environmental contributor to MS.(Esmaeil Amini et al., 2020; Kadowaki and Quintana, 

2020; Probstel and Baranzini, 2018)

Alterations in commensal gut microbiota have been linked to many inflammatory 

conditions.(Honda and Littman, 2016) Numerous studies including ours have shown both 

depletion and enrichment of certain bacteria in MS patients compared with healthy controls,

(Berer et al., 2017; Chen et al., 2016a; Cox et al., 2021; Jangi et al., 2016) suggesting 

certain taxa might be associated to either disease pathogenesis or progression. It remains 

uncertain whether the disease results from microbial alterations, or viceversa. Mouse and 

human studies indicate that microbiota can potentially affect the onset and progression of 

diseases mediated by different immune effector cells and soluble metabolic, immune, and 

neuroendocrine factors modulated by gut microbes.(Camara-Lemarroy et al., 2018; Probstel 

and Baranzini, 2018)

Although microbial changes in MS have been detected across different studies, most of 

the alterations were reported in relapsing-remitting MS (RRMS), whereas few studies 

investigated the microbiome in progressive MS. Furthermore, it is difficult to identify a 

common pattern since results are rarely concordant (Cox et al., 2021; Kozhieva et al., 2019; 

Reynders et al., 2020) The gut microbiota can also be altered by drugs with either beneficial 

or undesirable effects. Many common drugs have antimicrobial effects, or exert a large 

impact on the composition of gut microbiome suggesting that therapeutic efficacy may be 

due to the effects of DMTs on gut microbiota. (Castillo-Alvarez et al., 2018; Cox et al., 
2021; Jangi et al., 2016; Maier et al., 2018; Sand et al., 2019)

Current microbiome studies in MS are limited by the relatively small size of the cohort 

analyzed, and inadequate handling of multiple confounding factors, such as genetic 

heterogeneity of participants, geographic location, disease subtype, treatment and diet. 

Also, many studies rely on 16S ribosomal RNA sequencing, which offers low resolution 

to identify MS associated species. To overcome these challenges, the international MS 

Microbiome Study (iMSMS) is systematically recruiting MS patients and household 

healthy controls in the US, Europe and South America. The advantages of the household-

controlled experimental design, sequencing method and handling of confounding factors 

(e.g. geographic location and diet) on gut microbiome were recently reported in a pilot 

cohort of 128 patient:control pairs.(Zhou et al., 2020) Here we present a large microbiome 

study of MS and healthy controls (n= 576 pairs), and investigate relationships with MS 

susceptibility, progression, and treatment.
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Results

A total 576 pairs of MS patients and genetically unrelated household healthy controls 

(HHCs) were recruited between September 2015 and January 2019 from seven sites 

(recruiting centers) located in San Francisco, Boston, New York, Pittsburgh, Buenos Aires, 

Edinburgh and San Sebastián (Figure 1, Table 1, Table S1). The first 128 pairs were 

recruited before October 2016 (Cohort1(Zhou et al., 2020)) and the subsequent 448 pairs 

were recruited before January 2019 (Cohort 2). Among the 576 MS patients, 209 (36%) 

were untreated and 367 (63%) were treated with a disease modifying therapy (DMT). 

Treatments included oral agents Fingolimod (n=71), and dimethyl fumarate (DMF, n=86);, 

injectables glatiramer acetate (GA, n=68) and interferon (IFN, n=87); and infusion agents 

anti-CD20 monoclonal antibodies (n=28), and natalizumab (n=27). Of the total of 576, 437 

(76%) patients had RRMS, 68 (12%) secondary progressive MS (SPMS) and 71 (12%) 

primary progressive (PPMS). Given the heterogeneity in the assessment of patients with 

SPMS and PPMS, they were combined into a single category, progressive MS (PMS, n=139, 

24%) for subsequent analyses.

All participants completed a clinical survey to report the disease status and treatment, and a 

high proportion of participants (94%, n = 1,086) completed the subject survey to report the 

demographics, medication, lifestyle and physiology factors (Figure 1A, and Table S1). Most 

participants (90%, n= 1,034) also completed the online food frequency questionnaire (FFQ). 

A summary of dietary questionnaires and the dietary intake is provided in Table S2. The 

Healthy eating index (HEI2015 with 10 components) was also calculated for all qualifying 

participants (Table S3).

Altered Gut microbial composition in MS

We first used 16s rRNA data to study the global microbial composition (α- and β-diversity). 

The V4 region of the bacteria 16S ribosomal RNA gene was amplified on an Illumina 

MiSeq platform using the Earth Microbiome Project protocol.(Caporaso et al., 2012) 

Amplicon reads from two cohort samples were analyzed using QIITA(Gonzalez et al., 

2018; Hillmann et al., 2018) to combine the forward and reverse reads, trim short 

reads of less than 150bp and assign filtered reads to amplicon sequencing reads (ASVs) 

using default Deblur parameters against Greengenes (version 13.8 at 99% identity) as 

described in QIIME2 documents.(Caporaso et al., 2010)16S rRNA sequencing has been 

more commonly used in microbiome studies to date, thus several well-established databases 

(e.g. Greengenes(DeSantis et al., 2006)) are available. The 576 pairs were processed and 

sequenced in two cohorts (128 pairs in Cohort 1 and 448 pairs in Cohort 2) (STAR Methods, 

Table S4). For the first cohort, Q-tip samples (i.e. dry) and snap frozen (i.e. wet) samples 

were processed using the QIAamp PowerFecal DNA Kit (ref 12830–50). The second cohort 

samples were processed using the MagAttract PowerSoil DNA EP Kit (ref 27100–4-EP).

The ASVs characterized by 16s rRNA sequencing were rarefied to 10,000 sequences 

per participant sample for microbial diversity analysis. α-diversity was measured by 

Shannon(Shannon, 1997) and Chao1(Chao, 1984) indices (Table S4). The microbial 

composition and diversity were highly correlated in duplicate samples sequenced in the 

two cohorts (Figure S1A–C), and also in duplicated samples processed by different DNA 
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isolation methods (Figure S1D–F), thus allowing us to merge all sequencing samples for a 

joint analysis. After removing samples with low coverage (<10,000 reads), 500 pairs of MS 

and household control participant samples were used for diversity analysis (Table S4).

No significant difference in α-diversity was observed between MS and HHC groups as 

measured by Shannon and Chao1 metrics (n =1000, ANOVA p > 0.05) (Figure 1B, Figure 

S2A). We also found no significant difference in α- diversity across patient:HHC pairs of 

RRMS (n=766), PMS (n= 234, ANOVA p > 0.05) (Figure 1B), untreated MS (n=358), and 

treated MS (n=642, ANOVA p > 0.05) (Figure S2B). Intriguingly, β-diversity-based sample 

clustering revealed a significant difference in MS regardless of treatment, and also differed 

in untreated or treated MS group status compared to their HHC (PERMANOVA FDR < 

0.05) (Figure 1C). No significant difference was observed between untreated and treated MS 

patients (PERMANOVA FDR > 0.05) (Figure 1C). Different microbial communities were 

also observed across patient:HHC pairs of RRMS and PMS patients, and when comparing 

RRMS versus PMS patients (PERMANOVA FDR < 0.05) (Figure 1D).

We next tested how much of the variance in microbial diversity (weighted uniFrac 

distances) was explained by the host confounders, including demographics, lifestyle, 

disease, medication, and physiology factors (Table S4).(Vujkovic-Cvijin et al., 2020; Zhou 

et al., 2020) Not surprisingly, the recruitment site showed a significant and dominant effect 

on the microbial composition (PERMANOVA FDR < 0.05) (Figure 1E), as we and other 

studies have reported.(Gaulke and Sharpton, 2018; Zhou et al., 2020) By checking the gut 

microbial α-diversity in individuals from each recruitment site, we observed lower microbial 

diversity in both healthy and MS participants from New York whereas a higher diversity in 

participants from San Francisco and San Sebastián (ANOVA p > 0.05) (Figure S2C). We 

hypothesize that these differences in microbial diversity might be associated with different 

dietary habits or the FFQ not completely capturing the nuances of diets different countries 

(see dietary analysis). Microbial differences associated with geography were also shown 

by the PCoA of the microbiome β-diversity (Figure S2D). The second and third largest 

component was explained by disease status (RRMS/HHC, PMS/HHC) and treatment status 

(treated MS/HHC, untreated MS/HHC), implying an altered gut microbiome in MS patients 

versus HHC as well as an effect of treatment on changing microbial structure.

Age, sex and BMI also showed significant effects on microbial compositions (Figure 1E). 

Our household design effectively reduces age-associated variation as the great majority of 

household participants are spouses of comparable age (Table 1). Smoking and education 

also exerted significant effects, but these effects were variable across recruitment sites (e.g. 

participants from San Francisco, Boston and New York are less likely to smoke and reported 

higher education) (Figure S2E–F). A smaller effect was identified by medication use and 

MS comorbidities (Figure 1E) as MS patients tend to use more medications and have 

depression or anxiety (Fisher’s exact test p < 0.001) (Figure S2G). No significant microbial 

divergence was related to factors such as household pets, birth method, or asthma in our 

study (Table S4).
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Disease associated microbial changes adjusted for confounders

Shallow shotgun sequencing with as little as 0.5 million sequences per sample has been 

shown to be a powerful and cost-effective alternative to whole metagenome sequencing. 

(Hillmann et al., 2018; Shapira et al., 2009) 1 ng of input DNA was used in a 1:10 

miniaturized Kapa HyperPlus protocol. The pooled library was sequenced as a paired-end 

150-cycle run on an Illumina HiSeq2500 v2 (cohort1) or NovaSeq 6000 (cohort2) at the 

UCSD IGM Genomics Center with sequencing depth 0.5 million reads per sample. Due to 

the high correlation between 16S rRNA and shallow sequencing at both phylum and genus 

levels(Zhou et al., 2020) we used shallow metagenomic data to identify disease-associated 

taxa and their functions. To achieve this, we performed a mixed linear regression model on 

metagenomics taxa (Table S5) in untreated MS versus HHCs. For this analysis, microbial 

composition and pathway were normalized as relative abundance and further transformed 

with a variance-stabilizing arcsine square-root transformation.(Lloyd-Price et al., 2019; 

Morgan et al., 2012; Sokal, 1982) The organism-pathway-reaction-compound network was 

built by Scalable Precision Medicine Oriented Knowledge Engine (SPOKE), a large graph 

with multiple types of nodes and relationships integrated from more than 30 publicly 

available databases covering human and bacterial molecular interactions.(Himmelstein et 

al., 2017; Nelson et al., 2021)

Compared to HHCs, 7 species were significantly reduced in untreated MS, whereas 16 

species including were significantly increased in this group (FDR < 0.05) (Figure 2A). We 

observed a similar trend for these same species in untreated RRMS and progressive MS, 

although some did not reach significance likely due to the smaller sample size and relatively 

higher interindividual heterogeneity of these groups. Intriguingly, a larger decrease of F. 
saccharivorans and F. prausnitzii and a larger increase of R. lactatiformans, H. hathewayi 
and Eisenbergiella tayi were found in untreated PMS compared to untreated RRMS (Figure 

2B), suggesting the alteration of these species could be associated with disease progression.

We next tested the correlation between microbiota and the Multiple Sclerosis Severity 

score (MSSS), adjusting for age and BMI. Several species showed correlations with disease 

severity in untreated RRMS and PMS patients (Spearman’s correlation p < 0.05) (Figure 

2C–D), consistent with a recent study.(Cox et al., 2021) Specifically, some Bacteroides 

species were correlated with lower MSSS in RRMS and short-chain fatty acid producers 

like Butyrivibrio, Clostridium and Ruminococcus were correlated with lower MSSS in 

PMS. Conversely, Collinsella aerofaciens, shown to increase disease severity in collagen-

induced arthritis mice(Chen et al., 2016b) was associated with a higher MSSS in RRMS 

patients. Consistent with studies(Larsen, 2017) showing increased inflammatory properties 

of several Prevotella species (including P. buccalis, P. corporis, P. disiens, and P. copri) in 

chronic inflammation, we found these were associated with higher MSSS in progressive MS 

patients. Finally, Streptococcus thermophilus, Azospirillum sp. 47_25 and Rhodospirillum 
sp. UNK.MSG-17 were also correlated with MSSS albeit in different direction for RRMS 

(positive) and PMS (negative).
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Functional alterations in the gut microbiome of untreated MS patients

We next explored the functional potential of the MS gut metagenome using the HUMAnN2 

workflow. Generally, all microbes perform four core metabolic pathways, biosynthesis, 

degradation, energy metabolism and macromolecule modification (Figure S3A). No 

significant differences in the functional potential of gut microbes were observed. PCA 

analysis of the abundance of functional pathways also failed to identify significant 

changes between untreated MS patients (RRMS or PMS) and HHCs (PERMANOVA 

p > 0.05) (Figure S3B). However, when testing individual pathways, we found that 

phytate degradation I (PWY-4702), was significantly more represented in MS patients 

(mixed linear regression FDR <0.05) (Figure 3A). Several species, including Akkermansia 
muciniphila, Escherichia coli and Cronobacter sakazakii, have the ability to degrade phytate 

via this pathway. We found A. muciniphila (Figure 2A) and two of its encoded proteins 

in this pathway (4-phytase, Amuc_0145, and Inositol-1-monophosphatase, Amuc_1242) 

significantly more represented in untreated RRMS and progressive MS patients (Figure 

3B). As multiple (and sometime opposing) functional capabilities have been reported for 

A. muciniphila strains, we implemented the Metagenomic Intra-Species Diversity Analysis 

System (MIDAS) (Nayfach et al., 2016) to estimate strain-level genomic variation. In total, 

58 samples had sufficient sequencing coverage allowing us to identify single nucleotide 

polymorphisms (SNPs) and gene content from A. muciniphila (Figure S4). To distinguish 

possible strains from these samples, we compared 2,913 genes (presence/absence) and 

identified four gene clusters and two sample clusters. None of the sample clusters was 

significantly correlated with disease status, sex, treatment status or geographic site (Chi-

squared test p >0.05). The majority of A. muciniphila genes were shared across samples, 

(i.e. core genes), but some genes showed a distinct pattern. Functional analysis revealed that 

“Sulfite reductase [NADPH] hemoprotein beta-component (EC 1.8.1.2)”, encoded by the 

cysI gene, was present in cluster1 but not cluster2. While additional studies are needed to 

establish their relevance to MS, we were able to identify the presence of at least two A. 
muciniphila strains with differences in sulfur metabolism.

Conversely, 6 pathways were more represented in HHC, mostly explanined by the increase 

of Faecalibacterium prausnitzii (mixed linear regression FDR <0.05) (Figure 3B, Figure 

S3B). We also found four other carboxylates metabolism pathways which produce pyruvate 

via protein 2-dehydro-3-deoxy-phosphogluconate aldolase (EC 4.1.2.14), were enriched in 

healthy controls (Figure 3C). This protein was identified in Faecalibacterium prausnitzii 
(FP2_23290, D4K064) and significantly decreased in both untreated RRMS and PMS 

patients (Paired T-test p < 0.05) (Figure 3D). Finally, by integrating the metabolic pathways 

into higher-class pathway level, we identified that cyclitols degradation and fermentation to 

acids were more abundant in untreated MS patients, while carboxylates degradation, lysine 

synthesis, S-adenosyl-L-methionine biosynthesis and sucrose degradation were enriched in 

healthy controls (mixed linear regression FDR <0.05) (Figure 3E).

We found different pathways associated with disease severity in untreated RRMS and PMS 

(Spearman’s correlation p < 0.05) (Figure 3F). “PWY-4981: L-proline biosynthesis II (from 

arginine)” was positively correlated with higher MSSS, mostly explained by the abundance 

of Collinsella aerofaciens (Figure S3C) which was also correlated with higher MSSS 
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(Figure 2C). Conversely, lower representation of the “PWY-5097: L-lysine biosynthesis 

VI” pathway (Figure 3A) was correlated with a lower MSSS PMS mostly explained by 

Bacteroides species and F. prausnitzii (Figure S3D).

Specific interacting microbial communities were enriched in MS

We next computed species-species co-abundance networks using SparCC(Friedman and 

Alm, 2012) method (in R using SpiecEasi package(Kurtz et al., 2015)), which is a tool to 

infer linear relationships with high precision for high diversity compositional data. SparCC 

correlations were adjusted for age, sex and BMI using cor2por function from R package 

“corpcor”. In total, 1677 species were used for the analysis, resulting in 116,397 correlations 

across 1372 species in MS patients and 105,304 correlations across 1375 species in HHC 

(absolute Sparcc r ≥ 0.1, FDR < 0.05, Table S6). After filtering out correlations with r < 0.4 

(based on the network centrality distribution) (Figure S5A) and subnetworks with fewer than 

2 species, we identified a network of 773 taxa with 5688 correlations in HHC (dominated 

by 555 Firmicutes and 196 Bacteroidetes species), and a network of 786 taxa with 6742 

correlations in MS (dominated by 549 Firmicutes and 197 Bacteroidetes species) (Figure 

S5B). Notably, the majority of taxa (n = 702) and correlations (n = 4131) between MS and 

HHC microbial networks overlapped (Figure S5C), suggesting that the fundamental role of 

commensal microbes remains stable even under different biological conditions.

Cohort-specific analysis revealed 215 correlations across 119 species in untreated MS 

patients (mean r = 0.78, FDR < 0.05), and 195 correlations across 139 species in HHCs 

(mean r = 0.783, FDR < 0.05) (Figure 4A–B). Cohort-specific species were linked to their 

MetaCyc pathways. As many species share pathways, we focused on those that are unique 

to the cohort specific species. Species from the same phylum were clustered together in both 

MS and HHC networks, suggesting a cooperative role of these species in response to the 

environment. Remarkably, we observed different Firmicutes/Bacteroidetes (F/B) ratio for the 

MS-specific network (F/B=2.5) and HHC-specific network (F/B=1.03) (hypergeometric test 

p < 0.01). Interestingly, 45 unique species (largely dominated by Bacteroides and Prevotella) 

composed the HHC network (Figure 4C).

Surprisingly, among 21 significantly altered species (untreated MS versus HHC, Figure 2A), 

seven were identified in both the MS and healthy specific networks, and only one species 

(Varibaculum cambriense), was found in the MS network (Figure 4D). This suggests that co-

abundance relationships and differential microbial abundance reflect orthogonal information. 

While the group-specific species did not show significant differences in abundance, some 

have unique functions (Figure 4E–F). For example, [Clostridum] innocuum and Salmonella 
enterica (with potential roles in drug resistance and pathogenicity) were specific to the MS 

network, while Bacteroides vulgatus, Bacteroides thetaiotaomicron, Prevotella fusca and 

Prevotella denticola (with potential roles in glycan biosynthesis), were specific to the HHC 

network. Altogether, these results suggest that microbial co-abundance network analyses can 

identify highly interacting communities that may contribute to health or disease status.
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Impact of treatment on gut microbiota

We next evaluated how DMT may affect gut microbiome composition in RRMS patients 

receiving any of 6 commonly used treatments in our study. Overall, the microbial 

composition measured by β-diversity did not differ between treated and untreated RRMS 

patients (except for the interferon treated group). However, significant differences in β-

diversity were observed when patients within each treatment group were compared to their 

corresponding HHC (PERMANOVA) (Figure 5A).

Due to the heterogeneity of treated and untreated RRMS patients recruited from multiple 

locations and unequal sample sizes of these groups, we mainly focused our analyses 

on gut microbiome by comparing untreated or treated RRMS groups to their HHCs 

(mixed linear regression) (Figure 5B–C). A direct comparison between untreated RRMS 

and treated RRMS was shown in Figure S6A–B. Intriguingly, the microbial changes 

observed in untreated RRMS patients (versus HHCs) were not replicated in treated 

RRMS (versus HHCs). Specifically, several taxa increased in untreated RRMS subjects 

showed no difference within DMTs groups, including Parabacteroides merdae CAG:48, 

A. muciniphila and other Akkermansia species. Use of DMTs was also associated with 

changes in multiple taxa that were not significantly different between MS and HHC. For 

example, DMF, which is hydrolyzed into monomethyl fumarate (MMF) before exerting its 

therapeutic effect, specifically reduced Bacteroides stercoris, Clostridium and Eubacterium 
species, and fingolimod specifically reduced Bacteroides finegoldii CAG:203, Roseburia 
faecis and Blautia species. Interferon-ß treatment, thought to decrease proinflammatory 

cytokines and prevent the migration of activated T cells across the blood-brain barrier, was 

associated with dysbiosis of short-chain fatty acid-producing bacteria like Ruminococcus 
sp., Clostridium sp., Faecalibacterium prausnitzii, Roseburia inulinivorans and Roseburia 
intestinalis while also increased Parabacteroides distasonis, which have been shown to have 

multiple metabolic benefits in obesity.(Wang et al., 2019) Notably, Bacteroides uniformis 
was significantly increased by interferon treatment but reduced by GA and natalizumab 

therapy. This bacterium was reported to be associated with MS(Miller et al., 2015) but also 

with a protective role in obesity.(Lopez-Almela et al., 2021) GA exerted a modest impact 

on gut microbes compared to other DMTs. Lastly, infusion of natalizumab or anti-CD20 

monoclonal antibody altered gut microbes significantly. Phascolarctobacterium sp. CAG:207 
was increased while Prevotella species and Bifidobacterium longum were decreased in 

response to natalizumab. A aeduction of Bacteroides finegoldii CAG:203 and Blautia sp. 
CAG:37 were observed in anti-CD20-treated patients.

Based on metagenomic sequencing, numerous metabolic pathways appeared to be altered 

in response to the different DMTs, and many of them are included in the same high-class 

pathway (Figure S6C). We found that pathways related to lysine synthesis, sugar nucleotides 

and unsaturated fatty acids biosynthesis were decreased significantly in untreated RRMS but 

modulated differently by the various DMTs. Of interest, the increased cyclitols degradation 

pathways in untreated RRMS remained highly abundant even after treatment (Figure 5C 

and Figure S6C). We also identified various metabolic pathways that were differentially 

modulated by specific therapies. For example, DMF use increased heme synthesis and 

enzyme cofactor biosynthesis pathways. In addition, DMF and interferon use was associated 
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with an increase in L-ornithine biosynthesis and carrier biosynthesis. Furthermore, GA use 

was associated with increased peptidoglycan biosynthesis and natalizumab with increased 

lipid biosynthesis, whereas a decrease of guanosine nucleotides degradation pathway was 

associated to Fingolimod treatment (Figure 5C and Figure S6C). Altogether, disease 

modifying therapies showed significant and specific impact on gut microbiome both 

structurally and functionally, indicating the importance of stratifying microbiome analyses 

by treatment status.

To further investigate the mechanism of disease modifying therapies (DMT) in MS and their 

interactions with gut microbiota, we performed metabolomic profiling in untreated RRMS 

patients (N=79), and in those treated with dimethyl fumarate (n=47), fingolimod (n=39), GA 

(n=31), and interferon-β (n=49), as well as their corresponding household healthy controls. 

A panel of global metabolites and 8 targeted short-chain fatty acids (SCFAs) in both feces 

and serum samples were measured using ultrahigh Performance Liquid Chromatography-

Tandem Mass Spectroscopy (UPLC-MS/MS) by Metabolon Inc. (Durham, North Carolina) 

(Table S7).

We found 31 metabolites significantly different between untreated patients and controls, 

or in response to at least one MS drug (mixed linear regression p <0.05) (Figure 6A). 

Consistent with their expected functions and origin, we found higher variability in fecal 

metabolites compared their corresponding serum levels (with the notable exception of 

increased serum fumarate in DMF-treated patients). We also identified significant changes in 

the levels of 8 SCFAs in either serum or stool for at least one group (mixed linear regression 

p <0.05) (Figure 6B). Remarkably, the vast majority of changes in microbiota-derived fecal 

metabolites were towards lower levels among MS patients and even more significantly in 

response to DMTs (except for GA, Figure 6A). Higher levels of metabolic dysfunction 

have been reported to be associated with increased disability in MS.(Lazzarino et al., 2017; 

Villoslada et al., 2017) We found no difference of disease severity (measured by global MS 

severity score) among RRMS patients (treated or untreated) (Figure 6C). This suggests the 

altered metabolites reported here are in response to the MS drugs, not the disease process. 

Interestingly, we found specific signatures of microbe-derived metabolites (stool) in RRMS 

patients in response to each treatment. The most notable changes in gut metabolites were 

induced in response to Fingolimod and IFN-β.

While Fingolimod is an oral drug, and changes to the gut microbiota might be expected, the 

profound metabolic signature of IFN-β (an injectable) was most intriguing. A functional 

analysis of the 23 IFN-β-associated metabolites, revealed a significant enrichment in 

pathways involving amino acid metabolism (e.g. “Arginine biosynthesis”), carbohydrate 

(i.e. “Citrate cycle”), nucleotide (i.e. “Purine”), and energy (“Nitrogen”) metabolism 

(MetaboAnalyst pathway enrichment FDR < 0.05) (Figure 6D). In contrast, GA exerted 

an almost null impact on stool-derived metabolites. These findings are in agreement with 

previous studies, in which only modest transcriptional changes were observed in PBMCs 

after treatment with GA compared to IFN-β.(De Jager et al., 2009; Ottoboni et al., 2012) 

Also of interest, these distinct metabolomic alterations were consistent with functional 

predictions derived from shotgun sequencing (Figure 5B–C).
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We noted that pyruvate was significantly decreased in both feces and serum samples from 

RRMS patients treated with Fingolimod. Interestingly, this finding correlates well with 

the significant depletion of taxa containing the pathway “CARBOXYLATES-DEG” (which 

produces pyruvate) in Fingolimod treated patients (Figure 5C, Figure S6). We also observed 

the concentration of fecal SCFA (such as acetate and propionate) was consistently lower 

in RRMS patients, regardless of treatment (Figure 6B), consistent with our finding of the 

depletion of F. prausnitzii (a major SCFA-producing bacteria) in MS. A decreased amount of 

fecal SCFA has also been reported in RRMS and PPMS patients in other studies.(Takewaki 

et al., 2020; Zeng et al., 2019)

Propionate supplementation in MS patients was associated with an increased Treg/Th17 

ratio, leading to long-term clinical improvement.(Duscha et al., 2020) Interestingly, we 

found a significant increase in serum propionic acid (Acetic and Butyric acid also followed 

this same trend, without reaching statistical significance) in RRMS patients treated with 

IFN-β (Figure 6E, Figure 6B). Since most SCFAs produced in the colonic lumen are actively 

transported to the lamina propria and further into the blood stream,(Olsson et al., 2021; 

Venegas et al., 2019) we hypothesized that IFN-β may increase the intestinal absorption of 

propionate, as part of its immunomodulatory effect. To address this hypothesis, we searched 

whether expression of the genes encoding for SCFA transporters MCT1 (SLC16A1) and 

SMCT1 (SLC5A8) (Miyauchi et al., 2004; Ritzhaupt et al., 1998) were upregulated by 

IFN-β.The Interferome database(Rusinova et al., 2013) reports an increase of SLC16A1 

expression in human bronchial epithelial cells (no data is available for intestinal epithelial 

cells) treated with IFN-β (Figure 6F), potentially supporting our hypothesis.

Diet and gut microbiome

Diet is thought to explain over 20% of microbial structural variations in humans, 

implying the potential for dietary strategies in disease management through gut microbiota 

modulation.(Rothschild et al., 2018) We administered the validated Block 2005 food 

frequency questionnaire (FFQs)(Block, 2005) to our participants (89.8% completion rate) 

(Table S2). Recent epidemiologic studies of diet and health outcomes have also focused on 

the overall diet quality,(Guo et al., 2004) which can be measured by the Heathy Eating Index 

(HEI-2015), where a higher HEI-2015 score indicates greater diet quality (See Supplemental 

document).

Significant differences in diet (measured by Jaccard dissimilarity) were associated with 

BMI, participant household, recruitment site, education and age (PERMANOVA FDR 

< 0.05) (Figure 7A). Not surprisingly, a higher BMI correlated with a lower HEI-2015 

score in both MS patients and healthy individuals (Pearson’s correlation p < 0.05) (Figure 

S7A), consistent with evidence that an imbalanced diet exerts a significant influence on 

weight.(Guo et al., 2004) We also observed that diet quality increased with age (Pearson’s 

correlation p < 0.05) (Figure S7A). There is considerable variation in dietary intakes across 

countries (Figure 7B). In particular we found a significantly lower average HEI-2015 score 

in participants from Buenos Aires when compared to those in San Francisco, New York, 

Edinburgh and San Sabastian. While this may indeed indicate a lower health index, it is 

noteworthy that the FFQ is standardized for the US average participant, and diets in other 
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parts of the world may not adjust properly to this standard. As gut microbial diversity 

differed among recruitment sites, we hypothesized that the diversity was influenced by 

diet. Indeed, we found that higher microbial diversity significantly correlated with a higher 

HEI-2015 score in both healthy and MS individuals (Pearson’s correlation p < 0.01) (Figure 

7C). However, although participants from Buenos Aires had lower HEI-2015 scores, their 

microbial diversity remained high compared to other sites, whereas New York had higher 

HEI-2015 scores but comparatively lower microbial diversity (Figure S2C). This may 

indicate that standardized questionnaires, even if validated, do not fully capture the wide 

range of dietary habits from iMSMS participants, but also suggests that the gut microbiota 

could be influenced by other factors, such as physiological activity, water and air, among 

others. Also, shifts in oral microbe composition need to be considered as studies have shown 

oral-derived bacteria can colonize and persist in the intestines.(du Teil Espina et al., 2019; 

Hatton et al., 2018)

Despite the large variance in dietary habits among participants, we identified a significantly 

higher diet similarity within household pairs compared to that of random pairs drawn from 

within the same city (ANOVA FDR <0.05) (Figure S7B). The lowest diet similarity was 

found when random pairs of MS and HHC were assembled from different cities, consistent 

with our previous findings(Zhou et al., 2020) and reflecting distinct dietary habits across 

cities and countries (Figure 7B). Finally, we observed a significant correlation between 

education, nonsmoker (or former smoker) status, and female sex with a higher HEI-2015 

score (ANOVA FDR <0.05) (Figure S7C–E), also consistent with findings from previous 

studies.(Arabshahi et al., 2011; Thorpe et al., 2019)

Although a more similar diet was shared among household participants, the HEI-2015 score 

of MS patients was significantly higher than those of healthy controls (paired T-test p < 

0.001) (Figure 7D). However, microbial taxa associated with MS status did not overlap 

with those associated with diet, thus likely not representing a confounder. Indeed, we 

specifically assessed which dietary components were consumed differently by MS and 

healthy participants and whether these differences were associated with species previously 

shown to be altered in MS. By comparing the ten components from the HEI-2015 (Table 

S3), we found MS participants consumed more fruit, vegetables and unsaturated fatty acid 

when compared to HHCs (paired T-test p < 0.05) (Figure 7E), which contributed to their 

scores (Figure 7D). We also found that Eubacterium eligens was highly correlated with 

a higher HEI-2015 score (Pearson’s correlation p < 0.01) (Figure 7F), and particularly 

correlated with intake of whole grains, fruit and vegetables (mixed linear regression p < 0.05 

after adjusting for age, sex, BMI and recruitment site) (Figure S7F), consistent with previous 

studies showing that E. eligens responded significantly to dietary fiber.(Chung et al., 2016) 

Faecalibacterium sp., Eubacterium sp. and Blautia sp. were also positively correlated with 

higher intake of whole grains. Increased Alistipes obesi abundance was also correlated with 

healthier diet (Pearson’s correlation p < 0.05) (Figure 7F). Interestingly, other studies found 

low Alistipes abundance in individuals with obesity (Thingholm et al., 2019) and associated 

to higher meat intake,(Garcia-Ribera et al., 2020). Furthermore, Alistipes abundance was 

identified as a predictor of successful weight loss in a two-year intervention (including 

healthier diet) in adults with obesity,(Louis et al., 2016) suggesting a potential beneficial role 

of this bacterium in the context of metabolic health. Altogether, although diet does correlate 
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with changes in the host microbiota, we were able to tease apart the effects of diet and 

disease, in large part due to the household paired design employed (Figure S7F).

As expected, diet showed a modest effect on MS-associated taxa after controlling for the 

environmental impact by household design in all three groups (mixed linear regression) 

(Figure 7G). Still, some disease-associated species were also related to diet. For example, 

Ruminococcus torques was enriched in MS, and showed a negative correlation with sodium 

intake, whereas no difference in sodium intake was found between MS versus HHCs. 

Faecalibacterium prausnitzii correlated positively with fruit (which MS patients consumed 

more), but the bacterium remained reduced in MS compared to healthy controls. These 

examples suggest that these species were more likely related to disease status than diet.

Phytate degradation I (PWY-4702) pathway was found to be overrepresented in MS patients 

(Figure 2A). Phytate, a plant-based antioxidant compound, is a strong chelator of divalent 

minerals (e.g. calcium, magnesium, iron and zinc), which bacteria metabolize into myo-

inositol, a compound with immunoregulatory properties,(Nerurkar et al., 2020) which was 

found at lower levels in MS sera and CSF.(Zahoor et al., 2021) Thus, we hypothesized that 

this bacterial pathway was activated: i) in response to increased dietary intake of divalent 

minerals by MS patients or; ii) as a compensatory mechanism to produce more myo-inositol. 

To test this hypothesis, we compared the dietary mineral intake between MS patients and 

their HHCs but found no significant difference (after adjusting for age, BMI and sex) 

(Figure S8A).

Finally, we observed MS patients took more vitamin D supplementation than healthy 

controls (paired T-test p < 0.001) (Figure S8B), possibly in response to studies showing 

an association with reduced risk of developing MS and of disease activity in MS patients.

(Munger et al., 2006; Runia et al., 2012) When assessing the impact of vitamin D usage on 

microbial composition, we were unable to find a correlation. We did find a trend towards a 

negative correlation with microbial α-diversity for both MS or HHCs samples, but without 

reaching significance (Figure S8C). Similarly, β-diversity was not significantly influenced 

by vitamin D intake (Figure S8D).

Discussion

Microbiome composition and function significantly differed across disease subtypes, 

responded differently to disease modifying treatments, and were modestly associated with 

diet. We found that the microbial composition was to a lesser extent, associated with 

factors such as geographic location, age, sex and BMI. The influence of other confounding 

factors was reduced by our paired household design, thereby potentially enhancing power to 

identify MS-associated microbial features. In addition to confirming and extending previous 

reports,(Berer et al., 2017; Cekanaviciute et al., 2017; Chen et al., 2016a; Cox et al., 2021; 

Jangi et al., 2016) this work provides a large reference dataset that can be used to understand 

microbial variation across individuals with MS, disease subtypes and in response to different 

therapeutic interventions.

Zhou et al. Page 13

Cell. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Consistent with earlier studies, we found no difference of α-diversity between MS patients 

and healthy individuals(Berer et al., 2017; Cekanaviciute et al., 2017; Jangi et al., 2016). 

However, in contrast to previous studies, we observed a significant difference of β-diversity 

in disease status (regardless of treatment status). Interestingly, there was no difference in 

β-diversity between untreated MS and treated MS, potentially indicating that disease status 

exerts a stronger effect on gut microbiome than does treatment.(Cox et al., 2021) Overall, 

our findings revealed a robust alteration of gut microbial composition related to the disease 

and therapy.

While an increase in A. muciniphila has also been reported in previous studies,(Berer et 
al., 2017; Cekanaviciute et al., 2017; Cox et al., 2021; Probstel et al., 2020) interpretation 

of its specific role remains controversial. A. muciniphila is a mucin-degrading bacteria 

shown to exert pro-inflammatory effects on T cells in vitro(Cekanaviciute et al., 2017) and 

to exacerbate inflammation during infection.(Ganesh et al., 2013) Interestingly, peptides 

from A. muciniphila have been recently shown to stimulate human myelin autoreactive 

CD4+ T cell clones, thus suggesting molecular mimicry is a potential mechanism for 

MS pathogenesis (Wang et al., 2020). However, A. muciniphila has also been proposed 

as a contributor to maintaining gut health, improving glucose homeostasis, increasing gut 

mucin integrity and enhancing effect of checkpoint inhibitor immunotherapy.(Cani and de 

Vos, 2017; Liu et al., 2019; Routy et al., 2018) Different functional capabilities across A. 
muciniphila strains that may affect how these bacteria interact with the host.(Becken et al., 

2021; Karcher et al., 2021; Kirmiz et al., 2020) At least two A. muciniphila strains were 

identified in our samples with differences in their functions such as sulfur metabolism, 

but none of them was enriched in MS in our dataset. Through pathway analysis we found 

“phytate degradation I” (PWY-4702) (a cyclitols degradation pathway), mainly driven by A. 
muciniphila, was significantly increased in untreated MS patients. This pathway converts 

phytate into Myo-inositol. Phytate is a strong chelator of divalent minerals such as calcium, 

magnesium, iron and zinc. Previous studies suggested that high levels of iron and zinc could 

play a role in MS activity and progression,(Ferreira et al., 2017; Hametner et al., 2013; 

Sanna et al., 2018) whereas calcium and magnesium could exert neuroprotective capacities.

(Enders et al., 2020; Goldberg et al., 1986) Dietary mineral intake was no different between 

MS and healthy controls, but it is still possible that bacterial pathways (such as Phytate 

degradation) modulate the bioavailability of these minerals, thus contributing to disease 

pathogenesis. Myo-inositol, a simple carbohydrate produced in the body and available in 

foods such as fruits and cereals, is involved in lipid signaling, osmolarity, glucose, and 

insulin metabolism(Gonzalez-Uarquin et al., 2020) and utilized as dietary supplementation 

in different pathological conditions, including diabetes and metabolic disorders.(Pintaudi 

et al., 2016; Shokrpour et al., 2019) Interestingly, a very early study showed that patients 

with MS appeared to metabolize myo-inositol abnormally,(Holm, 1978) and administered 

myo-inositol was shown to have a positive effect on evoked potential responses in MS (n =9) 

and controls (n=9).(Young et al., 1986) The role of Akkermansia in myo-inositol metabolism 

needs to be further elucidated.

Ruminococcus torques is another potent mucus degrader and may decrease gut barrier 

integrity.(Cani, 2014; Rajilic-Stojanovic and de Vos, 2014) A recent study showed that R. 
torques was associated with an enhanced MRI T2 signal in multiple motor brain areas and 
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exacerbated disease in an animal model of amyotrophic lateral sclerosis (ALS).(Blacher 

et al., 2019) Ruthenibacterium lactatiformans, a lactate-producing species, was previously 

associated with an increased EDSS and decreased lower extremity motor function in RRMS 

and progressive MS.(Cox et al., 2021)

Overall, 7 species were significantly reduced in untreated MS. Faecalibacterium prausnitzii, 
one of the main butyrate producers found in the intestine, has anti-inflammatory properties 

that were partly associated with secreted metabolites that block NF-κB activation, IL-8 

production and upregulate regulatory T cell production.(Lopez-Siles et al., 2017) It can 

also attenuate the severity of inflammation through release of metabolites that enhance 

intestinal barrier function. (Carlsson et al., 2013; Martin et al., 2015) The pyruvate-

producing carboxylates metabolism pathways, contributed by F. prausnitzii, were found 

to be significantly reduced in untreated MS patients. Altogether, we found a depletion of 

potentially beneficial bacteria in untreated MS patients compared to healthy controls, which 

in turn disturbed key metabolic pathways that might be expected to worsen the inflammation 

of MS. These findings could lead to the development of “designer probiotics” that can 

restore the healthy composition and function of the gut microbiome.

We next tested whether these altered bacteria also associated with disease severity, and 

found that only Streptococcus thermophilus, Azospirillum sp. 47_25 and Rhodospirillum sp. 
UNK.MSG-17 were. However, correlations were positive for RRMS and negative for PMS 

patients. This implies that the change of gut microbial community may be linked to the 

onset of disease and stabilized during the disease course, a hypothesis which requires further 

investigation by longitudinal studies. Several other species were found to be correlated 

exclusively with MS severity (e.g. not with disease status). For example, Butyrivibrio, 

Clostridium and Ruminococcus species, which are short-chain fatty acid (SCFA) producers, 

correlated with lower MS severity in PMS. It’s well known that SCFAs play a critical role 

in immunoregulation with well-characterized anti-inflammatory effects on both epithelium 

and peripheral immune cells. This implies potentially beneficial effects of these bacteria 

by producing anti-inflammatory metabolites. On the other hand, Collinsella aerofaciens, 

a species showed to increase disease severity in collagen-induced arthritis mice,(Chen 

et al., 2016b) was associated with a higher MSSS in RRMS patients probably via the 

pathway “PWY-4981: L-proline biosynthesis II (from arginine)”. Prevotella species such as 

P. buccalis, P. corporis, P. disiens, P. copri were associated with higher MSSS. Although 

Prevotella species have been associated with health-beneficial properties, several studies 

have shown associations with autoimmune diseases, insulin resistance and diabetes, and 

gut inflammation.(Leite et al., 2017; Pedersen et al., 2016; Scher et al., 2013) Intriguingly, 

we found pathway “PWY-5097: L-lysine biosynthesis VI”, a decreased pathway in MS 

versus HHCs, was associated with a lower disease severity. Several commensal bacteria 

participants in this pathway, including Bacteroides, Faecalibacterium and Eubacterium 
species. L-lysine has been shown to have anti-inflammatory in rat with chronic lung injury,

(Zhang et al., 2019) and may play a neuroprotective role in intracerebral hemorrhage injury,

(Cheng et al., 2020) thus suggesting a potential usage of L-lysine to suppress the disease 

progression. Based on these observations, we speculate that the role of gut bacteria in 

disease progression/severity is multi-faceted and individual-dependent.

Zhou et al. Page 15

Cell. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The use of DMTs resulted in a decrease in the relative abundance of specific taxa 

that are not MS-associated, potentially by their innate antimicrobial properties.(Maier et 
al., 2018; Storm-Larsen et al., 2019) Specifically, Bacteroides, Blautia and Clostridium 

species were significantly reduced in response to oral medications and species like 

Faecalibacterium prausnitzii, Dialister invisus CAG:218 and Roseburia intestinalis were 

reduced in individual receiving injectables. Furthermore, infused therapies resulted in 

a decrease of Bifidobacterium adolescentis, which was shown to promote Th17 cell 

accumulation and exacerbated autoimmune arthritis in a mouse model, arguing for its 

pathological relevance.(Tan et al., 2016) On the other hand, we found several species that 

were increased by DMTs, in particular Ruthenibacterium lactatiformans and Ruminococcus 
torques (with Fingolimod), Eubacterium hallii (with GA) and Bacteroides uniformis (with 

interferon). Intriguingly, sequence-based analysis suggested the oral drug Fingolimod would 

induce the most metabolic changes compared to other medications, a finding validated by 

metabolomic analysis. Specifically, the depletion of microbial “CARBOXYLATES-DEG” 

pathways (which produces pyruvate) may explain the low level of pyruvate observed in feces 

and serum samples from RRMS patients treated with Fingolimod, and the depletion of F. 
prausnitzii (a major SCFA producing bacteria) could account for the lower levels of acetate 

and propionate found in MS. We also found several microbe-derived fecal metabolites 

were remarkably lower in treated RRMS patients, implying a particularly important effect 

of these medications, likely through direct interactions with gut microbiota. Of interest, 

a significant increase of serum propionic acid was found in RRMS patients treated with 

interferon. Propionate supplementation in MS patients has been associated with an increased 

Treg/Th17 ratio, leading to long-term clinical improvement.(Duscha et al., 2020) Based 

on our findings, we propose the increased absorption of microbially-derived propionate 

via upregulation of the SCFA transporter MCT1 (SLC16A1) as contributing mechanism of 

action for IFN-β. Our results provide compelling evidence that DMTs have considerable 

effects on gut microbiota, not only compositionally but functionally, that may highlight 

therapeutic mechanisms requiring further investigation. Additional larger and longitudinal 

follow-up studies will help to evaluate these effects more precisely.

A healthier diet associates with higher microbial diversity, but diet may not the only 

factor at play. Some bacteria remained unaffected by dietary change depending on host 

phenotype and the preexisting microbiota composition.(Flandroy et al., 2018) In addition, 

local environment (i.e. air, soil and water) could also influence diversity of the gut 

microbiota by horizontal transmission of environmental microbes.(Tasnim et al., 2017) 

Vitamin D deficiency has long been associated with MS, and higher levels of vitamin D 

were associated with reduced clinical activity in established MS.(Munger and Ascherio, 

2011) Unsurprisingly, we observed that MS patients took more vitamin D, but showed no 

significant influence on gut microbiome composition.

Limitations of the study

Shotgun metagenomics sequencing was limited to ~500,000 reads per sample. While this 

coverage is adequate to classify bacterial communities with higher resolution that 16S 

RNA gene sequencing, and to provide some insight into the metabolic potential of the 

communities, higher sequencing depth will be needed to resolve most strains, clades 
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and DNA polymorphisms. We cannot exclude power limitations due to stratification by 

treatment. As a consequence of the paired household design, the majority of the pairs are 

spouses, thus leading to an uneven sex distribution of MS (69.4% of the MS participants 

are female, in keeping with the expected demographics for MS(Langer-Gould et al., 2013)). 

However, our model adjusted for the effect of sex on gut microbiome.

In summary, this is a large, multi-center gut microbiome study in MS patients and HHC. The 

findings strongly support the presence of specific gut microbiome associations both with 

MS disease course and progression, and functional changes in response to treatment. The 

origin and biological relevance of these associations remain to be elucidated. Nevertheless, 

our study supports the possibility that microbial manipulation and dietary intervention could 

be used as preventive and therapeutic strategies in MS.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Sergio E. Baranzini 

(Sergio.Baranzini@ucsf.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Shotgun and 16S rRNA amplicon sequencing datasets 

generated from human fecal DNAs are available in the EMBL-ENA repository with 

accession number ERP115476. See Table S1 for a complete list of sequenced samples. 

Processed data for 16S rRNA, metagenomics and metabolomics profiles, clinical data and 

diet data are available at Dryad (https://doi.org/10.7272/Q60C4T26). All original code 

is available at https://github.com/BaranziniLab/iMSMS_study. Any additional information 

required to reanalyze the data reported in this paper is available from the lead contact upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and inclusion criteria—A total of 576 MS patients and their household 

healthy controls were included in this study. See Table S1 for phenotypes of all participants. 

The first 128 MS-control pairs were recruited as Cohort 1(Zhou et al., 2020) and the 

subsequent 448 pairs were recruited as the Cohort 2. Participants were recruited through MS 

clinics at UCSF (San Francisco, CA), Brigham and Women’s Hospital (Boston, MA), Mount 

Sinai (New York, NY), the Anne Rowling Clinic (Edinburgh, UK), University of Pittsburgh 

(Pittsburgh, PA), Biodonostia Health Research Institute (San Sebastián, Spain) and FLENI 

(Buenos Aires, Argentina).

Inclusion criteria required that participants carry a diagnosis of MS;(McDonald et al., 2001) 

be of White (Hispanic or non-Hispanic) ethnicity (i.e. to match characteristic genetic risk 

profile of MS(Baranzini and Oksenberg, 2017)); and be enrolled with a genetically unrelated 

household control with cohabitation for at least six months. Exclusion criteria for MS 

and control subjects included the presence of other autoimmune disorders, gastrointestinal 
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infections, and other neurological disorders. Participants were excluded if they received oral 

antibiotics within the past three months, corticosteroids within the past 30 days, or were on a 

disease modifying therapy for less than three months.

Ethics approval and consent to participate—Each collaborating site obtained human 

subject research approval through their respective ethics review committees, following a 

master protocol established at UCSF (protocol no. 15–17061). All participants provided 

written informed consent and signed a HIPAA Authorization allowing for the use of their 

medical record for research purposes.

METHOD DETAILS

Specimen collection—Participants were provided with a stool sample collection kit and 

instructed to obtain two consecutive stool samples in the privacy of their own homes. Each 

stool sample time point included 3 collection vials - a Q-tip (Q, dry), a snap frozen vial 

(S, wet), and a vial filled with Luria-Bertani broth (LB) and 30% glycerol. Participants 

were instructed to freeze the samples for at least 12 hours and ship them frozen with the 

ice pack included in the kit. Samples were returned to each site via overnight shipping 

in a thermal envelope. Blood samples were collected at the initial visit only and stored at 

−80°C upon further processing. All participants were required to complete a clinical survey 

to report the disease status and treatment, and a subject survey to report demographic, 

medication, lifestyle and physiology factors. Clinical outcomes included the Expanded 

Disability Status Scale (EDSS),(Kurtzke, 1983) and the Multiple Sclerosis Functional 

Composite (MSFC).(Fischer et al., 1999) All data were collected and stored through secure 

REDCap™ questionnaires.

Stool sample preparation and 16S rRNA sequencing—For the first cohort, Q-tip 

samples (i.e. dry) and snap frozen (i.e. wet) samples were processed using the QIAamp 

PowerFecal DNA Kit (ref 12830–50). After lysis solution was added to bead beating tubes, 

dry samples were transferred by grinding the Q-tips into the bottom while snap frozen 

samples were chipped to an appropriate size for the kit. Sample processing was done on 

a QIAcube platform according to the protocols generated by the manufacturer (QIAGEN). 

DNA sample quantity and purity were measured by NanoDrop spectrophotometry (Thermo 

Scientific™). The second cohort samples were processed using the MagAttract PowerSoil 

DNA EP Kit (ref 27100–4-EP). After lysis solution was added to the bead beating plate, 

samples were added to each well in in the same manner used previously for bead beating 

tubes. Physical lysis was executed using a mixer mill and subsequent steps were automated 

using the EpMotion platform. Sample quality and quantity were assessed with the same 

method used for the first cohort. To test whether the DNA processing method changes 

microbial composition, we extracted DNAs from the same 20 samples using both QIAcube 

and epMotion platforms. A subset of 40 samples prepared in Cohort 1 were re-sequenced 

in Cohort 2 to test the impact of sequencing runs on microbial composition. As the impact 

of sample collection method on microbial composition is negligible,(Zhou et al., 2020) 

sequencing counts of samples from each participant were summed. ASVs were filtered to 

retain only the ones covering at least 10 total reads and present in at least 5% of samples for 

downstream analyses (Table S4).

Zhou et al. Page 18

Cell. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Microbial diversity—Both weighted and unweighted UniFrac(Lozupone and Knight, 

2005) distances were computed between all samples (Table S4), and principal coordinates 

analysis (PCoA) was applied to visualize the β-diversity. All these analyses were performed 

with QIIME2. Bray-Curtis(Bray JR, 1957) dissimilarities were calculated to compare gut 

microbiome among individuals in terms of geographic distance. Since the MS and control 

subjects within household are often of different sex, the random comparisons between 

households utilized only cross-sexual comparisons to control for the effect of gender. 

Statistical significance was determined by ANOVA. The PERMANOVA test (McArdle and 

Anderson, 2001) was used to assess the effect of host metadata categories (confounders): 

demography, lifestyle, diseases, medication and physiology, on the variation of microbiome 

abundance (Table S4). The test was performed by using the “adonis” function implemented 

in R package vegan(Zapala and Schork, 2006) and tested on weighted UniFrac distances 

of paired MS and HHC samples with reported host factors. The variance of microbial 

abundance between MS and control or between treated/untreated MS and controls were 

tested by specifying “strata” as household to control the within house comparison. The 

empirical p-value was obtained by running 999 permutations. When appropriate, statistical 

p-values were adjusted by false discovery rate (FDR).

Shallow whole metagenome shotgun sequencing (WMGS) and data 
processing—For samples with less than 1 ng DNA, a maximum volume of 3.5 μl input 

was used. Libraryconcentration was determined with triplicate readings of the Kapa Illumina 

Library Quantification Kit (cohort 1, ref 07962428001) or Pico Green Quantification Kit 

(cohort2, ref P11496); 20 fmol of sample libraries were pooled and size selected for 

fragments between 300 and 800 bp on the Sage Science PippinHT to exclude primer dimers.

Demultiplexed shallow shotgun metagenomic sequences were processed 

using Atropos (v1.1.24 ) (Didion et al., 2017) to remove 

adapters (forward “GATCGGAAGAGCACACGTCTGAACTCCAGTCAC” , reverse 

“GATCGGAAGAGCGTCGTGTAGGGAAAGGAGTGT”) and filter reads with lower 

quality score than 15 and length less than 80 base pairs. For taxonomic assignment reads 

were aligned to the Web of Life(Zhu et al., 2019) of 10,575 bacterial and archaeal genomes 

using SHOGUN (Hillmann et al., 2018) in the Bowtie2 alignment mode. Species-level 

functional profiling was performed using HUMAnN2 default. (Franzosa et al., 2018) 

Sequencing counts of samples from each participant were summed (Table S5). To deal 

with sparse microbial data in the analysis, we focused on species present in at least 5% of 

samples, covering at least 10 total reads. This provided a list of 1,677 species for use in 

the statistical analysis. The relative abundances of gene families were characterized from 

UniProt Reference Clusters (UniRef90) using HUMAnN2 (V2.8.2),(Franzosa et al., 2018) 

which were further mapped to microbial pathways and high-classes based on pathway 

hierarchy from the MetaCyc metabolic pathway database.(Caspi et al., 2016; Caspi et al., 

2018) 490 pathways present in at least 5% of samples were retained for statistical analysis. 

Microbial gene families present in more than 5% samples were used to link with select fecal 

metabolites. The phylogenetic diversity of Akkermansia muciniphila was measured using 

Metagenomic Intra-species Diversity Analysis System (MIDAS)(Nayfach et al., 2016) with 

its default parameters.
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Microbial co-abundance network—Significant co-abundance was controlled at FDR 

0.05 level using 100 × permutation (Table S6). In each permutation, the abundance of each 

microbial factor was randomly shuffled across samples. To keep the co-abundances with 

high correlations in a dense microbial network, we filtered co-abundances with a lower 

absolute correlation than 0.4 and subnetworks with only two species.

To test whether the microbial co-abundance relationships showed case or control specificity, 

i.e. whether the effect size of co-abundance in MS group was very different from that in 

healthy control, we applied the IQR (interquartile ranges) based the outlier detection method 

as adapted in paper.(Chen et al., 2020) The effect size for co-abundance was measured by 

the SparCC correlation coefficient in our analysis. The effect sizes were ranked from low 

to high and extracted corresponding 25%, 50% and 75% quartile values (Q1, Q2 and Q3, 

respectively). IQR was then calculated as Q3-Q1. The specific co-abundance was defined 

in each corresponding MS or healthy group if the effect size fell outside of Q1 − 2 × IQR 

(smallest) or Q3 + 2 × IQR (largest).

Metabolite measurement in stool and serum samples—Blood samples were 

centrifuged at 2200g for 20 minutes. The serum layers were aspirated and moved into 2mL 

cryovials. The serum samples were stored at −80°C before metabolomics profiling. Fecal 

(150g/sample) and serum (150ul/sample) samples were shipped on dry ice to Metabolon 

Inc. (Durham, North Carolina) and maintained at −80°C until processed following their 

published protocols.(Evans et al., 2009; Long et al., 2017; McMurdie et al., 2022)

Global metabolomic profiling—Samples were prepared using the automated MicroLab 

STAR® system from Hamilton Company. Several recovery standards were added prior to 

the first step in the extraction process for QC purposes. To remove protein, dissociate small 

molecules bound to protein or trapped in the precipitated protein matrix, and to recover 

chemically diverse metabolites, proteins were precipitated with methanol under vigorous 

shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting 

extract was divided into five fractions: two for analysis by two separate reverse phase 

(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one 

for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/

UPLC-MS/MS with negative ion mode ESI, and one sample was reserved for backup. 

Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The 

sample extracts were stored overnight under nitrogen before preparation for analysis.

Several types of controls were analyzed in concert with the experimental samples: a 

pooled matrix sample generated by taking a small volume of each experimental sample 

(or alternatively, use of a pool of well-characterized human plasma) served as a technical 

replicate throughout the data set; extracted water samples served as process blanks; and a 

cocktail of QC standards that were carefully chosen not to interfere with the measurement 

of endogenous compounds were spiked into every analyzed sample, allowed instrument 

performance monitoring and aided chromatographic alignment. Instrument variability was 

determined by calculating the median relative standard deviation (RSD) for the standards 

that were added to each sample prior to injection into the mass spectrometers. Overall 

process variability was determined by calculating the median RSD for all endogenous 
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metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. 

Experimental samples were randomized across the platform run with QC samples spaced 

evenly among the injections.

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated 

at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents 

compatible to each of the four methods. Each reconstitution solvent contained a series 

of standards at fixed concentrations to ensure injection and chromatographic consistency. 

One aliquot was analyzed using acidic positive ion conditions, chromatographically 

optimized for more hydrophilic compounds. In this method, the extract was gradient 

eluted from a C18 column (Waters UPLC BEH C18–2.1×100 mm, 1.7 µm) using water 

and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid 

(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it 

was chromatographically optimized for more hydrophobic compounds. In this method, the 

extract was gradient eluted from the same afore mentioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic 

content. Another aliquot was analyzed using basic negative ion optimized conditions using 

a separate dedicated C18 column. The basic extracts were gradient eluted from the column 

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The 

fourth aliquot was analyzed via negative ionization following elution from a HILIC column 

(Waters UPLC BEH Amide 2.1×150 mm, 1.7 µm) using a gradient consisting of water and 

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between 

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted 

between methods but covered 70–1000 m/z. Raw data files are archived and extracted as 

described below.

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware 

and software. These systems are built on a web-service platform utilizing Microsoft’s .NET 

technologies, which run on high-performance application servers and fiber-channel storage 

arrays in clusters to provide active failover and load-balancing. Compounds were 

identified by comparison to library entries of purified standards or recurrent unknown 

entities. Metabolon maintains a library based on authenticated standards that contains the 

retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including 

MS/MS spectral data) on all molecules present in the library. Furthermore, biochemical 

identifications are based on three criteria: retention index within a narrow RI window 

of the proposed identification, accurate mass match to the library +/− 10 ppm, and the 

MS/MS forward and reverse scores between the experimental data and authentic standards. 

The MS/MS scores are based on a comparison of the ions present in the experimental 

spectrum to the ions present in the library spectrum. While there may be similarities 

between these molecules based on one of these factors, the use of all three data points 

can be utilized to distinguish and differentiate biochemicals. More than 3300 commercially 

available purified standard compounds have been acquired and registered into LIMS for 

analysis on all platforms for determination of their analytical characteristics. Additional 

mass spectral entries have been created for structurally unnamed biochemicals, which have 
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been identified by virtue of their recurrent nature (both chromatographic and mass spectral). 

These compounds have the potential to be identified by future acquisition of a matching 

purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a high-quality data set was 

made available for statistical analysis and data interpretation. The QC and curation processes 

were designed to ensure accurate and consistent identification of true chemical entities, 

and to remove those representing system artifacts, mis-assignments, and background noise. 

Metabolon data analysts use proprietary visualization and interpretation software to confirm 

the consistency of peak identification among the various samples. Library matches for each 

compound were checked for each sample and corrected if necessary.

Targeted short-chain fatty acid profiling—Human feces and human serum samples 

are analyzed for eight short chain fatty acids: acetic acid (C2), propionic acid (C3), 

isobutyric acid (C4), butyric acid (C4), 2-methyl- butyric acid (C5), isovaleric acid (C5), 

valeric acid (C5), and caproic acid (hexanoic acid, C6), with the addition of lactic acid 

by request, by LC-MS/MS (Metabolon Method TAM135: “LC-MS/MS Method for the 

Quantitation of Short Chain Fatty Acid (C2 to C6) in Human Feces” and TAM148: “LC-

MS/MS Method for the Quantitation of Short Chain Fatty Acid (C2 to C6) in Human 

Plasma and Serum”). Human feces and human serum samples are spiked with stable 

labelled internal standards and are homogenized and subjected to protein precipitation with 

an organic solvent. After centrifugation, an aliquot of the supernatant is derivatized. The 

reaction mixture is diluted, and an aliquot is injected onto an Agilent 1290/AB Sciex QTrap 

5500 LC MS/MS system equipped with a C18 reversed phase UHPLC column. The mass 

spectrometer is operated in negative mode using electrospray ionization (ESI). The peak area 

of the individual analyte product ions is measured against the peak area of the product ions 

of the corresponding internal standards. Quantitation is performed using a weighted linear 

least squares regression analysis generated from fortified calibration standards prepared 

immediately prior to each run. LC-MS/MS raw data are collected using AB SCIEX software 

Analyst 1.6.2 and processed with SCIEX OS-MQ software v1.7.

Differential microbiome features by mixed linear regression analysis—Global 

metabolite intensity and SCFA concentration were normalized by log transformation. Mixed 

linear regression model was applied on transformed data to identify differential features 

(species, pathways and metabolites) by adjusting random effects of house and recruitment 

site, and fixed effects of age, sex and BMI. The linear regression was performed using 

lmer function from R package “lme4” as lmer(y ~ disease + age +BMI + sex + (1|site) + 

(1|house)). To reduce the effect of zero-inflation in microbiome data, a variance filtering step 

was applied to remove species features with very low variance (<1E-5). The contribution of 

individual species in a specific pathway was visualized in a bar plot using HUMAnN2 

“humann2_barplot” function. Altered metabolites were linked to gut microbes through 

reactions (MetaCyc and KEGG) mediated by microbial gene families screened in our 

WGMS data using HUMANnN2. Functional KEGG enrichment analysis of metabolites was 

performed using MetaboAnalyst 5.0.(Pang et al., 2021)
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To identify species associated with disease severity, the updated global Multiple Sclerosis 

Severity Score (uGMSSS) was calculated by combining the Expanded Disability Status 

Scale (EDSS) and disease duration using global_msss function from R package “ms.sev”. 

We focused on the species with prevalence in more than 50% samples, spearman 

correlations were calculated and tested adjusting for age and BMI using pcor.test function 

from R package “ppcor”.

Diet analysis—A validated Block 2005 food frequency questionnaire (FFQ)(Block, 

2005) was set up through an external vendor (NutritionQuest). The intake of foods and 

nutrients were measured by NutritionQuest in a standardized fashion for all participants 

based on their responses to the FFQ. 37 nutrient items were summarized and grouped as 

antioxidants, average intake, B-vitamins, food group servings and minerals (Table S2). 

Dietary dissimilarity was measured using Jaccard distance of the nutrient intake. The 

effect of confounders on the variation of diet and the effect of dietary items (covariates) 

on the variation of gut microbiome were accessed by PERMANOVA (Permutational 

multivariate analysis of variance).(McArdle and Anderson, 2001) The test was performed 

by using the “adonis” function implemented in R package vegan.(Zapala and Schork, 

2006) The empirical p-value was obtained by running 999 permutations. Healthy Eating 

Index-2015 (HEI-2015(Krebs-Smith et al., 2018)) was used for evaluation of the diet 

quality and calculated by NutritionQuest (Table S3). The HEI-2015 adequate dietary 

components include ‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and beans’, ‘whole 

grains’, ‘dairy’, ‘total protein’, ‘seafood and plant proteins’, and ‘fatty acids’, which are 

recommended to be high in a healthy diet. In contrast, moderate dietary components where 

consumption is recommended to be limited include ‘refined grains’, ‘sodium’, ‘added sugar’ 

and ‘saturated fatty acids’.(Krebs-Smith et al., 2018) Each component was measured by a 

maximum point scale. To make all components comparable with maximum point of 10, the 

points of ‘total fruit’ and ‘whole fruit’ were added as ‘fruit’, ‘total vegetables’ and ‘greens 

and beans’ were added as ‘vegetables’, ‘total protein’ and ‘seafood and plant proteins’ were 

added as ‘protein’. Correlation between HEI-2015 and host phenotypes (age and BMI), 

microbial diversity or microbial relative abundance was measured by Pearson’s correlation. 

Correlations between each dietary component and MS associated species were measured by 

coefficients from mixed linear regression model adjusted for age, BMI, sex and recruiting 

site. Difference of healthy eating index and dietary component points between HHC and MS 

were tested using paired T-test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on statistical tests, n numbers, and significance cutoffs can also be found in the 

figure legends. Principal coordinates analysis (PCoA) of weighted UniFrac community 

distance were computed by disease status, treatment status and disease subtype. R2 and FDR 

adjusted p values were obtained by PERMANOVA. Effect size (Adonis R2) of confounders 

significantly associated with gut microbial variations were shown by weighted UniFrac 

distance, PERMANOVA (FDR adjusted p < 0.05). Community distance of RRMS subjects 

treated and untreated, and their corresponding household healthy controls were analyzed by 

PCoA of weighted UniFrac (P values obtained by PERMANOVA)
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Mixed linear regression models adjusted for age, BMI, sex, recruiting site and house were 

used for metagenomics species adjustment for host factors; to define metagenomic pathways 

altered in untreated MS, untreated RRMS or untreated PMS versus their HHCs; to identify 

dominant microbial species contributing to “PWY-4702” and “GALACT-GLUCUROCAT-

PWY” pathways; to identify metagenomics species and metabolic pathways altered in 

untreated and treated RRMS; to identify pathways altered in untreated and treated RRMS, 

and to identify the linear coefficient for 31 microbe-derived metabolites and 8 short chain 

fatty acids analyzed in untreated and treated RRMS in both stool and serum. Spearman 

correlations (adjusted for age and BMI) were computed between species and pathways 

with MS severity scores in untreated RRMS patients (n=112) or untreated progressive MS 

(n=97). Cohort specific analysis (quantile range outlier) was used to characterize disease 

status specific co-abundance species in untreated MS and HHCs.

A mixed linear regression model adjusted for age, BMI, sex and recruiting site was also 

used for identifying correlations between dietary component and MS-associated species. 

Pearson’s correlation was computed between HEI and microbial α-diversity in healthy 

and MS individuals, as well as with species significantly correlated with HEI. Jaccard 

dissimilarity was used to show effect size (Adonis R2) of confounders associated with 

dietary variations. Differences in HEI and dietary intake between MS patients and their 

household healthy controls were evaluated by paired T-test.

Disease duration-adjusted MS severity score (gMSSS) was compared between untreated and 

treated RRMS by ANOVA. Paired T-test were used to show Arcsine square-root transformed 

relative abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii that 

participate in phytate degradation I pathway (PWY-4702) and superpathway of hexuronide 

and hexuronate degradation pathway, respectively.

When relevant, further details are found in the method details for the specific measurement 

in the context of describing sample collections. Analytical methods that were described in 

the Method details are provided again here.

Microbial diversity—Both weighted and unweighted UniFrac(Lozupone and Knight, 

2005) distances were computed between all samples (Table S4), and principal coordinates 

analysis (PCoA) was applied to visualize the β-diversity. All these analyses were performed 

with QIIME2. Bray-Curtis(Bray JR, 1957) dissimilarities were calculated to compare gut 

microbiome among individuals in terms of geographic distance. Since the MS and control 

subjects within household are often of different sex, the random comparisons between 

households utilized only cross-sexual comparisons to control for the effect of gender. 

Statistical significance was determined by ANOVA. The PERMANOVA test (McArdle and 

Anderson, 2001) was used to assess the effect of host metadata categories (confounders): 

demography, lifestyle, diseases, medication and physiology, on the variation of microbiome 

abundance (Table S4). The test was performed by using the “adonis” function implemented 

in R package vegan(Zapala and Schork, 2006) and tested on weighted UniFrac distances 

of paired MS and HHC samples with reported host factors. The variance of microbial 

abundance between MS and control or between treated/untreated MS and controls were 

tested by specifying “strata” as household to control the within house comparison. The 
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empirical p-value was obtained by running 999 permutations. When appropriate, statistical 

p-values were adjusted by false discovery rate (FDR).

Shallow whole metagenome shotgun sequencing (WMGS) data 
processing—Demultiplexed shallow shotgun metagenomic sequences were 

processed using Atropos (v1.1.24 ) (Didion et al., 2017) to remove 

adapters (forward “GATCGGAAGAGCACACGTCTGAACTCCAGTCAC” , reverse 

“GATCGGAAGAGCGTCGTGTAGGGAAAGGAGTGT”) and filter reads with lower 

quality score than 15 and length less than 80 base pairs. For taxonomic assignment reads 

were aligned to the Web of Life(Zhu et al., 2019) of 10,575 bacterial and archaeal genomes 

using SHOGUN (Hillmann et al., 2018) in the Bowtie2 alignment mode. Species-level 

functional profiling was performed using HUMAnN2 default. (Franzosa et al., 2018) 

Sequencing counts of samples from each participant were summed (Table S5). To deal 

with sparse microbial data in the analysis, we focused on species present in at least 5% of 

samples, covering at least 10 total reads. This provided a list of 1,677 species for use in 

the statistical analysis. The relative abundances of gene families were characterized from 

UniProt Reference Clusters (UniRef90) using HUMAnN2 (V2.8.2),(Franzosa et al., 2018) 

which were further mapped to microbial pathways and high-classes based on pathway 

hierarchy from the MetaCyc metabolic pathway database.(Caspi et al., 2016; Caspi et al., 

2018) 490 pathways present in at least 5% of samples were retained for statistical analysis. 

Microbial gene families present in more than 5% samples were used to link with select fecal 

metabolites. The phylogenetic diversity of Akkermansia muciniphila was measured using 

Metagenomic Intra-species Diversity Analysis System (MIDAS)(Nayfach et al., 2016) with 

its default parameters.

Microbial co-abundance network—Significant co-abundance was controlled at FDR 

0.05 level using 100 × permutation (Table S6). In each permutation, the abundance of each 

microbial factor was randomly shuffled across samples. To keep the co-abundances with 

high correlations in a dense microbial network, we filtered co-abundances with a lower 

absolute correlation than 0.4 and subnetworks with only two species.

To test whether the microbial co-abundance relationships showed case or control specificity, 

i.e. whether the effect size of co-abundance in MS group was very different from that in 

healthy control, we applied the IQR (interquartile ranges) based the outlier detection method 

as adapted in paper.(Chen et al., 2020) The effect size for co-abundance was measured by 

the SparCC correlation coefficient in our analysis. The effect sizes were ranked from low 

to high and extracted corresponding 25%, 50% and 75% quartile values (Q1, Q2 and Q3, 

respectively). IQR was then calculated as Q3-Q1. The specific co-abundance was defined 

in each corresponding MS or healthy group if the effect size fell outside of Q1 − 2 × IQR 

(smallest) or Q3 + 2 × IQR (largest).

Global metabolomic profiling analysis—Several types of controls were analyzed in 

concert with the experimental samples: a pooled matrix sample generated by taking a small 

volume of each experimental sample (or alternatively, use of a pool of well-characterized 

human plasma) served as a technical replicate throughout the data set; extracted water 

samples served as process blanks; and a cocktail of QC standards that were carefully chosen 
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not to interfere with the measurement of endogenous compounds were spiked into every 

analyzed sample, allowed instrument performance monitoring and aided chromatographic 

alignment. Instrument variability was determined by calculating the median relative standard 

deviation (RSD) for the standards that were added to each sample prior to injection into the 

mass spectrometers. Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the 

pooled matrix samples. Experimental samples were randomized across the platform run with 

QC samples spaced evenly among the injections.

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated 

at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents 

compatible to each of the four methods. Each reconstitution solvent contained a series 

of standards at fixed concentrations to ensure injection and chromatographic consistency. 

One aliquot was analyzed using acidic positive ion conditions, chromatographically 

optimized for more hydrophilic compounds. In this method, the extract was gradient 

eluted from a C18 column (Waters UPLC BEH C18–2.1×100 mm, 1.7 µm) using water 

and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid 

(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it 

was chromatographically optimized for more hydrophobic compounds. In this method, the 

extract was gradient eluted from the same afore mentioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic 

content. Another aliquot was analyzed using basic negative ion optimized conditions using 

a separate dedicated C18 column. The basic extracts were gradient eluted from the column 

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The 

fourth aliquot was analyzed via negative ionization following elution from a HILIC column 

(Waters UPLC BEH Amide 2.1×150 mm, 1.7 µm) using a gradient consisting of water and 

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between 

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted 

between methods but covered 70–1000 m/z. Raw data files are archived and extracted as 

described below.

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware 

and software. These systems are built on a web-service platform utilizing Microsoft’s .NET 

technologies, which run on high-performance application servers and fiber-channel storage 

arrays in clusters to provide active failover and load-balancing. Compounds were 

identified by comparison to library entries of purified standards or recurrent unknown 

entities. Metabolon maintains a library based on authenticated standards that contains the 

retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including 

MS/MS spectral data) on all molecules present in the library. Furthermore, biochemical 

identifications are based on three criteria: retention index within a narrow RI window 

of the proposed identification, accurate mass match to the library +/− 10 ppm, and the 

MS/MS forward and reverse scores between the experimental data and authentic standards. 

The MS/MS scores are based on a comparison of the ions present in the experimental 

spectrum to the ions present in the library spectrum. While there may be similarities 
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between these molecules based on one of these factors, the use of all three data points 

can be utilized to distinguish and differentiate biochemicals. More than 3300 commercially 

available purified standard compounds have been acquired and registered into LIMS for 

analysis on all platforms for determination of their analytical characteristics. Additional 

mass spectral entries have been created for structurally unnamed biochemicals, which have 

been identified by virtue of their recurrent nature (both chromatographic and mass spectral). 

These compounds have the potential to be identified by future acquisition of a matching 

purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a high quality data set was 

made available for statistical analysis and data interpretation. The QC and curation processes 

were designed to ensure accurate and consistent identification of true chemical entities, 

and to remove those representing system artifacts, mis-assignments, and background noise. 

Metabolon data analysts use proprietary visualization and interpretation software to confirm 

the consistency of peak identification among the various samples. Library matches for each 

compound were checked for each sample and corrected if necessary.

Targeted short-chain fatty acid profiling analysis—The peak area of the individual 

analyte product ions is measured against the peak area of the product ions of the 

corresponding internal standards. Quantitation is performed using a weighted linear 

least squares regression analysis generated from fortified calibration standards prepared 

immediately prior to each run. LC-MS/MS raw data are collected using AB SCIEX software 

Analyst 1.6.2 and processed with SCIEX OS-MQ software v1.7.

Differential microbiome features by mixed linear regression analysis—Global 

metabolite intensity and SCFA concentration were normalized by log transformation. Mixed 

linear regression model was applied on transformed data to identify differential features 

(species, pathways and metabolites) by adjusting random effects of house and recruitment 

site, and fixed effects of age, sex and BMI. The linear regression was performed using 

lmer function from R package “lme4” as lmer(y ~ disease + age +BMI + sex + (1|site) + 

(1|house)). To reduce the effect of zero-inflation in microbiome data, a variance filtering step 

was applied to remove species features with very low variance (<1E-5). The contribution of 

individual species in a specific pathway was visualized in a bar plot using HUMAnN2 

“humann2_barplot” function. Altered metabolites were linked to gut microbes through 

reactions (MetaCyc and KEGG) mediated by microbial gene families screened in our 

WGMS data using HUMANnN2. Functional KEGG enrichment analysis of metabolites was 

performed using MetaboAnalyst 5.0.(Pang et al., 2021)

To identify species associated with disease severity, the updated global Multiple Sclerosis 

Severity Score (uGMSSS) was calculated by combining the Expanded Disability Status 

Scale (EDSS) and disease duration using global_msss function from R package “ms.sev”. 

We focused on the species with prevalence in more than 50% samples, spearman 

correlations were calculated and tested adjusting for age and BMI using pcor.test function 

from R package “ppcor”.
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Diet analysis—A validated Block 2005 food frequency questionnaire (FFQ)(Block, 

2005) was set up through an external vendor (NutritionQuest). The intake of foods and 

nutrients were measured by NutritionQuest in a standardized fashion for all participants 

based on their responses to the FFQ. 37 nutrient items were summarized and grouped as 

antioxidants, average intake, B-vitamins, food group servings and minerals (Table S2). 

Dietary dissimilarity was measured using Jaccard distance of the nutrient intake. The 

effect of confounders on the variation of diet and the effect of dietary items (covariates) 

on the variation of gut microbiome were accessed by PERMANOVA (Permutational 

multivariate analysis of variance).(McArdle and Anderson, 2001) The test was performed 

by using the “adonis” function implemented in R package vegan.(Zapala and Schork, 

2006) The empirical p-value was obtained by running 999 permutations. Healthy Eating 

Index-2015 (HEI-2015(Krebs-Smith et al., 2018)) was used for evaluation of the diet 

quality and calculated by NutritionQuest (Table S3). The HEI-2015 adequate dietary 

components include ‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and beans’, ‘whole 

grains’, ‘dairy’, ‘total protein’, ‘seafood and plant proteins’, and ‘fatty acids’, which are 

recommended to be high in a healthy diet. In contrast, moderate dietary components where 

consumption is recommended to be limited include ‘refined grains’, ‘sodium’, ‘added sugar’ 

and ‘saturated fatty acids’.(Krebs-Smith et al., 2018) Each component was measured by a 

maximum point scale. To make all components comparable with maximum point of 10, the 

points of ‘total fruit’ and ‘whole fruit’ were added as ‘fruit’, ‘total vegetables’ and ‘greens 

and beans’ were added as ‘vegetables’, ‘total protein’ and ‘seafood and plant proteins’ were 

added as ‘protein’. Correlation between HEI-2015 and host phenotypes (age and BMI), 

microbial diversity or microbial relative abundance was measured by Pearson’s correlation. 

Correlations between each dietary component and MS associated species were measured by 

coefficients from mixed linear regression model adjusted for age, BMI, sex and recruiting 

site. Difference of healthy eating index and dietary component points between HHC and MS 

were tested using paired T-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study summary and overall strategy.
(A) Workflow of microbiome study in 576 MS patients and their household healthy 

controls. (B) Boxplot of microbiome α-diversity in MS, RRMS, PMS and their HHCs 

(ANOVA, n.s., not significant). (C-D) PCoA of weighted UniFrac community distance 

by disease and treatment status (C) and disease subtype (D) (R2 and FDR adjusted p 

values were tested by PERMANOVA). (E) Bar plot showing the effect size (Adonis R2) 

of confounders significantly associated with gut microbial variations (weighted UniFrac 

distance, PERMANOVA, FDR adjusted p < 0.05).
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Figure 2. Microbial taxa alterations between MS and HHC.
(A) Taxa altered in untreated MS (n= 209), untreated RRMS (n=112) or untreated PMS 

(n=97) versus their HHCs (mixed linear regression model adjusted for age, BMI, sex, 

recruiting site and house). “-” indicates species with lower variance across samples were 

filtered out and not included in linear regression. *FDR < 0.05, **FDR< 0.01, ***FDR< 

0.001. (B) Arcsine square-root transformed relative abundance of 3 decreased species and 3 

increased species in untreated MS versus HHCs. (C-D) Species were significantly correlated 

with MS Severity Scores (MSSS) in untreated RRMS patients (n=112, C) or in untreated 

PMS (n=97, D). Spearman correlations were adjusted for age and body mass index. *p < 

0.05, **p < 0.01. Averaged abundance of significant species are shown in untreated RRMS 

untreated PMS and their corresponding HHCs.
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Figure 3. Sequence-based functional difference between MS and HHC.
(A) Metagenomics pathways altered in untreated MS, untreated RRMS or untreated PMS 

versus their HHCs (mixed linear regression model adjusted for age, BMI, sex, recruiting 

site and house, *FDR < 0.05, **FDR< 0.01, ***FDR< 0.001), and dominant microbial 

species contributing to “PWY-4702” and “GALACT-GLUCUROCAT-PWY” pathways. 

(B) Arcsine square-root transformed relative abundance of two proteins in Akkermansia 

muciniphila that participate in phytate degradation I pathway (PWY-4702) (Paired T-test, *p 

< 0.05). (C) Organism-pathway-reaction-compound network built on pathway “GALACT-

GLUCUROCAT-PWY: superpathway of hexuronide and hexuronate degradation” using 

the SPOKE knowledge graph. (D) Arcsine square-root transformed relative abundance 

of protein 2-dehydro-3-deoxy-phosphogluconate aldolase in Faecalibacterium prausnitzii 

that participates in superpathway of hexuronide and hexuronate degradation pathway 

(GALACTGLUCUROCAT-PWY) (Paired T-test, *p < 0.05). (E) High-class organized 
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pathways altered in treated and untreated RRMS (mixed linear regression model adjusted 

for age, BMI, sex, recruiting site and house, *FDR < 0.05, **FDR< 0.01, ***FDR< 0.001). 

(F) Pathways were significantly correlated with MSSS in untreated RRMS patients (RRMS, 

n=112, top panel) or in untreated PMS (PMS, n=97, bottom panel). Spearman correlations 

are adjusted for age and body mass index. *p < 0.05, **p < 0.01. Averaged abundances of 

significant pathways are shown in untreated RRMS and untreated PMS compared to their 

corresponding HHCs.
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Figure 4. Disease status specific co-abundance species.
Microbial co-abundance communities specific for (A) untreated MS and (B) HHCs by 

cohort specific analysis (quantile range outlier). Each node indicates one species and color 

indicates the phylum classification. Each edge represents a significant species-species co-

abundance relationship. (C) Overlapped counts of species and co-abundances in untreated 

MS specific and HHC specific networks. (D) Differential species in untreated MS versus 

HHC were overlapped with cohort specific species. (E-F) Functional pathways unique to the 

species highlighted in untreated MS- (E) or HHC (F) specific networks. Line size indicates 

betweenness centrality of a species in the cohort specific co-abundance network.
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Figure 5. Treatment -associated metagenomic changes in RRMS patients.
(A) PCoA of weighted UniFrac community distance of RRMS subjects treated and 

untreated, and their corresponding household healthy controls (P values were obtained by 

PERMANOVA). (B) metagenomics species (C) metabolic pathways altered in treated and 

untreated RRMS (mixed linear regression model adjusted for age, BMI, sex, recruiting site 

and house). *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient ≥ upper 5% or 

coefficient ≤ lower 5%.

Zhou et al. Page 42

Cell. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Treatment-associated metabolomic alterations in RRMS patients.
(A) 31 microbe-derived metabolites and (B) 8 short chain fatty acids in treated and untreated 

RRMS in both stool and serum. Linear coefficient was measured by mixed linear regression 

model adjusted for age, BMI, sex, recruiting site and house. *p < 0.05, **p < 0.01, 

***p < 0.001. (C) Disease duration adjusted MS severity score (gMSSS) was compared 

between untreated and treated RRMS (ANOVA). (D) KEGG pathways enriched by 23 

microbe-derived metabolites in response to interferon (FDR < 0.05). (E) Concentration of 

propionic acid in feces (left) and serum (right) compared for treated and untreated RRMS, 

compared to their respective HHCs. DMF, dimethyl fumarate, GA, glatiramer acetate. (F) 

Expression of SLC16A in human bronchial epithelial cells stimulated by IFN-β from study 

by Shapira, S. D. et al. The SLC16A gene was represented by two probes (202236_at and 

209900_s_at) of Affymetrix HT Human Genome U133 Arrays.
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Figure 7. Diet and gut microbes.
(A) Bar plot showing the effect size (Adonis R2) of confounders associated with dietary 

variations (Jaccard dissimilarity). Confounders showing a significant impact on gut 

microbiome were labeled (PERMANOVA, *FDR ≤ 0.05). (B) Boxplot of healthy eating 

index measured in the participants from each recruiting site. (C) Pearson’s correlation 

between healthy eating index and microbial α-diversity in healthy (blue) and MS (red) 

individuals. (D) Boxplot of healthy eating index measured in MS patients and their 

household healthy controls (paired T-test, ***p < 0.001). (E) Difference in dietary 

components between MS and HHC individuals (paired T-test, *p < 0.05, ***p < 0.001). 

(F) Species significantly correlated with HEI (Pearson’s correlation with FDR < 0.05).

(G) Correlations between dietary component and MS-associated species measured in healthy 

controls, untreated MS and all samples, respectively (mixed linear regression model adjusted 

for age, BMI, sex and recruiting site, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001).

Zhou et al. Page 44

Cell. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 45

Table 1.

Sample characteristics for 576 pairs of MS and their household healthy controls.

HHC MS RRMS PMS

n % n % n % n %

Number 576 50 576 50 437 75.9 139 24.1

Age (y) 50.6 (40.8–61) 48.9 (40–59) 45.8 (37–55) 58.6 (54–65)

Female 201 34.9 400 69.4 312 71.4 88 63.3

BMI 26.9 (23.5–29) 25.4 (21.8–27.6) 25.4 (21.8–27.5) 25.3 (21.8–27.8)

EDSS 2.6 (1–4) 1.77 (0–2.5) 5.21 (3.75–6.5)

Disease duration (y) 14.2 (6–21) 12.5 (5–18) 19.6 (9.5–28.5)

MSSS 3.37 (0.86–5.57) 2.5 (0.655–3.65) 6.11 (4.74–7.53)

Untreated 209 36.3 112 25.6 97 69.8

Treated 367 63.7 325 74.4 42 30.2

Treatment  

   Fingolimod 71 12.3 66 15.1 5 3.6

   Dimethyl fumarate 86 14.9 77 17.6 9 6.5

   Glatiramer acetate 68 11.8 66 15.1 2 1.4

   Interferon 87 15.1 76 17.4 11 7.9

   anti-CD20 28 4.9 15 3.4 13 9.4

   Natalizumab 27 4.7 25 5.7 2 1.4

Recruiting site

   San Francisco 164 28.5 164 28.5 110 25.2 54 38.8

   Boston 42 7.3 42 7.3 35 8.0 7 5.0

   New York 59 10.2 59 10.2 45 10.3 14 10.1

   Pittsburgh 12 2.1 12 2.1 12 2.7 0 0.0

   Buenos Aires 129 22.4 129 22.4 120 27.5 9 6.5

   Edinburgh 131 22.7 131 22.7 82 18.8 49 35.3

   San Sebastián 39 6.8 39 6.8 33 7.6 6 4.3

Data are presented as mean (interquartile range, IQR); y, year; BMI, Body Mass Index; EDSS, Expanded Disability Status Scale; MSSS, Multiple 
Sclerosis Severity Score.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human stool samples This paper n/a

Human serum samples This paper n/a

     

Critical commercial assays

QIAamp PowerFecal DNA Kit QIAGEN 12830–50

MagAttract PowerSoil DNA EP Kit QIAGEN 27100–4-EP

Kapa Illumina Library Quantification Kit Roche 07962428001

Pico Green Quantification Kit Invitrogen/Thermo P11496

     

Deposited data

Raw microbiome data This paper ENA: ERP115476

Code used for data analysis This paper https://github.com/BaranziniLab/iMSMS_study

Dryad datasets, supplementary data I–VI. Code used for data 
analysis

This paper https://doi.org/10.7272/Q60C4T26

Web of Life Knight Lab https://biocore.github.io/wol/

     

Software and algorithms

R The R foundation https://www.r-project.org/

SHOGUN Knight lab https://github.com/knights-lab/SHOGUN

QIITA Knight lab

QIIME2 Knight lab https://qiime2.org/

SPOKE Baranzini lab https://spoke.ucsf.edu/

MetaCyc (Caspi et al., 2016) https://metacyc.org/

KEGG (Kanehisa and Goto, 2000) https://www.kegg.jp/

MetaboAnalyst 5.0. (Pang et al., 2021) https://www.metaboanalyst.ca/

HUMAnN2 (Franzosa et al., 2018) https://pypi.org/project/humann2/
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