
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Using multiple high-dimensional feature spaces to model brain activity recorded during 
naturalistic experiments

Permalink
https://escholarship.org/uc/item/9rg7n9d4

Author
Nunez-Elizalde, Anwar Oliver

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rg7n9d4
https://escholarship.org
http://www.cdlib.org/


Using multiple high-dimensional feature spaces to model brain activity
recorded during naturalistic experiments

by

Anwar O. Nunez-Elizalde

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Neuroscience

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jack L. Gallant, Chair
Professor Richard B. Ivry
Professor Joni D. Wallis

Professor Bin Yu

Summer 2018



Using multiple high-dimensional feature spaces to model brain activity
recorded during naturalistic experiments

Copyright 2018
by

Anwar O. Nunez-Elizalde



1

Abstract

Using multiple high-dimensional feature spaces to model brain activity recorded
during naturalistic experiments

by

Anwar O. Nunez-Elizalde

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Jack L. Gallant, Chair

The human cerebral cortex comprises many functionally distinct areas that repre-
sent different information about the world. It has been challenging to map these areas
efficiently. In this dissertation, I present a new approach that addresses this prob-
lem. In chapter one, I present a novel voxelwise encoding model based on Tikhonov
regression. I discuss the theoretical basis for Tikhonov regression, demonstrate a
computationally efficient method for its application, and show several examples of
how Tikhonov regression can improve predictive models for fMRI data. I also show
that many earlier studies have implicitly used Tikhonov regression by linearly trans-
forming the regressors before performing ridge regression. In chapter two, I present
a critique of an alternative method used to study brain representations called repre-
sentational similarity analysis. I show that this method makes strong assumptions
about the relationship between representational models and brain responses. I also
show that representational similarity analysis can lead to incorrect conclusions when
used to compare representational models. In chapter three, I present a rich paradigm
for efficient non-invasive functional brain mapping. In this paradigm, subjects watch
interesting short films while their brain activity is measured. Multiple feature spaces
are used to model the brain responses to the short films. Each feature space con-
stitutes a hypothesis about the type of representations that might be important for
brain regions involved in watching, listening, and understanding the short films. The
novel voxelwise encoding model developed in chapter one is then used to find the
most predictive feature spaces across the cortical surface and also to recover maps
that capture how the individual feature spaces are represented within cortical regions.
The results suggest a high degree of homogeneous selectivity for feature spaces across
large regions of the cortical surface within individual subjects. These patterns are
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highly consistent across all subjects. Finally, I explore the functional organization
of the middle temporal cortex and show that the visual feature spaces can capture
novel functional subdivisions in this region.
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Chapter 1

Spatiotemporal encoding models
with multivariate normal priors

1.1 Overview

Predictive models for neural or fMRI data are often fit using regression methods that
employ priors on the model parameters. One widely used method is ridge regres-
sion, which employs a spherical Gaussian prior that assumes equal and independent
variance for all parameters. However, a spherical prior is not always optimal or ap-
propriate. There are many cases where expert knowledge or hypotheses about the
structure of the model parameters could be used to construct a better prior. In these
cases, non-spherical Gaussian priors can be employed using a generalized form of
ridge known as Tikhonov regression. Yet Tikhonov regression is only rarely used in
neuroscience. In this chapter we discuss the theoretical basis for Tikhonov regression,
demonstrate a computationally efficient method for its application, and show several
examples of how Tikhonov regression can improve predictive models for fMRI data.
We also show that many earlier studies have implicitly used Tikhonov regression by
linearly transforming the regressors before performing ridge regression.

1.2 Introduction

Cognitive and systems neuroscience has in recent years become increasingly reliant
on predictive encoding models. In the fMRI literature, encoding models have pro-
duced insights into the cortical representations of visual (Thirion et al., 2006, Kay
et al., 2008b, Nishimoto et al., 2011, Huth et al., 2012, Lescroart et al., 2015), au-
ditory (de Heer et al., 2017, De Angelis et al., 2017), and linguistic (Mitchell et al.,
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2008, Wehbe et al., 2014, Huth et al., 2016) information. To efficiently estimate the
parameters of encoding models, many studies use L2-regularized (ridge) regression
(Hoerl and Kennard, 1970). L2 regularization improves regression models by impos-
ing a multivariate normal prior on the model parameters, where the mean of the prior
is zero and the covariance is spherical. Compared to unregularized regression, ridge
makes models better at generalizing to new data and decreases overfitting by shrink-
ing model parameter estimates towards zero and improving estimation for features
that are nearly collinear. However, assuming a spherical covariance is rarely optimal,
and in many cases prior information or expert knowledge can be used to construct
informative non-spherical priors. In this chapter we explore how non-spherical priors
can be applied to several encoding model problems and show that this can greatly
improve model performance. We also show that some previously published encoding
models can be reinterpreted in terms of non-spherical priors, providing new insights
into why those models were successful. Finally, we offer practical advice and efficient
methods for estimating encoding models with non-spherical priors.

Although encoding models have proven highly successful for modeling fMRI data,
there are several complications that make them difficult to use. First, in many feature
spaces it is difficult to assign a specific interpretation to the features. This problem is
especially acute for feature spaces learned using unsupervised methods, such as the
word embedding space word2vec (Mikolov et al., 2013). When using these feature
spaces to predict neural or BOLD responses, it is difficult to interpret what exactly
a given voxel represents.

Second, it is often unclear how the regularization method used for regression
interacts with the choice of feature space. For example, feature spaces that are
identical up to a linear transformation (i.e. L1(s) = L2(s)P ) can yield drastically
different results even though both span the same space.

Third, although the basic shape and variability of the HRF are reasonably well
understood (Glover, 1999), many studies do not use this prior information when
estimating the HRF (Kay et al., 2008a, Nishimoto et al., 2011, Huth et al., 2012),
and most studies simply assume a single canonical HRF for all voxels (Penny et al.,
2011).

Fourth, it is becoming increasingly important to characterize how and where
different feature spaces overlap in terms of variance explained (Lescroart et al., 2015,
de Heer et al., 2017). This is usually done by combining different feature spaces into
one encoding model. However, ordinary regularization techniques wrongly assume
that all feature spaces require the same level of regularization.

Here we address all of these issues by constructing encoding models using carefully
designed multivariate normal priors. In the standard encoding model formulation,
complex features are extracted from the stimuli and then regularized regression is
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used to learn model parameters subject to simple priors. In the new framework pre-
sented here, we extract simple, interpretable features from the stimuli, and then use
Tikhonov regression (Tikhonov et al., 1977) to learn parameters subject to complex
multivariate priors. This is made possible by a duality between imposing a prior and
extracting features from the stimuli, so the exact same model can be represented in
both ways. This simple change in perspective has significant consequences for model
interpretation, because it shows that a complex feature space can be decomposed into
a combination of a simple feature space and a multivariate prior. This framework is
also highly modular, making it easy to combine different spatial and temporal priors
and test many different kinds of priors.

We evaluate each proposed application of our framework on empirical data from
naturalistic experiments on vision and language. We show that non-spherical mul-
tivariate normal priors can improve prediction accuracy in a variety of settings. In
order to encourage the adoption of the framework presented here, we have released
an open-source Python software package that efficiently implements all the models
described in this chapter (http://github.com/gallantlab/tikypy).

1.2.1 Linearized predictive encoding models

In a typical fMRI experiment, brain images y(t) ∈ Rm are recorded at times t =
1 . . . T while a subject is exposed to stimuli s(t). Each brain image consists of m
voxels, y`(t) for ` = 1 . . .m. The goal of the encoding model framework is to find a
function f` that maps stimuli to BOLD responses in each voxel: f`(s(1), . . . , s(t)) ≈
y`(t). Because the space of possible functions is extremely large, it is common to
work under a hypothesis that limits the complexity of f . Although there often are
many reasonable hypotheses that one can make about f (Wu et al., 2006), the only
type that we shall consider here is where f is a linear combination of features that
are extracted from the stimulus, usually by a nonlinear function. In this case, f is
called a “linearized” model, and the function that extracts features from the stimulus,
Ls(t) ∈ R1×p, is called the “linearizing transformation” (Wu et al., 2006). Formally,
Ls(t) maps a u-dimensional stimulus at time t into a p-dimensional vector of stimulus
features xi(t).

Ls(t) : s(t) ∈ R1×u 7→ x(t) ∈ R1×p

Under the linearized model formulation, the brain response is modeled as a linear
combination of the stimulus features, usually over a fixed time window d,

y`(t) =
[
x(t) x(t− 1) . . . x(t− d)

]
β` + ε`(t),
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Figure 1.1: Modeling the stimulus-response relationship with linearized predictive
encoding models and multivariate normal priors. In a typical experiment, a series of stimuli
are shown to the subject and the brain responses recorded. Features are extracted from the stimuli
using a computational model, human labels, or any other method. The brain responses are then
modeled as a linear combination of the features. When using very large models, some form of
regularization is often used. A common approach in computational neuroscience is to impose a
multivariate normal distribution on the feature weights. When the MVN is spherical, this is called
ridge regression (Hoerl and Kennard, 1970). In general, the MVN prior can also have non-spherical
structure. This is referred to as Tikhonov regression (Tikhonov et al., 1977). A goal of modeling
the data using this approach is to have an accurate model that can predict brain responses to novel
stimuli and is also interpretable.

where ε`(t) ∼ N (0, σ2
` ) is stationary, zero-mean normal noise, x(t− d) ∈ R1×p is the

feature vector delayed d time points, and β` ∈ Rpd×1 is a set of linear weights over
the p features at each of the d delays.

To write the simultaneous equation for all voxels we replace y`(t) with a matrix
Y ∈ RT×m that contains the response of each voxel at each timepoint, and we replace
β` with a matrix β ∈ Rpd×m that contains the weight vector for every voxel. We write
the matrix of linearized stimulus features as X ∈ RT×pd,
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X =



x(0) 0p · · · 0p
x(1) x(0) · · · 0p

...
...

...
...

x(t) x(t− 1) · · · x(t− d)
...

...
...

...
0p 0p · · · x(T )


=
[
Xδ(0) Xδ(1) · · · Xδ(d)

]
, (1.1)

where each row of X contains the feature vectors for the past d timepoints. Each
block of p columns Xδ(j) contains the linearized stimulus feature matrix delayed by
j time points. This is referred to as a finite impulse response model (Oppenheim
et al., 1983). This allows us to rewrite the basic model as:

Y = Xβ + ε

where εt ∼ Nm(0, diag{σ2
1, · · · , σ2

m}) is zero-mean, independent noise for each voxel
at each time point. The only free parameter in this formula is the weight vector
β ∈ Rpd×m.

We can find an estimate of β by maximizing the probability of the data Y given
the stimulus features X

β̂ = argmax
β

P (Y |X, β) .

This estimate of β is called the maximum a posteriori (MAP) estimate. We can
derive various analytic solutions depending on the form of the distribution we assume
for P (Y |X, β). In this chapter, we assume that the responses can be modeled as
multivariate normal random variables.

The likelihoood of the data can be expressed as

P (Y |X, β) ∝ 1

det (Σε)
exp

(
−1

2
trace

(
(Y −Xβ)>Σ−1ε (Y −Xβ )

))
,

where Σε = diag{σ2
1, · · · , σ2

m} contains the variance of the noise for each voxel. If we
assume that the noise variance is the same in each voxel, then we can set Σε = σ2I.
We can also switch to using the log of the likelihood instead of the likelihood. The
log-likelihood of the data can then be expressed as

log P (Y |X, β) ∝ −1

2

m∑
`

(
1

σ2
‖y` −Xβ`‖22

)
.
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Finally, note that maximizing the log-likelihood is equivalent to minimizing the neg-
ative log-likelihood of the data. The β estimate for all voxels can be found simulta-
neously by solving

β̂ = argmin
β

[
1

2
‖Y −Xβ‖22

]
,

which is equivalent to finding the β that minimizes the squared difference between
predicted and actual responses (i.e. ordinary least squares regression).

However, finding the value of β that exactly minimizes this squared error function
often produces results that do not generalize to new stimuli. This is due to overfitting.
Overfitting occurs when model parameters capture the noise ε in addition to the
underlying signal. This is a common problem when the data available to estimate
the model parameters is small. When building a predictive encoding model our goal
is not simply to explain the data that is given, but to predict new data.

1.2.2 Ridge regression

To avoid overfitting it is common to employ regularized regression techniques (Fried-
man et al., 2001). Regularization imposes a prior distribution on β`. This prior
limits how well a model can explain the given data. The goal becomes to maximize
the probability of the observed data, by finding the β that maximizes the product of
the likelihood and the prior

β̂ = argmax
β

P (Y |X, β)P (β) .

One commonly used regularization technique is ridge regression, which imposes a
zero-mean multivariate normal prior on the individual voxel weights β` (Hoerl and
Kennard, 1970).

β` ∼ Np(0, λ−2Ip),

P (β`) ∝ exp

(
−1

2
β>` λ

2Ipβ`

)
= exp

(
−1

2
‖λβ`‖22

)
.

Ridge regression can be implemented by adding a penalty term to the error function,
where the penalty is proportional to the sum of the squared weights,

β̂ = argmin
β

[
‖Y −Xβ‖22 + ‖λβ‖22

]
, (1.2)

and the strength of the regularization is controlled by λ, the regularization coefficient.
The closed-form solution for the ridge regression problem is given by

β̂ = (X>X + λ2I)−1X>Y
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1.2.3 Tikhonov regression

Ridge regression imposes a zero-mean, spherical multivariate normal prior on the fea-
ture weights. However, expert knowledge can be used to create a more sophisticated,
non-spherical multivariate normal prior on the weights,

β ∼ Np(0, λ−2Σ),

P (β) ∝ exp

(
−λ

2

2
β>Σ−1β

)
,

where Σ ∈ Rp×p is the positive semidefinite prior covariance matrix. Note that λ is
present as a scaling factor on Σ. This determines how much influence the prior has
on the estimated weights.

If we factorize the inverse of the prior covariance matrix by taking its matrix
square root Σ−1 = C>C, where C ∈ Rp×p, then

P (β) ∝ exp

(
−λ

2

2
β>C>Cβ

)
= exp

(
−1

2
‖λCβ‖22

)
The problem can then be solved by maximizing the product of the likelihood and
this new prior, or, as above, by minimizing the negative log likelihood,

β̂T = argmin
β

[
‖Y −Xβ‖22 + ‖λCβ‖22

]
.

This is known as Tikhonov regression (Tikhonov et al., 1977). Here C can be thought
of as a penalty matrix that punishes β when it does not conform to the prior. How-
ever, since there are many matrix square roots, C is not uniquely determined by
the prior covariance, and in fact any C that satisfies the given relation will produce
the same β̂T . Also note that when C = Ip Tikhonov regression reduces to ridge
regression (Hoerl and Kennard, 1970).

The Tikhonov minimization problem has a closed form solution,

β̂T = (X>X + λ2C>C)−1X>Y.

However, this formulation does not immediately admit efficient computational so-
lutions, making it less useful for solving large-scale problems. Fortunately there is
a computationally efficient method for solving Tikhonov regression problems. This
method, which is often referred to as the “standard form” (Hansen, 1998), trans-
forms a Tikhonov problem into a ridge regression problem. This transformation is
accomplished in three steps.
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First, a linear transformation is applied to X, giving

A = XC−1.

Second, ridge regression is carried out with A, giving

β̂A = (A>A+ λ2Ip)
−1A>Y.

Third, the estimated weights are projected back into the original space to give the
Tikhonov estimate,

β̂T = C−1β̂A.

(For a proof of this see Appendix 4.1). Because the standard form uses ridge regres-
sion internally, it is clear that Tikhonov regression in the standard form will admit
the same efficient computational solutions as ridge regression.

The standard form transformation can be used to convert any Tikhonov regres-
sion problem into a ridge regression problem by way of a linear transformation of
X. By the same logic, any linear transformation of X followed by ridge regression is
equivalent to some Tikhonov regression problem, and thus some non-spherical multi-
variate prior on the model weights. This relationship has interesting implications for
a number of neuroimaging studies that have applied ridge regression to linearly trans-
formed stimuli, because the models employed by those studies can be re-interpreted
as Tikhonov regression with non-spherical priors. We use this technique to explore
and re-interpret the models used in some previous studies.

1.3 Using multivariate normal priors

1.3.1 Feature priors

1.3.1.1 Word embeddings

Several earlier studies have used word embedding spaces to model how the brain
represents the meaning, or semantic content, of words (Mitchell et al., 2008, Wehbe
et al., 2014, Huth et al., 2016). In this approach, each word is converted into a vector
with anywhere from 20 (Mitchell et al., 2008) to 1000 (Huth et al., 2016) embedding
dimensions. These vectors are constructed using word co-occurrence statistics from
large corpora of text (Turney and Pantel, 2010), and are designed such that words
with similar or related meanings (such as ‘month’ and ‘week’) are assigned similar
vectors, but words with dissimilar meanings (such as ‘month’ and ‘tall’) are not. After
converting words to vectors, regression models are used to predict BOLD responses
as a function of the embedding dimensions.
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Formally, this approach starts by defining a matrix of word indicator variables
X ∈ Rn×p, where Xt,i = 1 if word i was presented at time t and 0 otherwise. Here
n is the total number of time points and p is the total number of words in the
experiment. Then, in order to replace each word with its q-dimensional embedding
vector, the indicator matrix is multiplied with an embedding matrix E ∈ Rp×q whose
rows contain the word embedding vectors. Finally, regression is performed in the
embedding space, yielding the linear model

Y = (XE)β + ε.

Interestingly, this formulation appears identical to the standard form transfor-
mation of Tikhonov regression (see Appendix 4.1). If the model weights, β, are
estimated using ridge regression (Wehbe et al., 2014, Huth et al., 2016), then this
approach is equivalent to Tikhonov regression where the features are word indica-
tors (i.e. the feature matrix is simply X), and the prior covariance is given by dot
products between embedding vectors, Σ = EE> (and C−1 = E).

Thus, the word embedding approach is equivalent to putting a multivariate nor-
mal prior on the model weights across words, such that the prior covariance between
weights for different words is equal to the dot product between their embedding vec-
tors. If words that have similar meanings have similar embedding vectors, then the
dot product between those vectors will be high, and the weights for those words will
covary strongly. This re-interpretation of the word embedding approach seems in
many ways to be more natural and intuitive than thinking of it as regression in the
word embedding space, which is highly abstract and difficult to explain.

1.3.1.2 Evaluating feature MVN priors

To illustrate the Tikhonov approach to word embeddings we estimated two different
linear models using the data from (Huth et al., 2016). Both models use words
as features, but one model applies an identity prior to the weights while the other
applies a semantic similarity prior based on a word embedding space. The data come
from an experiment where subjects listened to approximately two hours of naturally
spoken narrative stories while undergoing continuous BOLD fMRI. The stories were
transcribed and then the transcripts were aligned to the audio to determine exactly
when each word was spoken. These aligned transcripts were then used to generate
the word indicator matrix, X, which contains the number of times each word was
spoken during each time slice (here of length 2.0045 seconds, the TR of the fMRI
scan).
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The first linear model was estimated separately for each voxel in the fMRI scan
using an identity prior on the model weights:

Y = XβX + ε

β̂X = (X>X + λ2I)−1X>Y

The second linear model was estimated using a semantic prior based on a word
embedding space. This embedding space was constructed by computing the statis-
tical co-occurrence of each word in the stories with 985 common English words (see
Huth et al., 2016, for details). To apply the semantic prior, the word indicator ma-
trix, X, was projected onto the embedding matrix, E, and then ridge regression was
used to estimate the weights:

Y = XEβE + ε

β̂E = ((XE)>(XE) + λ2I)−1(XE)>Y

Finally, we used both sets of weights to predict BOLD responses on a separate
10-minute story that had not been used for model estimation, and then computed the
correlation between predicted and actual BOLD responses. This model evaluation
procedure resulted in two correlation coefficients for each voxel: one for the identity
prior and one for the semantic prior. To compare these values we aggregated the
data from all seven subjects, and then computed a 2D histogram of the correlation
values (Figure 1.2).

Figure 1.2 shows that model prediction performance is nearly always higher with
the semantic prior than with the identity prior, often substantially so. Of approxi-
mately 150,000 voxels included in the analysis, about 300 were significantly predicted
by the identity prior model, and about 15,000 were significantly predicted by the se-
mantic prior model (n = 290, q(FDR) < 0.05). The difference in model prediction
performance is large and significant (Wilcoxon W = 109, p < 10−12). At worst, we
see that some voxels are predicted about as well by both models.

These results suggest that the semantic prior is a much better reflection of the
true underlying voxel weights than the identity prior, and thus supports the earlier
conclusion that those voxels represent information about the semantic content of
language (Mitchell et al., 2008, Wehbe et al., 2014, Huth et al., 2016).

1.3.2 Temporal priors

The temporal activation pattern of the BOLD response is referred to as the hemo-
dynamic response function (HRF). While the neurovascular mechanisms underlying
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Figure 1.2: An encoding model estimated with a semantic prior yields more accurate
predictions than ridge regression. Two subjects listened to spoken stories while their brain
responses were measured with fMRI (Huth et al., 2016). Brain responses were modeled as a linear
combination of the spoken words in the stories. We tested whether model accuracy improves when
using information about the semantic similarity of words. (B) A semantic prior was constructed
from word co-occurrence statistics estimated in a separate corpus data. The semantic prior cap-
tures the idea that words that occur close together are semantically related. The semantic prior
was used to estimate a voxel-wise encoding model using Tikhonov regression. The same model was
also estimated with a spherical prior (ridge regression). (A) We assessed model accuracy by com-
puting the correlation between predicted and actual voxel responses to a novel, held-out stimulus.
The prediction accuracy was significantly higher (Wilcoxon W = 109, p < 10−12) when using the
semantic prior (mean pearson r = 0.037) relative to the spherical prior (i.e. ridge regression; mean
pearson r = 0.005). This suggests that brain responses are better modeled by including information
about the meaning of words (semantics).

the HRF are not well understood, the shape of the HRF has been extensively stud-
ied in humans (Boynton et al., 1996, Glover, 1999). At a first approximation, the
neural activation evoked by a stimulus leads to changes in blood-oxygenation that
peak 4 to 6 seconds after stimulus onset. Several studies have shown that the shape
of the HRF is highly variable across voxels and brain regions both within and across
subjects (Aguirre et al., 1998, Handwerker et al., 2004, Kay et al., 2008a). It is
important to take this variability into account by estimating the shape of the HRF
for each voxel when modeling BOLD responses.

A common approach to estimating the HRF is the use of finite impulse response
(FIR) models (Kay et al., 2008a). In an FIR model brain responses are modeled
as a linear combination of (p) features over a fixed time window (d) prior to the
stimulus onset (see Equation 1.1). The number of parameters in an FIR model is
much larger (p×d) than the original number of features (p), and grows linearly with
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the length of the time window d. This increase in the number of parameters can
lead to overfitting. In order to reduce overfitting, it is important to regularize FIR
models.

When ridge regression is used to estimate FIR models, the implicit assumption
is that feature weights are independent across time. This happens because ridge im-
poses a spherical prior on the temporal covariance of each feature, βi ∼ Nd (0, λ−2Id) ,
where βi ∈ Rd is the vector of weights for feature i across the time window. In the
Tikhonov framework, we can relax this assumption by specifying temporal priors
that are not spherical,

βi ∼ Nd
(
0, λ−2ΣT

)
.

An insight worth highlighting is that applying a temporal prior is equivalent to
convolution followed by ridge regression (Appendix 4.2). This follows from the fact
that FIR models can be understood as convolution. In the context of Tikhonov
regression, this means that applying a temporal prior of the form ΣT = (C>C)−1 is
equivalent to convolving each feature timecourse with a set of temporal filters given
by the columns of C−1. When C−1 = I the features are convolved with Kronecker
delta functions at different delays, which is identical to using delays.

1.3.2.1 Smoothness temporal prior

One simple and widely studied temporal prior holds that feature weights are smooth
across time. This type of prior is typically applied by defining the penalty matrix
D ∈ Rd×d to be a discrete difference operator that penalizes differences between
neighboring weights in time,

β̂ = argmin
β

[
‖Y −Xβ‖22 + ‖λDβ‖22

]
.

In the Tikhonov framework, this corresponds to a multivariate normal prior with
covariance D−2 (Wu et al., 2006)

βi ∼ Nd
(
0, λ−2D−2

)
.

This and similar approaches have been used in several studies (Goutte et al., 2000,
Marrelec et al., 2003, Casanova et al., 2008, Bazargani and Nosratinia, 2014).

1.3.2.2 HRF temporal prior

A more empirically-grounded possibility is to use published mathematical descrip-
tions of the HRF to form a prior (Boynton et al., 1996, Friston et al., 1998, Glover,
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1999). Previous work has resulted in the characterization of the commonly used
“canonocal” HRF. This canonical HRF (h1), its temporal derivative (h2), and its
derivative with respect to time-to-peak (dispersion; h3) together provide an informed
basis set that can capture some of the empirical variation observed in HRF shapes
(Friston et al., 1998). The basis set is a matrix H ∈ Rd×3

H =

 | | |
h1 h2 h3
| | |

 ,
where each hj is a basis vector of length d. However, this basis set is not always flex-
ible enough to capture all voxel- or region-specific variability of the HRF (Woolrich
et al., 2004, Kay et al., 2008a, Pedregosa et al., 2015). In such cases, an FIR model
with enough statistical power can better estimate the shape of the HRF. In practice,
however, the FIR model might be difficult to estimate correctly because the large
number of parameters (p× d) can lead to overfitting.

Instead of choosing between FIR and HRF-based models, the Tikhohnov frame-
work offers an intermediate approach by allowing us to trade off between both op-
tions. To achieve this, we compute the dot product of the HRF temporal basis set
and use it as a non-spherical temporal prior on the feature weights,

βi ∼ Nd
(
0, λ−2HH>

)
.

As λ−2 decreases, the effect of the prior on the FIR weights is minimal. On the other
hand, as λ−2 increases, the prior has more effect on the FIR weights.

1.3.2.3 Evaluating temporal MVN priors

In order to evaluate and compare these temporal priors we estimated three encoding
models. The first encoding model was estimated with ridge regression, which imposes
a spherical temporal prior ΣT = Id. In the second model, we used Tikhonov regres-
sion to impose a smoothness temporal prior on the FIR delays ΣT = D−2. Finally,
in a third model we imposed a temporal prior constructed from the covariance of an
HRF basis set ΣT = HH> (Friston et al., 1998). All models had the same number
of parameters and only differed in the temporal prior used.

We used data from an fMRI experiment in which three subjects watched natural
movies while their brain activity was recorded (Huth et al., 2012). A total of 6,555
motion-energy features were extracted from these movies using a three-dimensional
Gabor pyramid (Adelson and Bergen, 1985, Watson and Ahumada, 1985, Nishimoto
et al., 2011). We used 10 temporal delays in order to account for the HRF (0-20
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Figure 1.3: An HRF temporal prior improves prediction performance relative to a
spherical temporal prior, a smoothness prior does not. We modeled BOLD responses
collected from three subjects while they watched natural movies as a linear combination of motion-
energy features (Nishimoto et al., 2011). In order to account for the HRF, we included 10 temporal
delays (0-20 seconds). We estimated three separate encoding models, each one with a different
MVN prior on the covariance of the temporal delays. We tested two non-spherical temporal MVN
priors and one spherical prior (ridge regression). (A) The smoothness priors corresponds to a
second order difference operator penalty on the temporal weights. This captures the idea that
BOLD responses are smoothly varying in time. (B) We also constructed a hemodynamic response
function (HRF) temporal prior from previous studies. The HRF temporal prior is computed as the
temporal covariance of three basis functions (Friston et al., 1998). (C) The smoothness prior acts
as a low-pass filter on the BOLD responses. The extracted basis functions are a Fourier basis. The
smoothness prior does not improve prediction performance on held-out data. This is because it
enforces high covariance in the mid-way in the time-course of the HRF, which is not an appropriate
prior. (D) The HRF temporal basis improves prediction performance in some well-predicted voxels.
The improvement in performance is nevertheless small.

seconds). This resulted in an FIR model with a total of 65,550 channels and 3,600
time points. We selected the regularization parameter, λ, using a cross-validation
procedure (5-fold cross-validation repeated 20 times). This was done separately per
voxel for each of the three encoding models estimated. We evaluated model perfor-
mance for each model by computing the correlation coefficient between predicted and
actual BOLD responses on a held-out dataset, which was not used for estimation.
The held-out dataset consisted of 270 samples and was constructed by taking the
mean temporal BOLD signal across 10 repetitions of a 540 second movie (Schoppe
et al., 2016).

A total of approximately 230,000 voxels from four subjects were used in the
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analyses (Figure 1.3). We find that the HRF basis set temporal covariance prior
provided better predictions than either the spherical prior or the smoothness prior for
the best voxels in population (top 10,000 voxels, Wilcoxon W = 107.24, p < 10−12 and
W = 105.23, p < 10−12, respectively). The differences in mean prediction performance
in the top 10,000 voxels for the models estimated with the HRF (r = 0.55± 0.001),
spherical (r = 0.53 ± 0.001) and smoothness (r = 0.45 ± 0.001) priors were small
but consistent. However, across the total population of voxels the spherical prior
yielded better prediction performance (Wilcoxon W ′s > 1010, p′s < 10−12). These
results suggest that for well-predicted voxels at least the HRF prior has a small but
consistent advantage.

1.4 Combining spatial and temporal priors

When both a feature prior and a temporal prior are available, they can be used
to construct a single spatiotemporal multivariate normal prior. Spatiotemporal pri-
ors allow us to incorporate prior information about the feature weights’ covariance
and the temporal delays’ covariance when estimating predictive encoding models.
However, as the number of features (p) and temporal delays (d) increase, the spa-
tiotemporal prior matrix becomes large ((p× d)2). This makes the estimation of
(non-spherical) spatiotemporal encoding models impractical for neuroimaging. In
this section, we present a solution to that makes the estimation of these models
tractable when n < p.

The spatiotemporal prior is constructed by computing the Kronecker product (⊗)
between the feature prior ΣX ∈ Rp×p and the temporal prior ΣT ∈ Rd×d,

Σ = ΣT ⊗ ΣX =

 ΣT
1,1Σ

X · · · ΣT
1,dΣ

X

...
. . .

...
ΣT
d,1Σ

X · · · ΣT
d,dΣ

X

 .
The resulting spatiotemporal prior is Σ ∈ Rpd×pd. Notice that when both the feature
and the temporal priors are spherical, the spatiotemporal prior is also spherical.

The Tikhonov solution to an encoding model with a spatiotemporal multivariate
normal prior ΣT ⊗ ΣX can be expressed as (see Appendix 4.3):

β̂T =
(
ΣT ⊗ ΣX

)
X>

(
X
(
ΣT ⊗ ΣX

)
X> + λ2I

)−1
Y.

This is equivalent to the ridge regression solution when both priors are spherical
(Id⊗Ip = Ipd). However, computing this solution involves constructing an extremely
large (pd)2 spatiotemporal prior matrix which we would like to avoid. Luckily, the
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properties of the Kroenecker product allows to derive a computationally efficient
solution in cases where n < p (Appendix 4.4). This formulation makes it tractable
to fit large encoding models with non-spherical spatiotemporal priors.

1.4.1 Evaluating spatiotemporal MVN priors

To illustrate the power of spatiotemporal priors, we estimated four different encoding
models using the data from (Huth et al., 2016). We modeled voxel responses to the
stimulus as a linear combination of words, and estimated models that differed only
in the spatiotemporal prior used:

Y = Xβ + ε

β ∼ Npd
(
0, λ−2ΣT ⊗ ΣX

)
.

The first and simplest model we evaluated was ridge regression. Ridge regression
corresponds to a spatiotemporal prior where both feature and temporal priors are
spherical (Id ⊗ Ip). The second model used a word embedding prior ΣX constructed
from word co-occurrence statistics estimated from a large text corpus (described
above), and a spherical temporal prior (Id ⊗ΣX). The third model was constructed
using a spherical feature prior and a HRF temporal prior ΣT constructed from a
set of HRF basis functions (ΣT ⊗ Ip). Finally, the fourth model evaluated used a
spatiotemporal prior that combines both the word embedding feature prior and the
HRF temporal prior (ΣT ⊗ ΣX).

The models were constructed using 10 TR temporal delays (20 seconds) in order
to account for the hemodynamic lag. A temporal prior ΣT ∈ R10×10 was constructed
from the temporal covariance of an HRF basis set during the same time period. The
FIR matrix X was built using 10 temporal delays for each of the 3, 000 channels.
This resulted in an FIR feature matrix with a total of 30, 000 features and 3, 737
time points.

We find that the model estimated with the semantic-temporal prior performs
better than the same model estimated with either the semantic or the temporal
prior on their own (Figure 1.4). From a total of about 150,000 voxels, approxi-
mately 22,500 were significant (n = 270, q(FDR) < 0.05) when using the semantic-
temporal prior (r = 0.045 ± 0.0003), approximately 5,500 with the temporal prior
(r = 0.019± 0.0002), and 15,000 with the semantic prior (r = 0.037± 0.0002) . The
semantic-temporal prior performs much better than the temporal prior model alone
(Wilcoxon W = 109.67, p < 10−12). This is not surprising since the semantic-temporal
prior includes the semantic prior and that on its own improves prediction performance
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(see Figure 1.2). However, we find that the semantic-temporal prior improves perfor-
mance over and above the semantic prior alone (Wilcoxon W = 109.71, p < 10−12). In
sum, we can gain the best from both worlds by combining feature and temporal priors
into a single spatiotemporal prior and thereby improve the prediction performance
of encoding models.

Figure 1.4: Spatiotemporal multivariate normal priors improve prediction accuracy
by combining temporal and feature priors. We combined semantic and HRF multivariate
normal priors. The model is estimated using cross-validation and used to predict BOLD responses
to held-out stimuli. The spatiotemporal multivariate prior consistently yields better prediction
accuracy than using either prior on its own. (A) The spatiotemporal multivariate normal prior is
constructed by computing the Kroenecker product of the semantic and temporal priors. This is
achieved by scaling each spatial prior by each element in the temporal prior and then concatenating
all the resulting matrices. (B,C) Prediction accuracy on held-out data improves when using the
spatiotemporal multivariate normal prior relative to using either the spatial or the temporal prior
alone.

1.5 Combining spatiotemporal priors

It is becoming increasingly important to characterize how and where different feature
spaces overlap in terms of variance explained (Borcard et al., 1992, Lescroart et al.,
2015, de Heer et al., 2017). This is usually done by combining different feature spaces
into one single joint model (Lescroart et al., 2015, Çukur et al., 2016, de Heer et al.,
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2017). However, estimating joint models with ordinary regularization techniques
(e.g. ridge, LASSO, elastic net) assumes that all feature spaces require the same
level of regularization. This is often an incorrect assumption. In practice, the level
of regularization for a feature space depends on factors such as the feature space
covariance, the number of features, and the fraction of variance explained by that
feature space. The choice of regularization level for each feature space is critically
important to the prediction accuracy of models that combine multiple feature spaces.

Suppose we have two feature spaces X1 ∈ Rn×p and X2 ∈ Rn×q that are combined
into a single encoding model:

Y =
[
X1 X2

] [β1
β2

]
+ ε

Using ridge regression to estimate such a model is equivalent to choosing the same
level of regularization on each feature space. The ridge prior on the joint feature
weights can be expressed as:[

β1
β2

]
∼ Np+q

(
0,

[
λ−2I 0

0 λ−2I

])
,

where the regularization level λ is selected via cross-validation or other methods. It is
clear that the prior on each feature space is the same (λ−2I). However, feature spaces
X1 and X2 might need different levels of regularization. Estimating joint models with
the same level of regularization on each feature space can lead to poor prediction
performance. This is because the globally optimal λ will often be suboptimal for
the individual feature spaces. This issue applies to ridge (Hoerl and Kennard, 1970),
LASSO (Tibshirani, 1996), and elastic-net (Zou and Hastie, 2005) models.

1.5.1 Banded ridge regression

Instead, we can impose separate priors on the weights for each feature space:

β1 ∼ Np(0, λ−21 Ip)

β2 ∼ Nq(0, λ−22 Iq).

The Tikhonov framework allows us estimate the joint model with a separate prior
on each feature space,

Y =
[
X1 X2

] [β1
β2

]
+ ε[

β1
β2

]
∼ Npq

(
0,ΣT ⊗

[
λ−21 Ip 0

0 λ−22 Iq

])
,
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where λ1 and λ2 can take different values. For the sake of clarity, assume a spherical
temporal prior (ΣT = Id). Estimating this model is equivalent to solving:[

β̂1
β̂2

]
= argmin

β1,β2

[
‖Y −X1β1 −X2β2‖22 + ‖λ1β1‖22 + ‖λ2β2‖22

]
The solution is:

[
β̂1
β̂2

]
=


[
X>1 X1 X>1 X2

X>2 X1 X>2 X2

]
+

[
λ21Ip 0

0 λ22Iq

]
︸ ︷︷ ︸

C>C


−1 [

X>1
X>2

]
Y

Notice that the penalty (C>C) becomes the ridge penalty when when λ1 = λ2.
However, when λ1 6= λ2 the structure of the penalty becomes “banded” with the first
p values along the diagonal equal to λ1 and the next q values equal to λ2.

We can also transform the Tikhonov problem into standard form:

A = XC−1 =
[
X1 X2

] [λ−11 Ip 0
0 λ−12 Iq

]
=
[
X1

λ1

X2

λ2

]
.

This is a surprisingly simple expression. It says that scaling the features is equivalent
to adjusting the strength of the prior. This is due to the inverse relationship between
feature scaling and feature weights. All else being equal, dividing the features by
a constant is equivalent to multiplying the weights by that constant. Finally, the
kernelized standard form solution becomes[

β̂1
β̂2

]
=

[
λ−21 X>1
λ−22 X>2

](m=2∑
i=1

λ−2i XiX
>
i + γ2I

)−1
Y.

1.5.2 Evaluating banded ridge regression

We evaluated banded ridge regression using data from a natural movie experiment
(Huth et al., 2012). We constructed a single encoding model that combined two
previously published feature spaces. The first feature space X1 ∈ R3600×6555 captured
low-level visual properties from the stimulus (Nishimoto et al., 2011). The second
feature space X2 ∈ R3600×1705 captured high-level visual properties consisting of
object and action categories (Huth et al., 2012). We modeled voxel responses as a
linear combination of these feature spaces:

Y =
[
X1 X2

] [β1
β2

]
+ ε
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We estimated this joint model using standard ridge regression and banded ridge
regression. The only difference between these models is the feature prior used: ridge
regression uses a spherical prior (ΣX

R = λ−2Ip+q) whereas banded ridge regression
uses a non-spherical prior:

ΣX
T =

[
λ−21 Ip 0

0 λ−22 Iq

]
.

Low-level motion-energy features were extracted from the natural movies using
a three-dimensional Gabor pyramid (Nishimoto et al., 2011). This yielded a total of
6, 555 features which differed in orientation, spatial and temporal frequency, location,
size, and direction of motion. The high-level object and action category features were
tagged by hand from each one second segment of the movies and labeled using Word-
Net synsets (Miller, 1995, Huth et al., 2012). The hyponyms for each synset were
inferred from the WordNet graph and also included. This process yielded a total of
1, 705 object and action category features. An FIR model was then constructed by
including 10 TR temporal delays for each feature order to account for the hemody-
namic response function. The resulting model consisted of 8, 260 stimulus features
times 10 delays (82, 600 total features) and 3, 600 time points. For simplicity, we used
a spherical temporal prior. The feature prior hyperparameters for both ridge (λ) and
banded ridge (λ1 and λ2) models were selected per voxel via 5-fold cross-validation.
The performance of each model was assessed by computing the correlation between
model predictions and actual responses using a held-out dataset not used for model
estimation.

1.5.2.1 Results

Banded ridge regression provided far better joint model predictions than standard
ridge regression (Figure 1.5; Wilcoxon W = 109.92, p < 10−12). Of the approxi-
mately 230,000 voxels, about 40,000 were significantly predicted with banded ridge
(q(FDR) < 0.05, mean pearson r = 0.06 ± 0.0003). In contrast, approximately
20,000 voxels were significantly predicted with ridge regression (q(FDR) < 0.05,
mean person r = 0.3± 0.0002). We used the estimates from the banded ridge joint
regression to compute the prediction performance of each feature space on its own.
This gives us a separate prediction performance value per voxel for each the motion-
energy features and for the object category features. These prediction performance
values are plotted on the cortical sheet in Figure 1.5. There is a strong separa-
tion in prediction performance between early visual cortex being best predicted by
motion-energy features, and higher visual cortex better predicted by object category
features.
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Figure 1.5: Joint model estimation with banded ridge improves prediction accuracy
relative to ridge regression. (A) In this experiment, we model responses as a function of motion-
energy and object category features. We estimate the joint model using independent spherical
multivariate normal priors for each feature space, which together constitute a single non-spherical
multivariate normal prior. We refer to this method as banded ridge. (B) Banded ridge joint model
estimation yields much better prediction accuracy on held-out data than ridge regression. (C) Once
the joint model weights are estimated, we can assess the prediction accuracy of any single model
by setting the weights for other models to zero. This gives us the feature space-specific prediction
performance after controlling for the other feature space(s). Prediction accuracy is plotted on the
cortical sheet. We can see a clear separation between regions in the early visual cortex that are well-
predicted by the motion-energy model (blue). Similarly, higher visual cortex is better predicted by
the object category features (red). A subset of voxels are predicted similarly well by both models.
(D) 2D histogram shows a separation in the voxel populations. A large set of voxels are well
predicted by motion-energy features, and not object category features. Conversely, many voxels
are better predicted by object category features.

A big benefit of banded ridge regression is that it removes spurious correlations
between feature spaces. When the motion-energy model is estimated by itself with
ridge regression, even voxels in higher visual cortical regions can be well-predicted
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Figure 1.6: Explaining away feature space-specific variance after banded ridge estima-
tion. A joint model that included motion-energy and object category features was estimated using
banded ridge regression. The two feature spaces effectively compete to predict voxel responses.
After estimation, the weights for one model were set to zero and the other model was used to
compute the feature space-specific prediction performance. The feature space-specific performance
after joint estimation was compared against the performance of the standard single model ridge
estimation. The joint banded ridge estimation gives better estimates by allowing feature spaces to
“explain away” variance from each other. (A) Regions in early visual cortex (green) are predicted
with higher accuracy when the model is estimated using ridge relative to banded ridge. The reason
these predictions go away is because the variance can be properly allocated to the motion-energy
model instead of being captured by the object category model. In other words, the motion-energy
features explain away some of the variance from the object category features. (B) The object
category features explain away some of the variance from the motion-energy features. This can be
seen in the regions of anterior visual cortex (green).

(Figure 1.6A). This can occur because of stimulus correlations. For example, suppose
there is a consistent correlation between between vehicles and left- and right-direction
selective motion-energy filters in the lower visual field. Estimating the motion-energy
model on its own will yield high predictions. By estimating the object category and
motion-energy models together, the variance can be correctly assigned to the object
category model. In cases where a close to perfect correlation exists, the banded ridge
estimation will split the variance among the feature spaces. In sum, banded ridge
regression yields better estimates of the variance that can be explained by any one
feature space.
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1.6 Discussion

The results highlighted in this chapter show that the Tikhonov framework works very
well for estimating predictive models of BOLD responses in the context of naturalistic
experiments. The Tikhonov framework can be used to incorporate prior information
about how features in the model covary, how the measured signals vary in time, and
how multiple feature spaces can be used to build a single preditive model.

The reader should be aware that our results do not necessarily generalize to
every experimental condition or dataset. In general, the experimenter should treat
the choice of fitting procedure (e.g. FIR, grouped L1, OLS, etc) as a hyperparameter
on its own right and use statistical learning theory to make a decision. The Tikhonov
framework is presented as another method in the toolkit available to researchers. The
banded ridge model proposed is of particular utility when estimating joint models
that combine several feature spaces to predictive brain activity.

We have shown a computationally efficient framework for incorporating multivari-
ate normal priors into spatiotemporal encoding models. And that this framework is
flexible enough to work well in a variety of cases. The software used to estimate all
the models presented in this chapter is publicly available. We hope this facilitates
the adoption of this framework.
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Chapter 2

Representational similarity
analysis can lead to incorrect
conclusions about representation

2.1 Overview

An important goal in functional brain imaging is to determine what type of in-
formation is represented within and across brain regions. In recent years, several
methods to study brain representations have been developed. A simple and widely
used method is representational similarity analysis (RSA). RSA quantifies similari-
ties between brain and model representations and does not require the estimation of
a statistical model. However, there exists little work assessing its validity. We show
that RSA makes strong assumptions about the relationship between representational
models and brain responses. One reason is that RSA does not require a statistical
model and can therefore fail to detect significant relationships even when such re-
lationships are present. In addition, RSA can lead researchers to incorrect conclu-
sions when used to compare representational models to brain responses. In contrast,
encoding models explicitly estimate the relationship between brain responses and
representational models which leads to better performance than RSA.

2.2 Introduction

An important goal of functional brain imaging is to identify which types of infor-
mation different brain regions represent. Computational methods are often used
to make inferences about the types of representations that are encoded within and
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across brain regions. A commonly used and relatively new method for making in-
ferences about brain representations is representational similarity analysis (RSA;
Kriegeskorte et al., 2008b,a). RSA works by estimating a representational similarity
matrix (RSM) in a brain region and comparing it to a multitude of candidate RSMs
built from computational and/or behavioral representational models. The represen-
tational model that is most similar to the RSM of a brain region is chosen as the
representational model that best characterizes the information represented in that
brain region. However, there is little work to-date that explores the validity of RSA
for making inferences about brain representations.

RSA has been widely adopted in part because of its simplicity (Kriegeskorte and
Kievit, 2013). RSA does not require estimating a statistical model to relate brain re-
sponses to representational models. This is appealing because estimating a statistical
model can require significant computational resources and time. With the advent
of deep neural networks, the candidate representational models that are available
to test are very large and estimating a statistical model that relates them to brain
responses is a complex endeavor. By obviating the need of model estimation, RSA
presents an advantage over methods that require significant computational resources
and time.

In this chapter, we evaluate the validity of RSA for making inferences about brain
representations. We show that RSA is problematic for making inferences about
representations exactly because it does not require estimating a statistical model
to relate brain responses to representational models. We show that RSA can fail to
detect a significant relationship between a representational model and brain responses
when a relationship exists. We also show that RSA can lead to the wrong answer
when used to adjudicate between representational models. This means that RSA
can lead researchers to incorrect conclusions about the type of information that is
represented in brain regions.

This chapter is organized as follows. We begin by describing RSA, then show
simple examples where it can fail. We present simulations to show that RSA can fail
to detect a relationship between a representational model and brain responses. We
then show in real data that RSA can lead to the wrong conclusion about the type
of information encoded in a brain region. Finally, we use simulations to quantify
how often and in what cases RSA can give the wrong answer. We compare RSA to
encoding models in our analyses.
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2.3 Description of representational similarity

analysis

Figure 2.1: Description of representational similarity analysis. (A) Measured brain re-
sponses from a region of interest (ROI) are used to construct a representational similarity matrix
(RSM). The activation pattern for two animate stimuli within the ROI are shown (purple and
orange). The ROI RSM is constructed by correlating the activation pattern of each stimulus pair.
Each entry in the RSM captures the representational similarity between each pair of stimuli in the
ROI. In this example, there is a high degree of similarity within animate and within inanimate
categories, and a low degree of similarity across animate and inanimate categories. (B) A repre-
sentational model is used to construct an RSM in the same way. The representational model RSM
captures the idea that stimuli within a category are represented similarly (red), and that stimuli
across categories are represented less similarly (blue). (C) The final step of RSA is to compute the
similarity between the lower (or upper) triangles of the two RSMs.
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2.3.1 The representational similarity and dissimilarity
matrix

The first step in RSA is to characterize the information represented in a brain region
(Figure 2.1). This is achieved by measuring the activation pattern evoked by each
stimulus (or task condition) within the region of interest. The activation pattern of
every stimulus is then compared with the activation pattern of every other stimulus.
This is achieved by computing the correlation between the activation pattern of each
pair of stimuli. This results in a symmetric stimulus-by-stimulus representational
similarity matrix (RSM).

The next step is to figure out what representations are encoded within that brain
region. To achieve this, representational models derived from machine learning (e.g.
convolutional neural networks), behavior (e.g. subject ratings), or domain-specific
theory (e.g. stimulus animacy) can be used and tested. These representational
models are used to extract features (e.g. object category) from which RSMs are
built. The resulting RSMs are then compared with the brain RSM.

2.3.2 Similarity of representational similarity matrices

RSA computes the similarity between the brain and model representations captured
by the RSMs. Because the RSMs are symmetric, only the upper (or lower) triangular
entries of the matrices are used to compute their similarity. In general, the similarity
is computed as:

RSA (RSMX , RSMY ) ≡ similarity (triang (RSMX) , triang (RSMY ))

where RSMY is the brain RSM and RSMX is the representational model RSM.
There are many ways of estimating the similarity between RSMs but the Pearson
correlation is a common choice in the literature (Walther et al., 2015). Permutation
tests are typically used in order to assess the significance of the similarity between
RSMs (Nili et al., 2014).

2.4 Simple examples of RSA failures

RSA is in stark contrast to statistical parametric mapping (SPM; Penny et al., 2011)
and encoding models (Wu et al., 2006, Naselaris et al., 2011). SPM and encod-
ing models both explicitly estimate a statistical model that relates brain responses
and features derived from machine learning, experimental conditions, behavioral,
or domain-specific representational models. The set of features (a.k.a. regressors,
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predictors) used to build the statistical model defines a feature space. An infer-
ence is then made about which of these feature spaces best explains brain responses
and how these features are represented in the brain. This process demands a lot of
computational resources and time.

RSA is very simple. However, the work to-date that has evaluated the use of RSA
to make inferences about representations estimating statistical models has found var-
ious issues (Thirion et al., 2015, Cai et al., 2016, Ritchie et al., 2017). In this section,
we expand on this literature and present novel simple examples that illustrate how
RSA can fail. We highlight that the main issue with RSA is precisely its simplicity.
By failing to estimate a statistical model relating brain responses to representational
models, RSA makes very strong assumptions about the relationship. The assump-
tions concern the extent of the representation in the brain, and the importance of
the representational model features within the region of interest. These assumptions
are not always optimal for inferring brain representations. For this reason, RSA can
lead to poor statistical detection power and incorrect conclusions.

2.4.1 Assumptions of RSA about extent of the
representation in the brain

2.4.1.1 RSA can fail when only a sub-region of the ROI is important

RSA can fail to detect a significant relationship between a representational model
RSM and a brain RSM when only a sub-region of the ROI encodes the represen-
tational model (Figure 2.2). RSA assumes that the extent of the representation in
the brain matches the selected ROI. When the ROI is not defined independently per
subject (e.g. it is derived from a brain atlas), the mismatch between the actual func-
tional region and the ROI can lead to decreased statistical power. This can occur
both when the ROI used is bigger or smaller than the true brain region (Worsley
et al., 1996).

2.4.1.2 Searchlight RSA can fail when the sphere radius is not optimal

The problem of mismatch between ROI size and brain representation is not ame-
liorated with searchlight analysis (Kriegeskorte et al., 2006). Searchlight analysis
involves moving a sphere of fixed radius across the brain to select voxels and is com-
monly used in the context of RSA (Nili et al., 2014). Searchlight RSA assumes that
the representational model is encoded in the brain as a sphere of fixed radius. It is
unclear whether this is optimal for all representations (e.g. cortical regions are not
bound within spheres in three dimensions). Moreover, the sphere radius is an im-
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Figure 2.2: RSA can fail when only a sub-region of the ROI or searchlight is important.
(A) The voxels contained within a sphere (red circle) are used to construct a region of interest
(ROI) representational similarity matrix (RSM). When there is a mismatch between the ROI used
and the functional region, RSA can fail to find a significant relationship with the representational
model RSM. (red x-mark). In effect, the unimportant voxels wash out the voxels that encode the
representational model. This can occur when the ROI is derived sub-optimally from a common atlas
or via a searchlight of fixed radius. (B) In this example, RSA can find a significant relationship
by dividing the ROI into sub-regions. However, if the ROI were instead too small, RSA would
fail to find a relationship because not all the voxels important for the representational model are
included. In order to avoid this issue the searchlight radius needs to be estimated per subject per
representational model, or by defining ROIs per subject.

portant parameter that is rarely estimated (a radius of 15mm is default; Nili et al.,
2014). Assuming an arbitrary sphere radius suffers from issues similar to using a
non-optimal filter to spatially smooth brain images (Friston et al., 1993, Worsley
et al., 1996).

2.4.2 Assumptions of RSA about the importance of model
features in the region of interest

The previous issues are inherent to the spatial pooling necessary to construct the
brain RSM. They can be ameliorated by defining ROIs per subject (anatomically
or functionally), or by independently estimating the radius of the searchlight per
subject per representational model. Besides constructing the brain RSM, the other



CHAPTER 2. EVALUATION OF RSA 30

input to RSA is the representational model RSM. The representational model RSM
is constructed without any relation to brain responses. This assumes that the rep-
resentational model features are all equally important for the brain responses. This
leads to a second class of issues.

2.4.2.1 RSA can fail to to detect a significant relationship when model
features are not equally important
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Figure 2.3: RSA can fail to detect a significant relationship when representational
model features are not all equally important. A simple example where a important represen-
tational model features get washed out by unimportant features. (A) The representational model
is composed of three sets of features and only one subset of these features is important in driving
brain activity in the ROI. (B) The unimportant features will make the representational model
RSM very different from the ROI RSM. This results in a statistical power decrease of RSA. In this
case, the relationship between brain responses and the representational model is not significant (red
x-mark).

A simple example of this problem is when only a subset of features are important
for an ROI. In such cases, the important features can get washed out by the unim-
portant features when constructing the representational model RSM (Figure 2.3). In
our example, RSA will fail to detect a significant relationship between the represen-
tational model and brain responses. The lack of feature selectivity with respect to
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brain responses is at the heart of the problem. For this particular example, a statis-
tical model that can learn to ignore the unimportant features would be appropriate
(e.g. L1-regularized regression, Tibshirani, 1996).

2.4.2.2 Model selection with RSA can fail when true model features
are not equally important

RSA is commonly used to compare representational model RSMs with the brain RSM
(Kriegeskorte et al., 2008a). When using RSA in this way, the similarity between a
representational model RSM and the brain RSM is interpreted as the strength with
which the representational model is encoded in the brain region. The representational
model that is most similar is inferred to be the one most likely represented within
the ROI. In statistical learning, the general procedure for choosing the most likely
model from a set of models is called model selection (Friedman et al., 2001).

Because RSA assumes that all the features in a representational model are equally
important within a brain region, it can lead to incorrect conclusions about brain
representations when comparing representational models. In particular, when the
assumptions of RSA are not well-met by the correct representational model an al-
ternative, incorrect representational model might be more similar to the brain RSM.
This would lead to the wrong conclusion about what the brain region represents.

An example of how RSA can easily lead to the wrong conclusion about represen-
tation is shown in Figure 2.4. The representational model consists of a set of Gabor
wavelets and the brain RSM is constructed from left hemisphere V1 responses to
natural images. The Gabor model RSM is constructed by correlating all wavelet re-
sponses to every pair of images across the full visual field. Only the Gabor wavelets
on the right the visual field are important for driving left hemisphere V1 responses.
RSA , however, assumes that all the Gabor model features are equally important.
This means that the unimportant left visual field Gabor wavelets can potentially
wash out the effect of the important right visual field Gabor wavelets. The sim-
ilarity between the Gabor RSM and the brain RSM will be low. An alternative
representational model might by chance be more similar to the brain RSM. Under
these conditions, RSA will lead researchers to make the wrong conclusion about V1
representation.

2.5 Model assessment with RSA

As shown in Section 2.4.2.1, RSA can fail to detect a statistical relationship when
not all features are encoded equally within the ROI. In technical terms, this implies
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Figure 2.4: RSA can fail to find the correct representational model when features are
not equally important. (A) A Gabor model is used to compute an RSM (1,2). (3) We compare
the Gabor model RSM against the left hemisphere (LH) V1 ROI. The Gabor RSM is not similar to
the LH V1 RSM (red x-mark) because the important features for the left hemisphere are washed
out by the unimportant features. (B) Left hemisphere V1 only processes information from the right
visual field (4). If we construct a right visual field Gabor RSM, the resulting RSM is very similar
to the LH V1 RSM (green check-mark). The full Gabor RSM is not similar to the LH V1 RSM
because the important features are washed out by the unimportant left visual field features (5). (6)
This issue becomes especially problematic when using RSA for model comparison. An alternative
(incorrect) representational model RSM can be more similar to the LH V1 RSM by chance (green
check-mark). (7) When testing whether a Gabor or an alternative representational model RSM
better captures the representations of LH V1, RSA chooses the incorrect model. (C) (8) The same
can occur when the full Gabor RSM is over-parametrized. For example, when very high spatial
frequencies that are not detectable at the resolution of fMRI are included. The important low
frequency Gabor feautures, (9) are washed out. RSA will fail to detect a significant relationship
between the Gabor RSM and the V1 RSM (10). (11) This can lead to incorrect conclusions about
representation if the alternative model is by chance similar to the V1 RSM.
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that a statistical model estimated to predict brain responses as a linear combina-
tion of representational model features will have feature weights that are completely
uncorrelated with each other across voxels. In other words, RSA implies that the
feature weights are orthogonal for every pair of features across voxels. We perform
simulations to evaluate how the orthogonality of feature weights affects the ability
of RSA to detect a significant relationship between a representational model and a
brain region.
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Figure 2.5: RSA can fail to detect a relationship when some features are more im-
portant than others as the similarity between RSMs decreases. (A) We simulated voxel
responses using a linear model where the features were either all equally important or not (low
and high effective rank of the feature weights). In both cases, RSA was used to detect whether a
significant relationship between the representational model and the brain RSMs exists by shuffling
the representational model RSM 1,000 times. We repeated the simulations 1,000 times. RSA fails
to find a significant relationship when the weight matrix rank is low (only 8.3% p-values < 0.05).
(B) As some model features become more important than others (i.e. less orthogonal), the RSA
similarity decreases. In high SNR conditions (low noise), there is a large difference in the RSA
estimates depending on the orthogonality of the feature weights. (Error bars indicate standard
deviation). (C) Cross-validated ridge regression does not suffer from this issue because the feature
importance is captured when the feature weights are estimated. The heldout prediction perfor-
mance is dominated by noise and not the structure of the feature weights. Note that the y-axes
are not comparable across panels since one is held-out prediction performance and the other is the
RSA similarity (i.e. correlation of correlations).
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2.5.1 RSA fails when not all features are equally important

We simulated 2,000 experiments each consisting of 128 voxel responses, 96 stimuli,
100 features, and Gaussian noise (σ = 3). Brain responses were generated with a
linear model (Y = Xβ + E). For 1,000 simulations, the generated feature weights
were approximately orthogonal (ββ> ≈ Ip). In the other 1,000 simulations, the
feature weights were very far from orthogonal and all the units in the population
had approximately the same weight vector. After generating the data, we conducted
RSA as described in Section 2.3. For each of the 1,000 simulations, we assessed
the significance of the relationship with a permutation test by shuffling the RSM
matrix 1,000 times. When the feature weights were close to orthogonal, RSA reliably
detected the statistical relationship between the representational model and brain
region (all 1,000 p′s = 0.001); Figure 2.5A). This is expected because the RSA
assumption is met and all the features are equally important (ββ> ≈ Ip).

However, when this assumption is violated and the feature weights are far from
orthogonal RSA fails to find a statistical relationship in 917 of the 1,000 simulations
(8.3% p < 0.05). RSA fails because not all the representational model features are
equally useful in driving activity in the region of interest. We repeated the experiment
using a cross-validated ridge regression (CVR) model to estimate the relationship
between the representational model and each voxel in the region of interest. Using
this approach, we were indeed able to reliably identify a significant relationship
between the representational model and the brain responses in all 2,000 simulations
(all p′s < 0.05, not shown).

2.5.2 RSA similarity decreases when some features are
more important than others

We next evaluated how RSA and CVR models are affected as the feature weights
vary from non-orthogonal to orthogonal. This was achieved by generating feature
weights per voxel from covariance matrices with varying levels of effective rank (1,
2, 4, 8, 16, 32; Pedregosa et al., 2011). We manipulated the number of stimuli (100,
1,000), features (100, 1,000), voxels (128, 256, 512), noise levels (1, 2, 3, 4, 5, 6; i.i.d
Gaussian s.d.), and feature matrix effective rank (1, 5, 10, 20). The voxel responses
to the stimuli were generated using a linear model. This resulted in a total of 4,350
simulations for each of the six noise levels.

RSA similarity is affected by both how orthogonal the feature weights are and
the noise level (Figure 2.5B). As some features become more and more important
than others (i.e. feature weights become less orthogonal), the similarity between
brain and representational model RSMs decreases and so does the ability of RSA
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to detect a significant relationship. Note that a high SNR dataset (low noise level)
will produce very different RSA similarity values depending on how orthogonal the
feature weights are (varying from 0.5 to 0.9).

In contrast, cross-validated ridge regression prediction performance depends little
on the orthogonality of the feature weights. CVR prediction performance is mainly
affected by the amount of noise in the data, not whether the features are all equally
important (Figure 2.5C). This is because CVR explicitly estimates a statistical model
that relates brain responses to representational model features. The estimated fea-
ture weights capture the relative importance of the representational model features
explicitly.

The ability of RSA to detect significant relationships depends on the orthogonality
of the feature weights. This affects the likelihood of detecting a relationship between a
representational model and a brain region. These results are not in and of themselves
a reason for much concern since different methods can have varying levels of statistical
power under different conditions. There might even be situations where RSA might
have higher statistical power relative to regression models. It is the use of RSA for
model selection, however, that is a major concern.

2.6 Model selection with RSA

RSA is commonly used to compare representational models and decide which one
better captures brain representations. However, if the assumptions of RSA are better
met for one representational model than for the other, the conclusion can be exactly
wrong. We demonstrate this using real and simulated data.

2.6.1 RSA fails to choose a Gabor model as the
representational model for V1

We used functional MRI data from a vision experiment to evaluate the use of RSA
for model selection. We used RSA to test whether V1 representations are better
captured by a Gabor model computed on (i) natural images, or (ii) object silhou-
ette segmentations (red and blue, respectively; Figure 2.6). A wealth of evidence
has shown that Gabor wavelets computed on natural images are a good model of
V1 in neurophysiology (Daugman, 1984) and fMRI (Kay et al., 2008b). While a
Gabor model is not the “ground-truth” representational model for V1, it is a good
approximation (Carandini et al., 2005). There is strong a priori expectation that a
Gabor model computed on natural images should capture V1 representations more
accurately than a object silhouette representational space.
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A total of 1,260 natural images were shown to two subjects while BOLD responses
were recorded with fMRI (see Stansbury et al., 2013, for details). The hemodyamic
response function and the response to each stimulus was estimated for each voxel
separately using generalized least squares (Stansbury et al., 2013). The silhouette of
each object in each image was drawn by hand and the resulting segmented image was
binarized. These silhouette images were used to extract object silhouette features.
We extracted luminance images by converting the original RGB images to the CIE
L*a*b* color space (McLaren, 1976). The luminance images were used to extract
image Gabor features. We used two Gabor wavelet pyramids to extract features for
each of the (i) image Gabor and (ii) object silhouette representational models. One
pyramid was small and the other was large. This yielded a total of four feature
matrices: (i) small and large Gabor feature matrices, and (ii) small and large object
silhouette feature matrices. Each of these feature matrices was used separately to
compute an RSM.

The small Gabor wavelet pyramid contained spatial frequency filters at 0, 2, 4,
8, 16 and 32 cycles per image. This yielded a total of 570 features per stimulus. The
large Gabor wavelet pyramid was constructed with same spatial frequency filters as
the small pyramid and an additional set of high spatial frequency filters at 64 and
96 cycles per image. The large pyramid yielded 6,302 features per stimulus. At the
resolution of fMRI, the high spatial frequencies are not very useful in explaining addi-
tional variance in the V1 BOLD responses. The large version of the representational
models can be thought of as an over-parametrization. This violates the assumption
that all the representational model features matter equally within V1. For the large
pyramid, the majority of the Gabor model features are unimportant and may wash
out the important features (Figure 2.6A).

We tested whether V1 representations are more similar to image Gabor RSMs or
object silhouette RSMs using RSA (Kriegeskorte et al., 2008a,b). We bootstraped
the difference in similarity to the V1 RSM 1,000 times and computed p-values from
this distribution. We performed RSA with both models using the coefficients of a
regression model estimated between the brain RSM and the representational model
RSMs (Nili et al., 2014). We also estimated an encoding model for each voxel sepa-
rately using a training set of 1,260 images with cross-validated ridge regression. We
measured prediction performance by computing the correlation coefficient between
predicted and actual voxel responses to 126 held-out images. We bootstrapped the
difference in prediction performance 1,000 times. We also evaluated the effect that
using a different number of stimuli has on both of these analyses.
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Figure 2.6: RSA can fail to choose a Gabor model as the representational model for
V1. We used fMRI data collected from two subjects while they viewed 1,260 natural images to
test representational models of V1 (Stansbury et al., 2013). (A) Two representational models were
tested. One is the Gabor model (red) and the other the object silhouette model (blue). We con-
structed two versions of each representational model one small and one large. (B) RSA was used to
compare the representational models to the bilateral V1 RSM. When using the large version of the
representational models, RSA finds that object silhouette RSM captures V1 representations better
than the Gabor RSM. This likely incorrect result has been reported before with RSA (Kriegeskorte
et al., 2008a). When computing the RSM for the large Gabor representational model, the unimpor-
tant (high spatial frequency) Gabor wavelets wash out the contribution of important (low spatial
frequency) Gabor wavelets that dominate the measured V1 responses at the resolution of fMRI.
(C) These analyses were conducted by subsampling the number of stimuli used. RSA consistently
leads to the incorrect conclusion for the large representational models. (D,E) Cross-validated ridge
regression (CVR) consistently gives the correct answer.

2.6.1.1 Results

RSA yields the expected result when we compare the Gabor and silhouette repre-
sentational models built from the small pyramid (570 features; Figure 2.6B, red).
We see that as the number of stimuli increases, the RSA comparison remains stable.
However, when we compare the representational models using the RSMs built with
the large pyramid (6,302 features), RSA gives the opposite answer. V1 represen-
tations are better captured by the object silhouette representational model (Figure
2.6C, orange; Kriegeskorte et al., 2008a). We cannot say that this is the incorrect
conclusion because we do not have access to the true model. However, it certainly
goes against expectations and suggests that RSA does not handle noisy features or
high dimensional feature spaces well. RSA can give different answers for different
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parameterizations of the same representational space because it assumes that all of
the representational model features matter equally in the region of interest. From the
outset, the representational model must be constructed in such a way that it already
closely matches the brain representations without estimating a statistical model.

In contrast, encoding models estimated with cross-validated ridge regression give
consistent results for each subject and feature space size (Figure 2.6C). As the number
of stimuli increases the difference in prediction performance between the silhouette
and Gabor representational models increases in favor of the Gabor model. The pre-
diction performance is lower when using the large version relative to the small version
of the representational models. This is expected because increasing the number of
features requires more data to estimate the statistical model. This is important espe-
cially if many of the features are not useful in driving brain activity. The difference
estimate of the regression model remains positive in all comparisons with the Gabor
features always better than the object sihouette features.

2.6.2 RSA has lower statistical power than regression for
model selection

In the previous experiment, we did not have access to ground-truth representational
model for brain responses, nor how it relates to measured BOLD responses. Thus,
we cannot conclude that RSA lead us to the incorrect conclusion. To determine the
conditions under which RSA can give the wrong answer we performed a series of
simulations where the ground-truth representational model is known (Figure 2.7A).

We simulated voxel responses to stimuli as a linear combination of ground-truth
features plus noise (Y = Xβ + E). We then sampled stimulus features similar ei-
ther to the ground-truth representational model or to the voxel stimulus-by-stimulus
response covariance. The stimulus features were then used to construct one RSM
for the ground-truth representational model and another RSM for the alternative
representational model. RSA was then used to select the model that best captures
the representations of the simulated brain responses.

The simulated data varied in the number of stimuli (100, 300), features (100,
1,000), voxels (128, 256, 512), feature weight effective rank (1, 3, 5, 7, . . . , 32),
similarity between the sampled candidate features X and the ground-truth represen-
tational model (10−3 to 1; 14 log-spaced samples), and the similarity between the
“alternative” features Z and the empirical voxel responses (10−5 to 1; 10 log-spaced
samples). A total of 25,000 simulations for each of six noise levels were performed
(i.i.d. Gaussian with 1, 2, 3, 4, 5, or 6 s.d.). The stimulated representational model
features were used to construct a candidate (i.e. correct) RSM and an alternative



CHAPTER 2. EVALUATION OF RSA 39

(i.e. incorrect) RSM. RSA was then used to select the representational model RSM
that best captures the simulated brain RSM. Significance was assessed via bootstrap
(1,000 samples with replacement per simulation).

For each simulation we used RSA to test whether the candidate representational
model captured the simulated brain responses better than the alternative represen-
tational model (Figure 2.7A). The p-value of the difference between the representa-
tional models was computed by bootstrapping the difference estimate 1,000 times.
We quantified the statistical power of RSA by counting the number of times the
candidate (i.e. correct) representational model X was found to be better than the
alternative (i.e. incorrect) representational model Z at every significance threshold.

We also used cross-validated ridge regression to estimate a statistical model re-
lating simulated voxel responses and the feature spaces generated from the candidate
and alternative representational models. The mean prediction performance across
voxels was computed. The significance of the difference between representational
models was computed by bootstrapping the heldout prediction performance differ-
ence 1,000 times.

2.6.2.1 Results

The RSA similarity between the brain RSM and the incorrect representational space
RSM can be higher than with the correct representational space (Figure 2.7B; ex-
ample with 300 stimuli, 1,000 features, and i.i.d. Gaussian noise with 2 s.d.). This
occurs when not all the representational model features are from the correct model
are equally important and the incorrect representational model is similar to the brain
RSM. As the correct representational model features become less and less important
RSA tends to give the wrong answer.

We estimate the statistical power of RSA by counting the number of times it
gives the correct answer (Figure 2.7C). At the typical p-value threshold of 0.05, the
ability of RSA to select the correct representational model quickly decreases. RSA
is worse than cross-validated regularized ridge regression for selecting the correct
representational space across all noise levels and significance thresholds explored in
our simulations.

The reason for the low statistical power of RSA is illustrated in Figure 2.7D. The
RSA similarity between the brain RSM and the correct representational model RSM
decreases when the representational model features are not all equally important.
This means that feature weights are not close to orthogonal (Σβ 6= Ip) and so the
similarity between the correct representational model RSM and the brain responses
will be low. The similarity between an incorrect representational model RSM and
the brain RSM might be higher than with the correct representational model by
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Figure 2.7: RSA has low statistical power to adjudicate between representational
models. (A) We simulated brain responses to stimuli derived from a known feature space. (B)
RSA was used to adjudicate between correct and incorrect representational models. RSA gives the
incorrect answer as the features of the correct representational model become less equally important
(horizontal axis) and the incorrect representational model becomes more similar to the brain RSM
(vertical axis). (C) This occurs across many simulations varying in the number of stimuli, features,
voxels, and noise levels (150,000 simulations). At the typical statistical significance threshold of
p < 0.05, the ability of RSA to find the correct answer quickly decreases with noise. RSA has
consistently less statistical power to find the correct representational model than cross-validated
ridge regression across significance thresholds and noise levels. (D) Estimating a statistical model
to relate brain responses to representational model features before conducting representational
similarity analysis can provide more reliable answers if the region of interest is properly chosen.
However, there is no evidence that the similarity of similarity matrices is a reliable statistic for
inferring representations (Thirion et al., 2015), nor that it has any advantages over classical statistics
like the coefficient of determination (R2).
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chance. Whenever this conditions occur, RSA will lead researchers to incorrect
conclusions about representations. This problem can be ameliorated by estimating
a statistical model to relate the correct representational model features to the brain
responses directly. This will give an estimate of the importance of the feature weights
(β̂). The estimated feature weights can then be used to compute a representational
model RSM that does not assume that all the features are equally important (Σ̂β).
However, it is unclear whether there are any advantages to using this neuroimaging
specific approach versus standard statistical learning (Khaligh-Razavi et al., 2017).

2.7 Discussion

RSA is a very simple method that requires few computational resources and time.
However, the wide availability and low cost of computational resources has made it
increasingly easier, faster and cheaper to estimate statistical models that explicitly
relate representational models and brain responses. These technological advance-
ments make the main advantages of RSA less beneficial than they were 10 years
ago.

The computational simplicity of RSA comes at the cost of making strong as-
sumptions. Assumptions about the extent of the representation within the brain,
and about the how the representational model features are represented within a
brain region. We have shown that making use of not well-defined ROIs or search-
lights of arbitrary radius puts strong constraints on the extent of the representation
in the brain and therefore decreases statistical power.

We have also shown that whenever representational model features are not equally
important in a brain region, RSA can fail to detect a significant relationship between
the representational model and the brain responses. This can lead researchers to
make incorrect conclusions about representation when adjudicating between repre-
sentational models. Empirically, the assumption that representational model features
are all equally important within brain regions is not in agreement with the literature
(e.g. Huth et al., 2012, 2016).

2.7.1 RSA computed on encoding models

Mixed-RSA is a step in the right direction within the RSA literature (Khaligh-Razavi
et al., 2017). It relies on estimating a statistical model to relate brain responses
to the representational model. This is nothing more than using representational
similarity analysis on a standard encoding model (Wu et al., 2006). The main benefit
of this approach is spatial pooling over voxels. When a searchlight is used, this
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achieves spatial pooling with a sphere instead of Gaussian blurring as is usual in
fMRI. However, spatial pooling comes with its own set of issues when performed
sub-optimally (Section 2.4.1).

There are cases where standard RSA can find a significant relationship between
RSMs, but RSA based on an encoding model cannot. This is interpreted as providing
evidence that the encoding models are difficult to train and therefore difficult to rely
on (Khaligh-Razavi et al., 2017). This is a misunderstanding and such an outcome
does not mean that an encoding model approach is unreliable. It means that the
chosen encoding model is suboptimal. In this particular case, it suggests that the
stimulus triggered average (STA) is a better encoding model than the chosen encod-
ing model (Appendix 5.1). Assessing and choosing the optimal encoding model from
the classes of statistical models that exist (e.g. STA, OLS, ridge, LASSO, GLS, etc.)
is a non-trivial task.

Leaving aside all this issues, there is a best case scenario for RSA: when it is
conducted on an encoding model appropriately chosen from the class of available
statistical models and with an appropriately defined ROI. Even in this case, as far
as we know, there is no evidence to suggest that there is any advantage to making
inferences about representations with RSA versus standard statistics (e.g. mean R2

over the voxel population). In fact, recent work has shown that when the assumptions
of RSA are met, there is little benefit relative to a particular class of encoding models
based on ridge regression (Diedrichsen and Kriegeskorte, 2017). Thus, it remains
unclear whether RSA as a neuroimaging specific technique adds any value beyond
spatial pooling.

2.7.2 Encoding models provide a direct answer to the first
order question

Encoding models (and SPM) explicitly estimate the relationship between representa-
tional model features and brain responses. In the voxel-wise modeling approach, the
brain representations are inferred directly from the estimated feature weights (i.e.
tunning). This can be performed per voxel, within a region of interest, or across the
cortical sheet. Researchers can directly evaluate which features from the representa-
tional model are represented in each voxel or construct a representational space from
the voxels within a region of interest. The voxel-wise encoding model paradigm is a
powerful technique that avoids strong assumptions about the extent of representa-
tion, or about the way in which representational model features are encoded within
regions. Voxel-wise modeling can also be used to assess the how well the estimated
model is able to generalize to novel stimuli not used for model estimation.
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Furthermore, voxel-wise encoding models explicitly state the assumptions made.
When using regularized regression, for example, many different priors can be used.
Tikhonov regression allows researchers to formulate complex priors that might help
in constructing predictive voxel-wise models (Tikhonov et al., 1977). These priors
can be compared using standard statistical techniques or Bayesian approaches. One
limitation is that voxel-wise encoding models require much more data than is com-
mon for a typical cognitive neuroscience experiment. However, large high quality
datasets are worth the cost. We hope our work shows that making inferences about
representational models with RSA should be taken with caution.
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Chapter 3

Discovering brain representations
across multiple feature spaces
using brain activity recorded
during naturalistic viewing of
short films

3.1 Overview

We present a rich paradigm and a novel computational model for efficient non-
invasive functional brain mapping. In our paradigm, subjects watch interesting short
films while their brain activity is measured. Multiple feature spaces are used to model
the brain responses to the short films. Each feature space constitutes a hypothesis
about the type of representations that might be important for brain regions involved
in watching, listening, and understanding the short films. A computational model
is then used to find the most predictive feature spaces across the cortical surface
and also to recover maps that capture how the individual feature spaces are repre-
sented within cortical regions. Our results suggest a high degree of homogeneous
selectivity for feature spaces across large regions of the cortical surface within in-
dividual subjects. These patterns are highly consistent across all subjects. We are
also able to recover known retinotopic, tonotopic and semantic functional maps from
this single experiment. Finally, we explore the functional organization of the middle
temporal cortex and show that the visual feature spaces can capture novel functional
subdivisions in this region.
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3.2 Introduction

Mapping cognitive function to brain areas is a long standing goal of cognitive neu-
roscience. Studies in patients and animals were the first to observe that specific
cognitive functions are impaired when specific brain areas are damaged (Finger,
2001). The earliest observations lead to the discovery that vision was localized to
the occipital cortex (Munk, 1881, Anonymous, 1883) Another early observation was
that damage to a region in ventro-lateral prefrontal cortex caused difficulty in pro-
ducing speech (Broca, 1861a,b). By documenting the cognitive deficits that were
caused by damage to specific areas of the brain, researchers began to build a map of
the brain wherein cognitive functions are localized to specific brain areas.

Since the advent of non-invasive human brain imaging techniques, work in cogni-
tive neuroscience has continued this functional localization trajectory. One approach
to map specific cognitive functions to brain regions is the use of subtraction tasks
derived from psychology. In this approach, the difference in brain activity between
conditions is used to infer where in the brain a cognitive function is localized. This
approach is widely used and has lead to the discovery of several functionally special-
ized areas (e.g. Kanwisher et al., 1997, Epstein and Kanwisher, 1998). However, this
approach is limited. In order to built a functional map of the brain an intractable
number of subtraction tasks need to be conducted.

Another approach to map cognitive functions to brain areas is the use of computa-
tional models with naturalistic stimuli and tasks (Wu et al., 2006). In this approach,
complex stimuli are presented to subjects and computational models are built to
learn the relationship between the stimulus and the measured brain signals. This
approach has proven successful in characterizing the information that is represented
in many brain areas (Kay et al., 2008b, Nishimoto et al., 2011, Stansbury et al.,
2013, Huth et al., 2016). Estimating computational models that relate brain activity
to naturalistic stimuli requires a large amount of data. Hence, in order to broadly
sample the relevant stimulus space (e.g. natural images), naturalistic experiments
typically explore only one cognitive domain. This limits the types of representa-
tions that can be explored within one single experiment. Furthermore, building and
estimating these computational models can be challenging.

We present a naturalistic paradigm that can be used to explore a variety of brain
representations simultaneously. In this paradigm, subjects naturally watch inter-
esting short films while their brain activity is measured with functional magnetic
resonance imaging (fMRI). The short films contain speech, video, music, environ-
mental sounds, emotions, human interaction, narrative structure and many other
components. The short films are labeled with more than a dozen high-dimensional
feature spaces. Each feature space constitutes a hypothesis about the type of infor-
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mation that might be important for brain regions involved in watching, listening, and
understanding the short films (e.g. semantic content present in speech). We then
use a new framework to overcome the difficulties related to building and estimating
computational models for these complex stimuli. In this framework, brain activity
is modeled as a function of all features across all feature spaces simultaneously. The
resulting voxelwise encoding model reveals which specific feature spaces are impor-
tant for every region of the cortical surface and the tuning properties of single voxels
in these regions.

In this chapter, we begin by describing the experimental paradigm. We enumerate
the feature spaces used to model the measured blood oxygen level dependent (BOLD)
responses to the short films. We describe a novel joint voxelwise encoding model
developed to analyze these complex stimuli. Finally, our results show that we can
recover rich maps of functional selectivity across the cortical surface from one simple
task: watching entertaining short films.

3.3 Methods

3.3.1 Experimental design

3.3.1.1 Short film stimuli

A set of 590 short films were downloaded from various online sources (Vimeo.com,
YouTube.com, and shortoftheweek.com). A total of 247 films 3 to 8 minutes in dura-
tion were screened by one rater (author AN) on a 1-5 scale reflecting how interesting
and engaging each short film was. A total of thirty short films were selected (rat-
ings 4 or 5). Each short film was approximately 5 minutes in duration after editing
(4:45±1:08 s.d., min. 2:41, max. 6:59).

Short films were edited to remove credits and title text using video editing soft-
ware (Kdenlive; open source software maintained by Bushuev et al.). The sound
level of each short film was normalized to the approximate average sound level of
all the short films. A single MP4 audio-visual file was created for each imaging run
(Richardson, 2004). Each MP4 contained two edited short films with a minimum
gap of 12 seconds (mean 12.5) between them (24Hz 16:9 1024x576 HD video, 48kHz
audio). The resulting fifteen MP4 files were approximately 10 minutes in duration
(10:06±55 seconds s.d., min. 8:14, max. 11:46).
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3.3.1.2 Stimulus presentation

Short films were presented via customized versions of wxPython (Rappin and Dunn,
2006) and MPlayer (MPlayer Team, www.mplayerhq.hu). The short films were pro-
jected onto a tangent screen inside the bore of the magnet (Avotec, Inc., Stuart, FL).
The projected display had a size of 34x25 degrees of visual angle (1024x768 pixel res-
olution). Each short film had a size of 34x20 degrees within the display. The top and
bottom 2.5 degrees of the display was filled with grey. For two subjects (SP and JG),
the stimulus was presented at 30% of the full field of view corresponding to approx-
imately 10x6 degrees of visual angle [[(see Supplemental Materials [eye movement
artifacts])]]. The audio was presented via MRI compatible headphones (Sensimetrics
Corporation, Malden, MA). Sound volume was adjusted at the beginning of very
scanning session per subject.

3.3.1.3 Scanning procedure

Subjects were instructed to watch the short films as they would normally. Eye move-
ments were not constrained but the eyes were tracked continuously during free view-
ing (see Section 3.3.1.5 for details). Subjects wore custom-made head restraints to
minimize head movement and to improve cross-session alignment (Caseforge, Berke-
ley, CA). Respiration rate and heart pulse rate were measured continuously (Avotec,
Inc., Stuart, FL).

A total of thirty short films were presented to the subjects across three scanning
sessions. In each session, there were eight imaging runs and each run contained two
short films. Four of the imaging runs in each session contained the short films used
to estimate the voxelwise encoding model (24 short films; 8 short films per session
x 3 sessions). The additional four imaging runs in each session were used to present
four repetitions of the same two short films and these were used to test the estimated
voxelwise model (6 short films; 2 short films x 3 sessions x 4 repetitions). Only 3
repetitions of the test stimuli were collected for one subject (SS).

The average imaging run lasted 11.5 minutes (11:28±55 seconds s.d., min. 9:36,
max. 13:08). Data were acquired across three separate imaging sessions per subject
and each session lasted approximately 2.5hrs.

3.3.1.4 Functional MRI acquisition and preprocessing

MRI data were collected on a 3T Siemens TIM Trio scanner at the UC Berkeley
Brain Imaging Center using a 32-channel Siemens volume coil. Functional scans
were collected using gradient echo EPI with repetition time (TR) = 2000ms, echo
time (TE) = 31ms, flip angle = 70 degrees, voxel size = 2.24 x 2.24 x 4.13 mm (slice
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thickness = 3.5 mm with 18% slice gap), matrix size = 100 x 100, and field of view
= 224 x 224 mm. 30 axial slices were prescribed to cover the entire cortex and were
scanned in interleaved order. A custom-modified bipolar water excitation radiofre-
quency (RF) pulse was used to avoid signal from fat. The field was shimmed and a
fieldmap was acquired between imaging runs. Anatomical data were collected using a
T1-weighted multi-echo MP-RAGE sequence on the same 3T scanner. Cortical sur-
faces meshes were generated from the T1-weighted anatomical scans using Freesurfer
software (Dale et al., 1999). Cortical flatmaps were generated using pycortex (Gao
et al., 2015)

Each functional run was motion-corrected using the FMRIB Linear Image Regis-
tration Tool (FLIRT) from FSL 5.0 (Jenkinson et al., 2012). All volumes in the run
were then averaged across time to obtain a high quality template volume. FLIRT
was also used to automatically align the template volume of each run to the over-
all template, which was chosen to be the temporal average of the first functional
run for each subject. These automatic alignments were manually checked and ad-
justed as necessary to improve accuracy. B0 inhomogeneities in the magnetic field
were corrected using FSL 5.0 FUGUE. The cross-run transformation matrix, the
motion-correction transformation matrices obtained using MCFLIRT, and the B0
inhomogeneity corrections were combined into a single warp field. The original data
was resampled directly into the overall template space using trilinear interpolation.

Low-frequency voxel response drift was identified using a 2nd order Savitsky-Golay
filter with a 120-second window. This drift was subtracted from the signal. Voxel
time courses were z-scored separately for each run, i.e., the mean response for each
voxel was subtracted and the remaining response was scaled to have unit variance.

RETROICOR (Glover et al., 2000) was used to extract physiological nuisance
parameters from the pulse-oximeter and respiration belt signals (Biopac Systems,
Inc., Goleta, CA). An ordinary least squares model was estimated and used to predict
BOLD responses from a linear combination of physiological nuisance regressors. We
then subtracted the signals predicted by the physiological regressors. The resulting
residuals were then used to conduct all analyses.

3.3.1.5 Eye tracking

We recorded subject eye movements using an infrared video camera while subjects
watched the short films (Avotec, Inc., Stuart, FL). These videos of the eye were used
to estimate the subjects point of fixation in each video frame of the short films. Eye
videos were recorded at a resolution of 320x240 pixels and a minimum of 30 Hz. A
TTL pulse was received by the video recording software and used to temporally align
the eye video with the time of the first scan in each run.
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Using custom software, we first located the pupil position on every frame of the
eye videos. For every eye video (8 runs x 3 sessions x 5 subjects), we manually drew a
rectangular window around the eye. We then used the Hough transform to estimate
a circle corresponding to the pupil (Duda and Hart, 1972, Itseez, 2015). The Hough
transform hyperparameters were manually adjusted per video in order to account
for differences in lighting conditions (i.e. infrared light level). The extracted circle
center coordinates and radius were then median filtered with a window of 500 ms.
The signals were then resampled to match the short films frame rate (24 Hz) using
polynomial interpolation.

We then estimated the point of fixation on the screen from the estimated pupil
location. At the beginning of each imaging run, 35 calibration points spanning a
Cartesian grid were presented one at a time in random order for 2000 ms each.
The calibration points were presented in bright green and were overlayed on a series
of 5-10 second naturalistic audiovisual clips of varying luminance. The 5 central
calibration points were presented twice at the beginning of each video in order to
provide a robust estimate around the center of the screen. The total duration of
the eye calibration points at the beginning of every imaging run was 82 seconds. An
additional 5 central calibration points were presented in the middle (between the two
short films presented) and the end of the imaging run. These points were used to
evaluate eye tracking quality.

We estimated a warp field for each imaging run to map between pupil position
and screen position using the 35 calibration points. We used a leave-one-out cross-
validation procedure to choose the optimal warp field for each imaging run. We
evaluated linear, smoothing spline and multiquadratic kernel smoothing along with
corresponding hyperparameters (Oliphant, 2007). For each combination of hyperpa-
rameter and smoothing options, one calibration point was left out and the rest of the
points were used to estimate the warp field. The estimated warp field was then used
to predict the location of the left-out calibration point on the screen. The squared
error between predicted and actual screen position was computed per calibration
point. The mean across all errors was used as the metric to evaluate the optimal
warp field. The optimal warp field was estimated for each imaging run, session and
subject separately.

We assessed the quality of the eye tracking procedure by visual inspection. To
do this, we created videos in which the estimated pupil location was overlayed on
the eye video. We also created videos in which the estimated fixation point was
overlayed on the short films.
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3.3.1.6 Spoken word transcripts

All the spoken words in the short films were manually transcribed. The transcriptions
were first automatically aligned to the sound wave using the Penn Phonetics Lab
Forced Aligner (Yuan and Liberman, 2008). Due to the presence of environmental
sounds and music, the automatic alignment did not work well for most of the short
films. Further manual adjustments were performed in order to align the spoken
words to the sound wave using the open source software Praat (Boersma and van
Heuven, 2001). These temporally aligned transcripts were used to construct feature
spaces for different aspects of speech such as semantics, syntax and thematic roles.

3.3.2 Feature spaces

A total of 15 high dimensional feature spaces were used to model the visual, audi-
tory, and speech content of the short films. An additional two feature spaces were
constructed from nuisance regressors. The feature spaces were constructed using a
combination of computational tools and hand labeling. For organizational conve-
nience, the 15 feature spaces are grouped into 8 different categories (Figure 3.1).

3.3.2.1 Motion-energy features

A spatiotemporal Gabor pyramid was used to extract low-level visual features (Adel-
son and Bergen, 1985, Watson and Ahumada, 1985, Nishimoto and Gallant, 2011).
The pyramid consisted of a total of 11,845 three-dimensional Gabor filters spanning
a square grid that covered the screen. The filters consisted of two spatial dimensions
and one temporal dimension. Filters were created using six spatial frequencies (0, 2,
4, 8, 16, and 32 cycles per image), three temporal frequencies, (0, 2 and 4 Hz), and
eight directions of motion (0, 45, 90, 135, 180, 225, 270 and 315 degrees). The short
film frames were downsampled to 96x170 pixels to minimize computational cost. The
RGB frames from the short films were extracted and converted to the CIE L*a*b*
color space (McLaren, 1976) and the color information was discarded (see Nishimoto
et al., 2011, for more details).

Stimulus motion-energy

Each of the 11,845 filters in the spatiotemporal Gabor pyramid was convolved with
the luminance video. The resulting filter activation quadrature pairs were squared
and summed. The output was downsampled from 24Hz to the functional image
acquisition rate (2000ms) using sinc interpolation.
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Figure 3.1: Experimental procedure and feature spaces. (a) Five participants watched
thirty short films with audio and visual content while BOLD responses were measured using fMRI.
(b) More than a dozen high dimensional feature spaces that describe the visual, auditory, and
speech content of the short films were extracted using different computational procedures and
manual labeling.
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Retinotopic motion-energy

To correctly represent the visual information processed by early visual cortex, the
motion energy features were recomputed to account for subject eye movements. Eye
tracking data was used to create a retinotopic video. Each frame in the short films was
centered on the point of fixation. The retinotopic RGB video was converted to the
CIE L*a*b* color space. Eye movements effectively double the stimulus size. This
resulted in a total of 47,186 filters. Virtually no difference in prediction performance
was found when the highest spatial frequency filters (32cpi) were removed (data not
shown). This resulted in 11,845 filters with seven spatial frequencies (0, 1, 2, 4, 8, and
16 cpi). The resulting retinotopic luminance video was convolved with the 11,845
filters (see above). The features were downsampled from 24Hz to the functional
image acquisition rate (2000ms) using sinc interpolation.

3.3.2.2 Visual semantic features

The visual semantic content of the short films was tagged. One observer manually
labeled each second of the short films with WordNet labels describing the salient
objects and actions in the visual scene (Miller, 1995, Huth et al., 2012). This was
spot checked by three additional observers. This resulted in a total of 1,133 unique
WordNet labels (i.e. synsets). The number of labels per second varied between 0
and 20, with an average of 6.34±3.05 s.d.

In order make the object category and action label results comparable to speech
semantics, the WordNet labels were projected onto the same semantic vector space
used for speech (see Section 3.3.2.5; Huth et al., 2016). To achieve this, the words
belonging to each WordNet label were obtain from every second of the short films
(e.g. the synset “water.n.01” becomes its lemmas “water” and “H20”). For each
second every word obtained from the labels was projected onto the semantic feature
space. This resulted in several 985-dimensional vectors each representing one words
projection onto the semantic feature space. The average across the vectors was then
taken resulting in a single 985-dimensional vector for every second of the short films.
These features were then downsampled to match the functional image acquisition
rate (2000 ms) using a 3-lobe Lanczos filter.

3.3.2.3 Visual thematics

The relationship between objects and the type of events that occur in the short films
was labeled using VerbNet (Kipper et al., 2006). VerbNet is a verb lexicon that can
capture information about “Who (actor) does what (verb class and verb category) to
whom (undergoer) where (location) and by means of what (selective restrictions)?”
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VerbNet verb class and thematic roles were labeled for each second of the short
films. In a visual scene where “A girl hits the ball with a stick” the verb class is
hit-18.1 (hit), and the thematic roles are agent (girl), patient (ball) and instrument
(stick). The verb class also imposes selective restrictions on the thematic roles. For
example, an agent must have intentional control in some events (e.g. Joe [actor with
intentional control] hit Jon [undergoer]) but not in others (e.g. The meteor [actor
without intentional control] crushed Jon [undergoer]). These restrictions (e.g. with
or without intentional control) are determined on the thematic role by the verb class.

The thematic roles (36 binary features), selective restrictions (38 binary features)
and their interaction (71 binary features), and the verb categories (101 binary fea-
tures) were labeled for each second of the short films and used to construct three
separate feature spaces. The feature spaces were downsampled to the temporal ac-
quisition rate of the functional images (2000ms) by computing the mean of every two
seconds and binarizing the result.

VerbNet provides a categorization of verb classes into categories based on the
type of events described. For example, in a visual scene where “A girl hits the
ball with a stick” the verb category is contact by impact. The verb classes hit-18.1,
swat-18.2, spank-18.3, bump-18.4 all belong to the contact by impact verb category
(Kipper et al., 2006). VerbNet verb categories were labeled for each VerbNet verb
class for each second of the short films. This resulted in 101 binary features. The
verb category feature space was downsampled to the temporal acquisition rate of the
functional brain images (2000ms) by computing the mean of every two seconds and
binarizing the result.

3.3.2.4 Auditory features

The 48kHz sound wave from the short films was used to construct two auditory
feature spaces.

Spectrogram

Spectrogram features were extracted by computing the spectral power density of the
sound wave for every two second intervals of the short films. A frequency resolution
of 2Hz was used over the range of 0 to 5kHz. The spectral power desntiy was log-
transformed. This resulted in a total 2,388 features sampled at 2000ms.

WaveNet

Auditory features related to musical instruments were extracted using a convolutional
neural network (Van Den Oord et al., 2016). The network was pre-trained to model
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the spectral variation of 1,006 types of musical instruments (Engel et al., 2017). The
key property of WaveNet is its ability to capture the temporal auto-correlation of
the sound wave in a compact representation. A total of 512 WaveNet features were
extracted for each second of the short films. Features were downsampled to match
the rate of acquisition of the functional images (2000ms) by taking the mean of every
two seconds.

3.3.2.5 Speech semantic features

Each word in the short film transcripts was projected onto a 985-dimensional se-
mantic feature space constructed from word co-occurrence statistics (Huth et al.,
2016). The co-occurrence semantic feature space was a matrix of 985 rows and
10,470 columns. The 985 rows describe 985 basic words from Wikipedia’s List of
1000 basic words, the 10,470 columns are words selected from a very large corpora
that included transcripts of Moth Radio Hour stories, popular books from Project
Gutenberg, Wikipedia pages and reddit.com user comments. The semantic feature
space was constructed in a previous study (see Huth et al., 2016, for details). For
each word within the short film transcripts the corresponding column in the semantic
feature space was selected, creating a list of 985-dimensional semantic vectors. A 3-
lobe Lanczos filter was then used to downsample the feature vectors to the acquisition
rate of the functional brain images (2000 ms).

3.3.2.6 Speech syntax features

The syntactic properties of each spoken word were labeled. A pre-trained neural
network was used to create a parse tree for each sentence of the short film transcripts
(Andor et al., 2016). Two feature spaces were extracted from the parse trees. The
first was constructed from the part-of-speech tags (e.g. noun, verb) and consisted of
12 binary features. The second feature space captured the word dependencies in the
sentence (i.e. direct object, indirect object, etc.) and consisted of 43 binary features.
Each word in a sentence was assigned a feature in each of the two syntactic feature
spaces. For each syntactic feature (e.g. noun), a time course was created with a value
of 1 whenever a word was labeled with that feature and 0 otherwise. The syntactic
features were then downsampled to the rate of acquisition of the functional images
(2000ms) using a 3-lobe Lanczos filter.

3.3.2.7 Speech thematic features

VerbNet was used to label thematic roles, verb classes and verb categories for each
sentence of the short film transcripts (Kipper et al., 2006). Thematic roles model
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how words in a sentence relate to each other and verb categories capture the types
of events that occur in the short films. VerbNet allows us to capture a more complex
representation of sentences by modeling “Who (actor) does what (verb class and
verb category) to whom (undergoer) where (location) and by means of what (selective
restrictions)?”

Each verb in in each sentence of the transcripts was labeled with a verb class (e.g.
eat becomes eat-39.1 ). For each verb, thematic roles were then labeled manually for
each word (e.g. “Alice” is agent, “apple” is patient). The verb category was also
labeled for each verb in the sentence. For example, the verb classes eat-39.1, chew-
19.2, devour-39.4 all become verbs of ingesting. These VerbNet labels were used to
construct a thematic role feature space (39 features), a verb class feature space (274
features), and a verb category feature space (102 features).

To explore the effect of thematic roles on semantic representation, separate se-
mantic feature spaces were constructed for each of the three thematic roles (actor,
recipient, place). For example, each word that was assigned to the role of “ac-
tor” in a sentence was projected to the semantic vector space. This gave us three
thematic role specific 985-dimensional semantic feature spaces (actor semantics, re-
cipient semantics, place semantics). This allowed us to capture whether semantic
representations are modulated by the particular thematic role that they undertake.
We also constructed a verb-specific semantic space.

All seven thematic feature spaces described above were downsampled to the rate
of the functional image acquisition (2000ms) using a 3-lobe Lanczos filter.

3.3.2.8 Nuisance regressors

Eye movement

Eye movements can lead to changes in the magnetic field and cause spurious BOLD
signals in regions close to the eyes. This is particularly important for regions around
orbitofrontal cortex and anterior temporal cortex. Additional analyses were con-
ducted in order to address this issue (data not shown).

The x-y location and size of the pupil was extracted from the eye tracking analysis.
These three features were used as nuisance regressors. For each of the eye movement
dimension, we created a rectified cubic polynomial expansion. This yielded a total
of 36 features. The features were downsampled from 24Hz to 2000ms using cubic
polynomial interpolation in order to match the temporal resolution of the sampled
BOLD signals. The eye movement feature space can also capture cortical signals
associated with the execution of eye movements.
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Word rate

To capture the main effect of language presence in the short films (independent of
semantics, syntax or thematics), a binary vector was created to record when a word
was present. The vector was set to one whenever a word was spoken in the short
films and zero otherwise. The vector was sampled at the time of word onset and was
then downsampled to the rate of acquisition of the functional images (2000ms) using
a 3-lobe Lanczos filter. A cubic polynomial expansion was created from this single
feature which was then rectified. This yielded a total of 13 features.

3.3.3 Analyses to recover visual retinotopy and auditory
tonotopy

3.3.3.1 Retinotopy

The retinotopic motion energy feature space was used to model visual responses to
the short films. In order to account for the slow hemodynamic response, feature
weights were estimated per voxel at delays of 4, 6, and 8 seconds. The model was
estimated separately for each voxel using ridge regression (Hoerl and Kennard, 1970).
The optimal regularization parameter across all voxels for each subject was estimated
via 5-fold cross-validation. The estimated model weights were then used to recover
retinotopic maps for each subject.

For each voxel, the maximum weight across the 11,845 spatio-temporal Gabor
filters was found. The x-y position of the filter with the largest weight was then used
to compute the visual angle and eccentricity for each voxel. This provides a rough
estimate of the voxels spatial receptive based on the filters location on the screen. A
better but more computationally demanding approach is to simulate voxel responses
to dynamic Gaussian noise stimuli and compute the stimulus triggered average. The
spatial receptive field can then be estimated by fitting a two-dimensional Gaussian
to the stimulus triggered average. This will be done in future work.

3.3.3.2 Tonotopy

A simple spectrogram model was used to model auditory responses to the short films.
The spectrogram was constructed by computing the log power spectral density from
0-5kHz in steps of 52Hz over 100ms windows from the sound pressure wave (48kHz).
This resulted in 96 features sampled at 100ms for each of the 30 short films. The
resulting spectrograms were then downsampled to 2000ms using a sinc filter in order
to match the temporal acquisition of the BOLD responses.
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Ridge regression was used to model voxel responses as a linear combination spec-
trogram features. In order to account for the relatively fast onset of the hemodynamic
response function in auditory cortex, features were delayed by 2, 4, 6 and 8 seconds
(Oppenheim et al., 1983). A single ridge regularization parameter per subject was
estimated via 5-fold cross-validation.

For each voxel, the weight amplitude for each spectral feature was computed
by taking the average of the estimated weights across the four delays. The largest
weight amplitude across the 96 spectrogram features was then found for each voxel.
The spectral frequency associated with the largest weight was selected as the best
frequency for that voxel.

3.3.4 Joint voxelwise encoding model

A single joint model that included all 15 feature spaces and the nuisance regressors
was estimated for each voxel separately. This allowed us to partition the explained
variance of each voxel into different feature spaces within the joint model (Figure
3.2). This is important when feature spaces are correlated with each other and the
shared variance needs to be split among them.

Combining all the feature spaces into a single joint model is difficult from a
statistical learning perspective. The joint model has a relatively large number of pa-
rameters (∼30,000). Estimating the model with ordinary least squares is not feasible
because the number of parameters exceeds the number of data points. In such cases,
regularized regression techniques like ridge regression (Hoerl and Kennard, 1970),
LASSO (Tibshirani, 1996), and elastic net (Zou and Hastie, 2005) are commonly
used to estimate the model parameters (i.e. weights). However, these approaches
assume that the joint model weights are all similarly distributed and therefore re-
quire the same amount of regularization. This is not a good assumption for the joint
model weights because different feature spaces might need different levels of regular-
ization. This can happen when the feature spaces contained in the joint model are
of different dimensionality. Estimating a single joint model using ridge regression,
LASSO, or elastic net will be suboptimal if different feature spaces require different
levels of regularization.

3.3.4.1 Banded ridge regression

We developed a novel voxelwise modeling framework to overcome the complexity
of combining multiple feature spaces into a single joint model. In our framework,
BOLD responses are modeled as a linear combination of all the feature spaces using
linear regression with a non-spherical spatio-temporal multivariate normal prior on
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the weights. This approach allows us to impose different levels of regularization on
each feature space within the joint model. The regularization parameter for each
feature space defines the covariance of the multivariate normal (MVN) prior and
is estimated empirically via cross-validation. In essence this is a special case of
Tikhonov regression (Tikhonov et al., 1977). We refer to our approach as banded
ridge regression (see Chapter 1 Section 1.5 for details).

There are two components in the spatiotemporal MVN prior used in the model.
The first is a non-spherical MVN prior on the covariance of the feature weights. This
component allows us to apply a different level of regularization to each feature space.
The second component is a non-spherical MVN prior on the temporal covariance of
the weights and is based on the shape of the hemodynamic response function (Friston
et al., 1998). The two MVN priors are then combined into a single MVN prior by
computing the Kronecker product between them.

Feature prior

In order to account for the fact that different feature spaces require different lev-
els of regularization, we imposed a non-spherical multivariate normal prior on the
feature weights. The non-spherical prior imposes a spherical multivariate normal
prior on each feature space separately, while taking into account the correlations
across feature spaces. The precise shape of the non-spherical prior was estimated via
cross-validation.

Temporal prior

We modeled the hemodynamic response function using a finite impulse response
(FIR) filter per voxel and for each subject separately. This was implemented by
modeling the BOLD responses at ten temporal delays corresponding to 0, 2, 4, 6, ,
16 and 18 seconds. We imposed a MVN prior on the temporal covariance of the FIR
filter. The temporal prior was constructed from a set of HRF basis functions (Penny
et al., 2011). This temporal prior allows us to include knowledge about the shape of
the HRF into the estimation of the FIR filter for each voxel (Marrelec et al., 2003).

3.3.4.2 Cross-validation

We used cross-validation to estimate the model hyperparameters. This required
testing different hyperparameters each one controlling the regularization level for
each feature space while taking into account correlations across feature spaces. There
were 17 total hyperparameters one per feature space. Evaluating ten hyperparameter
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values for each of the 17 feature spaces results in a total of 1017 hyperparameter sets
to test. This is a computationally intractable number.

To overcome this problem, we turned to global search techniques to estimate the
optimal hyperparameters per voxel (Bergstra et al., 2013). We performed 300 itera-
tions of a tree-structured Parzen search algorithm to find the optimal hyperparameter
for each feature space across all voxels (Bergstra et al., 2011). This process was re-
peated twenty five times independently. For every set of hyperparameters tested in
each iteration, we performed 5-fold cross-validation twice. We used the coefficient
of determination (R2) between the predicted and the actual voxel responses as our
performance metric for each validation fold.

3.3.4.3 Model estimation

We computed the average prediction performance across cross-validation folds per
voxel for each of the 7500 (300 x 25) hyperparameter sets tested. The hyperparameter
set that yielded the maximum average cross-validated prediction performance was
selected for each voxel. This hyperparameter set was then used to estimate the joint
voxelwise model across the full training set.

A separate model was estimated for each of the ∼80,000 voxels for each of the
eight subjects (∼400,000 total voxels). Each single joint model consisted of a total
of ∼30,000 features and was fit on 3,572 data samples (120 minutes; 24 short films).

3.3.4.4 Model evaluation

BOLD responses to six short films not used to fit the model were used to assess the
ability of the joint model to predict new data (27 minutes). Each of the six short
films was presented four times to the subjects (three times for subject SS), and then
the four voxel time courses were averaged. This was done to increase the SNR of the
measured voxel time courses.

The estimated joint model weights were then used to predict the voxel responses
to the six test short films (27 minutes). Model prediction performance was computed
per voxel as the coefficient of determination (R2) between predicted and actual re-
sponses. We also used the individual feature space weights to compute feature space
specific prediction performance.

In order to make our results more comparable to previous studies that were based
on the correlation coefficient (r; Huth et al., 2016), we use the square root of the
coefficient of determination (R2) to visualize the results (r and

√
R2 are more directly

comparable).
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3.4 Results

In a single experimental paradigm and data collection effort, we aim to determine the
functional selectivity for visual, auditory, and linguistic features (Figure 3.1) across
the cortical surface in individual subjects. Subjects watch 2 hours of audio-visual
short films while whole-brain BOLD activity is recorded with functional MRI (Fig-
ure 3.2a). The short films are labeled with more a dozen high-dimensional feature
spaces that reflect their visual, auditory and conceptual content. A novel voxelwise
encoding model is used to model BOLD responses to the short films using all feature
spaces simultaneously. The estimated model is then used to predict voxel responses
to 27 minutes of novel short films not used for model estimation. We validate our
approach by assessing the accuracy and statistical significance of the model predic-
tions. We then identify which feature space captures the most variance for each voxel
in the cortical surface, We use the estimated model weights to recover known visual
retinotopic, auditory retinotopic maps and semantic maps. Finally, we show novel
functional subdivisions within the middle temporal cortex. A summary of results
can be found in Table 3.1.

Result Section Figure
Joint model containing more than a dozen feature spaces significantly
predicts cortical responses

3.4.1 3.2, 3.3

Joint model performs better on average than any single space alone 3.4.1.1 3.4
areas: V1, V2, V3, V3ab, V4, V7, and hMT+
feature space: motion energy (5/5)

3.4.1.2 3.5

areas: far visual periphery directly posterior to RSC and PPA
feature space: motion energy (5/5)

3.4.1.2 3.5

areas: RSC, OPA, PPA (5/5), and IPS (4/5)
feature space: visual semantics

3.4.1.2 3.5

areas: STG, Brocas area, sPMv, inferior TPJ, SFG, and MPC
feature spaces: speech semantic, syntactic and word rate (5/5)

3.4.1.2 3.5

area: primary auditory cortex
feature spaces: spectrogram and wavenet (5/5)

3.4.1.2 3.5

areas: region anterior to hMT+ and posterior STS
feature space: visual thematics (5/5)

3.4.1.2 3.5

area: far anterior precuneus (posterior to S1f)
feature space: visual thematic features (5/5)

3.4.1.2 3.5

area: anterior precuneus (aPCu)
feature space: motion energy (7/10 hemispheres)

3.4.1.2 3.5

Large regions of cortex are best predicted by
the same feature space

3.4.1.2 3.5

Maps of feature space selectivity are highly consistent
across subjects in most of the cortical surface

3.4.1.2 3.5
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Table 3.1 continued from previous page
Result Section Figure
area: putative VIP+ (anterior to IPS and posterior to dorsal S1)
feature spaces: visual thematics (3/5) and visual semantics (2/5)

3.4.1.2 3.5

area: putative LIP+ (region in the middle of IPS)
feature space: motion energy in (5/10 hemispheres)

3.4.1.2 3.5

area: posterior central sulcus
feature space: visual semantics (4/5)

3.4.1.2 3.5

area: frontal eye fields (FEF)
feature space: visual semantics (2/5) and visual thematics (3/4)

3.4.1.2 3.5

area: dorsal lateral parietal cortex (ventral to middle of IPS)
feature space: spectrogram and wavenet features (4/5)

3.4.1.2 3.5

Retinotopic maps can be estimated from motion energy features
during free view (1/5)

3.4.2.1 3.6

Tonotopic maps can be recovered from the short films (5/5) 3.4.2.2 3.7
A1 and R can be identified within primary auditory cortex from
estimated tonotopic maps (5/5)

3.4.2.2 3.7

area: region posterior to A1 (putative CL) is tuned for low frequencies
feature space: spectrogram (8/10 hemispheres)

3.4.2.2 3.7

Semantic models for vision and speech can
be estimated from short films (5/5)

3.4.2.3 3.8

Visual and speech semantics predict largely
non-overlapping regions (5/5)

3.4.2.3 3.8

Maps of semantic tuning in vision and speech
can be recovered from the short films (1/5)

3.4.2.3 3.9

Semantic tuning of visual regions derived from object
and action categories projects onto the same
speech-derived semantic concepts (1/5)

3.4.2.3 3.9

Motion energy and visual semantic features predict voxel activity
in broadly different cortical regions (5/5)

3.4.3.1 3.10

Low-level sound features and high-level speech derived
auditory features predict largely non-overlapping regions
of auditory cortex (PAC and STG 5/5 subjects)

3.4.3.2 3.11

area: region anterior to hMT+ (dorsal EBA in 4/5 subjects)
feature space: visual thematics (5/5)

3.4.4.1 3.12

area: region ventral to hMT+ (ventral EBA in 3/5 subjects)
feature space: visual semantics (5/5)

3.4.4.1 3.12

Activity in region anterior to hMT+ (dorsal EBA in 4/5 subjects)
is better predicted by visual thematics than motion energy
and visual semantics (5/5)

3.4.4.1 3.12

Second best predictive feature spaces for the visual semantics
selective region anterior to hMT+ are motion energy
and visual semantics (5/5)

3.4.4.2 3.13
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Table 3.1 continued from previous page
Result Section Figure
An area anterior to hMT+ is functionally distinct from a area
ventral to hMT+ that is best predicted
by visual semantics (5/5)

3.4.4.3 3.14

Table 3.1: Summary of results for short films experiment.

We begin by showing that the joint voxelwise model is able to predict BOLD
responses to novel short films in many voxels across the cortical surface (Section
3.4.1). We show that the joint model performs as well or better than any single
feature space alone for most voxels. We then show that the patterns of feature space
selectivity across the cortical surface is highly consistent across all five subjects.

To demonstrate the validity of feature maps recovered using short films, we use
the motion energy and spectrogram feature spaces to recover known visual retinotopic
and auditory tonotopic maps (Section 3.4.2). We explore the differences in tuning
and prediction performance of semantics in both vision and speech. We also explore
feature selectivity boundaries in visual and auditory cortices (Section 3.4.3).

Finally, we analyze the functional selectivity for visual features in middle temporal
cortex (Section 3.4.4). We compare prediction performance of motion-energy, visual
semantics, and visual thematics. Our data suggest that there is a high degree of
functional specialization in this region.

3.4.1 Joint model significantly predicts voxel activity
across the cortical surface

The joint voxelwise encoding model contains a large number of parameters across
the feature spaces (∼30,000). This gives the joint model the flexibility needed to
accurately model the individual voxel responses to the short films. However, model
flexibility comes at the cost of “overfitting”. Overfitting can occur when the esti-
mated model parameters are dominated by the specific stimuli used or by the noise
of the data used to estimate the model. A model that is overfit to the estimation
data does not generalize well to novel stimuli and data. This is a problem because
inferences based on overfit models are unlikely to generalize to new observations
(Friedman et al., 2001). To address these potential issues, we first evaluate the
ability of our model to generalize outside of the stimuli and data used to estimate it.

The estimated joint model was used to compute predictions of individual voxel
responses to the six short films collected during the test set (27 minutes total).
We use the coefficient of determination (R2) computed between the predicted and
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Figure 3.2: Voxel-wise modeling and joint model prediction performance. (a) A training
set consisting of 24 short films (120 minutes) was used to estimate a single joint model for each
voxel. (c) A separate held-out test set consisting of 6 short films (27 minutes) was used to evaluate
the joint model. (b) Visual, auditory, and speech related features were extracted using twelve
high dimensional feature spaces (28,893 features in total). BOLD responses were modeled as a
linear combination of all features across feature spaces. (d) The estimated model weights were
used to predict BOLD responses to the 27 minute held-out test set. Model prediction performance
was quantified as the coefficient of determination (R2) between the predicted and actual BOLD
responses to this held-out test set (e) Joint model prediction performance of one subject is plotted
onto the cortical surface. Yellow and white colors depict well predicted voxels by the joint model.
Grey voxels are not significant (FDR-corrected for multiple comparisons, q(FDR) > 0.05). Most of
the cortical voxels within the visual, temporal, parietal, and prefrontal cortices are well predicted
using the joint model.
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the actual voxel responses as our measure of prediction performance. The joint
voxelwise model significantly predicts the activity of voxels distributed broadly across
the cortical surface in all five subjects (q(FDR) < 0.05; Figure 3.2c). Regions that
are well predicted include sensory regions such as early visual cortex (EVC), primary
auditory cortex and speech regions such as Broca, superior premotor ventral (sPMv)
and superior temporal gyrus (STG). The model also provides significant predictions
in prefrontal (PFC) and lateral parietal (LPC) association regions, though these
predictions are not as accurate as those made for sensory and speech regions. This
pattern of results is found consistently across all five subjects (Figure 3.3). Thus,
the joint model provides good predictions of voxel responses that generalize beyond
the stimuli used to estimate the model.

Figure 3.3: Joint model prediction performance for all the other subjects. Voxelwise
joint model prediction performance for all the other subjects are plotted onto each subjects flattened
cortical surface. Yellow and white colors depict well predicted voxels by the joint model. Gray voxels
are not significant (q(FDR) > 0.05). All subjects show a similar prediction performance where most
of the cortical voxels within the visual, temporal, parietal, and prefrontal cortices are well predicted
using the joint model.
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3.4.1.1 Joint model performs better than any single feature space
model alone

The joint model can significantly predict voxel activity in several regions across the
cortical surface, however it might be suboptimal for some voxels. This can occur
when voxels are located in regions where only a single feature space is important
(e.g. motion energy in early visual cortex) and the estimated joint model does
not learn to ignore all unimportant feature spaces (Friedman et al., 2001). We
therefore tested whether and where models built from single feature spaces alone
provided more accurate predictions of voxel activity than the joint model. For each
subject, we used ridge regression to model individual voxel responses as a function of
each feature space separately (Hoerl and Kennard, 1970). This resulted in 17 ridge
regression models one for each feature space per voxel and per subject. For each
voxel, the maximum prediction performance across the 17 ridge regression models
was identified and compared against the prediction performance of the joint voxelwise
model.

We find that voxels in early visual cortex and hMT+ are better predicted by
the single motion energy ridge regression model than the joint model across subjects
(Figure 3.4a, blue). This suggests that the joint model is suboptimal for voxels in
early visual cortex and hMT+. The inclusion of additional feature spaces negatively
impacts the prediction performance in those regions because the motion energy fea-
tures are the single most important feature space.

However, the joint model performs approximately 10% better on average across
cortical voxels in all subjects than any other feature space alone (voxel population
mean for joint model R2=0.040 versus R2=0.037 for the maximum ridge model across
feature spaces; Wilcoxon W = 1010.13, p < 10−12, 240,765 voxels) in predictable
voxels (R2 > 0). These results suggests that the joint model performs as well or
better than any one single feature space alone for the majority of cortical voxels
across all subjects.

3.4.1.2 Feature space selectivity is homogeneous across large regions of
the cortical surface and is highly consistent across subjects

In the joint model, voxel responses to the short films are modeled using all 17 fea-
ture spaces simultaneously. Each feature space constitutes a hypothesis about the
information that is represented in the brain (e.g. frequency content of sound). The
question of how the brain represents information about the world and how those
representations are used to perform abstract cognitive functions has a long history
in neuroscience. Cognitive neuroscience and functional neuroimaging in particular
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Figure 3.4: Comparison of joint model against single feature space prediction per-
formance for all subjects. We estimated single ridge regression models for each feature space
independently. We then found the maximum ridge regression prediction performance for each voxel
across all feature spaces. (a) We compared the maximum ridge model against the joint model pre-
diction performance. The comparison for each individual subject is shown on the cortical surface.
Voxels in early visual cortex (EVC) and hMT+ are better predicted by a single feature space than
by the joint model (blue). Anterior visual cortex, auditory cortex, regions surrounding hMT+,
and intraparietal sulcus (IPS) are better predicted by the joint model (red). White voxels are well
predicted by both and black voxels are not well predicted by either. (b) Log density histogram of
maximum single ridge model (x-axis) versus joint model (y-axis) prediction performance. The joint
model performs approximately 10% better on average than the best individual feature space esti-
mated alone (Wilcoxon W = 1010.13, p < 10−12) across all predictable voxels from all five subjects
(R2 > 0; 240,765 of 414,721 voxels).
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have focused on how information is represented in the brain. Broadly, two views have
emerged. In one view, brain areas are functionally specialized for the processing of
single cognitive functions (e.g. Kanwisher, 2010). In another view, representations
are widely distributed and overlapping without clear functional localization (e.g.
Haxby et al., 2001). We sought to examine whether the representations captured
by the labeled feature spaces are localized or distributed across the cortical surface
using the estimated joint model.

We first identified the feature space within the estimated joint model that pro-
vided the highest prediction performance on its own for each voxel per subject. To do
this, the weights from the estimated joint model are used to compute the prediction
performance for each feature space separately. For each voxel, we then identify the
feature space with the highest R2 value. Finally, we color-code the feature spaces
and plot each voxel with the color corresponding to the best feature space on the
cortical surface (Figure 3.5a). Note that voxels with low prediction performance are
excluded from this analysis (

√
R2 < 0.1 corresponding to non-significant voxels at

FDR-corrected p < 0.05 for all subjects).
We find that the patterns of feature space selectivity are homogeneous across

large regions of the cortical surface (Figure 3.5). For example, voxels in early visual
cortex are best predicted by the motion-energy feature space across all subjects (Fig-
ure 3.5 red). Similarly, primary auditory cortex is well predicted by the spectrogram
and WaveNet feature spaces (Figure 3.5 yellow). These patterns are highly consis-
tent and they replicate across all five subjects. The most inconsistent area across
subjects is the frontal eye fields (FEF) which is best predicted by visual semantic
features (JG, TZ) or visual thematics (AH, SP, SS). These results show that large
contiguous regions of the cortical surface are involved in the processing the same
type of information (e.g. visual semantics). However, more than one contiguous
region is typically involved in the processing of the same type of information (e.g.
interparietal sulcus and inferiotemporal cortex for visual semantics). This suggests
that the functional organization of the cortical surface can be best characterized by
a combination of both functional specialization and distributed representations.

3.4.2 Feature maps across the cortical surface

The joint model results suggest that large regions of the cortical surface are special-
ized for the processing of specific information captured by the feature spaces (e.g.
early visual cortex and low-level visual information captured by motion energy). We
next explore how these regions represent the feature space they are best predicted by
(i.e. tuning). To do this, we construct feature maps that capture the tuning proper-
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Figure 3.5: Selectivity for the visual, audio, and speech feature spaces for all subjects.
We found the best predictive feature space per voxel for each subject from the estimated joint
model. Prediction performance was quantified as the coefficient of determination (R2) between
feature space specific predictions and the actual BOLD responses to the six held-out short films (27
minutes). We divided the feature spaces into groups and assigned each group a color (see Figure
3.1). We colored each voxel according to the most predictive feature space and plotted the result on

the cortical surface. We excluded voxels that were not well-predicted (
√
R2 < 0.1, q(FDR) < 0.05

per subject; black). The pattern of selectivity is consistent across subjects. Early visual cortex
(EVC) is best predicted by motion-energy features (red), higher visual cortex (anterior to EVC)
by semantic features (green), early auditory cortex (dorsal region labeled AC) by sound features
(yellow), higher auditory cortex (ventral region labeled AC) by speech features (pink), and prefrontal
cortical regions (PFC) also by speech features.
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ties of voxels in functionally specialized cortical regions (e.g. visual angle maps from
motion-energy features in early visual cortex).

In order to validate our approach, we first explore whether we can recover known
brain maps from our data. We focused on recovering the retinotopic map of the visual
system from motion-energy features (Sereno et al., 1995, Nishimoto et al., 2011), the
tonotopic map of the auditory system from spectrogram features (Fay et al., 1992,
Talavage et al., 1997), and semantic maps derived from visual and speech semantic
features (Huth et al., 2012, 2016).

3.4.2.1 Retinotopic maps in early visual cortex

Perhaps the most well-known sensory map in the human brain is that of the visual
field in early visual cortex. The light that arrives in the eye produces an image
on the retina (Palmer, 1999). This retinotopic representation is preserved all the
way to cortex and is called retinotopy. This is the reason why neighboring cortical
regions represent neighboring parts of the visual field. Retinotopic maps are typi-
cally estimated from optimized experiments (Sereno et al., 1995, Hansen et al., 2007,
Dumoulin and Wandell, 2008) but can also be estimated from natural movies (Nishi-
moto et al., 2011). To our knowledge, no study has shown retinotopic maps from
free viewing of naturalistic stimuli in humans. In order to validate our approach, we
begin by estimating retinotopic maps from the visual responses to the short films.

Figure 3.6 shows retinotopic maps estimated from visual responses to the short
films using the retinotopic motion-energy feature space for one subject. For each
voxel, the spatial receptive field location was estimated as the location of the motion
energy filter with the maximum weight estimate in the model. The filter position
was then used to compute the optimal visual angle and eccentricity for that voxel.

The visual angle reversal between V1/V2, V2/V3, and V3/V3ab can be seen in
Figure 3.6. The visual field of view used in the short films extends beyond that used
to definite the visual area boundaries drawn on the cortical surface (24x24 degrees
in retinotopic mapping experiment and 34x20 in short films). Voxels in the far
periphery bordering anterior visual cortex show tuning for far eccentricities (Figure
3.6). The estimated retinotopic maps can be improved with better spatial receptive
field estimates based on previous studies (Nishimoto et al., 2011). Nevertheless, these
preliminary results show that visual angle and eccentricity maps can be estimated
from the free viewing of short films.
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Figure 3.6: Estimated visual retinotopy maps from free viewing of short films.

3.4.2.2 Tonotopic maps in primary auditory cortex

Another well known sensory map in the human brain is that of sound frequency in
primary auditory cortex (PAC). The sound pressure that arrives at the ear is trans-
lated into a frequency representation in the cochlea (Fay et al., 1992). This frequency
representation is preserved all the way to cortex and is called tonotopy. PAC con-
sists of two distinct areas A1 and R each receiving thalamic input (Merzenich and
Schreiner, 1992). These areas contain mirrored representations of sound frequency.
Studies showing tonotopy in PAC typically involve the use of high field strength
scanners (7T; Formisano et al., 2003) or optimized experiments with simple stimuli
(Talavage et al., 1997, 2004. The short films contain a much broader range of sounds
than is typically explored in fMRI (but see Lewis et al., 2005, 2011, 2012). We there-
fore explored whether we could estimate tonotopic maps in PAC from our data in
individual subjects.

Figure 3.7 shows the tonotopic maps estimated from auditory responses to the
short films modeled using a simple spectrogram model. To find the optimal frequency
for each voxel in PAC, we found the frequency with the maximum weight from the
estimated model. The optimal frequency for voxels in PAC is displayed for all five
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Figure 3.7: Auditory tonotopy maps estimated from the short films.
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subjects in Figure 3.7. The tonotopic pattern is clearly visible in each individual
subject. Voxels located on Heschls gyrus are selective for low frequencies whereas
regions anterior and posterior to it are selective for higher frequencies. There is a
smooth anterior to posterior gradient in PAC with selectivity for high-to-low-to-high
frequencies. Previous studies have identified A1 as the posterior low-to-high region
and R as the anterior high-to-low region. Interestingly, a region in the lateral belt
located posterior to Heschl sulcus is tuned for low frequencies and was found in 8/10
hemispheres (putative CL; Talavage et al., 2004, Humphries et al., 2010, Moerel
et al., 2014). These results demonstrate that tonotopic maps can be estimated in
individual subjects from PAC activity measured while subjects listen to the rich
auditory content present in the short films.

3.4.2.3 Visual and speech semantics

Previous work has explored visual semantic representations in movies without sound
and also semantic representations from spoken stories (Huth et al., 2012, 2016, re-
spectively). We can use the short films to explore both of these semantic repre-
sentations in one single experiment. The visual object and action categories in the
visual scenes and the words spoken in the short films can be used to extract feature
spaces related to visual semantics and speech semantics, respectively. This allows
us to explore semantics conveyed by the visual modality and contrast them to those
conveyed through speech.

We find that regions in lateral and medial parietal (LPC, MPC), superior tempo-
ral gyrus (STG), as well as prefrontal cortex regions involved in language processing
(Brocas area, sPMv) are significantly predicted by the speech semantic feature space
(Figure 3.8a). The regions well predicted by visual semantics are located in anterior
visual cortex, interparietal sulcus (IPS), and posterior central sulcus (PCS; Figure
3.8b). There is little overlap between the regions that are well predicted across the
visual and linguistic modalities (Figure 3.8c). This suggests a separation between
semantics conveyed through vision and speech.

We next explored the semantic tuning for visual and speech semantics separately
(Figure 3.9). To achieve this we projected the semantic weights from each modality
into the semantic space from a previous study (Huth, et al., 2016). This projection
allows us to interpret the 985-dimensional semantic tuning per voxel in visual and
speech modalities in a lower-dimensional space consisting of three dimensions. The
speech semantic tuning in association regions replicates previous work (Huth, et al.,
2016). The visual semantic tuning of anterior visual cortex, IPS and posterior CS
maps onto the same part of the speech-derived semantic space. This means that all
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Figure 3.8: Comparison of prediction performance of speech and visual semantics. The
estimated joint model was used to compute prediction performance for each of the speech and visual
semantic feature spaces separately. The speech semantics feature space the meaning of the spoken
words that occur in the short films. The visual semantics feature space captures the category of all
objects and actions that appear in the short films (a) Prediction performance was obtained from
the speech semantics model by computing the coefficient of determination between predicted and
actual responses for each voxel. Regions of lateral and medial parietal cortex (LPC, MPC), higher
auditory cortex (AC), and ventrolateral PFC are well-predicted by speech semantics. (b) Same as
(a) for vision semantics. (c) We visualize the prediction performance of speech and visual semantic
feature spaces across voxels on the cortical surface using a two-dimensional colormap. There is
a high degree of separation in the regions that are well-predicted by each feature space. Voxels
for which the visual semantics predict well and the speech semantics predict poorly are colored
in orange. Blue corresponds to voxels for which the speech semantics predict well and the visual
semantics predict poorly. Black corresponds to low prediction performance in both feature spaces.
White corresponds to high prediction performance in both feature spaces.
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Semantic tuning across modalities

visual semantics speech semantics

Figure 3.9: Semantic tuning in vision and speech. We extracted the weights for each of the
visual and speech semantics feature spaces from the joint model. Each feature space contained a
985-dimensional weight vector per voxel. We projected the weight vectors from each feature space
into a semantic space derived from a previous study where participants listened to spoken stories
(Huth et al., 2016). (a) The semantic feature weights learned from the spoken words in the short
films match the previous results. A high degree of specificity is found in regions of the semantic
system in lateral and medial parietal cortex (LPC, MPC), superior temporal gyrus (STG) and
ventrolateral prefrontal cortex. (b) The visual semantic feature weights from all voxels project
into similar parts of the semantic space corresponding to visual and tactile concepts. The regions
are located in higher visual cortex (RSC, PPA, OPA, FFA, EBA) and interparietal sulcus (IPS).
(c) We computed the average of the semantic weights in vision and speech. We then projected
the resulting voxel weight vectors into the same semantic space. Note that is little overlap in the
regions encoding each feature space and so the average projection looks like the overlay of both
maps.

the visual concepts represented in these regions project onto the same part of the
semantic space derived from the language domain.
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3.4.3 Feature space selectivity boundaries across the
cortical surface

3.4.3.1 Boundary between early and anterior visual cortex

Beyond early visual cortex, areas specialized in the visual processing of object cate-
gories have been found in occipitotemporal and inferior temporal cortices (see Grill-
Spector, 2003, for an overview). These include face selective areas such as the
fusiform face area (FFA; Kanwisher et al., 1997) and the occipital face area (OFA;
(Halgren et al., 1999), and scene selective areas such as the occipital place area (OPA;
Nakamura et al., 2000, Hasson et al., 2003, Dilks et al., 2013), the parahippocam-
pal place area (PPA; Epstein and Kanwisher, 1998) and retrosplineal cortex (RSC;
Maguire, 2001). The scene selective regions RSC and PPA are located directly an-
terior to the visual far periphery. RSC is typically found on the dorsal medial wall
of occipital cortex (Maguire, 2001), anterior to the posterior-occipital sulcus that
separates parietal and occipital cortices (Ono et al., 1990). PPA is typically located
ventro-medial to the collateral sulcus. Previous studies have found subdivisions
within RSC and PPA that do not correspond to low-level visual features (Çukur
et al., 2016). However, previous studies could not explore cortical activity at the
far visual periphery. We therefore sought to examine the degree of overlap between
low-level (motion-energy) and high-level (semantics) visual feature representations
in the the visual system with particular interest on the boundary between early and
anterior visual cortex.

We first computed the prediction performance of motion energy versus visual
semantic features from the estimated joint voxelwise model separately (Figure 3.5,
red and green). The prediction performance for each of the motion energy and vi-
sual semantics feature spaces is shown on the cortical surface for one subject (Figure
3.10a,b). The motion energy feature space accurately predicts voxel activity through-
out early visual cortex and hMT+. The visual semantic model accurately predicts
voxel responses in anterior visual cortex.

In order to directly examine the degree of overlap in the representation of low-
and high-level visual features, we visualize the prediction performance of both the
motion energy and the visual semantic feature spaces simultaneously on the cortical
surface of each individual subject (Figure 3.10c). There is a clear separation between
early and anterior visual cortex. Early visual cortex is better predicted with motion-
energy features and anterior visual cortex is better predicted by visual semantic
features. There is little overlap in prediction performance except in RSC and PPA
in two subjects (TZ, AH). However, most voxels within these two regions are better
predicted by the visual semantic features. This suggests that representations of
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Figure 3.10: Prediction performance of motion-energy and visual semantics at the
boundary of early and higher visual cortex. The estimated joint model was used to compute
prediction performance for each of the motion-energy and visual semantic feature spaces separately.
(a) As expected, early visual cortex (EVC) and hMT+ are well-predicted by motion-energy features.
(b) Visual semantic features predict well in higher visual cortex (e.g RSC, OPA, FFA, PPA) and
IPS. (c) We visualize the prediction performance for each of the motion-energy and visual semantics
feature spaces on the cortical surface using a two-dimensional colormap. There is a high degree of
separation between regions well-predicted by the motion-energy and the visual semantics feature
spaces. White corresponds to voxels where both feature spaces provide high prediction performance
on their own. Blue (orange) corresponds to high motion-energy (visual semantics) and low visual
semantics (motion-energy) prediction performance. Black corresponds to regions where both models
have low prediction accuracy.
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low-level motion energy features and high-level visual semantic features are largely
separate in the visual system.

3.4.3.2 Boundary between primary and greater auditory cortex

Beyond primary auditory cortex, the superior temporal gyrus (STG) in humans has
been shown to process complex auditory content such as natural (Moerel et al.,
2013) and environmental (Lewis et al., 2005, 2011, 2012) sounds, music and speech
(Norman-Haignere et al., 2015). The boundary and precise functional organization of
auditory cortex beyond PAC is not well understood in humans (Saenz and Langers,
2014). Recent work has shown evidence that STG is involved in the processing of
various aspects of speech (de Heer et al., 2017). We explored whether we could func-
tionally divide auditory cortex into PAC and speech-selecitive STG. To do this, we
compared the prediction performance of low-level auditory feature spaces (spectro-
gram and WaveNet) against features derived from speech (semantics, syntax, word
rate).

We found the maximum prediction performance for the spectrogram and wavenet
feature spaces (Figure 3.5 yellow) and compare it against the maximum prediction
performance across all feature spaces derived from speech (Figure 3.5 pink). We
show both of these values values for each voxel on the cortical surface simultaneously
(Figure 3.11). There is a clear separation between PAC and STG where PAC is
selective for low-level auditory features (spectrogram and WaveNet) and STG is
selective for speech releated features. Regions at the border of PAC and STG are
selective for both feature spaces (low-level auditory and speech) though this can be
due to voxel bleed-over (Gao et al., 2015). This result suggest that the short films
can be used to divide auditory cortex into PAC and speech-selective STG.

3.4.4 Functional subdivisions of human middle temporal
cortex encoding for visual thematics, semantics and
motion-energy

Work in non-human primates has shown that regions within middle temporal cortex
are selective for visual motion (Albright, 1984, Britten et al., 1992, Nishimoto and
Gallant, 2011). The human homologue is hMT+. It is located in posterior inferior
temporal sulcus (Huk et al., 2002), is highly mylenated (Van Essen et al., 2013, Sereno
et al., 2013), and damage to this region can lead to deficits in motion perception (Hess
et al., 1989).

The functional organization of the region surrounding hMT+ is less understood.
Studies in humans have shown that regions around hMT+ show greater responses to
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Figure 3.11: Prediction performance comparison of low-level sound features and high-
level speech features in primary auditory cortex and STG. (a) The maximum prediction
performance was identified for low-level sound features (spectrogram and WaveNet). The activity
of voxels located in primary auditory cortex (PAC) is well predicted by these features. (b) The
maximum prediction performance was also identified across all high-level speech feature spaces
(semantics, syntax, word rate). Voxel activity in superior temporal gyrus (STG) is well predicted
by these high-level speech features. The prediction performance for all cortical voxels performance is
shown on the cortical surface for one subject. (c,d) A direct comparison of prediction performance
shows that voxels located in PAC are best predicted by the low-level sound features across all five
subjects. On the other hand, activity of voxels in STG best predicted by high-level speech features.
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images of body parts than to images of other objects (Downing et al., 2001). This
region is referred to as the extrastriate body area (EBA). It is currently unknown
whether EBA is a homogeneous functional area or whether it consists of multiple
functional areas (Weiner and Grill-Spector, 2013). Previous work based on anatomi-
cal landmarks suggests that EBA can be subdivided into at least three distinct areas
(Weiner and Grill-Spector, 2011). One is located posterior to hMT+ in the lateral
occipital sulcus; one ventral to hMT+ in the inferior temporal gyrus; and one ante-
rior to hMT+. However, no functional specialization beyond the preference for body
part images has been found in these three areas surrounding hMT+.

We sought to find whether the regions surrounding hMT+ are specialized for
the processing of particular types of visual information beyond body parts. To
do this, we explored the functional selectivity of regions surrounding hMT+ across
all visual feature spaces in individual subjects. We find that there is a consistent
pattern of functional specialization in regions surrounding hMT+. In particular,
a region ventral to hMT+ is best predicted by the visual semantics feature space.
This feature space has been shown to capture selectivity for body parts and the
actions that those body parts are involved in (Huth et al., 2012). Furthermore, a
region anterior to hMT+ is best predicted by visual thematics. The visual thematics
feature space captures information about the relationship between objects and the
types of events that occur in the visual scene. These results suggest that regions
surrounding hMT+ can be divided into at least two functional areas: a ventral
area (ventral EBA in 3/5 subjects) involved in representing visual semantics and an
anterior area (dorsal EBA in 4/5 subjects) involved in visual thematics. The results
are highly consistent and present in all five individual subjects.

3.4.4.1 A region anterior to hMT+ is best predicted by visual
thematics

Previous work has shown that visual semantic features can accurately predict voxel
responses in anterior visual cortex including EBA and also that voxels in EBA are
tuned for the presence of body parts in the visual scene (Huth et al., 2012) consis-
tent with earlier findings (Downing et al., 2001). The visual semantic feature space
consists of labels for the object and action categories that are present in the visual
scene. These features do not capture the relationship between objects and action
categories, nor the types of events that occur in the visual scenes. We hypothesized
that information about the relationship between objects and action categories, and
the types of events that occur in the visual scene might be a useful representation for
the brain. This information can capture complex relationships between visual ob-
jects and categories such as biological motion (“Joe dances raegetton”), affordances
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(“Joe throws the ball”), human movements (“Joe drinks water”).
In order to capture information about the relationship between objects and ac-

tions and the types of events that occur in the visual scenes, we labeled every second
of video in the short films using the VerbNet verb lexicon (Kipper et al., 2006). Verb-
Net is based on the linguistic concept of thematic roles (Fillmore, 1968). Thematic
roles can provide a more complex representation of a visual scene by capturing “Who
(actor) does what (verb class, and verb category) to whom (undergoer) where (lo-
cation), and by means of what (selective constraints)?” The verb category features
capture the type of event occurring in the visual scene. For example, a visual scene
depicting “Joe eats an apple” or “Joe drinks water” are both a type of “ingesting”
event and so are labeled with the verb category “verbs of ingesting”. Verb categories
allow a higher level of abstraction than the specific verb (“eat.v.01”, “drink.v.01”)
and verb class (“eat-18.1”) that are present in the visual scenes. We refer to the
feature spaces extracted from VerbNet as visual thematics (see Section 3.3.2.3 for
more details).

We computed the prediction performance of the visual thematics feature space
alone using the weights estimated from the joint model (Figure 3.12a). We find
that a region anterior to hMT+ is well predicted by visual thematics. This region is
located in the dorsal part of the extrastriate body area (EBA) as defined in a separate
localizer experiment in 4/5 subjects (bodies > objects; Downing et al., 2001). We
then compared the prediction performance of the visual thematics feature space
against each of motion-energy and the semantic feature spaces (Figure 3.12b and c,
respectively). We find that the region anterior to hMT+ is better predicted by visual
thematics than motion-energy features. We also find that hMT+ is better predicted
by motion-energy features than visual thematics (Figure 3.12b). We then compared
visual thematics against visual semantics. We find that the same region anterior to
hMT+ is better predicted by visual thematics than visual semantics (Figure 3.12c).
Furthermore, we find that a region ventral to hMT+ is better predicted by visual
semantics than visual thematics. This ventral region corresponds to the ventral part
of EBA in 3/5 subjects.

In order to evaluate whether visual thematics was the best feature space for the
region located anterior to hMT+, we compared the prediction performance of the
visual thematics feature space against both visual semantics and motion-energy in
each individual subject. For each voxel, we select the maximum prediction perfor-
mance obtained from either the motion-energy or visual semantics feature space. We
then compared this maximum against the prediction performance of the visual the-
matic feature space for each voxel in individual subjects. A clear pattern emerges
in every subject (Figure 3.12d). The region anterior to hMT+ corresponding to the
dorsal part of EBA in 4/5 subjects is better predicted by the visual thematics fea-
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Figure 3.12: Comparison of visual thematics against motion-energy and visual se-
mantics in middle temporal cortex. (a) The estimated joint model was used to compute
prediction performance for the visual thematics feature space. This is shown for one subject on
the cortical surface. A region anterior to hMT+ is well predicted by visual thematic features. This
region corresponds to the dorsal part of the independently defined extrastriate body area (EBA;
body parts > objects) in 4/5 subjects. The prediction performance for of visual thematics against
motion-energy (b), and visual thematics against visual semantics (c) is shown for one subject using
a two-dimensional colormap. (b,c) Visual thematic features predict a region anterior to hMT+
better than either of the other two feature spaces (blue). Voxels in white are well predicted by
both feature spaces, and voxels in black are not predicted by either. (d) The highest prediction
performance across motion-energy and visual semantic feature spaces for each voxel in regions sur-
rounding hMT+ (b,c) is compared against against visual thematics . There is a high degree of
separation between the visual thematics selective region located anterior to hMT+ and the rest of
early and higher visual cortex. This is highly consistent across all five subjects.
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ture space than either of the other twofeature spaces in every subject. These results
suggest that an area located anterior to hMT+ is functionally specialized for visual
thematics.

3.4.4.2 Motion energy and visual semantics are the second best feature
spaces for voxels in middle temporal cortex selective for visual
thematics

In order to test whether important feature spaces for regions surrounding hMT+ are
missing from our analyses, we identified the second best predictive feature spaces from
the set of all feature spaces (Figure 3.1). We first selected all the voxels where the
visual thematic feature space provided the highest prediction performance relative
to all other feature spaces. We then selected only the significant voxels from this
set (q(FDR) < 0.05 for all subjects). For each voxel in the cortical surface, we
show the prediction performance of the visual thematics against the second best
feature space (Figure 3.13a). Voxels surrounding hMT+ are also well-predicted by
the second best feature spaces. Regions posterior to medial S1 in anterior medial
parietal cortex are not well predicted by the second best model. This result suggests
that non-visual thematic feature spaces provide consistently lower yet comparable
prediction performance for voxels surrounding hMT+.

We next plotted the prediction accuracy and identity of the second best feature
space on the cortical surface (Figure 3.13b). We focused on the region surrounding
hMT+ in all subjects (Figure 3.13c). We find that the second best feature spaces
for visual thematics selective voxels in regions surrounding hMT+ are motion-energy
and visual semantics for each individual subject. The motion-energy features tend to
be the second best features for voxels closer to hMT+. Conversely, visual semantics
tend to be the second best feature space for voxels located farther from hMT+. These
results suggest that in the region surrounding hMT+, the relevant feature spaces are
visual thematics, visual semantics and motion-energy.

3.4.4.3 Prediction performance of thematic roles, semantics and
motion-energy feature spaces in middle temporal cortex

In order to discover whether more functional subdivisions are present in middle
temporal cortex, we next examine the functional selectivity of each voxel for the
visual feature spaces. We visualized the prediction performance for each feature
space using an RGB color space (Figure 3.14). The prediction performance of the
visual semantic feature space was colored in red. The prediction performance of
the visual thematic and motion-energy feature spaces was colored in green and red,
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Figure 3.13: Second best predictive feature space for voxels best predicted by visual
thematics. (a) The compared visual thematics against the second best feature space. We selected
all voxels where the visual thematics feature space provided the highest significant prediction per-
formance (q(FDR) < 0.05). The results are shown for one subject on their cortical surface. The
second best model also predicted well in voxels around EBA. (b) We next colored each voxel ac-
cording to which feature space provided the second best prediction performance. For voxels close
to hMT+ the second best feature space is motion-energy (red) and for voxels farther it is visual
semantics (green). (c) Same as (b) for all other subjects.

respectively. Voxels that are well predicted by both motion-energy (blue) and visual
thematics (green) are displayed in cyan. Voxels that are well predicted by both visual
semantics (red) and thematics (green) are colored in yellow.

We find a clear pattern of feature space selectivity in regions surrounding hMT+
in each individual subject (Figure 3.14a). The region anterior to hMT+ correspond-
ing to dorsal EBA in 4/5 subjects is better predicted by visual thematics (yellow-
greenish regions), and a region ventral to hMT+ is better predicted by visual se-
mantics (red-yellowish). Finally, hMT+ itself is best predicted by motion energy
features. The pattern of selectivity in individual subjects is very consistent. These
results suggests that the putative body part selective regions surrounding hMT+ are
functionally specialized. In particular, it suggests that an area anterior to hMT+ is
specialized in the representation of visual thematic features and a region ventral to
hMT+ is specialized in the representation of visual thematics (Figure 3.14b)
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Figure 3.14: Comparison of all visual feature spaces for all subjects. (a) The model
performance of each of the visual feature spaces (motion energy, visual semantics, and visual the-
matics) are mapped to each subject’s flattened cortical surface. Blue voxels are best predicted by
the motion-energy features and are located in the early visual cortex. Red voxels are best pre-
dicted by the visual semantics features. Green voxels are best predicted by the visual thematics
features are located in several semantically selective regions, including a region anterior to hMT+
corresponding to the dorsal part of the extrastriate body area (EBA) in 4/5 subjects. Voxels in
high-level visual regions such as FFA, PPA, RSC, and voxels at the boundary of early visual cortex
are well predicted by both the motion energy features and the visual semantics features. These
voxels are depicted in purple and are consistent across subjects. (b) Putative subdivision in middle
temporal cortex based on the results.
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3.5 Discussion

In this chapter, we demonstrated that naturalistic viewing of short films is a powerful
paradigm that can be used to discover brain representations across vision, audio and
speech from a single experiment. We presented a new voxelwise modeling approach
for combining more than a dozen feature spaces into a single joint model. This joint
model allowed us to predict voxel responses to 27 minutes of novel short films and
to recover rich functional maps from individual subjects. These functional maps
characterize both the types of feature spaces that are important across the cortical
surface and how these feature spaces are represented in cortical areas.

We found that feature space representations are localized to broad continuous
regions of the cortical surface. Early visual cortex is well predicted by motion energy
features, anterior visual cortex by visual semantics and thematics, STG, the lateral
and medial parietal cortex, ventrolateral PFC, and superior frontal gyrus by speech
features, and primary auditory cortex by sound features. These results are highly
consistent across subjects. We can also recover known maps that capture how the
feature spaces are represented within cortical regions.

We were able to recover retinotopic maps from naturalistic free viewing of short
films. To our knowledge, this has not been achieved before. The recovered retino-
topic maps are still coarse because the spatial receptive fields (RF) estimated from
the motion energy features are poor. We can improve the quality of the recovered
retinotopic maps by obtaining better estimates of the spatial RF based on previous
approaches used in fixated viewing of naturalistic silent movies (Nishimoto et al.,
2011). Nevertheless, even with poor RF estimation, we were able to show high ec-
centricity tuning for voxels in the far periphery. Previous work has mapped out the
far visual periphery with a customized setup that involves positioning the stimulus
screen 10-12cm away from the subject (Pitzalis et al., 2006). The naturalistic viewing
of short films is a much easier way to map the far periphery and recovers both hemi-
spheres. Furthermore, the short films paradigm allows us to model low-level (motion
energy) and high-level (semantics) visual responses at the border of the far periphery
and anterior visual cortex at the same time which eliminates spatial alignment issues
across imaging sessions.

We were also able to recover tonotopy maps from primary auditory cortex (PAC)
in individual subjects. The quality of the tonotopy maps is better than those esti-
mated from a separate 40 minute tonotopy experiment (data not shown). We can
clearly differentiate A1 and R from PAC using the tonotopic maps derived from the
short films (Merzenich and Schreiner, 1992). Interestingly, a region posterior to Hes-
chl sulcus in the lateral belt was found to be selective for low frequencies in 8/10
hemispheres. This region might correspond to the secondary belt region called CL
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(Talavage et al., 2004, Humphries et al., 2010, Moerel et al., 2014) though the func-
tional organization of auditory cortex outside of A1 and R is not well understood
in humans (Saenz and Langers, 2014). The speech, environmental sounds, and mu-
sic contained in the short films produces high functional SNR throughout auditory
cortex. This provides a good dataset to test feature spaces that might capture the
types of representations that exist in auditory cortex.

3.5.1 Two regions surrounding hMT+ are functionally
distinct

Previous research has shown that regions surrounding hMT+ are involved in the
representation of body parts (Downing et al., 2001, Weiner and Grill-Spector, 2010).
However, the precise functional organization of this extrastriate body area (EBA)
surrounding hMT+ is not well understood (Weiner and Grill-Spector, 2013). Work
based on anatomical landmarks has argued that the region surrounding hMT+ can
be subdivided into three distinct body selective areas and is not a single homogeneous
EBA (Weiner and Grill-Spector, 2011). The three distinct body part selective areas
lie posterior, anterior, and ventral to hMT+. However, even if anatomically distinct,
there is little evidence to suggest that these three areas are functionally distinct.

We found that an area anterior to hMT+ is best predicted by the visual thematics
feature space in all our subjects. This area corresponds to the dorsal part of EBA
in 4/5 subjects. The visual thematics feature space captures information about the
relationship between objects and the types of events in the visual scene. This is
different from visual semantics which only capture the object and action categories
present in the scene, not their relationship. This suggests that the dorsal part of
EBA represents information beyond the mere presence of visual body parts. We
also found that an area ventral to hMT+ is best predicted by visual semantics and
it corresponds to ventral EBA in 3/5 subjects. Finally, we do not find consistent
results across subjects regarding the type of information that the area posterior to
hMT+ represents.

Taken together, our results suggests that two areas one anterior and one ventral
to hMT+ might be functionally distinct. However, our analyses do not reveal what
specific features are represented within these areas. The functional tuning of the area
anterior to hMT+ could be related to biological motion, particular body movements,
body part interactions, or more complex feature combinations. In future work, we
will explore the representation of the visual thematic features within this area in
order to aid our interpretation of its functional role. We also plan to find an optimal
set of stimuli that maximally differentiates activity in these two areas. These stimuli
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will then be used to create an experiment to functionally localize the two areas.

3.5.2 Variance partitioning and multiple feature space
representations

The results in this chapter are presented in terms of which feature space best predicts
individual voxel responses. However, the model used explicitly combines multiple
feature spaces to predict voxel responses and it performs significantly better than
any individual feature space alone (except for motion energy in early visual cortex and
hMT+). We did not explore whether there exist cortical areas that are significantly
involved in representing multiple feature spaces. In order to answer this question, a
variance partitioning analysis needs to be conducted (Lescroart et al., 2015, de Heer
et al., 2017). However, current methods make it intractable to conduct variance
partitioning analysis with 17 feature spaces. It would require estimating all 217

unique models one for each combination of feature spaces (de Heer et al., 2017).
We can estimate unique and shared variance for each feature space by combining

different approaches. First, we can measure how much unique variance one individual
feature space explains by estimating the full joint model and a separate joint model
that is missing only one feature space. The difference between the full joint model and
this “knock out” model is an estimate of how much unique explained variance can be
attributed to one feature space. The unique variance component can be estimated as
the difference between the joint model and the knock out model. The shared variance
component can be estimated by subtracting the unique variance component from a
model that only includes one feature space. A model that only includes a single
feature space is able to capture both the unique variance of that feature space and
the variance shared with all other feature spaces. By subtracting the unique variance
component from the full variance component, we can estimate the shared variance
component. We will develop this new variance partitioning analysis in future work.

3.5.3 Related work

Naturalistic viewing of movies and listening of stories is increasing in popularity. In
some approaches, model free analysis are used to make inferences about brain rep-
resentations and their consistency across subjects (Hasson et al., 2004). This makes
it difficult to infer functional interpretations to those data alone. Similarly, recent
work has explored the used of movies for the blind for exploring brain representations
(Hanke et al., 2014). These data are limited in brain coverage (not whole brain),
data quality (unknown functional SNR), number of modalities explored (only audio),
and labeled feature spaces (only one rich annotation is). More recently, model-free
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methods have been used to recover event temporal structure boundaries from films
(Baldassano et al., 2017). However, this is only one aspect of the film content. We
have shown that our short film paradigm combined with our modeling framework and
data is powerful enough to recover functional maps across multiple feature spaces in
individual subjects. Our paradigm has the advantage of being ever-expandable. New
feature spaces can be included and compared then to existing ones in terms of pre-
diction performance. This is approach is particularly important because the validity
of findings in neuroimaging is increasingly questioned (Goodman et al., 2016).

3.5.4 Replicability and generalization in every subject

The voxelwise encoding model approach used in this chapter was developed with
a focus on individual subject results (Wu et al., 2006, Naselaris et al., 2011). The
logic behind voxelwise modeling is that by analyzing every subject individually and
reporting every subjects results, the reader is able to see that the vast majority of
the results are replicated for every subject. In this chapter, the rich functional maps
that were derived for each subject show a very consistent pattern across all subjects.
In effect, every single subjects is a separate individual experiment. Every one of
our results is assessed in terms of how well models can generalize and predict a new
dataset of brain responses collected while subjects watch completely different stimuli.
And every result is evaluated at the individual subject level. For these reasons, our
results pass a much higher statistical bar than most fMRI studies that are commonly
based on summary statistics computed on a single dataset on group-averaged data.

3.5.5 Observations

There are a number of observations that will be pursued in future work.
Dorsal parietal – auditory features : A region in dorsal parietal cortex is weakly

but significantly predicted by sound features in 4/5 subjects. This region has been
reported to be selective for auditory information (Sood and Sereno, 2016) and in the
representation of human sounds (Brefczynski-Lewis and Lewis, 2017). Currently,
the environmental sound categories are not labeled. A feature space build from
environmental sounds will allow us to evaluate whether this region is indeed selective
for auditory features or particular classes of environmental sounds.

Posterior dorsal medial parietal – auditory features : A region in medial parietal
cortex is weakly but significantly predicted by sound features in 7/10 hemispheres.
This region lies posterior dorsal to semantically selective regions in medial parietal
cortex.
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Anterior precuneus – visual thematics and motion energy features : A region in
anterior precuneus is best predicted by visual thematic features in all subjects. A
region immediately posterior to it is best predicted by motion energy features in
7/10 hemispheres. Previous studies have reported a retinotopic region in anterior
precuneus (aPCu; Huang and Sereno, 2018). Our preliminary retinotopy analysis
could not recover visual angle selectivity in this region. However, our results sug-
gest that the anterior-most region in precuneus might be functionally different from
the region immediately posterior to it which is better predicted by motion energy
features.

Posterior central sulcus – visual semantics and thematics : The regions immedi-
ately posterior to primary somatosensory cortex (S1) are well predicted by visual
semantics in the majority of subjects. Interestingly the semantic tuning of these
regions maps onto the same part of the semantic space derived from a language
experiment (Huth et al., 2016). The semantic tuning for visual semantics in these
regions is likely more diverse than the language semantic space can captures. A
previous exploring semantic representations in silent movies did not find consistent
semantic tuning across subjects (Huth2012). This is likely due to the low prediction
performance in these region in 3/5 subjects. In future work, we will explore the
visual semantic tuning of this region.

Speech thematics – preliminary observations : Speech thematics were labeled in
the short films but the results are not shown in this chapter. Preliminary observations
show that the thematic role labels alone do not significantly outperform other speech
models. However, semantic models built from words appearing in a specific thematic
role (e.g. constructing a semantic features using only words appearing in the actor
role) predict activity in a region of ventrolateral PFC (dorsal anterior to Brocas area)
and the other speech features do not. This suggests that semantic representations
are affected by the particular thematic role that the words occupy in the sentence.

Speech syntax : We have not explored the individual effects of syntactic part of
speech or syntactic word dependency labels.

3.6 Future directions

3.6.1 Multiview auto-encoder

The short films are rich audio-visual stimuli that can be used to recover functional
maps from individual subjects, and we have shown here that the associated brain
activity is highly similar across subjects. Further, in a separate project, we have built
a multiview autoencoder network to estimate this joint brain representation across



CHAPTER 3. FUNCTIONAL BRAIN MAPPING WITH SHORT FILMS 90

subjects. This autoencoder is able to learn a mapping between the activity of the
different subjects despite anatomical differences, and between stimulus feature spaces
and subjects brain activity. The autoencoder can be used used to predict subjects
brain activity from other subjects (functional alignment; Haxby et al., 2011, Bilenko
and Gallant, 2016) and also from novel stimulus features corresponding to different
experiments. The multiview autoencoder network can predict brain activity in a
story listening experiment (Huth et al., 2016), in a silent movie watching experiment
(Nishimoto et al., 2011) and in a novel multi-task experiment, after training only on
the short films dataset. Short films are therefore rich enough to allow the autoen-
coder to learn the mapping between subjects brain activity that generalizes to novel
experiments in visual, auditory and cognitive modalities. Our next step is to find
the minimum subset of short films that is required for a new subject to be integrated
in the pre-trained autoencoder. From this minimal subset of data, a mapping of the
new subjects brain activity to other subjects will be learned. Then, the new subjects
brain activity under all the other experiments can be predicted from the existing
subjects. This means that multiple rich functional maps for the new subject can be
constructed at the expense of only the minimal set of short films.

3.6.2 Human Connectome Project 7T film data

We collaborated with the Human Connectome Project (HCP) and provided visual
semantic and stimulus motion-energy feature spaces for one hour of films (different
from the ones used in our study). More than 150 subjects watched and listened to
these films while their brain activity was recorded with a 7T MRI scanner. In future
work, we hope to expand the feature spaces labeled in those films in order to explore
our results in a much larger population. In addition, the HCP provides genetic,
behavioral, and psychological measures of subjects. This dataset might prove useful
in understanding how differences in brain activity across subjects relates to individual
subject variation.

3.6.3 Visual imagery

In additional work not included in this chapter, we collected data while subjects
listened to the audio from the short films with their eyes closed. Subjects were
instructed to visualize the video content of eight short films while their brain activity
was recorded using fMRI. We then used the same feature spaces that were used in the
main viewing condition to predict brain activity. Because the subjects were imagining
the films alongside the soundtrack, we could use the features with the same timing
as the viewing condition. Preliminary results suggest that anterior visual cortex is
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engaged during this task. We are able to predict activity in regions like retrosplineal
cortex (RSC) and occipital place area (OPA) from the visual semantic features of
the films that were being imagined, without any visual input. However, we were not
able to predict activity in early visual cortex from motion-energy nor visual semantic
features.

We also found that lateral parietal cortex was well predicted by the visual seman-
tic features during the imagery condition. This is interesting because in the viewing
condition (and in previous experiments; Huth2016) these regions are well predicted
by speech semantics instead. However, the speech content is the same during both
the visual imagery and viewing tasks because the full auditory content of the short
films is played to the subjects. These preliminary results (not shown) suggest a pos-
sible task dependent recruitment of these association regions. During imagery, the
task of imaging the short films video content recruits these association regions and
so they become more involved in representing visual semantics. We will pursue this
hypothesis in future work.
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Chapter 4

Appendix to spatiotemporal
encoding models

4.1 Standard form derivation

β̂T =
(
X>X + λ2C>C

)−1
X>Y

Cβ̂T = C
(
X>X + λ2C>C

)−1
X>Y

Cβ̂T =
(
X>XC−1 + λ2C>CC−1

)−1
X>Y

Cβ̂T =
(
X>XC−1 + λ2C>

)−1
X>Y

Cβ̂T =
(
X>XC−1 + λ2C>

)−1
C>C−1>X>Y

Cβ̂T =
(
C−1>X>XC−1 + λ2Ip

)−1
C−1>X>Y

Define A = XC−1 and β̂A = Cβ̂T . The solution becomes

β̂A =
(
A>A+ λ2Ip

)−1
A>Y,

and one can recover the original weights with

β̂T = C−1β̂A.

There exists an interesting relationship between the prior covariance matrix, Σ,
and the Tikhonov penalty matrix, C. When the penalty Gram matrix, C>C, is
full-rank, it is invertible and there exists a corresponding unique prior,

Σ =
(
C>C

)−1
.
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However, the standard form decouples the two concepts. There exist well-defined
Tikhonov penalties for which a prior cannot be expressed. In particular, if the
penalty Gram matrix is not positive semi-definite, no inverse exists and therefore
the prior cannot be formally expressed. The converse is also true. A rank-deficient
prior can be used if the problem is in standard form, yet there is no corresponding
penalty matrix. See Doicu et al. (2010) for a full treatment.

4.2 Equivalence of FIR models with temporal

priors and convolution followed by ridge

Estimating an FIR model with a temporal prior ΣT = BB>

Y = Xβ + ε

βi ∼ Nd
(
0, λ−2BBT

)
is equivalent to convolving the features xi with the columns of B and estimating the
model using ridge regression:

Y =

 | | | | | | |
(x1 ∗ b1) . . . (x1 ∗ bk) . . . (xp ∗ b1) . . . (xp ∗ bk)
| | | | | | |

 β + ε (4.1)

β ∼ Npk
(
0, λ−2Ipk

)
Recall the definition of the standard form transform:

ΣT =
(
C>C

)−1
A = XC−1,

where C−1 = B for a temporal prior ΣT = BB>. The standard transform of the FIR
model can be written as

A =

X︷ ︸︸ ︷ | | | | | |
X(1) X(2) . . . X(i) . . . X(p)

| | | | | |


B︷ ︸︸ ︷

b1(0) b2(0) . . . bk(0)
b1(1) b2(1) . . . bk(1)

...
... . . .

...
b1(d) b2(d) . . . bk(d)


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where each X(i) ∈ Rn×d is a matrix that contains every feature xi ∈ Rn×1 at delays
0 through d, and every row of X(i) corresponds to a particular time point t:

X(i)(t) =
[
xi(t) xi(t− 1) . . . xi(t− d)

]
We can express every entry of the matrix A as the dot product between X(i)(t) and
each column of the temporal basis set, bj :

a
bj
i (t) =

[
xi (t) xi (t− 1) . . . xi (t− d)

]

bj(0)
bj(1)

...
bj(d)


a
bj
i (t) =

〈
[xi(t), xi(t− 1), xi(t− 2), . . . , xi(t− d)],
[bj(0), bj(1), bj(2), . . . , bj(d)]

〉
a
bj
i (t) =

d∑
δ=0

xi (t− δ) bj (δ)

which is the definition of discrete convolution

(xi ∗ bj) [t] ≡
d∑
δ=0

xi(t− δ)bj(δ)

a
bj
i (t) = (xi ∗ bj) [t]

Finally, we rewrite A = XB as the convolution of each feature i with each temporal
basis j

ai =

 | | | |
(xi ∗ b1) (xi ∗ b2) . . . (xi ∗ bk)
| | | |


A =

 | | | | | |
a1 a2 . . . ai . . . ap
| | | | | |


A =

 | | | | | | |
(x1 ∗ b1) . . . (x1 ∗ bk) . . . (xp ∗ b1) . . . (xp ∗ bk)
| | | | | | |


This is exactly Equation 4.1.
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4.3 Kernel solution to encoding models with

spatiotemporal MVN priors

The standard form solution is

β̂A =
(
A>A+ λ2I

)−1
A>Y

The kernel solution to the standard form problem becomes

β̂A = A>
(
AA> + λ2I

)−1
Y

Expanding this out using the fact that A = XC−1

β̂A = C−1>X>
(
XC−1C−1>X> + λ2Ip

)−1
Y

We know Σ = C−1C−1> = (CC>)−1. Replacing this in

β̂A = C−1>X>
(
X
(
C−1C−1>

)
X> + λ2Ip

)−1
Y

To recover the Tikhonov solution, recall that β̂T = C−1β̂A. Substituting this in

β̂T = C−1C−1>X>
(
X
(
C−1C−1>

)
X> + λ2Ip

)−1
Y

We know Σ = C−1C−1>. Replacing this in

β̂T = ΣX>
(
XΣX> + λ2Ip

)−1
Y

In the case of spatiotemporal kernels Σ = ΣT ⊗ ΣX . The full solution becomes

β̂T =
(
ΣT ⊗ ΣX

)
X>

(
X
(
ΣT ⊗ ΣX

)
X> + λ2Ip

)−1
Y

4.4 Efficient kernel solution for models with

spatiotemporal MVN priors

We now derive a computationally efficient solution for the kernel solution for an
encoding model with non-spherical spatiotemporal multivariate normal priors. This
formulation makes the estimation of these models computationally tractable.

The spatiotemporal prior is constructed by computing the Kronecker product (⊗)
between the feature prior ΣX ∈ Rp×p and the temporal prior ΣT ∈ Rd×d,

Σ = ΣT ⊗ ΣX =

 ΣT
1,1Σ

X · · · ΣT
1,dΣ

X

...
. . .

...
ΣT
d,1Σ

X · · · ΣT
d,dΣ

X

 .
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The resulting spatiotemporal prior is Σ ∈ Rpd×pd. Notice that when both the feature
and the temporal priors are spherical, the spatiotemporal prior is also spherical.

The Tikhonov solution to an encoding model with a spatiotemporal multivariate
normal prior ΣT ⊗ ΣX can be expressed as (see Appendix 4.3):

β̂T =
(
ΣT ⊗ ΣX

)
X>
( K︷ ︸︸ ︷
X
(
ΣT ⊗ ΣX

)
X> + λ2I

)−1
Y.︸ ︷︷ ︸

α̂

A computationally efficient solution can be derived by re-arranging terms. First,
notice that the kernel regression solution to the standard form problem is embedded
within the Tikhonov solution above:

α̂ =
(
X
(
ΣT ⊗ ΣX

)
X>
)

+ λ2I)−1Y.

The term inside the parenthesis is the regularized n × n kernel matrix K of the
standard form transformation:(

K + λ2I
)

=
(
X
(
ΣT ⊗ ΣX

)
X> + λ2I

)
.

Recall that X is an n×pd FIR matrix which includes delayed copies of the linearized
stimulus feature matrix. Computing the kernel matrix thus requires the following
matrix multiplication

K =
[
Xδ(1) · · · Xδ(d)

]  ΣT
1,1Σ

X · · · ΣT
1,dΣ

X

...
. . .

...
ΣT
d,1Σ

X · · · ΣT
d,dΣ

X


 Xδ(1)

...
Xδ(d)


Finally, this matrix multiplication can be expressed as a sum of matrix products,

K =
d∑
j

d∑
i

ΣT
(i,j)

(
Xδ(i)Σ

XX>δ(j)
)
.

This formulation makes the problem of estimating encoding models with spatiotem-
poral multivariate normal priors tractable in contexts when n < p.

β̂T =
(
ΣT ⊗ ΣX

)
X>

(
d∑
j

d∑
i

ΣT
(i,j)

(
Xδ(i)Σ

XX>δ(j)
)

+ λ2I

)−1
Y
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4.5 Extension to priors on priors: hyper-priors

We have shown the usefulness of imposing various temporal and spatial priors on
feature weights to improve predictive models. There exist situations, however, when
the expert prior itself needs to be regularized. This can be the case when the expert
prior is derived empirically and is noisy, or when the prior can be modified to match
the data better. In such cases, we can apply the same principle and impose a prior
on the prior—a hyper-prior. We next show an example on how to incorporate hyper-
priors to our framework.

In the section on Temporal Priors we described the smoothness prior. Our results
show that imposing a smoothness prior on the temporal delays does not improve the
prediction performance of the motion-energy model. This is surprising. We expect
the haemodynamic response function to be temporally smooth, and so imposing a
smoothness prior should improve prediction performance. This intuition, however,
ignores the structure of the smoothness prior.

The smoothness prior imposes a strong covariance to delays in the middle of the
temporal filter (see Figure 1.3). This is problematic because the goodness of the
prior will depend on the number of delays. This is a bad assumption in many cases.
In order to avoid this issue, we can impose a spherical prior on the smoothness prior.
This can be thought of as trading off between a spherical prior and the smoothness
prior, where the tradeoff is controlled by the hyper-prior hyper-parameter.

In general, hyper-priors can be expressed as

β ∼ Np

(
0, λ−2Σ

)
Σ ∼ Wp

(
γ−2Λp

)
,

where W is a Wishart distribution. In the case of the smoothness prior, this results
in

Σ∗ = λ−2
(
D2 + γ2Ip

)−1
,

where λ and γ are hyper-parameters.
Estimating models that include both a prior and a hyper-prior is feasible under

our framework (and implemented in the accompanying software). However, this flex-
ibility comes at the cost of computational resources because the hyper-prior hyper-
parameter (γ) needs to be estimated via cross-validation.

4.6 Prior covariance matrix and matrix rank

In order for some matrix Σ to serve as the covariance matrix for a multivariate
normal prior, that matrix should have certain properties that are common across
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all covariance matrices. It should be symmetric and positive semi-definite, meaning
that all of its eigenvalues should be non-negative. Oddly, the definition of Tikhonov
regression seems to require that Σ be full rank (and thus positive definite rather
than semi-definite), because the penalty matrix, C, is related to Σ by Σ = (C>C)−1.
Unless elements of C are allowed to approach infinity, this relationship requires that
Σ be invertible. However, if we use the standard form of Tikhonov regression this
requirement disappears, since it only depends on C−1, which is well-defined as long
as Σ is finite and positive semi-definite. Thus, if one is using the standard form it
seems that there is no requirement that Σ be full rank.

Indeed, there are many situations in which Σ will be rank-deficient. For example,
Σ could be constructed using the feature extraction method detailed above, with the
number of features being less than the number of channels in the model. In this
case the feature matrix E is tall, having more rows than columns, and EE> is not
full rank. This corresponds to a prior covariance matrix in which some directions
have exactly zero variance. Iso-probability curves in the distribution defined by this
covariance matrix will have a pancake-like appearance with exactly zero thickness
along the null directions.
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Chapter 5

Appendix to evaluation of RSA

5.1 Relationship between RSA and the stimulus

triggered average

The stimulus triggered average (STA) is one of the simplest models that is used in
neuroscience (De Boer and Kuyper, 1968, Marmarelis and Naka, 1972). The stimulus
triggered average (STA) is optimal if there are no correlations between the stimuli or
features of interest (i.e. orthogonal design matrix) and if the errors are uncorrelated
in time (i.e. iid errors). The weight estimates for an STA model can be computed
directly as:

β̂STA =
X>Y

n
.

5.1.1 The coefficient of determination for STA

We can evaluate the STA model by computing the amount of variance it explains
in the data using the coefficient of determination (R2). This can be achieved by
computing the matrix trace between the predicted (Ŷ ) and the actual (Y ) responses.
After some algebra, this can be expressed as

R2 ∝ trace
(
Y >Ŷ

)
Ŷ = X

(
X>Y

)
R2 ∝ trace

(
Y >X

(
X>Y

))
trace

(
Y >X

(
X>Y

))
= trace

(
X
(
X>Y

)
Y >
)

R2 ∝ trace
(
XX>Y Y >

)
.
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5.1.2 Relationship between RSA and STA

Recall the RSA similarity estimate when using correlation

corr

(
triang

(
XX>

p

)
, triang

(
Y Y >

v

))
In fact, the relationship between the stimulus triggered average R2 defined above
and this quantity can be derived exactly (not shown). For this reason, RSA can be
understood in terms of an STA encoding model.

In cases where the features are not orthogonal and there is a need to trade-off
between the empirical covariance and some regularization term, STA is not a good
model. In cases, where ignoring the empirical feature covariance (or when features
are orthogonal), STA can be a good model. In either case, STA is a particular type
of encoding model that assumes the features are uncorrelated with each other (i.e.
are orthogonal). In some cases, that might be a good assumption and in some cases
it not. RSA is closely related to the STA and will fail whenever STA is a poor model
of the relationship between features and brain responses.

5.1.3 Modifying the ridge solution to include STA as a
special case

Ridge regression can be modified in order to include this solution as a special case.
To see this, notice that we can express the ridge solution as a trade-off between
the empirical feature covariance (X) and the ridge penalty (I). This trade-off is
controlled by the regularization parameter α:

β̂Ridge =
(
αX>X + (1− α) I

)−1(X>Y
n

)
.

Finally, notice that if the regularization parameter is zero (α = 0) or if the features
are completely uncorrelated (i.e. are orthogonal, X>X = Ip), the term inside the
inverse becomes a diagonal matrix and the ridge weights become proportional to the
STA:

β̂Ridge ∝ β̂STA =
X>Y

n




